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Abstract

A novel method for magnesium metal formation by the reduction of magnesium oxide
with methane in a thermal plasma has been developed. In this approach, magnesium
oxide (44 to 104 [tm) entrained in a stream of methane gas is introduced into the inter-
electrode region of a magnetically rotated DC arc discharge (thermal plasma) reactor
consisting of a graphite cathode rod located at the axis of a tubular graphite anode.
Originally proposed as an alternative route for methane conversion to solid magnesium
carbide intermediates to overcome transportation limitations associated with remote
natural gas, the reaction of methane and magnesium oxide in a thermal plasma presents a
new approach to magnesium metal extraction from its oxide. The industrial production
of magnesium is of interest because it is the lightest structural metal, weighing a third less
than an equivalent volume of aluminum and almost a fifth as much as an equivalent
volume of iron. As such, magnesium finds extensive applications in the automotive
industry in view of increasingly stricter fuel economy and emissions standards.

A systematic study of the MgO-CH 4-Ar system has been performed at methane
flow rates of 10, 20 and 30 1/min, inlet MgO/CH 4 molar ratios of 0.26 to 1.15 and Argon
dilution levels of 0, 10 and 15 1/min over an arc power input range of 17 to 47 kW. The
objective is to identify ranges of plasma operating conditions that would provide desired
product yields, selectivity and CH4/MgO conversion to Mg 2C 3 and/or MgC 2 and/or Mg,
as well as to H2 and CO. In addition, exploratory experiments with the MgO-C-CH 4-Ar,
Mg-CH4-Ar, CaO-CH4-Ar and MgO-CaO-CH 4-Ar systems were also performed.

The extents of CH 4 and MgO conversion to Mg2C 3 and MgC2 under the thermal
plasma conditions investigated are not found to be appreciable. The highest MgO "Mg"
molar conversion to Mg2C3 achieved is 9%. The reaction of CH4 with Mg metal in the
thermal plasma reactor likewise does not lead to appreciable yields of Mg 2C3 and MgC2,
although CH4 is converted to carbon and hydrogen. Rather, the reaction of CH 4 and MgO
under the conditions studied results in the formation of elemental magnesium, which is
recovered as agglomerated, hexagonal crystalline particles in the 0.1 to 1 ýpm size range.
The molar conversion of the magnesium in MgO to Mg over the range of experimental
conditions investigated has a mean of 64% and a standard deviation of 16%, with extents
as high as 95% achieved. The mean molar conversion of the hydrogen in CH4 to H2 is



91% with a standard deviation of 16%. The yield of Mg can be enhanced by feeding CH4
in stoichiometric excess, doping the MgO with solid carbon as an additional reducing
agent and diluting the system with inert gas which has an effect analogous to reducing the
system pressure. The yield of CO can be improved by lowering the CH 4 flow rate to
increase plasma residence times. The formation of magnesium has also been found to be
feasible even with a mixed feed of CaO and MgO, with the CaO being converted to CaC2.

Magnesium metal formation in the reactive thermal plasma system is considered
to occur according to a general overall process of rapid vaporization and decomposition
of the reactants into their constituent atomic species followed by fast quenching to below
the metal melting point. The rapid quenching of the plasma effluent in the vapor state
gives rise to a high supersaturation, which, in turn, leads to homogeneous nucleation
when a critical supersaturation ratio is exceeded. Nucleation then occurs like a burst over
a very short period of time. When nucleating species are depleted by diffusion to newly
formed particles, the nucleation terminates and the particles continue to grow by physical
condensation and particle coagulation. Since nucleation rates increase very sharply with
decreasing temperature, the particles produced solidify within a small temperature range.
For the MgO-CH4 system, the reactants can be completely vaporized to the atomic
species in the plasma if the residence time were sufficiently long. However, calculations
of the time scale needed for complete evaporation of a 100 pým MgO particle indicate that
the estimated residence times are not long enough, suggesting that MgO is only partially
vaporized. Thus, the formation of magnesium is postulated to occur mainly by the
reaction of nascent carbon species with the MgO particles.

Thermodynamic calculations indicate that magnesium vapor and carbon
monoxide exist above 2000 K in equilibrium but that Mg is reoxidized by CO back to
MgO below 2000 K. Rapid quenching is postulated to freeze the equilibrium in the 2000
to 1800 K range, providing the magnesium vapor with enough driving force to nucleate
and condense before consumption by the reverse reaction with CO to form MgO and C
becomes dominant. Estimated reaction and condensation rates support the observed
magnesium yields and suggest that the backward reaction can be sufficiently slow relative
to the nucleation and condensation kinetics of supersaturated magnesium vapor.

The lowest energy consumption achieved in this study is 30.4 kWh/kg Mg.
Operation at higher methane flow rates suggests that energy efficiency can be improved
at higher throughputs. Compared to the conventional magnesium production methods,
this approach offers a potentially chlorine-free, continuous and atmospheric pressure
process using low-cost and abundant raw materials, such as natural gas and dolomite, at
competitive energy, environmental and capital costs.
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Chapter 1

Introduction

The original overall objective of the present thesis is to develop new scientific and

engineering knowledge bases for assessing the technical feasibility of converting methane

to alkaline earth metal carbides using calcium oxide and magnesium oxide in a thermal

plasma reactor according to the global reactions:

3 CH 4 + CaO - CaC2 + 6 H2 + CO A- 298 K= 689.8 kJ Reaction (1-1)

5 CH4 + 2 MgO-> Mg2C3 + 10 H2 + 2 CO AH 298 K = 1435.3 kJ Reaction (1-2)

3 CH4 + MgO -~ MgC2 + 6 H2 + CO AH 29 8 K = 803.2 kJ Reaction (1-3)

If technically and economically viable, the above chemistry could be the basis for an

alternative process technology for the commercial conversion of natural gas to premium

liquid hydrocarbon fuels and chemicals via metal carbide intermediates.

Over the course of this research project, the investigation of CH 4/MgO reactions

in a thermal plasma led, unexpectedly, to the observations of high yields of elemental

magnesium, rather than of magnesium carbides (Mg 2C3 and MgC 2). Such observations

suggest an alternative method for the manufacture of magnesium metal by direct

reduction of MgO with methane according to the global reaction:

CH 4 + MgO -- Mg + 2 H2 + CO AH 2 98 K = 565.6 kJ Reaction (1-4)



The production of magnesium metal is of interest because magnesium is the lightest

structural metal (Cameron et al., 1987), weighing a third less than an equivalent volume

of aluminum and almost a fifth as much as an equivalent volume of iron. As such,

magnesium finds extensive applications in the automotive industry, particularly at a time

of increasingly stricter fuel economy and emissions standards.

The discovery of this potential approach to magnesium metal production, though

fortuitous, has therefore led to a shift in the primary focus of this research to the study of

the formation of magnesium metal by the reduction of magnesium oxide with methane.

1.1 Motivation

The motivation for the present thesis is twofold. Originally undertaken to investigate an

alternative approach to methane upgrading which could overcome transportation

limitations associated with abundant but remote natural gas, this study has also uncovered

a novel and potentially continuous process for the manufacture of magnesium metal.

1.1.1 Natural Gas Upgrading

Diversification of the raw materials base for manufacturing premium fuels and chemicals

offers U.S. and international consumers economic and strategic benefits (Longwell,

1993). Extensive reserves of natural gas in the world provide a valuable source of clean

gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion

processes, natural gas offers the prospect of improving flexibility in liquid fuels and

chemicals manufacture, and thus, the opportunity to complement, supplement, or displace

petroleum-based production as economic and strategic considerations require. Many

attractive deposits of natural gas are remotely located from key market sites. In order to

utilize this remote resource commercially, natural gas must be transported to the market

from the production site either via extensive pipeline distribution networks under pressure

or in specially designed ocean-going tankers as liquefied natural gas at low temperatures.

Due to the state in which it exists at normal conditions, natural gas has a low energy

content per unit volume compared to petroleum or coal. This relatively low energy



density entails high transportation costs which exclude significant quantities of the

resource from large-scale commercial utilization. Thus, there is considerable interest in

developing new approaches to the volumetric energy densification of natural gas to

enhance its marketability.

The composition of natural gas varies widely from reservoir to reservoir but the

principal hydrocarbon constituent is always methane (CH 4). With its high hydrogen-to-

carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products.

However, methane is a very chemically stable molecule and thus, is not readily

transformed to other molecules or easily reformed to its elements (hydrogen and carbon).

With the interest in upgrading natural gas to value-added products, several technologies

for methane conversion to liquid fuel and chemical precursors currently exist at various

stages of scientific and technological development. In many cases, further research is

needed to augment selectivity to desired product(s), increase single-pass conversions, or

improve economics before the full potential of these methodologies can be realized on a

commercial scale. With the trade-off between gas conversion and product selectivity, a

major challenge common to many of these technologies is to simultaneously achieve high

methane single-pass conversions and high product selectivity.

1.1.1.1 Methane Conversion to Metal Carbides

Prior work at MIT (Kim, 1977; Kim et al., 1979) has demonstrated that, by reacting

methane with calcium oxide (CaO) in a laboratory-scale rotating direct current (DC) arc

discharge reactor, high (>95%) methane single-pass conversions to molecular hydrogen

(H2) and calcium carbide (CaC2) can be obtained, according to Reaction (1-1).

Hydrogen can be used as a fuel in thermal processes and in fuel cells to generate

electricity at efficiencies which may approach 60%. It finds wide applications in

petroleum refining and coal liquefaction where it is used to improve fuel quality, e.g. by

increasing hydrogen-to-carbon ratio and lowering the fuel content of pollutant precursors

such as sulfur, nitrogen and heavy metals. Mixed with carbon monoxide (CO), hydrogen

forms synthesis gas which is also valuable as a fuel and which, by various catalytic

processes, can be upgraded to a wide range of petroleum-like fuels, methanol, waxes, and



other premium products. Calcium carbide, which exists as a solid at dry ambient

conditions, is a particularly attractive product with significant commercial benefits in the

present context: (a) being a solid, it can be separated from the gaseous products of

Reaction (1-1) relatively easily; (b) it has an equivalent heating value (based on acetylene

- see Reaction (1-5)) of about 20,200 kJ/kg (8700 BTU/lb) and thus, like low-rank coal,

can be stored and transported over long distances at reasonable cost; and (c) by well-

established hydrolysis processes, it can be converted to acetylene (C2H2) by the reaction:

CaC2 +2 H20 -) Ca(OH)2 + C2H2  Reaction (1-5)

Acetylene is a reactive raw material that can be converted to a diverse array of organic

chemicals and to high-grade liquid fuels.

In the light of the success of the previous work by Kim (1977) et al. (1979), there

is incentive to investigate comparable reactions of methane with other alkaline earth

metal oxides. In particular, an analogous reaction with magnesium oxide (MgO) to

produce hydrogen, carbon monoxide and magnesium sesquicarbide (Mg 2C3) and/or

magnesium dicarbide (MgC2) is of interest. Thermodynamic calculations imply that the

sesquicarbide is strongly favored over the dicarbide above 1700 K. Noteworthy is the

fact that magnesium is the only alkaline earth metal that forms a sesquicarbide, which,

upon hydrolysis, yields methylacetylene (C3H4), providing a route for C1-to-C 3

conversion. Furthermore, methylacetylene offers a potential route to benzene by

condensation/dehydrocyclization. Concepts for synthesizing magnesium sesquicarbide

from magnesium oxide and methane, with further upgrading of the sesquicarbide to C3

hydrocarbons by hydrolysis, are described by Peters and Howard (1990; 1993). The

earlier experimental work by Kim (1977) et al. (1979), together with preliminary cost

estimates (Peters and Howard, 1989), indicate that the metal carbide route offers

sufficient potential for good thermal efficiency and for favorable economics to warrant

further systematic study for methane upgrading.



1.1.1.2 Description of Proposed Methane Upgrading Approach

In the proposed approach, methane would be reacted, essentially stoichiometrically

(rather than catalytically), with relatively low-cost and recyclable alkaline earth metal

oxides such as calcium oxide (quicklime), magnesium oxide (magnesia) or mixtures of

the two (calcined dolomite) to achieve very high (approaching 100%) conversion to

hydrogen, carbon monoxide and the corresponding alkaline earth metal carbide,

according to Reactions (1-1) and (1-2):

3 CH 4 + CaO - CaC2 + 6 H2 + CO AH 29 8 K= 689.8 kJ Reaction (1-1)

5 CH 4 + 2 MgO-* Mg2C 3 + 10 H2 + 2 CO AH 298 K = 1435.3 kJ Reaction (1-2)

In order to carry out these reactions, the extreme chemical stability of methane would be

overcome under high severity conditions, i.e. high temperature (>2000 K), in an electrical

arc discharge (thermal plasma) reactor or in a purely thermal (i.e. non-plasma) reactor.

The carbides thus produced are solids at dry ambient conditions which can be

more readily separated, stored and transported. Their value as fuel precursors and

chemical intermediates is further enhanced when, upon reaction with water, they yield the

valuable hydrocarbon gases acetylene and methylacetylene:

CaC2 +2 H20 1 - Ca(OH) 2 +C 2H2  H 29 8 K = -128.3 kJ Reaction (1-5)

Mg2C3 + 4H 20 - 2 Mg(OH) 2 + C3H4  AH 298 K = -599.2 kJ Reaction (1-6)

Reactions (1-5) and (1-6) are expected to produce acetylene and methylacetylene in high

purity. Thus, the carbide approach may exhibit simpler and lower cost separation and

purification steps than those needed in alternative processes for acetylene manufacture.

Acetylenes can be upgraded to a wide range of chemicals or to premium-value liquid

hydrocarbon fuels.

CaO and MgO for re-use in Reactions (1-1) and (1-2) can be regenerated from

Ca(OH)2 and Mg(OH)2 according to:



Ca(OH) 2 -- CaO + H20 AH98 K = 65.2 kJ Reaction (1-7)

Mg(OH)2 -> MgO + H20 AH 29 8 K = 37.6kJ Reaction (1-8)

and subsequently recycled back to the process.

A conceptual process wherein Reaction (1-1) [or (1-2)] is carried out under

thermal plasma conditions followed by low temperature Reaction (1-5) [or (1-6)] to

produce CO, H2 and C2H2 (or C3H4) is estimated to have a reasonably high thermal

efficiency. In the ideal case of perfect heat integration where the plasma provides only

the endothermicity of Reaction (1-1) or (1-2) and where CH4 is used to generate

electricity for driving the plasma reactor at 33% efficiency, Table 1-1 shows that the

process thermal efficiencies are comparable to the 60% thermal efficiency of hydrogen

manufacture by steam reforming of methane (Gary and Handwerk, 1984).

Table 1-1. Estimated Process Thermal Efficiency of Methane Conversion
in a Thermal Plasma(a)

Product LHV as a Percentage of Total Input CH4, i.e. CH4 Converted to Products
or Used to Produce Electricity to Run Plasma(b)

Reaction(c) H2  CO C2H2  C3H4  Total
(1-1) and (1-5) 32 6 28 66
(1-2) and (1-6) 29 7 22 58

(a) Assumes perfect heat integration so the plasma supplies only the endothermicity
of Reaction (1-1) or (1-2).

(b) Methane is assumed to be converted to electricity at 33% efficiency.
(') All chemical reactions are assumed to proceed to 100% completion.

1.1.2 Magnesium Metal Production

The worldwide consumption of magnesium is expected to increase from 315,000 tons in

1994 to 495,000 tons in 2005 (Ridgeway, 1995). This growth will be largely driven by

the penetration of magnesium in automotive manufacture to reduce total vehicle weight.

Its light weight, high strength-to-weight ratio and good machinability account for

magnesium's extensive usage in alloying with other metals, mainly aluminum, in

structural, die-cast applications. Ridgeway (1995) projects that magnesium usage per



Japanese car will grow from 5 kg in 1995 to 40 kg in 2000. The three largest applications

of magnesium metal are aluminum alloying, lightweight die-castings and desulfurization

of iron and steel.

Although an energy-saving structural material, magnesium is also an energy

intensive product. The major conventional technologies for magnesium production are

the electrolysis of molten magnesium chloride (MgC12) to magnesium metal and chlorine

gas (C12) and the thermal reduction of magnesium oxide with ferrosilicon (metallothermic

reduction). Thermal reduction with carbon (carbothermic reduction) has been

demonstrated but is not currently in commercial usage. The electrolytic method suffers

from high costs of cell feed preparation and low metal production rate. The

metallothermic reduction method requires expensive reductants and has drawbacks from

operation at reduced pressure and in batch mode. The energy inefficiency of rapid

quenching to inhibit loss of Mg from reoxidation with CO and the formation and

recovery of finely divided pyrophoric Mg dust are among the technical difficulties

associated with the carbothermic process. Compared to the conventional processes, a

technology based on Reaction (1-4) potentially offers a chlorine-free, continuous and

atmospheric pressure process for Mg production from low-cost and abundant raw

materials such as natural gas and dolomite.

1.2 Thesis Objectives

The specific objectives of this thesis are:

1. To determine the technical feasibility of converting CH 4 and MgO to Mg, H2 and CO

in a thermal plasma, according to Reaction (1-4);

2. To determine the technical viability of converting CH 4 and MgO to Mg2C3, H2 and

CO in a thermal plasma, according to Reaction (1-2);

3. To define preferred ranges of plasma operating conditions that provide desired yields,

selectivities and CH 4/metal oxide conversion to CaC2 and/or Mg2C3 and/or MgC 2

and/or Mg, as well as to H2 and CO according to Reactions (1-1), (1-2), (1-3) and (1-

4);



4. To develop a better understanding of the underlying chemical and physical

mechanisms by which this approach gives desired reactant conversion, product

selectivity and kinetics behavior.

1.3 Literature Review

This section provides a brief review of pertinent literature on alternative approaches to

methane upgrading; properties of acetylene, methylacetylene, and calcium and

magnesium metals, oxides and carbides; chemical processing in thermal plasmas;

methane pyrolysis; carbide formation; and metal formation with methane as reductant.

1.3.1 Alternative Approaches to Methane Upgrading

Considerable efforts and resources have been placed on research, development and even

commercialization of various approaches to methane upgrading by the U.S. Department

of Energy (Malone and Komar, 1989; Malone et al., 1990), academia (Driscoll et al.,

1985; Gesser et al., 1985; Yarlagadda et al., 1987) and industry (Huff and Eastman,

1991; Fox, Chen et al., 1988; Fox, Geosits et al., 1988). Guthrie et al. (1995), Malone et

al. (1990), and Malone and Komar (1989) at the U.S. DOE/Morgantown Energy

Technology Center, Fox et al. (1988) at Bechtel, and Kuo and Ketkar (1987) at Mobil

R&D give development status reviews as well as process and economic evaluations of the

many technologies currently under investigation.

Methodologies for methane conversion can be broadly classified into two

categories: direct and indirect. Indirect conversion methods require methane conversion

to CO and H2, or synthesis gas, followed by catalytic conversion of the synthesis gas to

methanol or Fischer-Tropsch hydrocarbon liquids. Synthesis gas formation is

commercially practiced by steam reforming and, to a lesser extent, by non-catalytic

partial oxidation. The energy- and capital-intensive nature of steam reforming has

stimulated research to devise a more direct pathway for methane conversion without the

costly methane-reforming step to synthesis gas. Among the direct methods, research

efforts have focused on: (1) Partial Oxidation, with or without a catalyst, to methanol and



formaldehyde; (2) Oxidative Coupling to light olefins by alkali metal-promoted alkaline

earth metal oxide catalyst (MgO, CaO); (3) Oxyhydrochlorination to chloromethanes; (4)

Electric Arc Discharge/Plasma Processing to acetylene; (5) Thermal Pyrolysis to

acetylene; (6) Alkylation with unsaturated hydrocarbons, e.g. toluene, to produce styrene

monomer; (7) Activation using metals, metal oxides or metal complexes; (8) Hydrogen

Sulfide-Methane reaction to carbon disulfide (Erekson and Miao, 1995) and (9)

Biomimetic approaches that seek to mimic the catalytic structures in methanotropic

bacteria or that directly utilize biological systems for partial oxidation of hydrocarbons.

Currently, partial oxidation, oxidative coupling and oxyhydrochlorination are

considered to be the most advanced direct conversion technologies. Under partial

oxidation, methane is oxidized with oxygen, nitrous oxide or halogens to produce

methanol and formaldehyde, which are then converted to gasoline and by-product water

over zeolite catalyst. With oxidative coupling, alkali metal oxide-activated methane

undergoes oxidative dehydrogenation to form methyl radicals and hydroxide ions. The

radicals combine to form ethylene which is oligomerized to gasoline over ZSM-5

catalyst. Oxyhydrochlorination entails methane reaction with oxygen and hydrogen

chloride to form chlorinated hydrocarbons, e.g. chloromethane, which can be made to

undergo oligomerization to gasoline and HC1.

Despite the wide range of possible approaches, direct methane upgrading

technology has yet to be demonstrated on full commercial scale. Economic evaluations

(Fox, Chen et al., 1988) suggest that premium-value fuels from the most promising direct

approaches still entail high production costs ($40-$70/bbl of liquid in 1988 U.S.$). These

high costs can be attributed to the fundamental trade-off between conversion and

selectivity. Most of the methodologies exhibit poor single-pass conversions or poor

selectivity to the desired product. Methane is considerably less reactive than the resulting

products, making simultaneous achievement of high gas conversion and high product

selectivity extremely difficult.



1.3.2 Acetylene and Methylacetylene

Acetylene (Ethyne): Berthelot was the first to study acetylene extensively and to realize

that it was the first member of the alkyne series (Miller, 1965). As early as 1863, he was

forming acetylene by passing methane through an electric arc (Spitz, 1988). In 1892,

Moissan, a French researcher, obtained acetylene by the hydrolysis of calcium carbide,

produced from lime and coal in an electric furnace. The discovery of the carbide process

for acetylene production led to the birth of the acetylene industry. Early uses of acetylene

were as an illuminant and later, for oxygen welding and metal cutting. However, it soon

became evident that acetylene is valuable not only as a fuel but as an ideal chemical

feedstock for a wide variety of products including solvents, plastics, synthetic rubber,

dyes and pharmaceuticals, among others.

Due to its triple bond and its high positive free energy of formation, acetylene is

highly reactive. The important acetylene reactions are hydrogen replacements, additions

to the triple bond, additions by acetylene to other unsaturated systems, polymerization

and cyclization. For example, the formation of a metal acetylide is a hydrogen

replacement reaction while hydrogenation, halogenation, hydrohalogenation, hydration

and vinylation are addition reactions. Thus, acetylene is a key precursor to a diverse

array of industrially important chemicals such as vinyl chloride, acetaldehyde,

acrylonitrile, vinyl acetate, tetrahydrofuran and chloroprene (Miller, 1965; Detz et al.,

1980; Tedeschi, 1982). However, over the last three decades, the acetylene industry

suffered a decline despite growth in acetylene-derived chemicals. Acetylene has been

displaced by olefin-based chemistries in chemical manufacturing processes which use

more economically competitive raw materials. For example, besides the utilization of

ethylene as feedstock for the manufacture of vinyl chloride and vinyl acetate (which are

used as monomers in the preparation of a wide variety of polymeric materials), acetylene

has also been replaced by propylene as preferred feedstock for acrylonitrile manufacture

and by butadiene for chloroprene manufacture.

Acetylene is commercially derived from two principal sources: calcium carbide

and hydrocarbons. The industry started and grew with carbide acetylene but the relative



economics of acetylene for chemical usage has now shifted in favor of hydrocarbon-

based, or petrochemical, acetylene. The processes for the production of petrochemical

acetylene can be broadly classified into: (1) Electric Arc (Hills, Germany; Du Pont;

AVCO); (2) Regenerative Pyrolysis (Union Carbide, Wulff); and (3) Partial Combustion

(BASF, Dow, Monsanto, SBA, M.W. Kellogg, Montecatini). The common principle

characterizing these methodologies is the use of an intense energy source that heats a

hydrocarbon feedstock above 1500 K within short residence times of 0.01-0.001 s,

followed by the rapid (in the order of a few milliseconds) cooling of the acetylene

product to prevent decomposition into its elements (Tedeschi, 1982).

By providing energy at a very high flux density, electrical discharge processes

have the advantage of keeping reaction time to a minimum. Furthermore, they give a

higher acetylene yield than regenerative or partial combustion processes (Duncan, 1980;

Tedeschi, 1982). The primary role of the electrical energy is to raise the temperature of

the reactants to the reaction temperature and to supply the endothermic heat of reaction.

In several modifications to the process, preheating of the feedstock with cheaper fuel

energy provides the enthalpy of the reacting gas stream, thus reducing the electrical

energy requirements. Miller (1965) calculates a theoretical energy requirement of 6.45

kWh to produce a kilogram of acetylene from methane according to:

2 CH C2H2 + 3 H2 Reaction (1-9)

at a reaction temperature of 1743 K. However, in addition to this, the enthalpy of

unreacted feedstock, energy requirements of side-reactions, heat losses and energy for

separating acetylene from the gas product entail a much higher total energy requirement.

Arc processes in general consume more electrical energy (average of about 11

kWh/kg of acetylene (Tedeschi, 1982)) than the 9.5-10.5 kWh/kg needed for carbide-

derived acetylene (Miller, 1965). As an example, the Hills Arc Process had a total power

consumption of 13.2 kWh/kg of acetylene, inclusive of 2.9 kWh/kg required for

separation processes from the cracked gas. The acetylene concentration in the cracked

gas was 14.5 vol %. Total natural gas (92.3% CH4) conversion was about 78 wt % with



an acetylene yield of about 36 wt % (Miller, 1965). For comparison, in the AVCO Arc-

Coal Process based on the gasification of coal in a hydrogen plasma, Gannon and

Krukonis (1972) and Krukonis et al. (1974) reported an energy requirement as low as 9.5

kWh/kg of acetylene at an acetylene yield of up to 35 wt %. Acetylene concentration in

the gas product was 15.7 vol %.

The formation of acetylene from carbon and hydrogen is highly endothermic.

With a high positive free energy of formation, the acetylene molecule is

thermodynamically unstable with respect to its constituent elements. Acetylene can

polymerize exothermically and explode even in the absence of oxygen when compressed

above 2 atm, making transport of compressed acetylene very dangerous. However, the

use of a solvent such as acetone and a porous mass inhibits explosive decomposition.

Thus, acetylene can be transported as a solution in acetone under pressure in a cylinder

completely filled with porous mass (Miller, 1965).

Acetylene is unlike other hydrocarbons in having a decreasing free energy of

formation with increasing temperature. In contrast, lower paraffinic hydrocarbons, which

are thermodynamically stable below 500 K, become progressively unstable upon heating.

Acetylene thus becomes more stable than most hydrocarbons including methane above

1500 K (Clarke, 1967), although it is nonetheless still unstable relative to its elements.

Under thermodynamic equilibrium conditions, it will not exist appreciably until the

temperature is above 2500 K. Therefore, formation of acetylene from hydrocarbon

pyrolysis entails rapid heating to cracking temperatures, followed by immediate cooling

or quenching to avoid reaching the true thermodynamic equilibrium of C and H2.

Furthermore, acetylene decomposition can be reduced by lowering its partial pressure,

which can be achieved by operating at reduced total pressures and/or by adding a diluent

(Miller, 1965).

Methylacetylene (Propyne): Methylacetylene also has a positive free energy of

formation and is thus unstable with respect to its elements. Its value lies not only in its

high volumetric heating value as a fuel but also in its reactivity as a chemical feedstock.

Calculations indicate that dimerization of methylacetylene to form benzene and molecular

hydrogen:



2 C3H4 C 6H6

is strongly favored thermodynamically at temperatures of practical interest. Log10 Kp

values range from over 30 at 373 K to about 10 at 973 K. Thus, the metal carbide

approach effectively offers a convenient pathway for C1-to-C 6 chemistry. Benzene,

though presenting environmental concerns, is widely used as starting material for the

synthesis of other industrial chemicals such as styrene.

1.3.3 Alkaline Earth Metals, Metal Oxides and Carbides

Calcium: Calcium, atomic number 20, atomic mass 40.08, is a Group IIA metal between

magnesium and strontium. In pure form, it is a bright silvery white metal which is

extremely soft and ductile with melting and boiling points of 1115 ± 2 K and 1773.658 K,

respectively (Chase et al. (JANAF Tables), 1985). The calcium crystal structure is face-

centered cubic at room temperature but transforms to a body-centered cubic at 716 ± 2 K

(Chase et al., 1985). Being an excellent reducing agent, calcium quickly becomes

covered with an oxide coating under normal atmospheric conditions. Thus, it does not

occur freely in nature but is abundant in oxide form.

Magnesium: Magnesium, atomic number 12, atomic mass 24.305, is a Group IIA

element between beryllium and calcium. Magnesium is a silvery white metal with a

melting point of 923 K (Chase et al., 1985) and a boiling point of 1383 K (Perry, 1984).

Its crystal structure is closed-packed hexagonal, with unit cell parameters: ao=3.20936 A

and co=5.2112 A (NBS, 1984). It is the lightest structural metal, with a specific gravity of

1.74. Its alloys with one or more elements including aluminum, manganese, rare earth

metals, lithium, silver, thorium, zinc and zirconium have the highest strength-to-weight

ratios of the ultralight metals at elevated temperatures (Lockwood et al., 1981).

The high position of magnesium in the electromotive series indicates its strong

chemical activity. However, because of its affinity for oxygen, the formation of a

protective oxide layer makes magnesium fairly resistant to atmospheric attack. Finely

divided magnesium powder is relatively easy to ignite, resulting in a bright, strongly

Reaction (1-10)



actinic light. Magnesium reacts with water to produce hydrogen but the reaction is

retarded by the formation of an insoluble hydroxide film:

Mg + 2 H20 -+ Mg(OH) 2 + H2  Reaction (1-11)

It also reacts with hydrochloric acid to form hydrogen according to:

Mg + 2 HCl -- MgCl 2  + H2 Reaction (1-12)

The predominant commercial process for magnesium production is the

electrolysis of magnesium chloride:

MgC12 (1) -> Mg (1) + Cl 2 (g) Reaction (1-13)

The two major steps of the process are feed preparation for the electrolytic cell and

electrolysis. The cell feed material is prepared from an aqueous solution of magnesium

chloride derived from seawater, brine, or industrial waste. Because the water is

chemically bound, the dehydration is non-trivial. In order to operate at high current

efficiencies and reduce cell maintenance costs, large quantities of energy are consumed to

produce anhydrous cell feed. Alternatively, costly final dehydration steps can be avoided

by electrolysis of the partially hydrated compound MgCl2-1.7H20 at the expense of

higher anode consumption and maintenance (Flemings et al., 1981).

Magnesium is also produced by metallothermic reduction of its oxide derived

from abundant minerals such as periclase (MgO), brucite (Mg(OH)2), magnesite (MgCO 3)

and dolomite (CaCO 3.xMgCO3). The oxide is reacted with ferrosilicon at a reduced

pressure in a resistively heated furnace:

Si(Fe) (s) + 2 (CaO.MgO) (s) - 2 Mg (g) + (CaO) 2SiO 2 (s) + Fe(Si) (s) Reaction (1-14)



Magnesium is collected by condensing the resulting vapor in an adjoining vessel.

Though not currently practiced commercially, thermal reduction with carbon has

been demonstrated on an industrial scale (Byrns, 1947). Also known as the carbothermic

process, magnesium vapor is produced according to the reaction:

MgO (s) + C (s) 4 Mg (g) + CO (g) Reaction (1-15)

which is in equilibrium at 1 atm pressure and 2123 K and above. However, below 2123

K, CO acts as an oxidizing agent due to the high chemical activity of magnesium. Shock

cooling which forms fine magnesium dust, dilution with an inert gas and absorption into

another molten metal are the principal methods for inhibiting the reverse reaction

(Flemings et al., 1981).

Calcium Oxide: Calcium oxide (CaO) is a white solid which exists in cubic crystalline

form with a molecular weight of 56.08 g/mol. Widely divergent values for its melting

point are reported in literature ranging from 2843 K (Perry, 1984) to 2888 K (Barin et al.,

1973) to 3200 + 50 K (Chase et al., 1985). Reported values for its boiling point also vary

widely from 3123 K (Perry, 1984; CRC, 1982) to 3773 K (Barin et al., 1973).

Calcium oxide, commercially known as quicklime, can be produced by subjecting

limestone, which is primarily composed of calcium carbonate (CaCO 3), to high

temperatures (>900 K). The process, known as calcination, results in the decomposition

of CaCO 3 into CaO with decarbonation, i.e. release of carbon dioxide (CO2), taking place

through the reaction:

CaCO 3  CaO + CO2 Reaction (1-16)

Commercial calcining operations are carried out between 1473 and 1573 K (Shreve snd

Brink, 1977).

Magnesium Oxide: Magnesium oxide (magnesia), MgO, is a white cubic crystalline solid

with a molecular weight of 40.3 g/mol. It occurs in nature as the mineral periclase. The

principal sources of MgO are magnesite (MgCO3), dolomite (CaCO3.xMgCO 3), and



magnesium hydroxide (Mg(OH) 2) (Copp et al., 1980). MgO is commercially produced

by calcining the mineral magnesite or magnesium hydroxide obtained from seawater:

MgCO 3  MgO + CO2  Reaction (1-17)

Mg(OH) 2  -- MgO + H20 AH298 K= 81.6 kJ Reaction (1-18)

Various sources report slightly different values for the melting point of MgO and widely

discordant values for its boiling point. Reported melting point values are as follows:

3073 K (Perry, 1984), 3098 K (Barin et al., 1973), 3105K (Chase et al., 1985), and 3125

(Copp et al., 1980; CRC, 1982). Boiling point values range from 3533 K (Barin et al.,

1973) to 3873 K (Perry, 1984; CRC, 1982).

Calcium Carbide: Calcium carbide is a colorless solid with a density in its pure form of

2.22 g/cm 3 (Kosolapova, 1971) and a molecular weight of 64.1 g/mol. The crystal

structure of CaC2 is known to exist in four modifications. CaC 2-I, which is stable up to

720 K, crystallizes in a face-centered tetragonal lattice containing four CaC2 molecules

per unit cell. CaC2-II has a triclinic structure and is stable above 720 K. CaC 2-III is

metastable and has a monoclinic structure while CaC2-IV exists as a face-centered cubic

and is stable above 723 K (Shine, 1980). Of these, CaC2-I and CaC2-II are the most

widely studied forms. Commercial calcium carbide consists of the tetragonal

modification of CaC2-I (Kosolapova, 1971). The melting point of calcium carbide is

2573 K (Kosolapova, 1971; Barin et al., 1973; Shine, 1980).

The most extensively used method for the commercial production of calcium

carbide is by reduction of high-purity quicklime (CaO) with carbon in an electric furnace

at 2273-2473 K:

CaO + 3 C CaC2  + CO AH 29 8 K = -466 kJ Reaction (1-19)

The process yields a molten product, which contains about 80% CaC2, with the remainder

consisting of CaO and 2-5% impurities (Shine, 1980). The carbide is drained or tapped

intermittently from the furnace and allowed to cool in molds before shipping for the



subsequent generation of acetylene by hydrolysis. Despite the additional weight of the

calcium component, the solid carbide is of interest for economical storage and transport

of energy since its energy content based on the acetylene it can produce is 19,600 kJ/kg

(8,400 Btu/lb), which is comparable to those of lignites and sub-bituminous coal. The

highly exothermic hydrolysis reaction represented by Reaction (1-5) to produce acetylene

represents the most important industrial use of calcium carbide.

Magnesium Carbide: Two forms of carbide exist in the Mg-C system: magnesium

dicarbide (MgC 2) and magnesium sesquicarbide (Mg 2C3). The dicarbide form, with a

molecular weight of 48.3 g/mol, has a tetragonal structure whereas the sesquicarbide,

with a molecular weight of 84.6 g/mol, exists in hexagonal form (Kosolapova, 1971).

Mg2C 3 is apparently anionic and is believed to contain the (C=C=C=)4 - anion (Keiffer et

al., 1980). It yields methylacetylene upon hydrolysis, according to Reaction (1-6), while

MgC 2 yields acetylene according to:

MgC 2 + 2 H20 -> Mg(OH)2 + C2H2  AH298 K = -214.1 kJ Reaction (1-20)

Based on the potential acetylene/methylacetylene yield, Mg2C 3 and MgC 2 have energy

contents of 21,900 kJ/kg (9,400 Btu/lb) and 26,000 kJ/kg (11,200 Btu/lb), respectively.

In spite of the additional weight of the magnesium component, they are attractive not

only as intermediates but also as economical forms of energy storage and transport.

Magnesium dicarbide can be prepared by heating magnesium powder in an

acetylene or other hydrocarbon stream at 773 K (Kosolapova, 1971). Magnesium

sesquicarbide can be obtained as a porous sintered rod of gray color by the reaction of n-

pentane vapor with pulverized magnesium at 953 K (Fjellvaig and Karen, 1992). It can

also be formed, without co-production of the dicarbide, by the reaction of methane with

magnesium metal at 973 K (Durrant and Durrant, 1971):

3 CH4 + 2 Mg -+ Mg 2C 3 + 6 H2  Reaction (1-21)

Materials, safety and economic difficulties are expected to be encountered in



commercialization of Reaction (1-21) due to the need to handle very large quantities of

nascent reactive magnesium metal.

Both types of magnesium carbide have positive Gibbs free energy of formation

(Chase et al., 1985) but the formation of Mg 2C3 from methane is more

thermodynamically favored than the formation of MgC 2 above 1700 K. This is consistent

with actual observations of the relative stability of the two carbide forms at high

temperatures. In reacting carbon and MgO, MgC 2 is formed at about 773 K. It undergoes

thermal decomposition to form Mg2C3 with separation of graphite at 773-973 K while

Mg2C3 breaks down to its elements upon further heating to 1013-1033 K (Kosolapova,

1971; Cotton and Wilkinson, 1962):

2 MgC 2  Mg2C3  + C (gr) Reaction (1-22)

Mg2C3  i 2 Mg (g) + 3 C (gr) Reaction (1-23)

Apparently, kinetic limitations prevent spontaneous decomposition of Mg2C3 back to its

elements for temperatures up to 1013 K. Thus, rapid product quenching to below 1013

K, similar to that practiced in acetylene synthesis from hydrocarbons, may be necessary

in the implementation of Reaction (1-2).

1.3.4 Chemical Processing in Thermal Plasmas

The term plasma is generally used to describe a gaseous system that is sufficiently

ionized to be electrically conducting but still electrically neutral (Baddour and Timmins,

1967). Such a system may be completely ionized, in which state it exists as a mixture of

ions and electrons, or it may be partially ionized, with only a fraction of the molecules

ionized and the remainder electrically neutral species (Venugopalan, 1971). A plasma

can be created by exposing a gas to an electric field. Electrical breakdown of an

originally non-conducting gas can be brought about by a number of ways, a common

example of which is by an electrical discharge between a pair of electrodes. Other

methods of producing a plasma include electrodeless radio frequency (RF) discharges,



shock waves, and laser or high-energy particle beams (Flemings, 1985). Figure 1-1 is a

simplified sketch of a plasma generator in which a gaseous discharge is created by the

passage of an electrical current through the gap between a negative electrode (cathode)

and a positive electrode (anode).

Gas

Anode
Cathode

Plasma Jet

Figure 1-1. Schematic View of Electric Arc Discharge (Thermal Plasma) Generator

Plasmas may be classified either as "hot", that is, thermal, characterized by

approximate equality between the gas and ion temperature and the electron temperature,

i.e. Tgas Tion " Telectron, or "cold", meaning non-thermal, with the electrons at

considerably higher temperatures than the gas and ion particles, i.e. Telectron > Tgas - Tion

(Baddour and Timmins, 1967; Venugopalan, 1971; Flemings, 1985). Under thermal

plasma conditions, the state of the discharged gas approaches complete thermodynamic

equilibrium (CTE) under certain conditions and often leads to the establishment of local

thermodynamic equilibrium (LTE). Thermal plasmas occur typically in high-intensity

arcs and RF high-pressure discharges whereas cold plasmas are produced in glow and

corona discharges and in RF low-pressure discharges. Cold plasmas usually require

operation at low pressures (probably below 50 mm Hg) making their usage in bulk

chemical processing less economically appealing.



The use of plasmas in high-temperature synthesis of chemicals constitutes an

important application of plasmas to chemical processing. Plasmas offer a source of

extremely concentrated specific energy, resulting in system temperatures in the range of

5000-50,000 K, well beyond the maximum temperatures attainable in chemical

combustion flames (Stokes, 1971). Furthermore, plasmas are a source of positive and

negative ions that are potential precursors for ion and ion-molecule reactions. These

characteristics make plasma processing especially suitable to chemical reactions in which

(1) the equilibrium is shifted to high temperatures; (2) reaction rates are sharply increased

with temperature; and (3) high yields are obtained under substantially non-equilibrium

conditions. Among the advantages of plasma chemical processing are high processing

rates (reaction time - 10 ' to 10-3 s), applicability to single-stage processes, insensitivity to

reactant impurities (e.g. natural gas, metallic ores) and suitability to processing stable but

widely available raw materials such as natural gas and minerals (Vursel and Polak, 1971).

Chemical synthesis in a high-temperature plasma jet may be considered as

occurring in a number of steps. First, the decomposition of the molecules, either of the

reactive plasma gas or of the molecules fed into the plasma "flame" is brought about by

thermal excitation leading to free radicals, atoms, ions and other reactive species. These

species then react with one another to form free radical intermediates, which subsequently

undergo rapid recombination reactions. Finally, the desired products are formed by

freezing out the chemical equilibrium attained under the high plasma temperatures using

fast quenching techniques (Stokes, 1971; Venugopalan, 1971). The purpose of the

quenching is to cool the reaction products rapidly so that they do not have the time to

decompose within the intermediate range of temperatures.

According to these steps, two types of chemical reactions may be carried out,

depending on whether the end products are intermediate or final from an equilibrium

point of view. The first type includes mostly gaseous reactions, the decomposition of

methane into acetylene being the most notable example. For processes of this type, both

the quenching rate and the time at which quenching is applied are important. The second

type includes mostly gas-solid metallurgical reactions although it may include

homogeneous reactions such as nitrogen fixation from air. Magnesium sesquicarbide



synthesis from CH4 and MgO, Reaction (1-2), apparently falls under the first type as

rapid quenching to below 1013 K would seem to be required so that the carbide does not

decompose to its constituent elements. In contrast, calcium carbide synthesis from CH 4

and CaO, Reaction (1-1), is of the second type, as CaC2 is likely to be thermodynamically

stable with respect to its elements up to very high gas temperatures in the thermal plasma.

Similarly, Reaction (1-4) belongs to the second type, with magnesium metal as the end

product, provided that the Mg vapor can separated from CO before reoxidation occurs.

1.3.5 Methane Pyrolysis

The overall methane decomposition is postulated to occur as a first order reaction leading

to acetylene formation and ultimately to carbon and hydrogen according to the path:

2 CH 4  C2H6 - C C2H4 -- C2H 2 ÷ 2 C + H, Reaction (1-24)

+ H2 + H2 + H2

Reported values for the activation energy for methane decomposition vary from about

356 to 431 kJ/mol, with shock tube studies generally giving higher activation energy

values than non-shock tube studies (Chen et al., 1975).

The initiation stage is the splitting of methane into radicals but the identity of

these radicals which form the C2 unit in acetylene is uncertain. Two possible mechanisms

have been proposed for the initial dissociation (Chen et al., 1975):

CH4  -- CH 3 + H AH 29 8 K = 435 kJ Reaction (1-25)

CH4  -- CH 2 + H2 AH 29 8 K = 464 kJ Reaction (1-26)

Although the thermodynamic stability of the CH 3 and CH 2 radicals with respect to

their constituent elements increases with temperature, they are highly reactive species

and, according to thermodynamic equilibrium, exist only in low concentrations even at

substantially high temperatures, e.g. >2000 K. They are considered to react further with



each other as well as with methane molecules to form C2H6 which undergoes

dehydrogenation reactions leading to acetylene and ultimately to C and H2, if the reaction

mixture is not quenched rapidly enough.

1.3.6 Carbide Formation

A review of the mechanism and kinetics of calcium carbide formation from carbon and

CaO is provided by Miller (1965). The carbide synthesis reaction is believed to occur in

two elementary reversible steps:

CaO + C ~ Ca + CO AH 298 K = -542.6 kJ Reaction (1-27)

Ca +2C - CaC2  AH 298 K= 59.0 kJ Reaction (1-28)

The first reaction step involves the production of metallic calcium vapor. The forward

reaction is inhibited by high CO pressure and goes faster as the area of contact between

the lime and carbon is increased. The activation energy for the forward reaction is 615.5

kJ/mol at 1673 K. In the second step, the forward reaction is brisk at 1873 K but slow at

1573 K. The reaction velocity is controlled by the diffusion of the calcium vapor through

the CaC2 layers formed on the carbon surface. The rate of the reverse reaction, whereby

CaC2 decomposes into its elements, increases with temperature and is rapid at 2473 K.

Studies on the overall kinetics of calcium carbide synthesis from compressed

cylindrical pellets of lime and carbon as a solid-state reaction were performed by Tagawa

and Sugarawa (1962) at temperatures between 1873 and 2073 K and at CO pressures of

50, 100, and 200 mm Hg. The rate has a strong dependence on CO pressure with an

activation energy of 598.7 kJ/mol at 50 mm Hg CO pressure and over 837 kJ/mol above

100 mm Hg. The formation reaction is controlled by the diffusion rate of gas through the

product layer, as well as by the diffusion of solids. The decomposition of CaC2, which

occurs from the surface, is a zero-order reaction, approximately linear with time.

Kim (1977) et al. (1979) demonstrated high methane carbon conversions (> 95

mole %) to CaC2 and CO at CaO "Ca" molar conversions of 70 + 15% by passing



premixed suspensions of fine lime powder in a stream of methane gas through the arc

zone of a magnetically-rotated electric arc discharge plasma reactor. Figures 1-2 and 1-3

show conversion data for the range of experimental parameters examined by Kim. The

global chemistry of the reaction is attributed to Reaction (1-1).

A 16.0 -17.3 I/min

O 30.0 -35.8 I / min
044.5 -48.2 11 min

A

CH4
CH4
CH4
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Figure 1-2. CaO Conversion as a Function of Power Input at
Various Methane Flow Rates (Kim, 1977)
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Kim postulated that the formation of CaC2 in this reaction scheme required an

energy on the order of the activation energy for methane decomposition. On this basis,

he surmised a gas temperature at or above 3000 K. Furthermore, residence times based

on gas flow rates and geometry of the anode were estimated to be typically 0.5-1.0 ms.

Kim's work was primarily concerned with producing CaC2 from rapid heating of a

high-volatile coal in hydrogen. Although extensive studies were conducted with methane

as source of nascent carbon species to help delineate the overall reaction mechanism,

these studies did not have as their major objective the optimization of experimental

parameters to identify the range of conditions of interest for commercial operation. He

did however observe the following:

a) For each methane flowrate, there existed a critical power input range in which CaO

"Ca" conversion to CaC2 increased rapidly with only slight increases in the power

input. Below this critical range, no carbide was detected, and above it, CaO

conversion attained a more or less constant value. This critical power level is on the

order of the overall activation energy of methane decomposition;

b) The conversion of the calcium in CaO to CaC2 was essentially unaffected by the

initial CaO particle size, CaO feed rate and the global residence time of CaO within

(controlled by the length of the anode nozzle) or downstream (controlled by the

distance of the quench probe to the nozzle exit) the arc;

c) The solid product particles were always less than 0.3 .im regardless of the initial CaO

particle size;

d) The formation of acetylene decreased at an accelerated rate from over 80% at low

carbide yield to essentially zero at high yield (approaching 100% CH 4 "C" conversion

to CaC 2 and CO) while CaC2 and CO formation increased only linearly with lime feed

rate;

e) The energy efficiency of the process was far from that currently needed for economic

viability at commercial scale operation. The lowest energy consumption achieved in

this study with methane is 35.9 kWh/kg of acetylene.



Based on the existence of a critical power level on the order of the overall

activation energy of methane decomposition and the absence of residence time effects,

Kim postulated the conversion of methane to very reactive but short-lived nascent carbon

species such as free radicals, which are abundant only in and immediately beyond the arc

zone. CaO is viewed as a chemical quenching agent that reacts with the methane-derived

intermediates to form CaC2, which is stable up to the gas temperatures in the reactor.

Thus, increasing the quench distance did not affect the carbide yield. Without CaO,

methane would simply pyrolyze to acetylene, soot and tars. Kim further postulated that

CaO conversion is a localized phenomenon around individual CaO particles and that the

rate controlling step shifts from the gas phase to and around the individual CaO particles

as the input power is increased above the critical level. Thermodynamic considerations

indicated that CaO conversion can be enhanced by H atoms which may directly reduce

CaO to Ca and H20. The reverse reaction is inhibited by the reaction of the methane-

derived carbon species with H20 to produce CO and H2.

Saito (1991) performed some investigations on the use of the thermal approach to

carbide synthesis. He heated a thin layer of CaO between two tungsten strips in a screen

heater reactor to temperatures ranging from 1473 to 2573 K in a methane atmosphere at a

pressure of 2 psig but obtained only minute quantities of calcium carbide (maximum CaO

conversion of -0.1%). The insignificant carbide yield was attributed to the methane

undergoing competing pyrolytic reactions to form soot before coming into contact with

the CaO particles. To overcome the mass transfer limitations inherent in this study, Saito

reduced the methane pressure to as low as 50 mm Hg. He found a higher CaO conversion

of 0.79% at 100 mm Hg and 0.22% at 50 mm Hg over a temperature range of 2073-2273

K. He also observed less soot formation under these conditions.

El-Naas et al. (1995) formed CaC2 by reacting CaO powder with a mean particle

size of 170 pm and graphite powder with a mean particle size of 150 pm in a laboratory-

scale fluidized bed reactor heated with a DC plasma torch. A 1 kg mix of 3:1 CaO:C was

charged into a batch reactor and Argon was used to fluidize the bed at 1.1 times the

minimum fluidization velocity. A mixture of Argon and hydrogen was used as plasma-

forming gas. The reaction was observed to take place at about 2150 K mainly in the jet



zone and conversion to CaC2 was found to increase linearly with reaction time. They

concluded that the reaction occurs through gaseous intermediates, calcium vapor and CO,

and that the overall rate is controlled by chemical kinetics.

1.3.7 Metal Formation with Methane as Reductant

Merriam (1944) in U.S. Patent 2,364,742 describes a cyclic process for the reduction of

solid MgO and ZnO with methane. At high temperatures, methane decomposes into

hydrogen and carbon, which are relatively ineffective for reducing the metal oxide. To

avoid decomposition prior to reduction, methane gas is applied to preheated charges of

the solid in an abrupt manner. Specifically, a charge of solid MgO and solid

carbonaceous material such as coke is introduced into a reaction zone. A blast of

preheated air is passed through the mixture until sufficient coke is burned to raise the

temperature above the reduction temperature of the oxide (2273 K for MgO). The air

blast is then discontinued and methane or natural gas is introduced into the hot solid

mixture as a blast, thereby reacting with the oxide and carrying away metal vapor. The

resulting magnesium or zinc vapor is condensed and separated from the gases. Because

the reduction is endothermic, the temperature of the solid mixture will drop gradually

until further reaction substantially ceases. At this point, the methane blast is discontinued

and the mixture is heated again by introduction of a hot air blast and burning of more

carbonaceous material. Thus, the process described operates cyclically or intermittently.

Stokes (1971) investigated the reduction of various metal oxides with hydrogen

and methane by pneumatic injection of gas-entrained powder into helium and argon

plasma jets. Aluminum oxide (A120 3) powder, 200-mesh, entrained in 8.5 and 8.7 1/min

of methane, was injected at rates of 1.5 and 3 g/min into the flame jet of an 11.9 1/min

Argon plasma at 8.9 and 9.6 kW, respectively. Particle residence time in the plasma

flame was calculated to be between 5 and 20 ms. Solid products were collected on a

copper cold finger attached to the reaction chamber after fast quenching with a water-

cooled funnel located 1.5 inches below the anode. Aluminum metal was definitely

formed but the conversion to Al was only 0.20%. Based on the similarity of the particle



size of starting material and end products, the limited decomposition of the alumina was

attributed to either too short a residence time or injection into a relatively cold region of

the flame.

The feasibility of iron oxide reduction in an arc-heated mixture of hydrogen and

natural gas at 100 kW and 1 MW was investigated by Gold et al. (1975) at Bethlehem

Steel. Compared to a thermodynamic energy requirement of about 2.2 kWh/kg Fe (1.0

kWh/lb Fe), pure molten iron was produced in the single-stage process at a net energy

consumption as low as 2.6 kWh/kg Fe (1.2 kWh/lb Fe).

Detering et al. (1987) used atomic emission spectroscopy to determine and

quantify thermal decomposition and reduction products and concentration upon injection

of metal oxide particles into a non-transferred arc plasma. Metal oxide powder was

injected through a hollow cathode tube into an Argon plasma operating at 16.5 kW (750

A, 22 V). A120 3 and Co30 4 powder (<10 jpm) were used as reactants for reduction with

methane which was injected tangentially at 1 mm from the exit of the plasma torch. The

inlet plasma gas flow was 15 1/min while the powder carrier gas flow was 1.7 1/min.

Aluminum was produced by thermal decomposition of the oxide and its concentration

determined by spectroscopic measurement made at 10 mm axial distance from the torch

exit. Several emission spectra were obtained from the cobalt oxide experiment in the arc

region and downstream the injection point of methane. These spectra indicated elemental

cobalt, elemental carbon, elemental oxygen, elemental hydrogen, molecular carbon (C2)

and also cyanogen (CN) from nitrogen entrainment. Emission lines for cobalt oxide

(CoO), molecular oxygen (02) and CO were not observed. X-ray diffraction analysis of

collected particle products revealed the material to be almost entirely metallic cobalt,

with small contaminant amounts of cobalt oxide and carbon.

Steinfeld et al. (1995) studied the combined thermal reduction of ZnO and

reforming of CH4 according to:

CH 4 + ZnO - Zn + 2 H2 + CO Reaction (1-29)



in an electrically heated A120 3 tube and in a solar furnace. The equilibrium composition

of the ZnO-CH 4 system at 1200 K and 1 atm consists of a gas phase of Zn vapor and a 2:1

mixture of H2 and CO. ZnO powder with a mean particle size of 1.2 ptm was heated to

different predetermined temperatures in a 3-cm diameter A120 3 tube under an Argon flow

and then isothermally reduced to Zn under various CH4-Ar flow rates at slightly above

atmospheric pressure. Powder X-ray diffraction analysis of the solid products revealed

complete conversion to Zn in all cases. Methane conversion was found to increase with

temperature: 51% at 1373 K, 84% at 1473 K, and almost 100% at 1573 K. H2 yield also

increased with temperature and reached about 65 mole % at 1573 K. From

thermogravimetric measurements on ZnO at various temperatures and CH 4

concentrations, the apparent activation energy was found to be 146 kJ/mol. Based on a

shrinking particle model, Steinfeld et al. concluded that the reaction mechanism is

controlled by gas film diffusion in the Stokes regime.



Chapter 2

Experimental Apparatus and

Procedure

A laboratory-scale rotating DC arc discharge (plasma) reactor is used to investigate the

technical feasibility of Reactions (1-2) and (1-4) and to systematically investigate the

effects of variations in thermal plasma operating conditions on the yields, selectivity and

CH4/metal oxide conversion to CaC2 and/or Mg2C3 and/or MgC 2 and/or Mg, as well as to

H2 and CO according to Reactions (1-1), (1-2), (1-3) and (1-4).

2.1 Rationale for Selection of Apparatus

In implementing gas-solid reactions such as (1-1) and (1-4) whose end products are final

at high temperatures and thermodynamically allowed under equilibrium conditions,

complete conversion can be attained with sufficient residence time in a suitable plasma

device, as in a plasma jet directed to a stationary bed of solids or upwards to a fluidized

bed of solid reactants. Kim (1977) contemplated that, if hydrocarbon or high-volatile

coal were mixed with lime and injected into a hydrogen plasma jet, the formation of

extremely reactive "nascent" carbon species can reduce the equipment size significantly

and possibly eliminate the need for a fluidized bed provided that the reaction is rapid

enough. However, the energy efficiencies of plasma-heated stationary and fluidized beds

are relatively poor. High-quality electrical energy is used to provide sensible heat to the

solids and to the off-gas, from which there can be significant energy losses through the



reactor walls per unit mass resulting from a long retention time and a high gas-to-solid

ratio.

Alternatively, high extents of conversion can be attained in a high-intensity arc

using consumable anodes of the reactant materials. Vursel and Polak (1971) cite the

work of Kusch (1963) in the reduction of Fe20 3, SiO 2, A120 3, MgO and B203 to their

parent metal using a laboratory-scale high-intensity arc with anodes of oxide pressed with

carbon powder. High yields of products up to 83% Fe, 73% Si and 17% Mg, collected on

a cooled metal surface, were reported. High-intensity arcs are, however, also relatively

energy inefficient because of the need to vaporize the anode material at temperatures

probably significantly higher than the threshold equilibrium reaction temperature. As

with the plasma-heated stationary and fluidized beds, the throughput of high-intensity

arcs can be rather limited.

The drawbacks of low energy efficiency and limited throughput can be overcome

with the injection of a mixture of gas and solid reactants into a plasma jet, which may be

inert or reacting, to implement single-stage reactions provided that such heterogeneous

reactions can occur rapidly enough (reaction time - 10'5 to 10- s). Stokes' (1971) work

on metal oxide reduction and carbide and nitride syntheses involved pneumatically

conveying solid reactants to a plasma jet, which is the tail flame of an arc-heated

auxiliary or reacting gas stream.

In order to increase plasma-solid contact and interaction, Gannon and Krukonis

(1972) synthesized acetylene by introducing coal entrained in hydrogen directly into the

inter-electrode region rather than into the plasma jet downstream of the electrodes. The

gas-solid mixture was passed through the annulus of a cylindrical anode at the center of

which is a cathode and thus, through the electrical discharge itself. The plasma was made

relatively uniform throughout the annular region by rotating the arc at a radial velocity

greater than the axial velocity of the coal and carrier gas with a magnetic field directed

transversely to the current path. Kim (1977) used the same approach in reacting lime

with methane to form calcium carbide.

This rotating arc design which allows passage of the reactants through the arc

zone has rather well-established operational and mechanical features that include high



energy efficiency, mechanical simplicity, arc stability, relative ease of operation and a

comparatively large cross-sectional inter-electrode annular area for high feed throughput

through the arc zone. Thus, the rotating DC arc discharge reactor used in this study is of

the type used by Gannon and Krukonis (1972) and Kim (1977). Such a reactor needs to

be operated for only one to five minutes to achieve steady state operation with intrinsic

reaction times in the range of 10-' to 10-3 s.

2.2 Description of Apparatus

The experimental apparatus used in the present study consists of a thermal plasma

generator, mechanical powder feeder, post-plasma cooling chamber and gas discharge

system, sample collection system, cooling water system, and data acquisition and process

control system. A process engineering flow scheme of the experimental apparatus is

shown in Figure 2-1.
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2.2.1 Thermal Plasma Generator System

The thermal plasma generator is composed of a DC arc discharge reactor, a magnetic

solenoid, a high frequency oscillator, a DC power supply unit and a control console.

2.2.1.1 DC Are Discharge (Plasma) Reactor

The primary components of the DC arc discharge (plasma) reactor are the anode and the

cathode. Both electrodes are made of graphite and designed for convenient replacement

of worn parts after every run. The electrodes are held in place by water-cooled holders to

prevent overheating of other parts of the reactor. Initial attempts to use a ¼-in. O.D., 2%

thoriated tungsten cathode with a conical tip proved inadequate as more than half the

cathode tip was consumed by erosion/vaporization after a minute of sustaining a plasma

with an Ar-CH 4 feed. Similarly, in attempting to switch from Argon to methane feed, the

Ar-CH 4 plasma burned several small orifices through the walls of a water-cooled copper

anode in a spiral pattern. Electrodes made of graphite were found to be robust enough to

withstand the severe thermal and chemical environment imposed by the experimental

conditions, provided that the current density is not high enough to erode the cathode.

Graphite is electrically conducting, can sustain a thermionic cathode arc, is machinable

and does not require intensive cooling (Knight et al., 1990). The graphite material used

as electrodes in this study is Grade ECR graphite manufactured by National Electrical

Carbon with the typical properties shown in Table 2-1.

Table 2-1. Typical Properties of Grade ECR Graphite

Maximum Grain Size, inches 0.006
Density, g/ml 1.60
Specific Resistance, pQ.m 6.0
Flexural Strength, psi 3000
Tensile Strength, psi 2000
Compressive Strength, psi 6000
Maximum Ash, % 0.1



The rate of consumption of the cathode depends strongly on the current density at

the tip. A one-inch long, /4 in. O.D. graphite cathode is severely eroded in an Argon

plasma operating at the minimum starting current of 600 A because the current density of

1,895 A/cm2 is too high. The typical cathode length consumption rate for Kim's (1977)

¼ in. O.D. graphite cathode under a methane flow rate of 16.0-17.3 1/min over a 90 s run

time is: 3/16-'/2 in. for a current density of 950-1100 A/cm2, 1/16-1/4 in. for 790-950

A/cm2, and 0-1/16 in. for 470-790 A/cm2. Below 470 A/cm2, Kim did not observe any

cathode erosion. Gannon and Krukonis (1972) give a much more conservative upper

limit of 200 A/cm2 (1,250 A/in2) to avoid excessive cathode erosion. Based on these

design considerations, a 3/4 in. O.D. cathode is used in the present study. Such a cathode

would have a current density of 350 A/cm 2 at the maximum current of 1000 A.

Figure 2-2 shows a schematic representation (1:2 scale) of the plasma reactor,

which is made up of a 3/4 in. O.D. cylindrical graphite cathode in the center of a 1 in. I.D.

annular graphite anode. The cathode assembly consists of a cylindrical nylon (Zytel 101)

piece, which serves as mounting body for the water-cooled copper cathode holder. This

nylon piece electrically insulates the anode from the cathode. Three inches tall with the

top 2 in. having an O.D. of 4 in. and the bottom 1 in. an O.D. of 5½ in., it is secured to

the brass anode holder and to the top steel flange with three screws. A silicone o-ring

constitutes a face seal between the nylon piece and the brass anode holder. A low-density

alumina ring (11/4 in. I.D. by 3 in. O.D. by /2 in. thick) thermally insulates the nylon body

from the graphite anode. A high-density alumina tube (1 in. I.D. by 1'/4 in. O.D. by 1/2

in. long) further insulates the nylon from arc radiation. The cathode holder is made up of

a 3/4 in. O.D. by 8 in. long copper tube. The bottom end of the holder is soldered to a 3/4

in. O.D. and 2 in. long copper rod, with the upper 1/2 in. drilled to a 5/8 in. I.D. and the

lower V2 in. externally tapped with a '/2"-20 thread. A 3/8 in. O.D. stainless steel (SS)

tube located concentrically inside the cathode holder serves as a cooling water flow

divider. The cathode tip, which is replaced after every run, is a /4 in. O.D. by 1'/2 in. long

graphite rod, axially bored with a 5/8 in. deep ½"-20 internal thread so that it can be

secured to the threaded bottom end of the copper cathode holder.
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Figure 2-2. Schematic Representation of DC Arc Discharge (Plasma) Reactor
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The anode assembly consists of a graphite anode insert which slides into the

graphite anode. The anode is screwed into a water-cooled cylindrical brass anode holder,

which fits into a 4 in. diameter, 5/8 in. deep counterbore on the top steel flange of the

cooling chamber. The anode holder is 21/4 in. tall with the top 1-5/8 in. having an O.D. of

5'/2 in. and the bottom 5/8 in. an O.D. of 4 in. The steel flange is 12½ in. O.D. by 1-3/8

in. thick. A silicone o-ring forms a rod-seal between the brass anode holder and the steel

flange. The graphite anode is a 2½ in. O.D. by 4 in. long cylinder with its outer top 2½

in. section tapped with 2.46"-12 thread to fit the brass holder. The top half of the anode

is counterbored to 1½ in. I.D. to accommodate the anode insert and a boron nitride shield

while the bottom half is drilled to a 1 in. I.D. to form the anode nozzle. The inner top 1/2

in. portion of the graphite anode is electrically insulated with a ring of grade HBT boron

nitride shield (1 in I.D. by 1½ in. O.D. by ½ in. long). The anode insert, which is

replaced after each run, is a 1 in I.D. by 1'/ in. O.D. by 1/2 in. long ring.

The cathode tip is positioned so that it penetrates the anode region to a depth of ½

in. below the top of the anode insert. The distance from the flat face of the cathode tip to

the anode nozzle exit is 3 in. The anode nozzle protrudes 1 in. below the bottom face of

the steel flange. Gas or gas plus entrained powder is introduced in the 1/8 in. wide

annular slit (3/4 in. I.D. by 1 in. O.D.) between the cathode and anode.

2.2.1.2 Magnetic Solenoid

With the use of a solenoid, a magnetic field is applied perpendicular to the arc current

which induces in the charged particles a velocity component perpendicular to their

original direction of travel. Consequently, the path of charged particles moving in a plane

perpendicular to the magnetic field will curve. However, the mean free path of the

particles remains practically unaltered. One effect is that the electric conductivity of the

plasma becomes more anisotropic under these conditions (Gross et al., 1969), resulting in

a better confined plasma.



A solenoid placed coaxially with the plasma reactor works to rotate the arc

column by imparting an axial magnetic field. This magnetic field interacts with the radial

arc column to produce a force perpendicular to the plane of the arc and the field. The

force, F, which induces rotation is given by:

F = IxB Equation (2-1)

where I is the arc current and B is the axial magnetic field vector. Applying Newton's

Second Law to equate the centrifugal force to the magnetically generated force, as given

by Halliday and Resnick (1978),

2
mev

- qvBR

where me is the electron mass in kg, v is the speed of electrons in m/s, R is the inter-

electrode gap in m, B is the required field strength in tesla and q is the elementary charge

in coulomb. Solving for B gives

meV
B - Equation (2-3)

qR

To determine the electron speed, v, Blanchet (1963) used the following relation

equating the potential existing between the anode and the cathode to the kinetic energy of

the electrons:

= me
2

aV - Equation (2-4)

where V is the arc voltage. This equation gives the relation for v:

Equation (2-2)

-1



Equation (2-5)

Substituting Equation (2-5) in the expression for B gives:

B 2Vme /q
B =

R
Equation (2-6)

1.33J-
B(in gauss) = .

R(in inches)
Equation (2-7)

For an arc operating at atmospheric pressure, the actual rpm is much lower than the value

estimated from Equation 2-5 due to the aerodynamic drag of the arc column and

collisions of electrons with gas molecules (Kim, 1977). Based on an inter-electrode gap

of 1/8 in. and arc voltages of 60 to 120 V, B should be in the range of 80 to 120 gauss.

The field strength B for an infinite solenoid is given by

B = pu ion Equation (2-8)

where po, is the permeability constant in Ampere's Law, io is the solenoid current and n is

the number of turns per unit length. Kim (1977) used Equation (2-8) to approximate a

solenoid of finite length:

1.26 i N
B -= Equation (2-9)

where N is the total number of turns, 1 is the solenoid length in cm, io is in A and B is in

gauss (G).

S= qV
me



The solenoid design initially consisted of four layers of No. 15 enamel-coated

copper wire windings over an 8 in. section of a 9 in. long bakelite tube, 14Y2 in. I.D. by

15/V2 in. O.D., which is wide enough to enclose the entire reactor. Power to the magnetic

coils is provided by a 400 watt DC regulated power supply capable of delivering up to 25

A in the 0 to 20 V range. The number of turns per layer is approximately 130. The total

resistance of the solenoid was measured as 0.7 Q. Thus, with a current of 13 A, the

solenoid can theoretically have a maximum magnetic field strength of 420 G. However,

at a total current of 15 A, measurements made with a Bell 610 Gaussmeter varied from

only 43 G at the base of the anode insert to 77 G at the top of the anode insert. The

presence of the steel flange and cooling chamber significantly alters the field strength at

the center of the reactor. In order to have a stronger magnetic field, four more coils have

been installed on the solenoid for a total of eight. Every two coils are connected in series

and the four two-coils-in-series segments are connected in parallel. This configuration

gives a total solenoid resistance of 0.9 0, which is optimum for maximizing the magnetic

field from the 20V/25A capacity of the solenoid power supply. At a total current of 20.6

A with an accompanying voltage drop of 19 V, the measured axial magnetic field varies

from 118 G at the base of the anode insert to 195 G at the top of the insert.

2.2.1.3 High Frequency Oscillator

The arc is started with a high frequency oscillator, AIRCO model HF-20-1, which is

placed in series with the DC power supply. A high frequency oscillator is a spark-gap-

type self-contained unit which superimposes high frequency voltage on normal direct

current. The unit has a power rating of 120 watts, with input voltage at 115 V and input

current at 2.2 A for operation at 50/60 cycles AC. It is connected to the plasma reactor

via a 16 ft. length of water-cooled power line made of extra strong (0.840 in. O.D. by

0.149 in. wall thickness) copper pipe alloy C12200 (99.9 wt% Cu, 0.02 wt% P) to

minimize ohmic losses. When activated, the high frequency voltage is impressed across

the output terminals of the power supply and hence across the inter-electrode gap until an



arc is initiated. As soon as this is accomplished, the high frequency voltage automatically

shuts off.

2.2.1.4 DC Power Supply Unit

Power to the arc discharge reactor is provided by an AIRCO rectifier-type welding power

supply, 1500 Ampere C7 Model, rated by the manufacturer at up to 83 kW and capable of

providing open circuit output voltages of 82, 164 and 328 V. The specifications of the

power supply unit are given in Table 2-2.

Table 2-2. Specifications of 1500 Ampere C7 Model DC Power Supply Unit

Primary Secondary
Voltage, V 460 Load Voltage, V 40 80 160
Current, A 145 DC Current Range, A 200 - 2000 100 - 1000 50 - 500
Frequency, cycles 60 Rated Output, A 1500 750 375
Power Input at Rated Load
(Three Phase), kW 83.2 Open Circuit Voltage, V 82 164 328
Power Input at Rated Load
(Three Phase), kVA 115 Duty Cycle, % 100 100 100

The electrical field strength which provides the main source of energy to ionize a

gas is higher for molecular gases like methane than that for atomic gases such as Argon.

Molecular gases require such a higher electrical field strength for sustaining an arc

discharge because of the accompanying chemical processes of dissociation, ionization

and recombination. In such a gas, the density of the molecules decreases and that of

atoms increases with rising temperature. Density gradients arise, causing diffusion

currents whereby pairs of atoms diffuse into cooler regions to recombine while molecules

migrate into warm regions to dissociate (Gross et al., 1969). Energy is liberated in the

recombination process in the cool region while energy is absorbed in the dissociation

process in the warm region. These combined processes of atomic diffusion and chemical

recombination cause significant heat losses from the arc. Consequently, more energy is

needed to sustain a plasma fed by molecular rather than by atomic gases. Thus, in the

present case, methane, despite its lower ionization potential relative to Argon, requires a

higher operating arc voltage.



In Kim's (1977) experiments, arc voltages for a methane plasma ranged from 60

to 110 V for flow rates of 16.0-17.3 1/min and from 65 to 115 V for flow rates of 30.0-

35.8 1/min. He found the arc to be moderately stable at gas flow rates of 16.0-17.3 1/min

and at arc voltages less than 75 V but mostly unstable at higher gas flow rates. The

instability is presumably due to limitations on the output voltage of the power supply.

The arc becomes unstable when the load voltage exceeds half the open circuit voltage

(OCV). Instability at high gas flow rates is not unexpected because increasing the gas

flow velocity requires a higher enthalpy input and a higher electric field strength in order

to compensate for increased energy losses due to the higher convective cooling of the arc

column. Furthermore, a higher gas flow rate results in elongation of the arc column

which also requires an increased voltage to sustain the same field strength. This is

consistent with Blanchet's (1963) ability to sustain a methane plasma between a

continuously fed graphite anode and a water-cooled brass cathode at a much lower gas

flow rate of 1.5 1/min at voltages of 40-80 V.

Operating a methane plasma at up to 30 1/min requires a voltage presumably

higher than 80 V because an Argon arc discharge at that flow rate is extinguished upon

introduction of methane. Thus, the power supply has been configured for the highest

OCV of 328 V to enable stable operation of the arc at higher load voltage levels. Indeed,

the arc voltage values in this study range from 15 to 115 V. However, at the minimum

current setting under an OCV of 328 V, an Argon arc operates at a current of 600 A when

the same setting gives only 200 A under the 160 V OCV configuration.

The falling voltage vs. amperage characteristic of the power supply, shown in

Figure 2-3, in principle allows a reasonable variation in arc length or voltage with

relatively minor changes in arc current.
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Figure 2-3. Volt-Ampere Curve of DC Power Supply Unit (AIRCO Manual)

The output of the power supply is controlled from a remote control panel. A

contactor control switch allows the electrodes to be energized remotely. A start control is

used to set the starting current and allows this preset current to flow for approximately

2/3 s before automatically changing to the setting of the current control. In this study, the

start control is always set to zero. Current adjustment is accomplished with a current

(weld) control, which essentially varies the slope of the volt-ampere curve pivoted around

the OCV. This changes both the arc voltage and arc current by shifting the intersection of

the power supply characteristic and the arc characteristic. The current control is at

minimum setting at the beginning of every run. The remote control panel is equipped

with a 0-500 V DC voltmeter and a 0-2 kA ammeter.

Power input to the reactor is determined as the product of voltage and current

measurements. Voltage is measured with a Fluke 8050A bench digital multimeter via

shrouded test leads connected to lines leading to the cathode and anode holders. Current

is measured using a 1-1300 A DC Fluke 80i-kW Current/Power Probe, which is a clamp-

on unit with two movable jaws, each containing half a magnetic core. The jaws are

clamped around the water-cooled (-) power line leading to the cathode at a location

overhead of the control console, allowing current measurement without breaking the

circuit. The 80i-kW probe uses two Hall devices located in gaps of the magnetic core and

generates an output of 1 mV per A, which is read by a handheld Fluke 87 True RMS



Multimeter. The voltage and current measurements are also recorded by the data

acquisition system.

2.2.1.5 Control Console

Control and monitoring of the plasma reactor is done from the control console. The unit

is provided with safety interlocks that prevent operation of the system until sufficient

flows of cooling water and gas are attained or when overloading of the power supply

occurs. A gas flow switch and indicator ensure adequate flows of main gas, start gas, or a

combination of both to the plasma reactor while a water flow switch and indicator serve

the same purpose for the cooling water flow to the power lines and the plasma reactor.

The start gas is the gas with which the arc discharge is initiated. The main gas is

the gas with which the plasma reactor is operated. In the present study, Argon is the start

gas and methane is the main gas. Secondary gas, which can be either Argon or methane,

is gas introduced (in selected runs) into the top part of the cooling chamber downstream

of the anode nozzle. The console has a mass flow controller for the main gas flow and

mass flow meters for the start and secondary gas flows. In addition, flow indications of

main, start, secondary and powder carrier gas flows are provided by rotameters. Pressure

regulators enable adjustment of the delivery pressures of the start and main gases.

With adequate gas and cooling water flows, a power start switch energizes the

electrodes, bringing the potential across them to the OCV. A plasma start switch

activates the High Frequency Oscillator to initiate arcing. A power stop switch can be

used to manually cut off power to the arc, although automatic shutdown is normally

performed through the process control system.

2.2.2 Powder Feeder

A mechanical wheel-type powder feeder, Miller Thermal Model 1270 Computerized

Powder Hopper, is used to deliver powder into the plasma reactor. It is an electronically

controlled, pressurized unit that discharges powder based on volumetric feed. Slots in a

rotating wheel at the base of the pressurized canister fill with powder. When a slot lines



up with the exit port, the powder is forced out of the slot and is transported by the carrier

gas through a 3/16 in. I.D. hose to the plasma gas inlet line. The rate of powder delivery

to the reactor is predominantly a function of the speed of wheel rotation. A built-in

tamper assembly assists in feeding material with a tendency to bridge or clog by tamping

powder into the wheel slots. Turning the hopper off actuates a pressure relief valve to

release pressure from the canister. Rapid pressure release reduces residual powder flow

to reduce accumulation in the line. An alpha-numeric display shows hopper conditions,

including control mode, actual and set-point wheel rpm. The feeder is operated in

console (semi-automatic) mode, which enables automated "feed-on" or "feed-off" in

response to the presence or absence of a feed request from the process control system.

Although using methane as carrier gas would ensure good gas-solid mixing and

avoid introducing additional components in the feed to the reactor, the powder is

delivered with Argon as carrier gas because the feeder is not designed to handle

combustible gases. Throughout this study, an Argon carrier gas flow rate of 4.2 1/min has

been suitable in ensuring steady and consistent powder feeding. Furthermore, the feeder

has been found to be adequate only for feeding materials greater than 10 ýpm in particle

size. Attempts to feed finer size powder result in clogging of the wheel and exit port.

The cover of the powder canister has been retrofitted to accept a transfer vessel.

Both the cover and the transfer vessel have isolating ball valves that are opened only

during replenishing operations. Charging is done by first filling the transfer vessel with

the desired powder in a moisture-free, continuously Argon-purged glove box, sealing the

vessel, and then connecting the vessel outlet fittings to the canister cover inlet. The

vessel inlet fittings are then connected to a low pressure nitrogen supply. The inlet and

outlet ball valves of the transfer vessel and the inlet valve of the canister cover are opened

to commence transfer of the powder. All the valves are closed upon completion, enabling

transfer of the powder with virtually no exposure to the atmosphere.

Calibration of the powder feeder is done by setting the wheel speed, collecting the

powder over a predetermined period of time (on the order of a minute) in a porous

stainless steel (SS) 5 ýpm filter cup and weighing the collected powder. The feed rate in

g/min for the materials used in this study is a linear function of the wheel speed in rpm.



2.2.3 Post-Plasma Cooling Chamber and Gas

Discharge System

The plasma reactor is mounted on top of a post-plasma cooling chamber assembly, as

illustrated in Figure 2-4. The chamber is made of carbon steel and is 20 in. long with an

I.D. of 6.065 in. and an O.D. of 6-5/8 in. It has a water-cooled wall to help cool the

plasma effluent and to facilitate rapid quenching of solid and gaseous reaction products.

The chamber cooling coils consist of three different sections of ¼ in. copper tubing

wrapped helically around the chamber in parallel. The individual coil loops are soft-

soldered to one another as well as to the chamber wall. The chamber is equipped with

two 1 in. NPT ports located just below the top flange and on diametrically opposite sides

and with two ¾ in. NPT ports 900 from the 1 in. ports, also diametrically opposed to one

another. The 1 in. ports are connected to a pressure relief system and also serve as inlet

ports for secondary gas injection when desired. One 3/4 in. port, located midway down the

length of the chamber, is used for insertion of a Type K thermocouple while the other,

just above the bottom flange, is connected to a pressure sensor and doubles as a gas

sample collection port.

A steel flange with a water-cooled channel on which the plasma reactor is

mounted forms the top cover of this chamber. This top steel flange cover is seated on a

matching steel flange welded to the chamber. The chamber bottom consists of a similar

steel flange welded to the chamber, a matching steel flange which rests on a supporting

aluminum plate, a removable brass flange and a small brass flange fitting for supporting

the sample collection probe (Figure 2-4). The small brass flange fitting allows variable

insertion lengths of the sample collection probe into the cooling chamber. It has two

inner o-rings that act as rod seals against the wall of the probe. The removable brass

flange contains two open channels inside: a lower channel for water cooling and an upper

one for pulling vacuum. The effluent gas from the reactor is diverted through a layer of

porous 100 ptm, 1/8 in. thick SS filter disk which forms the top cover of the vacuum

channel. Solid products that are not collected through the probe are deposited on this

sintered disk at the bottom of the cooling chamber.
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Figure 2-4. Schematic Representation of Post-Plasma Cooling Chamber Assembly



The gaseous products are aspirated from the chamber with two parallel-connected

500 1/min mechanical vane vacuum pumps through the porous disk, a filter train

downstream of the chamber and a pressure control valve. Solids still entrained in the

gaseous stream are retained in the filter train which consists of two separate filter units

with stainless steel housing connected in series, followed by two smaller tee-type in-line

filters connected in parallel. The filter immediately downstream of the chamber has a 10

in. long, 20 ptm pleated cartridge-type element while the second one has a 10 in. long, 5

[tm element. Both filter elements are discarded and replaced after every run. The in-line

tee-type filters which act as final filters to remove residual solids have sintered SS

elements which are cleaned after each run. The gases discharged from the vacuum pumps

pass through a 12-gallon surge tank, which eliminates pressure pulsations and acts as a

knock-out vessel for entrained pump oil, and then through a dry test meter before finally

exiting to the ventilation stack.

The pressure inside the chamber is maintained at 1 atmosphere independent of

inlet gas flow by controlling the exhaust rate of the effluent gases with a throttling valve.

A stepper motor-powered butterfly valve, MKS Type 253A, with a 1.27 in. I.D. is

mounted on a 1 in. line upstream of the intake of the vacuum pumps. An MKS Type 252

Exhaust Valve Controller takes a DC voltage signal from the pressure sensor, compares it

to the set point and positions the butterfly valve to drive the actual pressure to the set

pressure by modulating the gas flow from the chamber. The pressure sensor, connected

to the chamber via the lower ¾ in. port, is an electronic manometer, MKS Baratron® Type

227A Pressure Transducer, operating on the variable capacitance technique, which

converts a 0-1000 mm Hg pressure input to a 0-10 V DC output. Power to the transducer

is supplied by an MKS Baratron® Type PDR-C-1B Power Supply which also serves as a

readout unit.

2.2.4 Sample Collection System

The sample collection system consists of a movable, water-cooled and gas-quenched

cylindrical probe that is inserted through and mounted at the center of the cooling



chamber bottom. The distance of separation between the exit of the anode nozzle of the

plasma reactor and the entrance tip of the probe is adjustable. The nozzle exit-to-probe

inlet distances used in the experimental runs are 14 in., 10 in., and 5 in. The tip of the

probe is funnel-shaped to increase solids collection.

The probe, the top part of which is shown in Figure 2-5, consists of four

concentric tubes: a 33.9 in. long, inner SS tube (¾ in. O.D. by 0.035 in. wall thickness)

jacketed by an outer SS tube (1-3/8 in. O.D. by 0.035 in. thick) with a middle SS tube (1-

1/8 in. by 0.020 in. thick) serving as water flow divider and an innermost 5 pým sintered

SS tube (5/8 in. O.D. by '/2 in. I.D.) inserted into the inner tube. Cooling water flows in

from the bottom, up through the annular region between the outer and middle tubes, and

down through the annular space between the middle and inner tubes. Through the

innermost sintered tube, Argon is injected radially to the probe axis throughout its length.

Argon quench gas is also delivered through a 0.6 in. long o-ring sealed section of the

sintered tube at its probe tip end via two 1/8 in. O.D. by 0.010 in. thick SS tubes. The

probe is designed to quench 6 1/min of hot gases at 1750 K to 750 K with 25 1/min of

quench gas. The Argon quench gas flow in the experimental runs is typically 18 1/min

while the Argon radial gas flow is 6 1/min. During a run, the probe is continuously

purged with an additional 10-15 1/min Argon through the quench line, except during the

sample collection period. The flows of quench and radial gases are continuous

throughout the run.
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Figure 2-5. Schematic Representation of Top Section of Sample Collection Probe

Solid samples are collected in a cylindrical filter cup inside the solid sampler

located downstream of the probe, as depicted in Figure 2-6. The filter cup is made of 5

pm sintered SS and is 1/2 in. I.D. by 1% in. O.D. by 3/2 in. long. It is held in place by a

cylindrical fitting that slides into the top ¾ in. of the cup which is solid. Two o-rings act

as rod seals between the outer wall of the fitting and the inner wall of the cup. The fitting

is connected by a straight tube to the outlet of the probe. Gas flows through the porous

cup and is contained by the solid sampler which is made of a 4 in. long, 2 in. nominal

diameter stainless steel pipe nipple capped on both ends. The gas and solid product

samples enter the sampler via the tube inserted through the removable top cap while the

solid-free gas leaves through the fixed bottom cap. The inlet and outlet of the sampler are

fitted with isolating ball valves which are open during the run and are closed right after



the run. The sampler is disconnected when the run is over and transferred to a glove box
for sample preparation and analysis. The glove box is purged with Argon for 2 to 3 hours
before the sampler is opened and the sample prepared for analysis.
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Figure 2-6. Schematic Representation of Solid Sampler

The gaseous products are withdrawn for sampling with a Parker MB-41 12 1/min
vacuum pump from either of two sampling points: the bottom of the chamber through the
same 3/4 in. port connected to the pressure sensor or the exit of the probe at a tee



connection upstream of the solid sampler (Figure 2-1). The gas sample is typically

withdrawn from the latter sampling point. An in-line gas purifier with a replaceable 5 ýpm

sintered bronze cartridge filter removes solids from the gaseous stream at the sampling

pump intake. The filter cartridge is cleaned after every run. The pump discharges the gas

through a three-way solenoid valve S2 (Figure 2-1) normally open to a Teledyne Model

326AX Oxygen Analyzer, which vents the gas to the exhaust stack. The oxygen content

of the gas product is monitored by the analyzer before, during and after the run, except

during the sample collection period. When sample collection is initiated, solenoid valve

S2 diverts the gas flow from the oxygen analyzer to a 250-ml gas sampling bulb, which is

connected to the intake of the two 500 1/min vacuum pumps. This enables inclusion of

the gas sample flow with the bulk gas flow in total gas flow measurements made with the

dry test meter. The glass sampling bulb is equipped with teflon stopcocks and a septum

port for withdrawal of a sample with a gas syringe through a plug-type septum for

analysis by gas chromatography (GC). The upstream solenoid valve S2 redirects the gas

flow to the oxygen analyzer at the end of the sample collection period while the normally

open solenoid valve S3, located downstream of the bulb, closes. The inlet and outlet

teflon stopcocks are closed at the end of the run before disconnecting the sample bulb for

transport to the gas chromatographs.

2.2.5 Cooling Water System

Cooling water is supplied throughout the entire experimental system to remove excess

heat from various parts of the system. There are two cooling water subsystems, each with

its own water pump: a reactor subsystem for cooling the plasma generator, top steel

flange cover, cooling chamber and removable brass flange, and a subsystem for cooling

the sample collection probe. The typical cooling water flow rates are 15 gpm at a

delivery pressure of about 90 psi for the reactor subsystem and 15 gpm at a delivery

pressure of 120 psi for the probe subsystem. The total flow rate in each subsystem is

measured with a 1 in. in-line turbine-type flow meter with a digital readout, GPI Model



A104GMA100NA1. Table 2-3 gives the distribution of the flow rates for the cooling

water system.

Table 2-3. Distribution of Cooling Water Flow

Cooling Water Subsystem Cooling Water
Flow Rate, gpm

1. Plasma Generator 8
2. Top Steel Flange Cover 3
3. Cooling Chamber 3
4. Removable Brass Flange 1

A. Reactor Subsystem (= 1 to 4) 15
B. Sample Probe Subsystem 15

2.2.6 Data Acquisition and Process Control System

Measurements of arc voltage, arc current, start gas flow, main gas flow, secondary gas

flow, chamber pressure and gas and water temperatures are recorded by the data

acquisition system while the initiation and termination of probe purging, gas and solid

sampling, and the termination of powder feeding and power input are controlled by the

process control system. The data acquisition and process control system consists of a

plug-in Keithley Metrabyte DAS-1602 data acquisition Analog/Digital (A/D) board

installed on a 100 MHz 486 PC and a windows-based software package, LABTECH

NOTEBOOKpro version 8.1. The 12-bit A/D board has 16 single-ended input channels,

32 digital input/output (I/O) channels, a maximum sample rate of 100 kHz per channel,

and input voltage ranges of +10, +5, +2.5, and ±1.25 V DC. Suitable analog input

voltage signals are routed to the A/D board by way of a screw terminal accessory board

(Metrabyte STA-MB), to which all input leads are connected. Because the 0-160 V arc

voltage is too high for direct input to the A/D board, it is first converted to a 0-10 V

signal using an ActionPak® AP4380-0000 isolating signal conditioner. Similarly, the 1

mV per A output of the 80i-kW current probe (0-1 V range for 1000 A maximum), which

is too low and prone to interference by background noise, is amplified and scaled to a 0-



10 V signal by another signal conditioner, ActionPak® AP4380-2000. The 0-10 V output

of the pressure transducer is proportional to the chamber pressure in mm Hg and is used

as input to the A/D board. The 0-5 V output signals of the mass flow controller for the

main gas flow and the mass flow meters of the start and secondary gas flows are also

proportional to the gas flow rates in 1/min and are used as direct inputs to the A/D board.

A Keithley Metrabyte EXP-1600 expansion multiplexer/amplifier multiplexes 16

differential analog input channels into one analog input of the A/D board with signal

amplification, filtering and conditioning. The output signals from Type K thermocouples

at various inlet and outlet gas and water locations are conditioned by the EXP-1600 via a

field wiring accessory, FWA-EXP, for input to the A/D board as temperature

measurements. The system records measurements of the arc voltage, the arc current, the

product of arc voltage and arc current, which is arc power, and the temperature at various

points in the system at a 10 Hz sampling frequency for the duration of each run.

Chamber pressure, and main, start, and secondary gas flow rates are recorded at a rate of

1 Hz for the run duration.

The process control system enables sampling only when fully developed flows of

reactants have been established in the plasma, which is a prerequisite to steady-state

operation. It also automatically terminates the run. Timed triggering of the plasma stop,

powder feeder on/off and solenoid valves S1, S2, S3, and S4 (Figure 2-1) used for

sampling and probe purging is accomplished by software control. Digital signals are sent

to individual on/off solid state relay modules, type OAC5A, mounted on a Keithley

Metrabyte SRA-01 solid state I/O accessory board, through the digital I/O channels of the

A/D board, according to a run schedule.

2.2.7 Equipment Safety Considerations

In view of the explosion hazards associated with conducting experiments involving

combustible gases such as CH4, H2 and CO, the plasma reactor and cooling chamber are

housed inside a room designed and built to contain fragments in the event of an

explosion. This fragmentation containment room is vented via a sheet metal duct into a



steel chimney with a combination ejector system and fan exhausting to the top of the

building. The room is also designed with adequate air flow to dilute the effluent gases to

25% of the Lower Explosive Limit (LEL) at 1 atmosphere pressure. At a design

maximum methane flow rate of 5 ft3/min (cfm), the hydrogen production rate is twice this

rate or 10 cfm. The LEL of H2 is 4% and dilution to 25% of LEL requires the effluent

gases to be diluted to 1%. This entails a total exhaust rate of 1000 cfm for safe emission.

An opening at the bottom of the room allows for a 1000 cfm flow of ventilation air for

this purpose. The exhaust of the vacuum pumps, after exiting the dry test meter, is

directed to the duct leading to the steel chimney and diluted with the room ventilation air.

The containment room has nominal dimensions of 1 1/2ft. by 3 ft. by 11 ft. tall and

is constructed with access from three sides. Both 3-ft. wide sides have 8-ft. high, 1/8 in.

thick sliding aluminum doors. Access to the bottom part of the set-up is available from

these two sides, with the bottom of the cooling chamber mounted 5 ft. from ground level.

The topmost 3-ft. sections above the sliding doors have fixed aluminum panels. The 1½-

ft. wide front side of the containment room has Dutch style 1/8 in. thick aluminum

swinging doors consisting of a lower 7-ft. high section and an upper 3-ft. high section.

The opening at the bottom of the lower swinging door for air inflow has an area of 0.785

ft2. Rubber u-channel guides are installed along the perimeter of the doors to minimize

air inflow through gaps along the length of the room and to force air inflow from the

bottom instead. A fixed aluminum panel forms the back wall of the room against the

plaster wall of the laboratory. A combustible gas monitor (1000 ppm CH 4 sensitivity) is

installed inside the room to alert the operator of any gas leakage.

The cooling chamber is also equipped with a pressure relief system to minimize

damage to equipment in case an explosion occurs inside the chamber. The maximum

design pressure of the 6-5/8 in. O.D. by 0.280 in. thick wall by 20 in. long chamber is 40

psig at a shell temperature of 811 K (1000 0F) and 140 psig at a shell temperature of 616

K (650'F). The worst case relief scenario occurs with a 4% H2 / 96% air mixture, which

has a relief requirement of 0.6 kg/s. This requires at least two 1 in. diameter rupture disks

with a burst pressure of 35 psig. Since available 1 in. rupture disks have a minimum

burst pressure of 60 psig, 1½ in. diameter disks are used instead to satisfy the 35 psig



burst pressure requirement. To avoid accidental damage to the disks during process

upsets, two pressure relief valves, each with a flow coefficient, Cv, of 4.70 at full poppet

opening and a cracking pressure of 20 psig, are installed in parallel with the rupture disks.

Each rupture disk/relief valve combination is installed on one of the two 1 in. NPT ports

on the upper section of the cooling chamber and is mounted to vent upwards.

In addition to the safety interlock on the control console of the plasma generator

system, flow switches are installed on the cooling water outlet lines of the top steel

flange, cooling chamber, removable brass flange and sample collection probe as part of

an alarm system to warn the operator of cooling water failure. This alarm system is also

provided with a safety interlock between the methane supply and a Dwyer Model 3002

Photohelic® Differential Pressure Switch/Gage installed on the exhaust chimney. In the

event of inadequate draft due, for example, to a fan failure, a solenoid valve is actuated by

the pressure switch, shutting off the supply of methane to the reactor and purging the

system with Argon. A combustible gas monitor (1000 ppm CH 4 sensitivity) is also

located just above the methane supply tank to detect leakage in the laboratory.

2.3 Experimental Procedure

The procedure for operation of the apparatus entails a preparation stage (typically lasting

for about half an hour), the actual operation (lasting for only about 5 minutes) and a post-

operation stage for disposing the excess reaction products and for resetting the reactor to

its original configuration (lasting for 3-5 hours).

2.3.1 Preparation of Reactor

Cooling water is admitted into the system by opening the main inlet valves to the reactor

and probe subsystems. Turning on the power to the control console activates the water

flow switch to the plasma generator system and the cooling water alarm system. The

audio alarm goes off when the two water pumps are turned on. The flow rate in each

subsystem is typically 15 gpm at delivery pressures greater than 80 psi (Table 2-3). The

system is then inspected for any signs of water leaks.



The data acquisition and control system is started up by switching on the power to

the computer, voltage and current signal conditioners, mass flow meters and flow

controller, and pressure controller and readout, which need about a 15 minute warm-up

time. The bench multimeter for measuring voltage is turned on and switched to the

ohmmeter function. The shrouded plugs of the leads to the anode and cathode are

inserted into a pair of jacks connected to the voltage signal conditioner input and to the

multimeter input to verify that the leads are connected to the electrodes. This effectively

measures the resistance of the power supply, which, at the 328 OCV configuration, is

typically -360 Q. The jacks are then unplugged to prevent potential damage to the signal

conditioner when the arc is initiated with the high frequency oscillator. The handheld

multimeter is also turned on and switched to the voltmeter function to accept the current

probe output. The current probe leads are plugged into another pair of input jacks

connected to the other signal conditioner and to the handheld multimeter. The current

probe is adjusted to read zero and is not clamped onto the overhead power line until after

the arc is struck to avoid potential damage from the high frequency discharge. An

applications setup on the LABTECH NOTEBOOKpro software is initiated which

activates the solid state relays connected to the plasma stop switch, powder feeder switch

and the solenoid valve for probe purging.

The system is always purged of oxygen before introducing methane. The oxygen

analyzer is turned on and, after a few minutes of warm-up, is calibrated with room air. A

three-way valve on the inlet of the gas sampling pump is switched from downstream of

the probe to a line open to the atmosphere. The gas sampling pump is actuated, drawing

air into the oxygen analyzer, which is then calibrated to read 21%. After calibration, the

three-way valve is switched back to the probe exit line. The main Argon supply is then

opened. Toggle valves on the start gas, quench gas and radial gas inlets are then opened

manually. Argon is admitted into the system as follows: about 20 1/min as plasma start

gas, 18 1/min as quench gas, 6 1/min as probe radial gas and 10-15 1/min as probe purge

gas. The Argon supply pressure is maintained at 30 psi by a pressure regulator. The

vacuum pumps are switched on and the system is maintained at 1 atm and allowed to be

purged of oxygen with Argon. When the oxygen analyzer reads 0% 02, the methane tank



valve is opened and a tee-purge adapter connected to the Argon supply is closed. The

methane toggle valve on the console is opened but the mass flow controller is set to zero.

Power to the powder feeder is then switched on. The wheel speed is set at a low

value of V2 rpm by default. The software initiation procedure effectively has the feeder in

the on position but the control has to be set to the console mode to initiate feeding. To

prevent powder feeding before the run, the feeder is set to local control. The powder

carrier gas flow meter valve is opened and set to a flow rate of 4.2 1/min Argon. The

isolating ball valve at the inlet of the solid sampler downstream of the probe is initially

closed to prevent solid particles from falling into the filter cup. Once the probe purging

with Argon is initiated, this inlet valve is opened and the door to the reactor room closed.

The power switch on the remote control panel is turned on to activate the fans on

the main power supply unit. The power supply to the solenoid is also switched on and

the current should read 21 A. The weld and start controls of the main power supply are

set to zero. The system is then ready for an experimental run.

2.3.2 Reactor Operation

To start an experimental run, the power start switch on the console is turned on to

energize the electrodes. The OCV of 328 V will register on the voltmeter on the remote

control panel. The arc is initiated with the plasma start switch on the console which

activates the high frequency oscillator. If the discharge fails to initiate, the procedure is

repeated after a few seconds. An Argon plasma is indicated by voltage and current

readings on the analog voltmeter and ammeter on the remote control panel. The voltage

is typically 20 V and the current 600 A. The current probe is then clamped onto the

overhead power line and the electrode leads plugged into the jacks on the voltage signal

conditioner box. This gives digital readings of the voltage and current on the bench and

handheld multimeters, respectively.

The powder feeding is initiated by switching to console control. The gas to the

plasma reactor is replaced with methane by gradually increasing the setting of the mass

flow controller and slowly closing the start gas rotameter valve. As methane displaces



Argon in the plasma, the arc voltage will rise. To prevent the voltage from rising above

the design load voltage of 160 V and the arc from being extinguished, the current is

increased steadily to match the increase in methane input using the weld control on the

remote control panel. During runs when a full methane flow to the plasma reactor is

desired, the Argon start gas is shut off completely. At the same time that the plasma gas

is switched over to methane, the wheel speed of the powder feeder is increased gradually.

When the desired settings for the powder feed rate, methane flow rate and arc current are

reached, the data acquisition and control sequence is initiated from the software

application set-up. The entire switchover typically takes two to three minutes and the

actual control sequence lasts for only one minute. Figure 2-7 shows the control sequence

of reactor operation. The data acquisition and process control sequence is initiated at

time zero.

Probe Purge

Argon Plasma

Powder Feed

Methane Plasma

Solid Sampling

Gas Sampling
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Figure 2-7. Control Sequence of Reactor Operation

The sampling protocol consists of a 45-second period of solid sampling and a 30-

second period of gas sampling, simultaneously initiated after establishing the desired gas
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flow and solid feed rates into the plasma. This is accomplished with timed triggering of

solenoid valves using the solid state relays connected to the digital I/O channels of the

A/D board. Solenoid valve S1 (Figure 2-1) is installed downstream of the sample

collection probe and connected to the intake of the vacuum pumps. Normally closed, it

opens at the start of sampling. To avoid a sudden change in chamber pressure when

sampling starts, a regulating valve on the probe outlet line is kept closed and gradually

opened when the control sequence is initiated. A three-way solenoid valve S2 allows

normal gas sample flow to the oxygen analyzer but diverts the flow to the gas sampling

bulb upon commencement of gas sampling. Solenoid valve S3, installed downstream of

the gas sampling bulb, opens during gas sampling and closes two seconds before the end

of the 30-second period. Solenoid valve S4, which is normally open, admits Argon purge

gas through the quench line to the probe. This valve shuts off during the solid sampling

period and reopens at the end of the 45-second period. The powder feeder and power to

the plasma are turned off automatically at the end of the one-minute sequence. The total

effluent gas flow is monitored and recorded by the operator at 15-second intervals by

taking readings from the dry test meter.

When the power to the arc goes off, the Argon rotameter valve is opened to ensure

a flow of about 20 1/min and the methane mass flow controller valve is closed. The

solenoid power supply and gas sampling pump are turned off. The teflon stopcocks on

the gas sampling bulb are closed, prior to disconnection. The inlet and outlet ball valves

on the solid sampler are also closed in preparation for disassembly. The current probe is

taken down and the arc voltage leads disconnected from the signal conditioner box. The

probe purge valve S4 is shut off through the application set-up. The valve on the

methane supply tank is closed and the tee-purge adapter is opened to purge the methane

supply line with Argon. The mass flow controller valve is opened again to purge the

reactor supply line. The system is allowed to cool down until the temperature reading on

the chamber wall is below 100oC. All gas and cooling water flows are then turned off and

the vacuum pumps shut down. The analyzer, signal conditioner, multimeters, pressure

controller, and mass flow meters and controller are turned off, concluding the run.



2.3.3 Post-Operation Procedures

The solid products have been found to be highly reactive to air and moisture and to even

exhibit pyrophoricity. For example, opening of the chamber and disassembly of the filter

train in the open air have, on several occasions, led to spontaneous ignition of the solids.

Thus, several precautions are observed not only in sample preparation but also in the

disposal of the bulk solids produced.

The solid sampler is disconnected from the system and placed inside a 20/4 in. by

30½ in. by 36 in. plexiglass glove box for later sample preparation. The glove box is kept

moisture-free with dessicants and is equipped with a Mettler analytical balance. The

glove box is continuously purged with Argon for at least two hours before the sample is

handled. The gas sampling bulb is disconnected and the gas analyzed by GC.

The filter train downstream of the probe is removed and placed inside a 21½ in.

by 24½ in. by 333/4 in. glove box, which is purged continuously with nitrogen for at least

an hour before the filter is disassembled. Virtually all the solids are collected on the 20

tm filter cartridge and hardly any solids are collected on the 5 ýtm filter. The solids are

brushed from the filter cartridges and housing walls and retained on a piece of foil. When

the glove box is opened, the collected solids are slowly disposed of in small amounts in

an excess of water. The ignition of these solids upon contact with water gives off bright,

dazzling lights, indicative of the presence of magnesium. The filter cartridges are washed

with water prior to disposal. In the case of the in-line filters, the stainless steel cartridges

are cleaned with water in a sonicator. New cartridges are installed and the filter train is

then reassembled and leak-tested prior to reinstallation.

While purging the glove box, the probe is retracted from the chamber by

loosening the small brass flange fitting. The probe is flushed and cleaned with nitrogen

and Argon. The removable brass flange is lowered and supported by wing nuts on the

three threaded rods connected to the bottom flange. Solids on the chamber walls and

bottom are removed, collected and disposed of in the same manner as the solids from the

filters. The sintered SS disk on the brass flange is cleaned with water in a sonicator.



The reactor cooling water subsystem is drained of cooling water and the cathode

assembly of the plasma reactor is disconnected from the water-cooled power lines. The

graphite anode is unscrewed from the anode holder from below. The anode insert is

removed and the anode nozzle cleaned of solid deposits, which are hard and flaky in the

case of MgO feed and soft but plentiful in the case of CaO feed. The anode insert and

cathode tip are weighed and then replaced with brand new parts. The cathode assembly is

reinstalled and the anode is screwed back into its holder until its top face touches the

bottom face of the low density alumina in the cathode assembly. Because the nylon part

of the cathode assembly can deform to some degree, the cathode tip is visually checked

from below for concentricity with the anode nozzle and centered manually, if needed.

The o-ring and porous disk are then replaced on the removable brass flange and

the chamber is sealed. The filter train is reinstalled and the probe is inserted into the

chamber to the desired height. After solid sample preparation, the filter cup is sonicated

in water to remove residual solids. The inlet to the sampler is flushed with nitrogen and a

clean cup is installed before the sampler is reassembled and connected between the probe

and vacuum pump intake. The inlet ball valve is closed to prevent solids from falling into

the sampler and the outlet valve is left open. The gas sampling bulb is fitted with a new

septum stopper and reinstalled. Finally, the system is tested for gas and water leaks.

2.4 Analysis of Products

The gas sample composition is determined by Gas Chromatography (GC) analysis. The

solid sample is collected from the filter cup and prepared for analysis inside the Argon-

purged glove box to prevent undesirable reactions with oxygen or moisture. The metal

and metal carbide contents of the solid sample are determined indirectly by gas

chromatographic measurement of the hydrogen and acetylenes evolved upon hydrolysis

according to Reactions (1-11), (1-12), (1-5), (1-6) and (1-20). The standard gas mixtures

used for quantification are provided by Scott Specialty Gases and have the following

compositions:



Table 2-4. Composition of Standard Mixtures

Standard Mixture #1 Ne 99.996 %
Accuracy of Analysis + 2%

Standard Mixture #2 Ne 0.496%
He Balance

Accuracy of Analysis ± 2%
Standard Mixture #3 Ar 0.503%

He Balance
Accuracy of Analysis 1 2%

Standard Mixture #4 CO 0.514%
CO 2  0.505%
H2  0.511%
02 0.504%
N2  Balance

Accuracy of Analysis 1 2%
Standard Mixture #5 CH 4  14.8 ppm

C2H6  14.9 ppm
C2H4  15.2 ppm
C2H2  16.6 ppm
C3H8  15.2 ppm
C3H6 15.1 ppm
C3H4 16.3 ppm

n-C4H 6o 14 .7 ppm
N2  Balance

Accuracy of Analysis ± 10%
Standard Mixture #6 n-C4Ho 15.0 ppm

i-C4Ho 14.9 ppm
i-C4H, (isobutylene) 15.0 ppm

1-C4H, (1-butene) 14.9 ppm
cis-2-C4H8 15.0 ppm

trans-2-C4HA 14.5 ppm
1,3- C4H 6  14.9 ppm

Ethylacetylene 15.5 ppm
N2 Balance

Accuracy of Analysis I + 10%

Total Mg and/or Ca content in the hydrolyzed sample is measured using
Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) and Mass
Spectrometry (ICP-MS) analyses. Standard solutions of 1, 10 and 100 ppm Mg and 1, 10



and 100 ppm Ca are prepared from 1000 ppm Mg and 1000 ppm Ca plasma standard

solutions in a matrix of 2% HNO 3.

Dilute hydrochloric acid (HC1) and dilute nitric acid (HNO3) are used for

hydrolysis and dissolution of unreacted oxides. The acid solutions are prepared by

diluting 100 ml of concentrated acid to 2000 ml with distilled water to form

approximately 0.6 M HCI and 0.8 M HNO 3.

2.4.1 Analysis of Solid Product

Due to fluctuations in the arc power input during the run, the composition of the solid

product collected in the filter cup may have varied from layer to layer. Although the

product distribution may not have been significantly different because the fluctuations

were rapid, the solid sample is mixed to increase homogeneity before taking portions for

subsequent analysis. Two separate 5-20 mg portions of the solid product are transferred

from the filter cup to two 50-ml flasks and sealed with an S.T. 19/22 joint septum

stopper. The remainder of the solid sample is retained in a vial and kept in a dessicator.

For each flask, 1 ml of standard mixture #1 (99.996% neon) is injected as internal

standard through the septum port. The head space gas above the solids is analyzed by GC

before and after hydrolysis. Hydrolysis is done by injecting 5 ml of dilute HCl into the

flask; on some occasions, 1-2 ml of distilled water is first injected to avoid local hot spots

and incandescence of the solids. The head space gas is quantitatively analyzed for H2 and

Ne content by withdrawing a 0.1 ml sample and injecting it into a Perkin Elmer Sigma-II

gas chromatograph with a thermal conductivity detector (TCD) and with Helium as

carrier gas. The H2 and Ne are separated on a 1/8 in. O.D. by 10 ft. long SS, 60/80 mesh

Molecular Sieve 5A column operated at -100 C with a He carrier gas flow of 30 ml/min (at

100oC). Retention times for H2 and Ne are less than 2 minutes. Analytical quantification

is done using standard mixtures #2 and #4.

Analysis for detection, identification and quantification of light hydrocarbon

gases (C, to C4 species) in the head space gas is performed by injecting a separate 0.1 ml

sample into a Hewlett-Packard 5830A gas chromatograph fitted with a flame ionization



detector (FID) and using Argon as the carrier gas. The sample is injected on a 1/8 in.

O.D. by 6 ft. long SS, 0.19% Picric Acid on 80/100 mesh Graphpac GC column

connected in series, via an air-actuated six-port column switching valve, to a 1/8 in. O.D.

by 6 ft. long SS, 80/100 mesh Porapak T column and then to the FID. The oven

temperature is initially set at -5°C and the Argon carrier gas flow is 22 ml/min (at 100oC).

CH 4 is carried by the Argon through the two columns into the FID within 6.7 minutes,

when the valve is activated. Within the first 6.7 minutes before the valve is switched, the

C3 and C4 species in the sample are separated on the Graphpac column while the C2

species have eluted onto the Porapak T column. When the valve is actuated, the second

column is bypassed, trapping the C2 species. A restrictor valve provides a pressure drop

equivalent to the second column to maintain the same carrier gas flow rate when the

second column is bypassed. The oven temperature is raised to 500C at a rate of 300/min,

11.5 minutes after injection, and maintained at 50'C for another 24.5 minutes to complete

the analysis. The C3 and C4 species then elute from the first column. The valve switch is

again activated 23.5 minutes after injection, reconnecting the first and second columns in

series to the FID, and the C2 species elute. Standard mixtures #5 and #6 are used to

quantify light hydrocarbon composition.

The pre-hydrolysis analysis always shows some small amounts of acetylene and

C3 species, which presumably result from decomposition of or desorption from the

sample. No hydrogen is detected prior to hydrolysis. To correct for the additional

hydrocarbons not directly evolved upon hydrolysis, the calculated pre-hydrolysis number

of moles is subtracted from the post-hydrolysis number of moles.

After GC analysis of the head space gas, each flask is filled with dilute nitric acid

solution and allowed to sit overnight in order to dissolve any unreacted metal oxides.

The contents are subsequently filtered and the filtrate diluted to 100 ml with dilute nitric

acid and analyzed by ICP-AES or ICP-MS for the total Mg and/or Ca content.

The solid samples are also analyzed for composition, particle size, particle

morphology and elemental distribution by X-Ray Diffraction (XRD), Scanning Electron

Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Transmission

Electron Microscopy (STEM) and Energy Dispersive Spectrometry (EDS).



2.4.2 Analysis of Gaseous Product

The gas sample is analyzed for fixed gases as well as for light hydrocarbons. The same

Sigma-II gas chromatograph fitted with a TCD and Molecular Sieve 5A column is used

to analyze separately for Argon and for H2 and CO. A 0.05 ml sample is withdrawn from

the gas sampling bulb through the septum stopper and injected onto the molecular sieve

column at -55oC under a He carrier gas flow of 30 ml/min (at 100 0C) to separate Argon

from residual 02 with retention times less than 7 minutes. Standard mixture #3 is used

for quantification. Another 0.05 ml sample is subsequently withdrawn and injected into

the same column at 500 C to separate H2, Ar/O 2, CH4, and CO with a run time of 6

minutes. Quantitative analysis is done with standard mixture #4. Although not done in

every run, the gas sample was analyzed for CO 2 in the Sigma-II GC by injection onto a

1/8 in. O.D. by 6 ft. long SS, 80/100 mesh Porapak Q column. No CO2 was detected in

the sample analyzed.

Light hydrocarbon analysis is done utilizing the same method used for headspace

gas analysis, described in Section 2.4.1. A third 0.05 ml sample is injected into the

Graphpac GC and Porapak T columns of the HP 5830A gas chromatograph fitted with a

FID and using Argon as carrier gas. Standard mixtures #5 and #6 are used for

determination of light hydrocarbon composition.

2.4.3 Reactant-to-Product Conversion and Uncertainty

of Analysis

The magnesium in the MgO feed is converted to Mg metal, Mg 2C3 and MgC 2, according

to Reactions (1-4), (1-2), and (1-3), respectively. The percentage molar conversion of the

MgO "Mg" to magnesium metal in the product, (Mg)a og , is calculated as follows:

(Mg)aMg - Mg x 100% Equation (2-10)
MgO NMgo

MgO



where N.9 is the number of moles of magnesium metal in the sample and N1 go is the

total number of moles of magnesium in the sample equivalent to MgO before the

reaction. N g is equal to the number of moles of hydrogen, N , in the headspace above
the solid evolved upon hydrolysis, according to Reaction (1-12):

the solid evolved upon hydrolysis, according to Reaction (1-12):

Mg + 2 HCI -> Mg(C1) 2
+ H2

Reaction (1-12)

NHS is given by:
H2

VHS
IH2 x x f

VHS IS IS

NHS = Ne

H2 22,412 ml / mol
Equation (2-11)

where Vis is the volume in ml of the internal standard injected into the headspace above

the solid and fs is the purity of the internal standard. V HS and V HS, the volume in ml of
H2 Ne

H2 and Ne, respectively, in the headspace gas sample derived from GC analysis are

calculated more generally according to:

Ai
= A i std Xsd i

where Vi

Ai

VA td

fstd

Equation (2-12)

= Volume of the species i contained in the sample, ml

= Area under peak corresponding to species i in the sample

= Area under peak corresponding to species i in the standard mixture

= Injection volume of standard mixture containing species i, ml

= Mole fraction of species i in the standard mixture



With all the magnesium in the product coming from the MgO feed, NMgo is determined

from the concentration of the Mg in the filtrate, [Mg]f, given by ICP-AES or ICP-MS

analysis as:

Ngo = [Mg], x V

where Vf is the volume of the filtrate.

Equation (2-13)

Thus, (Mg)amo can be calculated by combiningllU) 1ljj~g~CI V~~CVUU·M 90VL~lll~
Equations (2-10) to (2-13) as:

A HsHS xV std X f std
Astd 2 H2

H2

NA x vstd X sd
A std Ne X fNe

Ne

x Vis x fs

[Mg], x V, x 22,412
x 100% Equation (2-14)

The percentage molar conversion of MgO "Mg" to Mg2C3 in the product, (Mg)a M2"c , is

calculated according to:

2N
(Mg)axM2g3 2 x X100% Equation (2-15)

Mgo IV MgO

where the number of moles of Mg 2C 3, Mg2C3 , in the sample is equal to the number of

moles of C3H4, NSH%4, in the headspace above the solid evolved upon hydrolysis,

according to Reaction (1-6):

Mg2C 3 + 4 H20 - 2 Mg(OH) 2 + C3H4 Reaction (1-6)

Correcting NHSH for the methylacetylene desorbed from the sample prior to hydrolysis:

(Mg) ao =



xfis

Equation (2-16)
22,412 ml / mol

where (V HsV3/ 44) Post-hyd

and (V" ) Pre-hyd

is the volume of C3H4 in the headspace gas sample after hydrolysis

is the volume of C3H4 in the headspace gas sample before hydrolysis.

Thus, following the same derivation for (Mg)a4gc3 as (Mg)amgo gives:

xV sId std

SVNed f sNed
Ne Ne

Post-Hyd

Ssid
X

A HS
Ne

A sid
Ne

x Vstd xf std
Ne Ne

Pre-Hyd

x Vis x f1 s x 100%
(z Mg)a2M2C 3Mg) c92go - [Mg], x V, x 22,412

Equation (2-17)

Similarly, the percentage molar conversion of MgO "Mg" to MgC2 in the product,

(Mg)agfc2 , is given by:

MgC-a2(Mg) au 2gO -

"2H2 X2 std X stds Xtd C2H2 X C2 H2

Post -Hyd

A mH
C2 H2 XV std

A Xstd ( 2H2
C2H2

Ne V sid

A std Ne
Ne

x VIs x fjs x 100%

[ Mg], x V1 x 22,412

Equation (2-18)

N H) 4
C3H4

V HS

NePost-hyd Pre-hydj

std

X C2H 2

Pre-Hyd



The percentage conversion of oxygen in the MgO feed to CO in the gas

product, (O)a o, is:
(aM90,is

(O)crO - nc x100%
MgO n MgO

Equation (2-19)

where nMgO is the molar feed rate of MgO to the reactor and nco is the molar flow rate of

CO from the reactor. nco is given by:

Equation (2-20)= Gas Gasn1CO = YnGa s X jCO

where nGas is the total molar flow rate of (Argon-free) gas product from the reactor

and fGoajis the mole fraction of CO in the Argon-free gas. The gas sample differs in

composition from the total gas effluent stream because of the quench and radial gas flows

through the probe that introduce more Argon into the gas sample. Therefore, nGa is taken

on an Argon-free basis. This is calculated by subtracting the Argon main gas (in the case

of CH4-Ar plasma), probe quench gas, probe radial gas and powder carrier gas flows from

the dry test meter measurement. From GC analysis:

std d

V sample

where fi

f std

Ai

A stdm

V sample

Equation (2-21)

= Mole fraction of species i in the sample

= Mole fraction of species i in the standard mixture

= Area under peak corresponding to species i in the sample

= Area under peak corresponding to species i in the standard mixture

= Volume of the sample, ml

Vsvtd = Injection volume of standard mixture containing species i, ml

A i

f = A= s



The sum of the volumes of all species in the sample excluding Argon is used to determine

the mole fraction of CO on an Argon-free basis. Combining Equations (2-12) and (2-21),

f aj" is given by:

f Gas ACO
A sd

co

SCO fstd
i•Ar Ai

i Ai"

Equation (2-22)
sd JsICO

X std
X co

X f std )

x 100% Equation (2-23)
nMgO

The carbon in methane is converted to Mg 2C 3, MgC 2, CO, other hydrocarbons and

solid carbon. Since the ratio of MgO molar feed rate, nMgo, to CH 4 molar flow rate, n, ,H

is constant, the molar conversion of CH 4 "C" to product i, (C)aH , can be directly

calculated as follows:

3 nMg0

2 no
Equation (2-24)

Equation (2-25)

Equation (2-26)

Thus,

rGas X

(0)ao =c

i Ar Ai
4 Ai

(C)ac 2C3 = (Mg)a Mg o

(C)acmý' ' 2 a Mg)aMg•ý2 x 2 x n
nCH

4

CO CO MgO
(C)a = (O)aMg X

nCH
4

T/ std
v

V 
s td

0CO



The percentage molar conversion of CH 4 "C" to solid carbon is determined as the

aggregate amount of "non-carbide C", referring to carbon that may be present in the

residue from hydrolysis of the solid products, also designated "unhydrolyzable C". The

exact composition of this material is not known, but it may consist of carbon-rich tar and

various forms of solid carbon such as soot. To determine the contributions of this "non-

carbide C" to the overall carbon balance, samples of solid residues from hydrolysis are

sent to a commercial laboratory (Galbraith Laboratories) for elemental carbon assays.

The hydrogen in methane is converted to molecular H2 and, to much smaller

extents, to other hydrocarbons. The percentage molar conversion of the CH 4 "H" to

molecular H2 in the gas product, (H)acH , is given by:

(H)-a = - x 100% Equation (2-27)
CH4  2nCH4

where n2 is the molar flow rate of H2 from the reactor. Applying Equations (2-20) and

(2-22) to the hydrogen component of the gas product:

nGas X

H2H nN

A V std
_H2 _ H2 2d

A'std i#Ar A,
xH2 si d f std

( X V i st )

( -)aCH4 - 2nC v/o Aquauoll (,k-_o

In the case of CaO feed, the calcium in CaO is converted to CaC2 and the oxygen

in CaO to CO according to Reaction (1-1). Most of the carbon in CH 4 is converted to

CaC2, CO, C2H2, non-carbide C and other hydrocarbons while the hydrogen in CH 4 leaves

mostly as molecular H2 and C2H2. Analogous elemental percentage molar conversions,

(h)a', of element h in reactantj to product i for CaO reactions with CH 4 are given by the

following expressions:

001 % 
E 

i 
2 28



AHSC2 H2

A std
C2H2

d
H2

Pre-Hyd

x Vis x fls x 100%
(Ca) a~2 =caoo [Ca]f x Vf x 22,412

Equation (2-29)

n xGas

(0)aoo =C

Aco
*CO

x0i Ar A

A, (A
f stdj

x 100% Equation (2-30)
nCaO

(C)aC2 = (Ca)a2 X 2 x2

(C)ao· = (

ncao

nCH
4

Equation (2-31)

Equation (2-32)0)0 x nco
a na) X Ca

2no, x
Ga.

(C)c2 
H2

a(') . 4

A H
- x

AvidC2H2

VC 
s td

C2H2
i•Ar( A,

fs stdf

ncH
4

Equation (2-33)

V stdH2

i Ar( Ai
I A id

X fs td
SH 2

XV Xf stdJ

( H)a4 = x 100% Equation (2-34)

std

x f2 H 2

x 100%

nGas X
Gm s

A H2

A vd
H2

PO t - Hd



and

nGas X

(H) xC2H21-1)aCH4

A
C2H 2 x

A std

"CH2

V std
C2 H2

i Ar( Ai
I std iSAi

std
X f C2H 2

fstdJ

2nC
nCH4

x 100%

Equation (2-35)

Table 2-5 gives the uncertainty associated with each calculated number based on a

propagation of errors analysis. The uncertainty is expressed as a percentage of

conversion(h)aj. A sample calculation of the uncertainty of analysis is provided in

Appendix A.

Table 2-5. Uncertainty of Analysis

Conversion Uncertainty

(Mg)a Mo  17.1%

(Mg)>ta~ c3 ±26.8%

(Mg)a MC2 ±+26.8%

(O)aco ±27.0%

(Ca)a cc2 ±26.8%

(O)aco  ±27.0%

(C)aMgj2C3  29.8%

(C)aacm2 +29.8%

(C)accC2 ±29.8%

(C)aC +_26.0%

(C)a>x2H2 34.0%

(H)aCH ±26.0%
()ac2H2 +34.0%



Chapter 3

Experimental Results

A systematic study of the MgO-CH4-Ar system in the thermal plasma reactor has been

undertaken to investigate the formation of magnesium metal and magnesium carbides by

the reduction of magnesium oxide with methane under a wide range of experimental

conditions. In order to elucidate the mechanisms behind metal and metal carbide

formation, the MgO-Ar, MgO-C-CH 4-Ar, and Mg-CH 4-Ar systems have also been

studied. In addition, exploratory experiments have been conducted with the CaO-CH4-Ar

and MgO-CaO-CH 4-Ar systems.

3.1 Reactants

Two grades of methane were used in the present study. In all of the runs with the MgO-

CH 4-Ar system and in the first four runs with the MgO-C-CH 4-Ar system, Purified Grade

2TM Methane (99% CH 4) was used. In the rest of the experimental runs, a higher grade,

Ultra Pure Grade 4TM Methane (99.99% CH4), was utilized.

The reactant magnesium oxide is fused, -150 +325 mesh (-44 +104 .im) MgO

powder from Aldrich Chemical. The purity of the material is 97.3%. Table 3-1 shows its

properties, as reported by the supplier.



Table 3-1. Properties of MgO Powder

Appearance Fine off-white powder
X-Ray Diffraction Pattern Conforms to Standard Pattern
Complexometric Titration 58.7% Mg
Particle Size Distribution >140 mesh (107 p~m) 2.4%

>200 mesh (73.7 pm) 64.2%
>230 mesh (63 gpm) 25.7%
>325 mesh (43.2 gm) 6.9%
<325 mesh (43.2 ptm) 0.8%

Examination of the MgO powder feed under a scanning electron microscope

shows that the material is angular. Figures 3-1A to 3-iF are SEM images of the MgO

powder at increasing levels of magnification. The length scale is given by the gray bar

embedded in each figure. Although only 2.4% of the material is greater than 107 tpm

according to the particle size measurements, Figures 3-1 and 3-2 show the length of the

particles to be typically greater than 100 ptm. At higher magnification levels (Figures 3-

IC to 3-1F), the particles appear to have non-porous surfaces essentially free of

intracrystalline voids and to have micro-particles on them.

The MgO powder has been analyzed for constituent elements by EDS. Aside

from Mg and 0, Si and Ca have been identified as impurities. The X-ray spectrum of the

MgO powder is shown in Figure 3-2. The microparticles on the surface have been

determined to be of the same composition as the larger MgO particles by EDS analysis.

The calcium oxide is high calcium metallurgical grade quicklime which has been

obtained from Specialty Minerals. The material comes from a deposit of high quality

calcium carbonate in Adams, MA and is produced in a fluo-solid type kiln, yielding a

granular, free-flowing quicklime of high reactivity. The typical properties of the material

are given in Table 3-2, as reported by the supplier. In order to have a material in the -150

+325 mesh size range, comparable to MgO, the granular material has been crushed and

sieved prior to use in the experiments.



Figure 3-1A. SEM of MgO Powder, x125(1) Figure 3-1B. SEM of MgO Powder, x125(2)

Figure 3-1C. SEM of MgO Powder, x500 Figure 3-1D. SEM of MgO Powder, x745

Figure 3-1E. SEM of MgO Powder, x2000 Figure 3-1F. SEM of MgO Powder, x5000
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Figure 3-2. X-Ray Spectrum of MgO Powder

SEM images of the CaO powder at increasing magnification levels are shown in

Figures 3-3A to 3-3D. Similar to MgO, the CaO particles are angular, non-porous and

have microparticles on the surface. EDS analysis of the material, presented in Figure 3-4,

shows the presence of Si and Mg as impurities in the powder.

Table 3-2. Typical Properties of High Calcium Metallurgical Grade Quicklime

Particle Size Distribution >10 mesh (1.91 mm) Trace
>100 mesh (140 min) 98%

Bulk Density 1.12 g/ml
Available Lime Index (ASTM C25) 95%
Water Reactivity (ASTM C 110) 340C
Chemical Composition Total CaO 96%

MgO 0.8%
Fe 20 3  0.10%
C <0.07%
S <0.05%
Loss on Ignition 0.10%



Figure 3-3A. SEM of CaO Powder, x125 Figure 3-3B. SEM of CaO Powder, x505

Figure 3-3D. SEM of CaO Powder, x2000(2)
Figure 3-3C. SEM of CaO Powder, x2000(1)
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Figure 3-4. X-Ray Spectrum of CaO Powder

The graphite used in doping the MgO with carbon for the runs with the MgO-C-

CH 4-Ar system is commercial lubricating graphite, Dixon Ticonderoga No. 2 Medium

Powdered Flake Graphite. The graphite flakes are nominally above 100 jIm, as can be

seen from the SEM images at increasing levels of magnification in Figures 3-5A to 3-5D.

Trace amounts of Si, Mg and O are present as impurities in the graphite powder, as

shown by the EDS analysis in Figure 3-6.

The magnesium used in the experimental runs with the Mg-CH 4-Ar system is -100

+200 mesh (-140 +73.7 ptm) Mg powder from Alfa AEsar, with a purity of 99.6% Mg +

0.1-1% Ca. The certified spectrographic analysis of the powder is given in Table 3-3.

SEM images of the powder at increasing magnification levels (Figure 3-7A to 3-7D)

show the Mg particles to be convoluted. The X-ray spectrum obtained by EDS analysis

in Figure 3-8 reveals the presence of trace amounts of oxygen, suggesting slight oxidation

or hydrolysis of the magnesium.

8000



Figure 3-5A. SEM of Graphite Powder, x125(1) Figure 3-5B. SEM of Graphite Powder, x125(2)

Figure 3-5D. SEM of Graphite Powder, x2000
Figure 3-5C. SEM of Graphite Powder, x500
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Figure 3-6. X-Ray Spectrum of Graphite Powder

Table 3-3. Spectrographic Analysis of Mg Powder

Al 0.01%
Ca <0.001%
Cu 0.001%
Fe 0.06%
In 0.001%

Mn 0.08%
Si 0.06%
Zn 0.02%

'-^^^



Figure 3-7B. SEM of Mg Powder, x250

Figure 3-7D. SEM of Mg Powder, x2500

Figure 3-7A. SEM of Mg Powder, x125

Figure 3-7C. SEM of Mg Powder, x1000
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Figure 3-8. X-Ray Spectrum of Mg Powder

3.2 MgO-CH4-Ar System

Fifty-six experimental runs, designated Runs Ml to M56, were conducted with the MgO-

CH4-Ar system to study how the conversion of reactants to various products is affected

by arc power input (17-47 kW), CH 4 flow rate (10, 20 and 30 1/min), Argon dilution (0,

10 and 15 1/min), inlet MgO:CH 4 molar ratio (0.38-0.46:1, 0.8:1 and 1.15:1), secondary

CH4 quench (0 and 15 1/min) and anode-nozzle-exit-to-probe-tip quench distance (5, 10

and 14 in.). Because of safety issues in powder feeder operation, Argon was used as

carrier gas at 4.2 1/min in all the runs and a study of the MgO-CH 4 system without Ar was

not conducted. The reactor conditions for Runs Ml to M56 are summarized in Table 3-4.

In Runs Ml to M20, the arc current was measured directly with the current probe without

the signal conditioner. Because background noise interference caused wide fluctuations

in the relatively low level output signals from the current probe, the 0-1000 mV signal

was amplified to 0-10 V with the signal conditioner for the rest of the runs.



Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)]
Run Ml M2 M3 M4 M5 M6 M7 M8 M9 M10

Main CH 4 Flow, 1/min 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
Secondary CH 4 Flow, 1/min
Main Argon Flow, 1/min
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 25.5 19.1 22.3 22.3 12.7 12.7 22.3 22.3 22.3 22.3
Inlet MgO/CH4 Molar Ratio 0.51 0.39 0.45 0.45 0.26 0.26 0.45 0.45 0.45 0.45
MgO Particle Size, pm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 741 + 58 762 + 13 763 ± 12 755 ± 13 759 ± 16 608 + 90 754 + 15 758 ± 14 783 ± 81 761 + 14
Arc Voltage, V 95.4 5.0 84.9 ±4.5 97.6 +3.3 99.6 ±3.4 98.3 ±4.9 90.5+15.1 81.8±19.8 89.2 9.7 80.0±14.5 85.8 ±2.4
Arc Current, A 433 ± 80 519 105 339±72 328 ±73 345±58 250 101 528 +164 419 101 546 149 542 100
Arc Power Input, kW 41.1 ±7.2 44.0 8.5 33.1 +7.4 32.6 ±7.1 33.9 ± 5.6 21.9 8.2 41.5±12.8 37.0 8.7 42.1 8.6 46.6 8.7
Quench Distance, in 14 14 14 10 10 10 10 10 5 5
Magnetic Field, G 118 118 118 118 118 118 118 118 118 0

Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)] (continued)
Run M11 M12 M13 M14 M15 M16 M17 a  M18 a  M19 a  M20

Main CH4 Flow, I/min 15.0 15.0 10.0 10.0 10.0 10.0 10.0 9.9 10.0 10.0
Secondary CH4 Flow, 1/min 15.0 15.2 15.4

Main Argon Flow, 1/min 15.2 15.2 15.2 11.2 11.4 11.7 9.8 14.2 9.6 10.5
Carrier Argon Flow, I/min 4.2 4.2 0 4.2 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 22.3 28.6 0 19.1 19.1 19.1 19.1 19.1 19.1 19.1
Inlet MgO/CH4 Molar Ratio 0.90 1.15 0 0.46 0.46 1.15 1.15 1.15 1.15 1.15
MgO Particle Size, [m 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 761 + 10 760 ± 11 762 6 759 ± 13 722 ± 53 753 ± 20 774 ± 82 693 ± 66 760 7 698 ± 23
Arc Voltage, V 74.2±11.0 74.8 ±2.8 42.7 1.2 67.2+14.0 59.4 +2.0 48.2 +2.4 69.4±14.8 53.6 +2.2 59.8 +0.5 46.9 3.7
Arc Current, A 548 ± 94 444 ± 89 724 122 461 ± 95 567 ± 89 670 122 499 131 529 ± 90 478 95 750 131
Arc Power Input, kW 40.7 9.4 33.3 ±6.9 30.9 5.2 30.8 ±7.7 33.7 +5.1 32.4 6.6 33.2 6.9 28.3 ±4.8 28.6 5.7 35.1 ±6.1
Quench Distance, in 5 5 5 5 5 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118 118 118 118 118 118

aRuns with electrodes lowered by 1"



Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)] (continued)
Run M21 M22 M23 M24 M25 M26 M27 M28 M29 M30

Main CH 4 Flow, 1/min 10.0 10.0 10.0 10.0 10.0 10.0 9.9 10.0 10.0 10.0
Secondary CH4 Flow, 1/min
Main Argon Flow, 1/min 14.6 15.9 15.1 15.1 10.2 15.1 10.1 8.5 10.0 9.9
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1
Inlet MgO/CH 4 Molar Ratio 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
MgO Particle Size, ýtm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 760 + 6 794 ± 90 743 + 30 759 + 8 752 + 42 763 ± 4 749 + 22 740 + 35 745 ± 26 738 + 52
Arc Voltage, V 62.3 ± 1.3 32.2±15.9 44.8 ± 0.7 49.4 + 1.6 51.6 ± 6.0 52.5 +0.6 58.7 ± 9.0 60.9 ± 2.6 56.7 ± 1.1 57.7 ± 7.1
Arc Current, A 424 10 626 143 658 ± 5 666 12 616 ± 40 722 3 487 ± 65 446 ± 22 512 + 10 411 ± 50
Arc Power Input, kW 26.4 + 0.2 17.9 +2.3 29.5 ± 0.3 32.9 +0.5 31.5 ± 2.5 37.9 +0.3 28.1 ± 2.2 27.1 ± 0.2 29.0 ± 0.1 23.4 ± 1.6
Quench Distance, in 5 5 5 5 5 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118 0 118 56 28 28

Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)] (continued)
Run M31 M32 M33 M34 M35 M36 M37 M38 M39 M40

Main CH 4 Flow, 1/min 10.0 10.0 10.0 10.0 10.0 10.0 9.9 10.0 19.8 10.0
Secondary CH4 Flow, 1/min
Main Argon Flow, 1/min 9.1 10.2 10.2
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 38.2 7.6
Inlet MgO/CH4 Molar Ratio 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 0.46
MgO Particle Size, [im 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 726 + 48 741 + 56 757 ± 9 759 ± 7 760 ± 5 758 + 10 647 + 20 744 + 16 757 ± 19 743 + 10
Arc Voltage, V 66.8±11.2 50.3 ± 4.3 32.9 3.7 58.3 0.5 71.0 0.9 68.4±14.9 45.4 ± 8.2 50.4 ± 8.7 93.1±17.6 70.1 ± 1.5
Arc Current, A 268 ± 62 699 ± 27 563±88 464 3 501 5 407 120 498 ± 70 639 ± 67 408 119 417 ± 12
Arc Power Input, kW 17.3 ±2.2 35.1 ±2.1 32.9 3.7 27.1 0.1 35.6 0.1 26.1 +2.2 22.0+ 1.6 31.6+ 1.8 35.9 3.0 29.2 +0.3
Quench Distance, in 5 5 5 5 5 5 5 5 5 5
Magnetic Field, G 28 28 28 28 118 118 118 118 118 118



Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)] (continued)
Run M41 M42 M43 M44 M45 M46 M47 M48 M49 M50

Main CH 4 Flow, 1/min 10.0 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
Secondary CH4 Flow, 1/min
Main Argon Flow, 1/min
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 7.6 38.2 38.2 38.2 38.2 38.2 15.3 26.7 12.7 12.7
Inlet MgO/CH 4 Molar Ratio 0.46 1.15 1.15 1.15 1.15 1.15 0.46 0.81 0.38 0.38
MgO Particle Size, Cpm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 698 ± 40 755 ± 11 758 + 19 710 ± 55 755 + 19 758 ± 15 752 ± 18 764 ± 103 758 ± 13 756 ± 15
Arc Voltage, V 56.8±10.7 82.2±15.1 70.5±21.8 86.9±12.9 73.7±19.4 78.3±13.2 69.5±15.1 88.9±17.4 67.6±16.8 86.0±16.1
Arc Current, A 438 ± 82 393 111 395 ± 70 310 ± 89 414 ± 150 416 ± 89 468+ 104 370± 118 442+ 127 302± 104
Arc Power Input, kW 24.1 ± 2.4 30.7 2.5 24.6_+3.7 25.8_+3.0 27.7_+2.7 31.4_+2.5 31.0 3.1 30.9 4.2 27.8 2.9 24.4 3.6
Quench Distance, in 5 5 5 5 5 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118 118 118 118 118 118

Table 3-4. Summary of Reactor Conditions for MgO-CH 4-Ar System [Ave (± 1 s.d.)] (continued)
Run M51 M52 M53 M54 M55 M56

Main CH4 Flow, 1/min 19.8 9.9 10.0 10.0 10.0 10.0
Secondary CH 4 Flow, 1/min
Main Argon Flow, 1/min
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2 4.2
MgO Feed, g/min 26.7 7.6 7.6 7.6 13.4 13.4
Inlet MgO/CH 4 Molar Ratio 0.81 0.46 0.46 0.46 0.80 0.80
MgO Particle Size, gm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 753 + 20 728 + 27 761 ± 4 761 ± 8 755 ± 10 750 + 17
Arc Voltage, V 96.4 ± 9.5 58.3 ±_+ 9.6 44.4 2.5 75.6±15.0 63.6±13.6 51.0±10.3
Arc Current, A 284 + 56 560 + 73 668 + 17 340 + 125 436 ± 110 624 + 75
Arc Power Input, kW 26.9 ± 2.8 32.0 ± 1.9 29.6 1.0 23.9 _+2.8 26.3 +2.0 31.1 ± 2.2
Quench Distance, in 5 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118 118



3.2.1 Reaction Products of MgO-CH 4-Ar System

The major reaction products of the MgO-CH 4 system according to the global reactions

5 CH 4 + 2 MgO-- Mg 2C3 + 10 H2 + 2 CO

3 CH 4 + MgO -> MgC 2 +

CH4 + MgO -> Mg

6 H2 + CO

+ 2 H2 + CO

Reaction (1-2)

Reaction (1-3)

Reaction (1-4)

are Mg2C3, MgC2, Mg, H2 and CO.

Figure 3-9 shows a plot of Log Kp vs. 1/T for Reactions (1-1), (1-2), (1-3), (1-4)

T, K

2500

0.0004

2000 1667 1429 1250 1111 1000

0.0005 0.0006 0.0007 0.0008 0.0009 0.0010

1/T, 1/K

--- 3CH 4 + CaO = CaC 2 + 6H 2 + CO
- 5CH 4 + 2MgO = Mg 2,C + 10H 2 + 2CO

...... 3CH 4 + MgO = MgC 2 + 6H2 + CO
- - CH4 + MgO = Mg + 2H 2 + CO
- Mg 2C3 = 2Mg + 3C

Figure 3-9. Log K, Values for Metal and Metal Carbide Formation
and Metal Carbide Decomposition
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including the Mg2C3 decomposition reaction

Mg2C3  --> 2 Mg + 3 C Reaction (3-1)

Figure 3-9 suggests that the formation of Mg2C3 is thermodynamically favored above

1700 K. Assuming that equilibrium is attained within the relatively short residence time

of the reactants in the plasma at greater than 2000 K and that the high quenching rate

freezes the equilibrium, the product composition is expected to match the thermodynamic

equilibrium at these high temperatures. Thus, in the first eight runs, Runs Ml to M8, the

solids analysis was focused on quantification of the Mg2C3 yield and no attempt was

made to analyze for Mg.

However, the extents of conversion of MgO and CH4 to Mg2C 3 or MgC2

determined from GC analysis of the headspace above the hydrolyzed solids were

observed to be well below those expected from Reactions (1-2) and (1-3). Solids

analyses by Powder X-Ray Diffraction and STEM coupled with EDS revealed that the

solid product is predominantly elemental magnesium. The XRD pattern of a sample from

Run M27 presented in Figure 3-10 shows that the major constituent of the solid phase is

crystalline magnesium. Silicon was used as an internal standard to obtain the crystal

lattice parameters of the magnesium product. The XRD pattern of the magnesium in the

sample was indexed on a hexagonal cell and the room temperature crystal lattice

constants were determined to be ao=3.209426 ± 0.000180 A and co=5.211053 ±

0.000292A, in good agreement with the reference unit cell parameters of ao=3.20936 A

and co=5.2112 A (NBS, 1984). Mg2C3 and MgC2 were not identified by XRD, possibly

due to decomposition during sample preparation. They are, however, postulated to be

present in the solid products, as C3H4 and C2H2 are always detected in considerably small

proportions in the headspace above the hydrolyzed solids. The hydrolyzed solid is also

found to contain carbon (non-carbide C), generally in amounts less than 10% of the

hydrolyzed sample, which probably existed as solid carbon before hydrolysis. In

addition, other hydrocarbons typically corresponding to less than 1% of the input CH 4

have been detected by GC after hydrolysis. These hydrocarbons include C2H 6, C2H 4,
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C3H8, C3H6, and various C4 species. The solid products in all the runs consist of finely

divided dark gray powder.

The gaseous product is composed mainly of H2 and CO. By GC analysis,

unreacted CH4, small amounts (generally <1%) of C2H2 and C3H4, and trace amounts

(<<1%) of C2H4, C3H6, C2H6, C3H8 and occasional C4 species have also been detected.

Although not performed on a routine basis, the presence of CO2 in the gas sample was

tested but CO 2 was not detected.

0)

I ¶¶.

F0

LiO
F5

CD tm tm t
I I I I I I I I I I I I

25 30 35 40 45 50 55 60 65 70

Scattering Angle, 20
Figure 3-10. X-Ray Diffraction Pattern of Run M27 Sample From Chamber Bottom

Material balances on the constituent elements of the CH 4 and MgO reactants for

Runs Ml to M56 are presented in Tables 3-5 and 3-6, respectively. The carbon in

methane is converted to CO gas, non-carbide solid C, solid Mg 2C3 and MgC 2, and other

gaseous hydrocarbons (HCs) while the methane hydrogen is recovered as H2 and other

HCs in the gaseous products. The magnesium in MgO is converted to solid Mg, Mg2C3

and MgC 2 while the oxygen in MgO is transformed to CO gas.
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Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System

Run Ml M2 M3 M4 M5 M6 M7 M8 M9 M10

Products CH 4 CH4 CH 4 CH4 CH 4 CH4  CH CH4 CH C 4  CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4"C" "H51 6"C)" "H"5 6C" "H5 "C" "H" "C" "H "C" "H "C" H" "C" "H" "C" "H" "C" "H
Mg 2C3  1.8 1.0 1.5 1.5 a 0.2 3.0 1.3 1.1 0.4

MgC 2  0.4 0.2 0.2 0.5 a 0.3 1.0 0.7 0.6 0.3
Non-carbide C 27.9 49.9 48.1 52.4 a a 17.2 67.2 23.3 18.9
CO 49.8 31.6 28.4 40.9 22.2 29.9 55.1 30.5 a 41.6

C2H2  1.4 0.4 1.5 0.4 0.5 0.1 1.4 0.4 2.6 0.6 56.8 14.2 2.2 0.6 1.9 0.5 a a 4.7 1.2

C3H4  0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.4 0.1 0.3 0.1 0.0 0.0 a a 0.1 0.0
Other C2, C3, C 4  0.4 0.3 1.4 1.0 0.9 0.7 2.1 1.6 2.5 2.0 12.1 9.0 2.8 2.1 1.7 1.3 a a 1.9 1.5
Unreacted CH 4  0.3 0.3 0.4 0.4 0.3 0.3 0.9 0.9 0.9 0.9 6.7 6.7 1.0 1.0 0.5 0.5 a a 0.6 0.6
H2  88.3 77.4 66.7 91.5 77.9 186.2 83.0 71.7 a 90.8
Total 82.1 89.3 86.0 79.2 80.0 67.8 99.7 94.4 a 81.4 a 216.2 82.6 86.8 103.8 74.0 a a 68.5 94.0

' Not available

Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M1l M12 M13a,b M14 a  M15 a  M16 M17 M18 M19 M20
Products CH 4 CH4  CH4  CH 4 CH 4 CH 4 CH 4  CH4  CH 4 CH 4 CH 4 CH 4 CH 4  CH4  CH 4 CH 4 CH 4 CH 4 CH 4 CH4

"C" "H) "C" "H" "C" 46H" "C" "H" "C" "H"5 "C" .... "C" 46.H" "C" 44H" "C" "H". "C" "H"

Mg2C 3  4.8 4.9 5.8 3.7 3.0 0.1 5.8 3.8 0.0

MgC 2  1.3 1.0 1.5 0.6 1.1 0.1 1.0 0.5 0.5
Non-carbide C 33.7 28.4 25.9 13.4 66.3 17.4 16.1 5.7 42.3
CO 116.6 66.1 0.0 34.3 49.0 79.8 40.0 83.8 78.6 58.9

C2H2  0.7 0.2 0.3 0.1 83.3 20.8 1.0 0.3 0.5 0.1 6.5 1.6 4.0 1.0 0.4 0.1 0.2 0.1 0.7 0.2

C3H4  0.1 0.0 0.0 0.0 1.3 0.5 0.0 0.0 0.0 0.0 1.5 0.5 0.3 0.1 0.3 0.1 0.2 0.1 0.5 0.2
Other C2, C 3, C 4  0.6 0.5 0.2 0.2 7.1 4.3 1.4 1.0 2.1 1.6 2.2 1.6 1.0 0.7 0.1 0.1 0.1 0.1 0.2 0.1
Unreacted CH4 0.2 0.2 0.1 0.1 64.8 64.8 27.3 27.3 45.3 45.3 5.8 5.8 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1

H2 120.3 74.8 62.5 57.4 81.2 101.1 62.3 106.6 98.2 65.0
Total 158.0 121.2 101.0 75.1 156.5 152.9 97.2 86.0 114.6 128.5 166.2 110.7 63.7 64.9 107.6 107.0 89.2 98.6 103.2 65.6

"Primary and secondary (non-plasma) methane feed
b Pyrolysis run only; No MgO feeding



Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M21 M22 M23 M24 M25 M26 M27 M28 M29 M30

Products CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH4 CH4 CH 4 CH 4 CH4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH4

Mg2C3  4.1 2.9 8.2 6.6 4.1 0.0 4.5 5.2 4.1 4.9

MgC 2  0.6 0.5 1.7 1.1 1.0 0.0 0.8 1.1 0.7 1.0
Non-carbide C 8.9 19.2 34.3 18.9 29.4 18.3 19.6 11.5 20.2 34.6
CO 75.5 61.0 77.2 87.6 89.5 84.4 73.7 95.2 60.7 76.1

C2H2  0.6 0.2 6.0 1.5 1.1 0.3 0.7 0.2 1.0 0.2 3.8 1.0 0.7 0.2 0.5 0.1 0.7 0.2 1.4 0.3

C3H 4  0.9 0.3 4.2 1.4 0.9 0.3 0.8 0.3 0.6 0.2 1.0 0.3 0.5 0.2 0.4 0.1 0.3 0.1 0.5 0.2
Other C2, C3, C4  0.0 0.0 2.3 1.7 0.2 0.2 0.3 0.2 0.3 0.2 0.5 0.4 0.2 0.1 0.1 0.1 0.2 0.1 0.4 0.3
Unreacted CH 4  0.1 0.1 4.9 4.9 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2
H2  102.5 112.2 103.1 93.7 117.5 108.9 93.4 123.3 87.1 111.6
Total 90.7 103.1 101.0 121.7 123.8 104.0 116.2 94.5 126.0 118.3 108.4 111.0 100.1 94.0 114.2 123.8 87.0 87.6 119.1 112.6

Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
Products CH4 CH 4 CH 4 CH 4 CH4 CH4 CH4 CH4 CH 4 CH4 CH4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH4

Mg2C3  3.6 6.0 2.1 3.6 2.7 5.7 5.8 5.8 7.9 2.6

MgC 2  1.0 1.4 0.4 0.6 0.5 0.7 0.8 0.8 1.4 0.7
Non-carbide C 25.9 23.2 3.2 8.5 7.0 24.1 32.0 11.5 45.1 36.7
CO 55.7 76.1 68.6 90.0 67.2 71.3 62.2 85.2 67.4 41.4

C2H2  3.4 0.8 2.4 0.6 0.4 0.1 0.4 0.1 0.2 0.0 0.3 0.1 1.3 0.3 0.5 0.1 0.3 0.1 1.6 0.4

C3H 4  0.7 0.3 0.4 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.3 0.1 0.1 0.0 0.2 0.1
Other C2, C3, C4  0.9 0.6 0.8 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.4 0.3 0.1 0.1 0.1 0.1 1.0 0.7
Unreacted CH 4  0.4 0.4 0.3 0.3 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.3 0.3
H 2  96.2 123.9 79.8 117.4 80.7 85.7 73.6 99.7 91.5 92.7
Total 91.6 98.3 110.6 125.5 75.2 80.3 103.4 117.7 77.7 80.8 102.5 86.0 102.9 74.5 104.4 100.2 122.4 91.8 84.5 94.2



Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M41 M42 M43 M44 M45 M46 M47 M48 M49 M50

Products CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4 CH 4
"C" 64H55 "C" "H"5 "C99 "CH". "C" "H" "C" "H" 66C" 66H" "4C" 6"H" "C" "H" "C"5 "H"5 "C" "H"

Mg2C3  1.5 7.1 3.2 4.2 7.2 5.8 2.1 3.3 1.9 2.4

MgC2  0.4 0.9 0.6 0.8 0.9 0.8 0.8 0.5 0.7 1.0
Non-carbide C 25.4 32.9 37.9 31.7 40.6 14.2 39.5 40.3 53.4 22.5
CO 85.6 76.2 54.8 56.5 70.2 61.5 27.8 61.4 27.8 28.6

C2H2  2.6 0.6 0.8 0.2 1.0 0.2 0.7 0.2 0.3 0.1 0.8 0.2 3.2 0.8 0.5 0.1 2.0 0.5 4.2 1.1

C3H4  0.5 0.2 0.3 0.1 0.2 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.1
Other C2, C3, C4  1.2 0.9 0.4 0.3 0.5 0.4 0.3 0.2 0.2 0.2 0.3 0.2 0.7 0.5 0.1 0.1 0.6 0.4 1.5 1.1
Unreacted CH4 7.2 7.2 0.2 0.2 0.4 0.4 0.4 0.4 0.1 0.1 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.4 0.4
H2  66.9 111.8 100.8 93.1 100.8 97.7 63.8 83.7 85.6 84.4
Total 124.4 75.8 118.8 112.6 98.6 101.9 94.6 93.9 119.7 101.3 83.8 98.4 74.4 65.4 106.4 84.1 86.6 86.8 60.8 87.1

Table 3-5. Percent Methane Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M51 M52 M53 M54 M55 M56
Products CH 4 CH4 CH 4 CH 4 CH 4 CH 4 CH 4 CH4 CH 4 CH 4 CH 4 CH 4

"C"5 "H55 "C" "H" "4C'" "H" "C" 46H" "C" "H" "C" ".H"

Mg2C 3  4.9 2.7 2.1 2.0 4.1 4.4

MgC 2  0.9 1.1 0.6 0.6 0.8 1.0
Non-carbide C 43.7 32.2 19.0 11.8 28.7 22.9
CO 58.7 45.6 46.5 35.6 58.6 62.4

C2H2  1.5 0.4 2.8 0.7 3.0 0.8 1.6 0.4 0.8 0.2 1.3 0.3

C3H4  0.2 0.1 0.3 0.1 0.5 0.2 0.4 0.2 0.2 0.1 0.3 0.1
Other C2, C3, C4  0.7 0.5 1.5 1.1 1.8 1.3 1.0 0.8 0.3 0.2 0.7 0.5
Unreacted CH4  0.3 0.3 0.5 0.5 0.6 0.6 0.3 0.3 0.1 0.1 0.3 0.3
H2  98.8 90.8 89.6 76.8 84.8 82.4
Total 110.9 100.1 86.7 93.2 74.1 92.5 53.3 78.4 93.6 85.4 93.3 83.6



Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System

Run Ml M2 M3 M4 M5 M6 M7 M8 M9 M10

Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO
"Mg" "O" ". Mg" "O" ". Mg" "O" ". Mg" "O" ". Mg" "O" ". Mg" "O" ".Mg" ."O" "Mg" "O" ". Mg" "O" ".Mg" " O"

Mg 2C 3  2.7 2.0 2.5 2.4 a 0.1 4.9 2.2 1.7 0.7

MgC 2  0.4 0.3 0.3 0.6 a 0.7 1.2 0.8 0.7 0.4
Mg a a a a a a a a 77.8 35.3
CO 106.9 90.3 69.7 100.4 95.4 128.1 135.1 74.8 a 101.9

Total a 106.9 a 90.3 a 69.7 a 100.4 a 95.4 a 128.1 a 135.1 a 74.8 80.2 a 36.4 101.9
aNot available

Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M11 M12 M13 a,b M14 a  M15 a  M16 M17 M18 M19 M20
Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO

"Mg" "O" "0..Mg" "O" " Mg" "O" "0. Mg" "O" "0. Mg" "O" " Mg" "O" "0 . Mg" "O" "0 Mg" "O" "0Mg" "O" ". Mg" "O"

MgC 3  4.0 3.1 9.3 6.0 1.9 0.1 3.7 2.4 0.0

MgC 2  0.9 0.5 1.8 0.7 0.5 0.0 0.5 0.2 0.2
Mg 122.1 89.6 72.2 63.4 44.5 0.0 81.2 70.8 84.5
CO 143.1 63.1 82.2 118.4 75.8 37.9 79.4 74.8 55.9

Total 126.8 143.1 93.1 63.1 83.3 82.2 70.1 118.4 46.9 75.8 0.1 37.9 85.4 79.4 73.4 74.8 84.7 55.9
a Primary and secondary (non-plasma) methane feed
b Pyrolysis run only; No MgO feeding



Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO

"Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O" "Mg" "O"
Mg2C3  2.4 1.7 4.8 3.8 2.4 0.0 2.6 3.0 2.4 2.9

MgC 2  0.3 0.2 0.7 0.5 0.4 0.0 0.4 0.5 0.3 0.5
Mg 73.1 14.1 94.5 79.8 82.5 0.0 67.8 83.8 47.4 71.9
CO 65.7 53.2 67.4 76.4 77.8 73.5 64.0 82.8 52.8 66.2

Total 75.8 65.7 16.0 53.2 100.0 67.4 84.1 76.4 85.3 77.8 0.0 73.5 70.8 64.0 87.3 82.8 50.1 52.8 75.3 66.2

Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO

"Mg" "O" ".Mg" "O" ".Mg" "O" "Mg" "O" ".Mg" "O" "Mg" "O" ".Mg" "O" ".Mg" "O" ".Mg" "O" ".Mg" "6O"

Mg 2C 3  2.1 3.5 1.2 2.1 1.6 3.3 3.3 3.4 4.6 3.7
MgC 2  0.4 0.6 0.2 0.3 0.2 0.3 0.3 0.4 0.6 0.7
Mg 47.7 48.4 39.1 61.5 46.4 60.2 54.3 57.6 78.5 94.7
CO 48.4 66.2 59.7 78.4 58.5 62.0 54.0 74.3 58.4 90.2

Total 50.2 48.4 52.5 66.2 40.5 59.7 63.9 78.4 48.2 58.5 63.8 62.0 57.9 54.0 61.4 74.3 83.7 58.4 99.1 90.2



Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M41 M42 M43 M44 M45 M46 M47 M48 M49 M50
Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO

"Mg" "O" "0 Mg" "O" "Mg" "O" "Mg" "O" "0Mg" "O" ".Mg" "O" "0Mg" "O" ".Mg" "O" "0Mg" "O" "0Mg." "O"

Mg 2C 3  2.2 4.1 1.9 2.4 4.2 3.4 3.1 2.7 3.2 4.1

MgC2  0.5 0.4 0.3 0.3 0.4 0.4 0.9 0.3 0.9 1.3
Mg 46.2 70.1 58.9 57.7 57.0 56.1 67.9 46.8 65.1 68.9
CO 186.3 66.0 47.5 49.0 60.8 53.3 60.3 75.9 72.2 74.3

Total 48.9 186.3 74.6 66.0 61.1 47.5 60.4 49.0 61.6 60.8 59.9 53.3 71.9 60.3 49.8 75.9 69.2 72.2 74.3 74.3

Table 3-6. Percent Magnesium Oxide Molar Conversion to Products in MgO-CH 4-Ar System (continued)

Run M51 M52 M53 M54 M55 M56
Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO

"Mg" "O" "0 . Mg" "O" "0 Mg" "O" ". Mg" "O" " Mg" "O" ". Mg" "O"

Mg 2C 3  4.0 3.9 3.0 2.9 3.4 3.6

MgC 2  0.5 1.2 0.7 0.6 0.5 0.6
Mg 67.0 63.0 68.1 68.6 72.1 78.7
CO 72.7 98.7 101.1 77.5 72.9 77.7

Total 71.5 72.7 68.1 98.7 71.8 101.1 72.1 77.5 76.0 72.9 82.9 77.7



3.2.2 Effect of Arc Power Input

The effect of power input on reactant conversion to the various products for the MgO-

CH4-Ar system was investigated over the arc power input range of 17 to 47 kW. The

percentage molar conversion of the magnesium in MgO to Mg, (Mg)aM)o , and to

Mg2C 3, (Mg)aCM 3 , for all the runs at various CH4 flow rates are plotted as a function of

the gross power input in Figures 3-11 and 3-12, respectively. The high degree of scatter

can be attributed to differences in experimental conditions (Argon dilution level, inlet

MgO:CH4 ratio, CH4 flow rate) at comparable power levels and to experimental

uncertainty. Despite the scatter, these plots show that, over the range of experimental

conditions studied, the majority of the magnesium in MgO is transformed to Mg and that

a much lower percentage (<10%) is converted to Mg2C3. The average (Mg)ac,' o over all

the runs is 64%, with the highest conversion at 95%. In contrast, the mean (Mg)a gj~ is

only 3%, with a maximum conversion of 9%. Although the average (Mg)a4oMg does not

approach 100%, the high Mg yields and low Mg2C3 (and MgC 2) yields nonetheless

suggest that the overall reaction of MgO with CH4 can be attributed to Reaction (1-4),

rather than to Reactions (1-2) and (1-3). Furthermore, unlike Kim's (1977) observation

with the CaO-CH 4 system of a critical power input range for each methane flow rate on

the order of the overall activation energy of methane decomposition, no such threshold

power input range can readily be observed for MgO "Mg" conversion to either the

carbide or the metal. However, because the minimum power of 17 kW in this study is

above the 13-15 kW critical power input range observed by Kim for a CH 4 flow rate of

16.0-17.3 1/min, the existence of such a critical power range for the conversion of the

magnesium in MgO to Mg cannot be ruled out. If there were such a critical power input

range for the reaction of MgO and CH 4, it would probably be below the lower limit of the

practical power input level for the thermal plasma apparatus used in the present study.
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From a similar plot presented in Figure 3-13, CH 4 "H" conversion to H2,

(H)a•, is seen to range from about 60% to virtual completion over the entire power

input range. In some cases, the reported conversion is over 100%, which can be

attributed to a relatively high degree of experimental uncertainty. Therefore, methane is

almost completely decomposed to form H2 and other carbon-containing products in most

of the runs. Similar to MgO "Mg" conversion to Mg, (fI)•a is found to be independent

of the power input.

Figure 3-14 shows a plot of CH4 "C" conversion to CO, (C)ac°4 , vs. power input

but with the data also classified according to the inlet MgO:CH 4 molar ratio at each CH4

flow rate. The conversion to CO depends on the inlet MgO:CH 4 ratio, as the MgO

becomes limiting at low ratios. For example, at an MgO:CH 4 molar ratio of 0.46, the

MgO limits the maximum possible conversion to 46% whereas, at a 1.15:1 MgO:CH 4

ratio, all the carbon in CH4 can be converted to CO, assuming that the reaction proceeds

according to Reaction (1-4). CH4 "C" conversion to CO at different MgO:CH4 ratios

does not depend on power input over the range of conditions investigated. The average

(C)ac• over all the runs is 60%, in good agreement with the average (Mg)ag o .

The sample mean, standard deviation, 95% confidence interval (C.I.) for the

sample mean, minimum and maximum values for the percent molar conversion of the

constituent elements of MgO and CH4 to the various products are provided in Table 3-7.

Table 3-7. Summary Statistics of Reactant Conversion
to Products for All Runs in MgO-CH 4-Ar System

% Conversion Mean Std. Dev. 95% C.I. Minimum Maximum

(Mg) a oM  64.4 16.5 [59.4,69.4] 14.1 94.7

(Mg)a MK9C3 3.0 1.5 [2.5,3.4] 0.0 9.3

(Mg) a>M9C2 0.5 0.3 [0.4,0.6] 0.0 1.8

(H)aCH2 90.6 16.4 [86.1,95.1] 57.4 123.9

(C)aC/ 60.4 21.1 [54.6,66.1] 22.2 116.6

(C)aHc 28.0 14.7 [23.9,32.0] 3.2 67.2
CH4~rH
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3.2.3 Effect of Methane Flow Rate

The effect of methane flow rate on reactant conversion to products was studied over the

power input range of 17 to 47 kW at three levels of methane flow rate: 30, 20 and 10

1/min. Statistical methods based on t-tests were used to determine the significance of the

differences in the average (Mg)aMoM and (H)ac observed under the three flow rates.

The relevant statistics for (Mg)a1 M o and (H)ac are given in Table 3-8. The p-value is

the probability of rejecting the null hypothesis when the null hypothesis is correct. In this

case, the null hypothesis is that the mean (Mg)amj and (H)a H2 at 30 and 20 1/min CH4

flow rates are equal to the mean (Mg) a Mgoand (H) aCH2 at 10 1/min CH4 flow. Thus, the

p-value of 0.66 given in Table 3-8 is the probability of making the error of rejecting the

null hypothesis thatthesis that the mean (Mg)agM at 30 1/min CH 4 flow is equal to the mean at 10

1/min CH 4 flow when they are actually equal. At the 0.05 significance level, the p-value

should therefore be less than or equal to 0.05 for the difference to be statistically

meaningful.

The results of the t-tests at the 0.05 significance level show that the mean values

of (Mg)a4Mo at 30 1/min and at 10 1/min are not statistically different, although the

sample mean of (Mg)amog of 62.4% at 10 1/min is greater than the sample mean of

56.6% at 30 1/min. Similarly, the difference between the mean values of(Mg)aj o at 20

1/min and at 10 1/min is not significant. The same is true of mean values of(H)ac' at

CH 4 flow rates of 30 and 10 1/min and of the mean values of(H)a H2 at 20 and 10 1/min.

Therefore, (Mg)atg o and (H)aH\' are not strongly correlated with CH4 flow rate.
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Summary Statistics of Reactant Conversion
at Different Methane Flow Rates

to Mg and to H 2

% CH4  Mean Standard 95% C.I. Min. Max. p-
Conversion Flow, Deviation value

1/min

(Mg)a Mg 30 56.6 30.1 - 35.3 77.8 0.66

20 63.1 8.7 [57.2,69.0] 46.8 78.5 0.90
10 62.4 15.5 [52.6,72.2] 39.1 94.7

(H)aCH2 30 82.3 8.3 [75.4,89.3] 66.7 91.5 0.75

20 92.0 12.6 [83.5,100.5] 63.8 111.8 0.08
10 83.6 9.0 [77.9,89.3] 66.9 99.7

Despite the absence of a noticeable methane flow rate effect on conversion,

increasing the methane flow rate, however, has the effect of raising the energy efficiency

of the conversion process. This can be seen by examining plots of conversion as a

function of specific gas energy. Specific gas energy (energy input per g-atom carbon) is a

measure of the gas stream enthalpy and is the result of dividing the gross power input

(energy per unit time) by the CH4 molar flow rate (moles per unit time). When

(Mg)ag o and (H)acH are plotted as a function of the specific gas energy, as shown in

Figures 3-15 and 3-16, respectively, one finds that approximately the same extents of

conversion at a high specific gas energy can also be achieved at a low specific gas energy.

117

Table 3-8.



.... o.............................. ........ .......
A

A A

* A

......... A
A A

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4000 5000

O 30 1/min CH4

o 20 I/min CH4

A 10 I/min CH4

6000

Specific Gas Energy, kJ/g atom C

Figure 3-15. MgO "Mg" Conversion to Mg vs. Specific Gas Energy

4000 5000

O0 30 I/min CH4

] 20 I/min CH4

A 10 I/min CH4

6000

Specific Gas Energy, kJIg atom C

Figure 3-16. CH 4 "H" Conversion to H2 vs. Specific Gas Energy

118

100

80

60

40

...
•dt: [] ''''' O

0

1000 2000 3000

100

60

40

0 A A A

0 A

- C

F-
........... .............

1000 2000 3000

I __ I 1

0Dp,

L



Thus, although the power input needed to effect the same extent of CH 4 "H"

conversion to H2 is higher at 30 1/min than at 10 1/min (Figure 3-13), Figure 3-16 shows

that the specific gas energy for the same level of conversion is actually lower for 30 1/min

than for 10 1/min CH4 flow. Since the specific gas energy is inversely proportional to the

CH 4 flow rate, this means that the additional power needed at the higher flow rate to

achieve the same level of conversion as at the lower flow rate is less than proportional to

the increase in gas flow. Therefore, increasing the CH 4 flow rate increases the energy

efficiency of the conversion process. A similar enhancement in efficiency was observed

by Kim (1977) with higher methane flow rates.

For CH 4 "C" conversion to CO, (C)acC0 , methane flow rate has a more

pronounced effect. For the same inlet MgO:CH 4 ratio of 0.38-0.46:1, the difference

between the (C)a• c sample mean of 42.3% at 10 1/min CH 4 flow and the sample mean

of 28.1 at 20 1/min CH4 flow is statistically significant at the 0.05 level. The null

hypothesis here is that the mean (C)a[C° at 20 1/min is greater than or equal to the mean

(C)ac° at 10 1/min. Therefore, when CH 4 is in stoichiometric excess (MgO:CH4<1),

operation at a high CH 4 flow rate is likely to result in a lower (C)ac than operation at a

low CH 4 flow rate. At an MgO:CH 4 ratio of 1.15:1, although the mean conversion at 20

1/min is lower than that at 10 1/min, no such conclusion can be drawn because the p-value

is 0.12. The summary statistics for CH 4 "C" conversion to CO are provided in Table 3-9.

Table 3-9. Summary Statistics of CH 4 "C" Conversion to CO
at Different Methane Flow Rates and Inlet MgO:CH 4 Ratios

Inlet CH 4  Mean Standard 95% C.I. Min. Max. p-
MgO:CH 4  Flow, Deviation value

Ratio 1/min
0.38-0.46:1 20 28.1 0.5 [26.9,29.2] 27.8 28.6 0.00

10 42.3 5.0 [34.4,50.2] 35.6 46.5
1.15:1 20 64.4 8.3 [55.7,73.1] 54.8 78.2 0.12

10 70.9 8.7 [60.2,81.6] 62.2 85.2
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The effects of methane flow rate on CH 4 "C" conversion to CO can be explained

in terms of residence time. The higher the CH4 flow rate, the shorter the residence time

of the CH 4 reactant or the nascent carbon derivative species in the plasma. Thus, there is

less time for the carbon-bearing species to react with the MgO reactant (or the oxygen in

the MgO). This effect is less pronounced when the CH4 is stoichiometrically deficient

relative to MgO (MgO:CH 4>1). The effect of inlet MgO:CH 4 ratio is discussed in more

detail in the next section.

Figure 3-17 shows a plot of CH4 "C" conversion to CO for different methane flow

rates and inlet MgO:CH4 ratios as a function of the specific gas energy. When comparing

conversion at different methane flow rates at the same MgO:CH 4 ratio, a similar decrease

in specific gas energy needed to effect roughly the same CH 4 "C" conversion to CO is

observed with an increase in CH4 flow rate. For example, given an inlet ratio of 1.15:1

MgO:CH 4, the same level of conversion is achieved at lower specific gas energies for 20

1/min than for 10 1/min CH4 flow. This further supports the argument of enhanced

efficiency at higher gas flow rates.
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With CH 4 "H" conversion to H2 independent of and CH 4 "C" conversion to CO

inversely correlated with CH 4 flow rate, one should observe the H2/CO ratio in the gas

product to increase with CH 4 flow rate. Figure 3-18 is a plot of the H2/CO ratio as a

function of specific gas energy at specified MgO:CH 4 ratios for each methane flow rate.

The range of H2/CO ratios is found to be between 2 and 6, corresponding to the values

expected from magnesium metal formation, Reaction (1-4), and magnesium carbide

formation, Reactions (1-2) and (1-3). At the same inlet MgO:CH4 ratio, higher H2 /CO

ratios are indeed found to be associated with higher methane flow rates over the energy

input range investigated. At an inlet MgO:CH 4 ratio of 1.15:1, the difference between the

H2/CO ratio sample mean of 3.1 at 20 1/min and the sample mean of 2.4 at 10 1/min is

statistically significant at the 0.05 level. The same is true of the mean values at an inlet

MgO:CH 4 ratio of 0.46:1. Table 3-10 summarizes the statistics for the H2/CO ratio.

A

S. A AA

" a

A

2000 3000

Specific Gas

40

o 20 1/min CH4

0 at 0.38-0.46:1
MgO:CH

4

ri at 1.15:1 MgO:CH 4

A 10 I/min CH4

A at 0.46:1 MgO:CH4

at 1.15:1 MgO:CH
4

)00 5000 6000

Energy, kJ/g atom C
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Table 3-10. Summary Statistics of H,/CO Ratio in Gas Product
at Different Methane Flow Rates and Inlet MgO:CH4 Ratios

Inlet CH4  Mean Standard 95% C.I. Min. Max. p-
MgO:CH 4  Flow, Deviation value

Ratio 1/min

0.46:1 20 5.6 0.8 [3.5,7.6] 4.6 6.2 0.01
10 4.2 0.3 [3.7,4.6] 2.9 4.5

1.15:1 20 3.1 0.3 [2.7,3.5] 2.7 3.7 0.00
10 2.4 0.0 [2.3,2.4] 2.3 2.4

Because no significant increase in CH 4 "C" conversion to Mg 2C3 and MgC 2 has

been observed at higher methane flow rates, the larger H2/CO ratios suggest the formation

of carbon or carbon-rich products at the higher gas flow rates. A plot of CH 4 "C"

conversion to non-carbide C, (C)ac , vs. specific gas energy, presented in Figure 3-19,

illustrates similar trends as the H2/CO ratio, thus providing support for the formation of

solid carbon at higher methane flow rates. A t-test is performed based on the null

hypothesis that, at a given inlet MgO:CH 4 ratio, the mean (C)acH at the 20 1/min CH 4

flow rate is less than or equal to the mean (C)acH at 10 1/min. The test results show

that, at an inlet MgO:CH 4 ratio of 1.15:1, the mean of 33.7% at 20 1/min is statistically

greater at the 0.05 significance level than the mean of 15.6% at 10 1/min. At 0.46:1

MgO:CH 4 ratio, the difference between the mean (C)ac at 20 1/min and at 10 1/min is

only significant at the 0.09 level, although the conversion is higher at 20 1/min CH4, on

average, than at 10 1/min CH4. The summary statistics for CH4 carbon conversion to non-

carbide C are presented in Table 3-11.

The absence of an apparent correlation between methane flow rate and CH 4 "H"

conversion to H2 suggests that the methane is always decomposed to hydrogen and

carbon-bearing species, regardless of the flow rate. The carbon is likely to form nascent

carbon that can either react with MgO to form CO or end up as solid carbon (non-carbide

C). That one product is being formed at the expense of the other is substantiated by the

reverse effect of gas flow rate on CH 4 "C" conversion to CO and to non-carbide C. When

the CH 4 flow rate is high, the nascent carbon species may not have sufficient time to react
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with MgO, so the conversion to non-carbide C is high and that to CO is low. But when

the CH 4 flow rate is low, the longer residence time allows the nascent carbon to react with

MgO to form more CO instead of non-carbide C. Since MgO is the only source of

oxygen in the system and MgO "Mg" conversion to magnesium carbides does not change

significantly when the methane flow rate is increased, an increase in the MgO "Mg"

conversion to Mg is expected to follow from an increase in the CH4 "C" conversion to

CO.

2000 3000 4000 5000
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CH 4 "C" Conversion to Non-Carbide C vs.
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Table 3-11. Summary Statistics of CH 4 "C" Conversion to Non-Carbide Carbon
at Different Methane Flow Rates and Inlet MgO:CH 4 Ratios

Inlet CH4  Mean Standard 95% C.I. Min. Max. p-
MgO:CH4  Flow, Deviation value

Ratio 1/min
0.46:1 20 38.5 15.5 [0.1,76.8] 22.5 53.4 0.09

10 25.0 10.0 [12.6,37.4] 11.8 36.7
1.15:1 20 33.7 10.8 [22.4,45.0] 14.2 45.1 0.01

10 15.6 12.1 [0.5,30.6] 3.2 32.0
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3.2.4 Effect of Inlet MgO:CH 4 Molar Ratio

The reactant conversion to products over a power input range of 22-38 kW at CH 4 flow

rates of 20 1/min and 10 1/min was determined for inlet MgO:CH 4 molar ratios of 1.15:1

and 0.38-0.46:1. Statistical analysis was applied to the conversion data to assess the

effect of inlet MgO:CH4 molar ratio on extent of conversion. Table 3-12 gives the

sample mean, standard deviation, 95% C.I. for the sample mean, minimum, maximum

and p-values of reactant conversion to the various products for the two MgO:CH4 ratios at

20 1/min CH 4. The p-values for (H)aCH/ and (C)a correspond to the probability of

rejecting the null hypothesis that the mean at the higher MgO:CH 4 ratio is less than or

equal to the mean at the lower MgO:CH4 when the null hypothesis is correct. The p-

values for (Mg)a•4g, (Mg)a M92(3 and (C)ac(" correspond to the probability of

rejecting the null hypothesis that the mean at the higher MgO:CH 4 ratio is greater than or

equal to the mean at the lower MgO:CH 4 when the null hypothesis is correct.

Table 3-12. Summary Statistics of Reactant Conversion to Products
at Different Inlet MgO:CH 4 Ratios and at 20 1/min CH 4 Flow

% MgO:CH4  Mean Standard 95% C.I. Min Max. p-
Conversion Ratio Deviation value

(Mg)a o 1.15:1 63.1 9.2 [53.4,72.7] 56.1 78.5 0.23

0.38-0.46:1 67.3 2.0 [62.4,72.2] 65.1 68.9

(Mg)a M•2C3 1.15:1 3.4 1.1 [2.3,4.6] 1.9 4.6 0.48

0.38-0.46:1 3.5 0.6 [2.1,4.8] 3.1 4.1

(H)ac 1.15:1 99.3 7.2 [91.7,106.9] 91.5 111.8

0.38-0.46:1 77.9 12.3 [47.6,108.3] 63.8 85.6 0.01

(C)aco 1.15:1 64.4 8.3 [55.7,73.1] 54.8 76.2

0.38-0.46:1 28.1 0.5 [26.9,29.2] 27.8 26.8 0.00

(C)ac 1.15:1 33.7 10.8 [22.4,45.0] 14.2 45.1 0.30

0.38-0.46:1 38.5 15.5 [0.1,76.8] 22.5 53.4



The p-values in Table 3-12 imply that, at a CH 4 flow rate of 20 1/min, (H)a 2•,

and (C)afc' are likely to be higher when methane is stoichiometrically deficient relative

to MgO (MgO:CH 4>1) than when methane is in excess. On the other hand, although

(Mg)aMgo, (Mg)a 6go and (C)aHc at the lower MgO:CH 4 ratio are higher, on average,

than at the higher MgO:CH 4 ratio, the difference is not significant at the 0.05 level.

A similar set of statistics for reactant conversion to the various products for the

inlet MgO:CH 4 ratios of 0.46:1 and 1.15:1 at 10 1/min CH4 is shown in Table 3-13. The

p-values indicate that (C)a o is likely to be greater at the higher MgO:CH 4 ratio than at

the lower MgO:CH4 ratio while (H)acH is not likely to vary with the MgO:CH 4 ratio.

(Mg)aMo will also probably be higher, on average, when MgO is deficient relative to

CH4 than when it is in excess, supporting the trend observed under the 20 1/min condition.

The mean (Mg)a M2C- and (C)agH are also higher at the lower inlet MgO:CH 4 ratio than

at the higher inlet MgO:CH 4 ratio but the differences are not significant.

Table 3-13. Summary Statistics of Reactant Conversion to Products
at Different Inlet MgO:CH 4 Ratios and at 10 1/min CH 4 Flow

% MgO:CH4  Mean Standard 95% C.I. Min. Max. p-
Conversion Ratio Deviation value

(Mg)a oMg 1.15:1 51.5 8.7 [40.8,62.3] 39.1 60.2 0.05

0.46:1 68.1 17.4 [46.5,89.7] 46.2 94.7

(Mg)a gMC3 1.15:1 2.6 1.1 [1.2,3.9] 1.2 3.4 0.17

0.46:1 3.1 0.7 [2.3,4.0] 2.2 3.9

(H)acH2 1.15:1 83.9 9.8 [71.7,96.1] 73.6 99.7

0.46:1 83.4 11.1 [69.5,97.2] 66.9 92.7 0.47

(C)oaO 1.15:1 70.9 8.7 [60.2,81.6] 62.2 85.2

0.46:1 42.3 5.0 [34.4,50.2] 35.6 46.5 0.00

(C)acH4 1.15:1 15.6 12.1 [0.5,30.6] 3.2 32.0 0.11

0.46:1 25.0 10.0 [12.6,37.4] 11.8 36.7



The comparison of the extents of conversion at the two inlet MgO:CH4 ratios

under CH 4 flow rates of 20 and 10 1/min suggests that CH 4 "C" conversion to CO can be

enhanced by increasing the inlet MgO:CH 4 ratio, regardless of the CH 4 flow rate. The

dependence of CH4 "C" conversion to CO on the inlet MgO:CH 4 ratio is not unexpected

because a sub-stoichiometric ratio will simply limit the maximum possible conversion

level. At an inlet MgO:CH4 ratio of 0.46:1, the maximum possible conversion is 46%,

according to Reaction (1-4), while at 1.15:1 MgO:CH 4, all the carbon can react with the

oxygen in MgO to form CO. Furthermore, the comparison also suggests that CH 4 "H"

conversion to H2 can be increased with a higher inlet MgO:CH4 ratio, particularly when

the methane flow rate is high. When the methane flow rate is low, the residence time is

relatively long and the methane has sufficient time to decompose and react with MgO or

its atomic constituents, regardless of the relative amounts of MgO. But with a high

methane flow rate, the short residence time may limit the extent of reaction unless the

MgO is in relative excess to promote the reaction.

With <1% unreacted CH 4 observed in the gas product, virtually all the methane is

decomposed and/or converted in the plasma reactor. The low CH4 "C" conversion to CO

at MgO:CH 4<1 would suggest that the remaining carbon in the original CH 4 is converted

to other hydrocarbons and/or solid carbon. The CH 4 "C" conversion to C2H2 ranges only

from 0.5 to 4.2% at 20 1/min CH 4 and from 0.8 to 3.0% at 10 1/min CH 4 while the CH 4

"C" conversion to other HCs at both CH 4 flow rates is typically less than 2%. Hence, the

carbon in CH 4 is most likely recovered as solid carbon in the non-carbide C. At both CH 4

flow rates, the mean CH 4 "C" conversion to non-carbide C is higher when MgO:CH4<I

than when MgO:CH 4>1, whereas the average CH 4 "C" conversion to CO exhibits the

reverse trend. This observation further provides support for the hypothesis that nascent

carbon is formed from the methane which can either react with MgO to form CO or be

condensed as solid carbon. The amount of solid carbon in the final product would then

depend on the starting amount of MgO with which the nascent carbon can react and on

the residence time in the reactor.

Under both CH4 flow rates of 10 and 20 1/min, the average MgO "Mg" conversion

to Mg is higher at the low inlet MgO:CH 4 ratio than at the inlet high MgO:CH4 ratio,
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although statistical analysis does not indicate the difference to be significant in the former

case. Similarly, CH 4 "C" conversion to non-carbide carbon is also higher, on average,

when the MgO is deficient relative to CH 4 than when it is in excess, but the difference is

also not significant. Nonetheless, these observations are consistent with the trends

observed in the data on CH 4 conversion to CO and H2.

The conversion of a particular reactant to Mg, CO or H2 is then postulated to

increase when this reactant is stoichiometrically deficient relative to the other reactant

based on Reaction (1-4). Specifically, the extent of MgO "Mg" conversion to Mg would

be expected to increase when the CH4 is in stoichiometric excess while the extents of CH 4

"H" conversion to H2 and of CH4 "C" conversion to CO would be enhanced when the

MgO is in excess. Thus, the formation of Mg, CO and H2 from its parent reactant can be

promoted by feeding an excess of the other reactant.

Figure 3-20 shows the variation of CH4 "C" conversion with the inlet MgO:CH 4

molar ratio over all the runs conducted. Analogous to Kim's (1977) observations shown

in Figure 1-3, the conversion of the carbon in methane to gaseous hydrocarbons (C2H2,

C3H4 and other C2, C3, and C4 species) is observed to decrease abruptly from over 90%

without MgO feeding to less than 10% with only a small addition of MgO. On the other

hand, CH4 "C" conversion to CO, Mg2C 3 and MgC2 is seen to increase steadily with

increasing inlet MgO:CH4 ratio. Therefore, the introduction of magnesium oxide (or

calcium oxide) into a high-temperature methane reaction system significantly shifts the

product chemistry of methane decomposition from pyrolysis end-products to CO and

metal carbides.
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Figure 3-20. CH 4 "C" Conversion vs. Inlet MgO:CH4 Molar Ratio

3.2.5 Effect of Argon Dilution

The effect of dilution of the plasma-forming gas with Argon on reactant conversion was

investigated at three dilution levels: a) 15 1/min Argon; b) 10 1/min Argon; and c) no

dilution, in addition to the 4.2 1/min Argon powder carrier gas. The experiments were

performed with 10 1/min CH4 flow and 1.15:1 inlet MgO:CH 4 molar ratio over a power

input range of 22-38 kW. Statistical analysis was applied to the conversion data to

determine whether Argon dilution has a significant effect on the extent of conversion.

Table 3-14 gives the sample mean, standard deviation, 95% C.I. for the sample mean,

minimum, maximum and p-values of reactant conversion to the various products at the

three levels of Argon dilution. The p-value is the probability of rejecting the null

hypothesis that the mean values at 15 and 10 1/min Argon dilution are less than or equal

to the mean values without Argon dilution when the null hypothesis is correct.
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Table 3-14. Summary Statistics of Reactant Conversion to Products
at 15, 10 and 0 1/min Argon Dilution

% Argon Mean Standard 95% C.I. Min. Max. p-
Conversion Dilution, Deviation value

1/min
(Mg)aj oMg  15 82.2 9.0 [67.9,96.4] 73.1 94.5 0.00

10 66.3 15.4 [5.3,77.3] 44.5 84.5 0.04
0 51.5 8.7 [40.8,62.3] 39.1 60.2

(Mg)a M2gC3 15 2.9 1.9 [0.6,5.2] 0.0 4.8 0.35

10 2.1 1.1 [1.4,2.9] 0.0 3.5 0.23
0 2.6 1.1 [1.2,3.9] 1.2 3.4

(H)acH2 15 103.0 5.8 [95.8,110.2] 93.7 108.9 0.00

10 100.1 21.7 [85.5,114.7] 62.3 123.9 0.07
0 83.9 9.8 [71.7,96.1] 73.6 99.7

(C)aco 15 81.7 5.1 [75.3,88.1] 75.5 87.6 0.02

10 74.4 16.0 [63.7,85.2] 40.0 95.2 0.33
0 70.9 8.7 [60.2,81.6] 62.2 85.2

(C)ac 15 19.3 9.3 [7.8,30.8] 8.9 34.4 0.30

10 25.3 17.5 [13.6,37.1] 5.7 66.3 0.14
0 15.0 12.1 [0.5,30.6] 3.2 32.0

From the results of the t-tests, the addition of Argon is found to enhance the

conversion of MgO "Mg" to Mg, despite the increase in residence time brought about by

the higher total gas flow rate. The (Mg)a1 Mo sample mean of 82.2% at 15 1/min Argon

dilution is found to be significantly different from the mean of 51.5% without Argon

dilution at the 0.05 level. On the other hand, this enhancement effect is not evident for

(Mg)amgC' , whose sample means at the different Argon dilution levels are not found to

be significantly different.

The extents of conversion of CH 4 "H" to H2 and of CH 4 "C" to CO exhibit similar

improvements with higher Argon dilution levels. (H)aH is increased from an average

of 83.9% without Argon dilution to virtually complete conversion with 15 1/min Argon
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dilution. The mean (C)a4 of 81.7% at 15 1/min Argon dilution is likewise significantly

different at the 0.05 level from the sample mean of 70.9% without Argon dilution.

The effect of inert gas addition on the extent of reaction can readily be explained

by Le Chatelier's principle. With a net positive change in the number of moles in the

system when going from reactants to products, as in Reactions (1-2), (1-3) and (1-4), the

product yield can be increased by reducing the total system pressure. A similar effect is

achieved with Argon dilution, which reduces the relative net increase in the number of

moles from reactants to products. However, the effect of inert gas dilution differs from a

mere system pressure reduction in the rate at which equilibrium is approached. Inert gas

addition gives rise to different gas collision rates and mean free paths in the gas phase

which change the transport rates. In addition, inert gas dilution reduces the temperature

rise of the nascent clusters forming from the gas phase and the temperature at which

condensed phases form, which can significantly enhance particle nucleation,

condensation and growth rates (Stephens et al., 1993).

3.2.6 Effect of Secondary CH 4 Quench

In the earlier part of this study, the effect of a secondary CH 4 gas quench directed

immediately downstream of the plasma jet was investigated with a view to identifying

conditions under which magnesium carbide can be synthesized more favorably. The

following two-step mechanism has been proposed for magnesium carbide synthesis from

CH 4 and MgO:

2 CH 4 + 2 MgO -- 2 Mg + 4 H 2 +2CO Reaction (1-4)

3 CH 4 + 2 Mg > Mg 2C3+ 6H 2  Reaction (1-21)

5 CH 4 + 2 MgO -- Mg2C 3 + 10 H2 + 2 CO Reaction (1-2)

The above mechanism was tested in two experimental runs, M14 and M15, with

secondary methane feeding. In Run M14, secondary methane feed was introduced into
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the top portion of the cooling chamber through the two 1 in. ports just below the top

flange. In Run M15, instead of feeding CH4 through the entire cross-section of the 1 in.

ports, CH4 was introduced through two 1/8 in. SS tubes inserted through these ports to

locations at the same radial distance from the arc axis as the outer diameter of the

graphite anode. The first step of the proposed mechanism, Reaction (1-4), was simulated

with a near-equimolar (1.15:1) flow of MgO and CH4 into the plasma reactor. Thus, 10

1/min CH4 diluted with 11 1/min Ar and 19 g/min MgO with 4.2 1/min of Ar carrier gas

were fed into the plasma reactor. Secondary methane was then injected at 15 1/min

downstream of the plasma jet to simulate the second step, Reaction (1-21). The inlet

MgO:total CH 4 molar ratio was 0.46.

These two runs did not result in any drastic improvement in the yield of Mg2C3

(and MgC 2) but they did give the highest extents of MgO "Mg" conversion to Mg2C 3, 9%

and 6%, among all the runs. The major product was still Mg metal, with the extents of

MgO "Mg" conversion at 72% and 63%. The nearly complete (>80%) MgO "O"

conversion to CO indicates very high utilization of MgO but the 27% and 45% unreacted

CH 4 for the two runs suggest that the secondary methane underwent little reaction,

possibly due to too low a temperature and/or inadequate mixing.

3.2.7 Effect of Quench Distance

The speed of quenching the plasma effluent can greatly affect the product yield,

especially if the product is thermally unstable. Such a product will simply decompose if

the quenching is too slow. One hypothesis for the low carbide yields is that the carbides

may be formed in the region immediately downstream of the arc but are decomposing

into elemental carbon and magnesium as they are cooled down in the chamber. This is

supported by the known thermal decomposition of Mg 2C3 into its elements according to

Reaction (1-23) at 1013-1033 K. Measurements taken halfway up the chamber with a

type K thermocouple indicate temperatures greater than 1000 K. Therefore, the plasma

effluent may not be quenched rapidly enough to temperatures below 1000 K and any

carbides formed may plausibly be decomposing into the elements.



Ideally, a thorough study on the effect of quenching would entail knowing the

temperature-time history of the product stream. However, given the nature of this

experimental study, thermocouples could not be used effectively due to the electrical

noise from the arc discharge, the carburizing effect of the product stream and the

extremely high temperatures from which the gas is cooled. The 1/8 in. SS tubes for

secondary CH 4 quench located about 1 in. from the anode nozzle exit eventually melted

after several runs without any secondary gas flow. Similarly, a thermocouple inserted

through the probe up to its tip did not last beyond several runs.

The rate of quenching can be increased by shortening the anode-nozzle-exit-to-

probe-tip quench distance, which is achieved by inserting the sample collection probe

farther up into the chamber. In an attempt to improve carbide yield, the nozzle-exit-to-

probe-tip quench distance was progressively decreased from 14 in. to 10 in. and then to 5

in. under reactor feed conditions of 30 1/min CH 4 flow rate and 0.26-0.5 inlet MgO:CH 4

ratios in separate experimental runs over a 22-47 kW power input range. The summary

statistics for data on MgO "Mg" conversion to Mg 2C3 for these runs are presented in

Table 3-15. The p-value is the probability of rejecting the null hypothesis that the mean

values at 14 and 10 in. quench distance are equal to the mean at 5 in. quench distance

when the null hypothesis is correct.

Table 3-15. Summary Statistics of MgO "Mg" Conversion

to Mg 2C3 and MgC 2 at 14, 10 and 5 in. Quench Distance

% Quench Mean Standard 95% C.I. Min Max. p-
Conversion Distance, Deviation value

in.

(Mg)a M2C3 14 2.4 0.4 [1.5,3.3] 2.0 2.7 0.08

10 2.4 2.0 [-0.7,5.5] 0.1 4.9 0.47
5 1.2 0.7 [-4.8,7.2] 0.7 1.7

(Mg)a 2 14 0.3 0.1 [0.2,0.5] 0.3 0.4 0.17

10 0.8 0.3 [0.4,1.2] 0.6 1.2 0.27
5 0.6 0.2 [-1.3,2.4] 0.4 0.7
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The sample means of (Mg)a Mg• and (Mg)a•cM at different quench distances

are not found to be statistically different at the 0.05 significance level. Regardless of

quench distance, both (Mg)a •c' and (Mg)a M2 are always less than 5%. Therefore,

decreasing the quench distance is not likely to significantly improve Mg2C3 and MgC 2

yields under the conditions studied.

Although decreasing the nozzle-exit-to-probe-tip quench distance may not

possibly increase the quench rate rapidly enough, magnesium carbide is more likely not

the major product in this system. More rigorous thermodynamic calculations to be

presented in Chapter 4 do not support the formation of Mg 2C3 and MgC 2 over a

temperature range of 298-6000 K. Both forms of magnesium carbide have a positive free

energy of formation from 298 K to 2500 K and are thus thermodynamically unstable

relative to their elements.

3.2.8 Product Morphology and Elemental Distribution

The solid products at different extents of conversion under various experimental

conditions were subjected to SEM and STEM coupled with EDS analyses in order to

shed light on the mechanisms behind the conversion process. The procedures for sample

preparation and transfer to the microscopes in all these analyses entailed a certain amount

of exposure of the sample to the atmosphere since there is no suitable transfer vessel for

avoiding such. Thus, the sample could very well have undergone some degree of

oxidation and/or hydrolysis by the time the analysis was conducted. Nevertheless, the

analyses show some very interesting results.

The STEM/EDS analysis results are presented in Figures 3-21A and 3-22A for

samples corresponding to MgO "Mg" conversion to Mg of 68% and 39%, respectively.

Two STEM images, bright and dark normal, are on the top row of each figure and

elemental mapping images comprise the bottom row. The leftmost image on the bottom

row corresponds to the annular dark field (ADF) image. The bright spots on the

succeeding images denote the presence of the element. The corresponding SEM images



of each sample at three levels of magnification are shown in Figures 3-21B to 3-21D and

Figures 3-22B to 3-22D.

Figure 3-21A shows a hexagonal particle which is about 400 nm across with well-

defined edges. Elemental mapping by EDS shows that this hexagonal particle is a

magnesium crystal. From the elemental mapping, more intense oxygen signals are

observed on the edges of the particles than throughout the particle, indicating that oxygen

exists as an oxide layer on the magnesium. Thus, despite the fine particle size of the

sample and its exposure to the atmosphere immediately before analysis, the magnesium

did not oxidize completely and was possibly preserved by the oxide layer. The

observation of well-defined hexagonal magnesium crystals in the final product is

evidence that crystallization from the vapor phase occurred in reactor.

In some samples, relatively large micron-size shells of MgO are found such as the

rightmost particle on Figure 3-22A. The lower intensity of the magnesium and oxygen

signals in the middle of the particle relative to those on its perimeter indicates that the

shell is probably hollow inside. Furthermore, its walls have the appearance of having

collapsed inward. Unlike the oxide layer which may have been formed either inside the

cooling chamber during the run or outside the system just before STEM analysis, this

MgO shell is apparently a product of the reaction. Since the original MgO was injected

as 100 pm solid particles, the existence of hollow MgO shells in the final product

suggests that MgO is re-formed in the process, possibly from the reverse reaction of CO

and magnesium in the vapor phase. If the surrounding temperature is below the oxide

boiling point which is very likely, the re-oxidation of the magnesium vapor would result

in a supersaturated magnesium oxide vapor that would immediately nucleate and

condense.

The analyses of all the samples consistently show that the products are

agglomerates of very fine particles in the 0.1 to 1 tm size range, independent of the

degree of conversion. The particles have prominent hexagonal geometry as well as

spherical shapes. Although both hexagonal and spherical particles exhibit smooth

surfaces on some SEM images, most particles show rough surfaces which indicate small

particles depositing on the surface of or possibly fusing with the larger particles. This is



particularly evident in the hexagonal particles in Figures 3-21D and 3-22D. This

observation suggests that the products heterogeneously condense and grow on previously

formed solid particles during quenching.

No Mg2C3 and MgC 2 particles were detected in any of the samples. Given their

small yields, the fine particle size range of the products and the thermodynamic

instability of these two carbides relative to the elements, any carbides present in the

sample probably did not survive the exposure to the atmosphere prior to STEM and SEM

analyses. The presence of the carbides would have been manifested by Mg and C signals

of similar intensities on the same coordinates. Only a small amount of carbon was

detected, mostly dispersed with MgO. In addition to MgO and Mg particles, the silicon

impurities in the MgO reactant showed up mostly as the oxide in the product.

Figures 3-23A to 3-23D show the STEM and SEM images of a sample from a run

with 30 1/min CH4. Although the conversion of MgO "Mg" to Mg was not measured in

this run, the carbon content of this sample is much higher than in the others. The solid

sample is seen to be agglomerates of small particles with a wider size range, including

much finer particles. From STEM/EDS analysis, the sample is determined to be mostly

MgO with solid carbon dispersed throughout.

TEM images of a sample from the pyrolysis of CH 4 in the plasma reactor (no

MgO feeding) are shown in Figures 3-24A and 3-24 B. The pyrolysis products are chain-

like agglomerates of carbon particles which are a few hundred angstroms in size. Both

graphitic carbon and sooty structures are evident in the TEM images. Since most of the

samples from the runs with MgO feeding examined by electron microscopy did not show

such agglomerates of fine particles, except possibly the 30 1/min CH 4 sample, the carbon

particles that failed to react with the MgO in those runs did not seem to agglomerate

together. Rather, they appear to have coagulated with the larger particles being formed.

This suggests that methane is heterogeneously decomposed in the presence of MgO in the

plasma reactor.
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ADF Mg O C Si

Figure 3-21A. STEM Images and Elemental Mapping of Run M27 Sample from Chamber
(10 1/min CH 4 + 10 1/min Ar; 68% MgO "Mg" Conversion to Mg)
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Figure 3-21B. SEM of Run M27 Sample, x3,500

Figure 3-21C. SEM of Run M27 Sample, x35,000

Figure 3-21D. SEM of Run M27 Sample, x100,000
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ADF Mg O C Si

Figure 3-22A. STEM Images and Elemental Mapping of Sample from Run M33 (10 1/min CH4; 39% MgO "Mg" Conversion to Mg)



Figure 3-22B. SEM of Run M33 Sample, x10,000

Figure 3-22C. SEM of Run M33 Sample, x35,000

Figure 3-22D. SEM of Run M33 Sample, x100,000
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ADF Mg O C Si

Figure 3-23A. STEM Images and Elemental Mapping of Sample from Run M7 (30 1/min CH 4; 5% MgO "Mg" Conversion to Mg2C3)



Figure 3-23B. SEM of Run M7 Sample, x3,500

Figure 3-23C. SEM of Run M7 Sample, x35,000

Figure 3-23D. SEM of Run M7 Sample, x100,000



Figure 3-24A. TEM of Run M13 Sample, x120,000

Figure 3-24B. TEM of Run M13 Sample, x590,000
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3.3 MgO-Ar System

Blank runs with MgO but without CH 4 were conducted by passing MgO through an

Argon plasma to gain an insight on how exposure to a plasma affected solids

morphology. The effect of the magnetic field was studied by feeding MgO at low (6

g/min) and high (22 g/min) feed rates into a 100% 50 1/min Argon plasma with and

without the 118 G magnetic field. Four such runs were performed: 1) Low MgO feed

without magnetic field, Run LM; 2) Low MgO feed with magnetic field, Run LMM; 3)

High MgO feed without magnetic field, Run HM; and 4) High MgO feed with magnetic

field, Run HMM. The reactor conditions for these runs are summarized in Table 3-16.

Table 3-16. Summary of Reactor Conditions for MgO-Ar System [Ave ± 1 s.d.]

Run LM LMM HM HMM
Main Argon Flow, 1/min 50 50 50 50
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2
MgO Feed, g/min 6.4 6.4 22.3 22.3
MgO Particle Size, [tm 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 680 ± 29 626 ± 67 666 ± 73 726 ± 59
Arc Voltage, V 25.6 ± 1.1 22.0 ± 3.7 25.2 ± 1.3 16.9 ± 0.6
Arc Current, A 583 111 560+103 607 104 707 ± 94
Arc Power Input, kW 14.9 + 2.8 12.2 + 2.8 15.3 ± 2.5 12.0 ± 1.8
Quench Distance, in 5 5 5 5
Magnetic Field, G 0 118 0 118

The interaction of the magnetic field with the arc has the effect of lowering the arc

voltage and thus, the arc power input (by about 20%). A significant difference is

observed between the runs with and without the magnetic field. Figures 3-25 to 3-28

show SEM images of the solid samples collected through the sample collection probe

from each run. Both runs with a magnetic field yielded darker gray samples in greater

quantities. In addition, solidified deposits of MgO formed in the anode nozzle in Run

HMM, suggesting melting or vaporization and condensation. For both low and high

MgO feed runs, the application of a magnetic field results in solid products that are

smaller, more rounded and, in the HMM case, even agglomerated. Thus, the magnetic

field appears to enhance plasma-particle heat transfer rates.
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Figure 3-25. SEM of Run LM Sample, x320

Figure 3-27. SEM of Run HM Sample, x320

Figure 3-26. SEM of Run LMM Sample, x750

Figure 3-28. SEM of Run HMM Sample, x320



3.4 MgO-CH4-C-Ar System

The addition of solid graphitic carbon to the MgO powder was studied in five runs,

designated Runs MC1 to MC5, as a means of improving the magnesium and/or magnesium

carbide yields from the reaction of MgO with carbon. The proposition is that doping the

MgO with carbon can increase the plasma concentration of nascent carbon species, which

can react with MgO to form the metal or the carbide. A mixture of MgO and graphite

powder was entrained in 4.2 1/min Argon and fed with 10 1/min of CH 4 into the plasma

reactor. The MgO was doped with enough carbon so that the molar ratio of graphite C to

MgO in the feed is about 1:3. The inlet MgO:CH 4 molar ratio was 1.15:1 and the arc was

operated in the 19-33 kW range. The reactor operating conditions are given in Table 3-17.

Table 3-17. Summary of Reactor Conditions for
MgO-CH 4-C-Ar System [Ave (+ 1 s.d.)]

Run MC1 MC2 MC3 MC4 MC5
Main CH4 Flow, 1/min 10.0 10.0 10.0 10.0 10.1
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2
MgO+C Feed, g/min 21.3 21.3 21.3 21.3 21.3
MgO:C:CH 4 Molar Ratio 1.16:0.4:1 1.16:0.4:1 1.16:0.4:1 1.16:0.4:1 1.15:0.4:1
MgO Feed, g/min 19.3 19.3 19.3 19.3 19.3
MgO Particle Size, pm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 760 + 6 754 + 10 756 + 9 759 + 8 754 + 14
Arc Voltage, V 65.4 7.2 70.6±11.3 67.9±11.0 60.5±11.5 72.1±10.9
Arc Current, A 501 + 48 390 + 77 365 ± 87 512 ± 84 273 ± 52
Arc Power Input, kW 32.4 +1.8 26.8 ± 2.4 23.9 ± 2.1 30.0 ± 2.4 19.2 ± 1.6
Quench Distance, in 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118

3.4.1 Reaction Products of MgO-CH 4-C-Ar System

The reaction products of the MgO-CH 4-C-Ar system are Mg, H2, CO, Mg 2C 3, MgC 2 and

non-carbide C. In addition to Reactions (1-2), (1-3), and (1-4), the additional carbon can

react with magnesium oxide according to the global reactions:

5 C + 2 MgO-+ Mg 2C3 + 2 CO Reaction (3-3)
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3 C + MgO-> MgC 2 + CO Reaction (3-4)

C + MgO - Mg + CO Reaction (1-15)

The solid product is a finely divided dark gray powder and is composed of Mg,

Mg2C3, MgC 2 and non-carbide C. Non-carbide C comprises less than 5% of the

unhydrolyzed solids. When hydrolyzed, the solid evolves H2, C3H4 and C2H2. In addition,

small amounts of C2H6, C2H, C313H8 and C3H 6 have been detected in the headspace above

the hydrolyzed solids, which probably desorbed from the solids upon hydrolysis. The

gaseous product is comprised mainly of H2 and CO, with less than 1% of C2H2, C3H4 and

unreacted CH 4 and with trace amounts of C2H4 and C3H8.

Material balances on the constituent elements of the CH 4/C and MgO reactants for

Runs MC1 to MC5 are given in Tables 3-18 and 3-19, respectively. The percent molar

carbon conversion in Table 3-18 refers to conversion of the total carbon in the methane and

graphite additive. This total carbon is converted to CO gas, solid C, solid Mg 2C3 and

MgC 2, and other gaseous HCs while the methane hydrogen is transformed to H2 gas and

other HCs. The magnesium in MgO is converted to Mg, Mg2C3 and MgC 2 in the solid

products while the oxygen in MgO is converted to CO gas.

Table 3-18. Percent Methane and Graphite Molar Conversion
to Products in MgO-CH4-C-Ar System

Run MC1 MC2 MC3 MC4 MC5
Products Total CH4 Total CH 4 Total CH 4 Total CH4 Total CH4

"C" ... H". "C" "H" "C" "H" "C" "H55 "C" 6"1.H"
Mg2C 3  4.7 3.5 2.2 3.5 4.1
MgC 2  0.8 0.6 0.4 0.8 0.6

Non-carbide C 8.5 7.7 15.4 9.7 9.3
CO 79.0 78.8 70.7 78.6 52.3
C2H2  0.7 0.2 0.5 0.2 0.6 0.2 1.2 0.4 1.0 0.4
C3H4  0.2 0.1 0.2 0.1 0.3 0.1 0.1 0.1 0.5 0.2
Other C2, C3, C4  0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.5 0.5
Unreacted CH 4  0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.3
H 2  101.4 115.2 120.4 124.8 103.6
Total 94.0 102.0 91.6 115.8 89.8 121.0 94.4 125.8 68.5 105.0
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Table 3-19. Percent Magnesium Oxide Molar Conversion
to Products in MgO-CH 4-C-Ar System

Run MCI MC2 MC3 MC4 MC5

Products MgO MgO MgO MgO MgO MgO MgO MgO MgO MgO
"Mg" "O" ".Mg" "O" ".Mg" "O" " Mg" "O" ." Mg" "O"

Mg 2C 3  3.7 2.8 1.8 2.8 3.3

MgC 2  0.5 0.4 0.3 0.5 0.4

Mg 63.2 66.1 63.2 72.6 64.2
CO 67.9 68.0 61.2 67.7 45.6

Total 67.4 67.9 69.3 68.0 65.3 61.2 75.9 67.7 67.9 45.6

3.4.2 Effect of Carbon Addition

The extents of reactant conversion to various products in the experimental runs with carbon

addition were compared with the extents of conversion in runs under similar reaction

conditions but without carbon addition. The results of the comparison of the two sets of

runs are summarized in Table 3-20. The p-value is the probability of rejecting the null

hypothesis that the mean values with carbon addition are less than or equal to the mean

values without carbon addition when the null hypothesis is correct.

Table 3-20. Summary Statistics of Reactant Conversion to Products and H2/CO Ratio
with and without Carbon Addition

% Carbon Mean Standard 95% C.I. Min. Max. p-
Conversion Addition Deviation value

(Mg)a Mg Yes 65.9 3.9 [61.0,70.8] 63.2 72.6 0.00

No 51.5 8.7 [40.8,62.3] 39.1 60.2

(Mg)a ~oc3 Yes 2.9 0.7 [2.0,3.8] 1.8 3.7 0.30

No 2.6 1.1 [1.2,3.9] 1.2 3.4

(H) cH, Yes 113.1 10.3 [100.3,125.8] 101.4 124.8 0.00

No 83.9 9.8 [71.7,96.1] 73.6 99.7

aco Yes 71.9 11.5 [57.6,86.2] 52.3 79.0 0.44
( CH4 +C

No 70.9 8.7 [60.2,81.6] 62.2 85.2

(C)acH4+C Yes 10.1 3.0 [6.3,13.9] 7.7 15.4 0.18

No 15.6 12.1 [0.5,30.6] 3.2 32.0
H2/CO Ratio Yes 2.3 0.4 [1.8,2.8] 1.8 2.8 0.33

No 2.4 0.0 [2.3,2.4] 2.3 2.4



The mean (Mg)amg and (H)aCH are found to be significantly higher with carbon

addition than without carbon addition at the 0.05 significance level under the experimental

conditions investigated. This can also be seen from plots of (Mg)aMo and (H)aH vs.

power input with and without carbon addition under similar reaction conditions in Figures

3-29 and 3-30. The improvement in the mean(Mg)ag from 51.5% to 65.9%, which can

be attributed to Reaction (1-15), corresponds to a 28% increase, in reasonable agreement

with the 40% increase in carbon feed. The greater than 100% CH 4 "H" conversion to H2

indicates the high degree of uncertainty in the data but, assuming that the error is

systematic, H2 formation is enhanced from an average of 84% without carbon addition to

virtually complete conversion with carbon addition. The foregoing observations are

consistent with the hypothesis of magnesium formation via nascent carbon reaction with

MgO and suggest that the extents of MgO "Mg" conversion to Mg and CH 4 "H" conversion

to H2 can be improved by doping the MgO feed with carbon.
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Figure 3-29. MgO "Mg" Conversion to Mg vs. Power Input at 10 1/min CH 4
and 1.15:1 MgO:CH 4 with and without Carbon Addition
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Figure 3-30. CH 4 "H" Conversion to H2 vs. Power Input at 10 1/min CH 4
and 1.15:1 MgO:CH4 with and without Carbon Addition

Whereas (Mg)amo was enhanced by the inclusion of solid carbon, (Mg)a3M9C3,

remained below the 5% level. The absence of any noticeable effect on carbide formation

suggests that Reactions (3-3) and (3-4) do not contribute significantly to the overall

reaction.

The conversion of the total carbon (from CH 4 and graphite) to CO, (C)aHoC, is

plotted as a function of power input for the MgO-CH 4-C-Ar system in Figure 3-31. A plot

of CH4 "C" conversion to CO for the MgO-CH 4-Ar system under similar reaction

conditions is also shown in the figure. The agreement between the two cases is remarkable.

This observation suggests that, if the additional CO is being formed from the carbon in the

graphite, it is formed at the same extent as the CO formed from the carbon in methane.

This would likewise support a mechanistic pathway for magnesium formation from MgO

involving nascent carbon species. Thus, if nascent carbon is reacting with MgO in the
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plasma to form CO and Mg, graphite powder can serve as an additional source of this

nascent carbon species together with methane.

100

A MgO-CH 4-C

A MgO-CH
4

20 25 30 35

Power Input, kW

Figure 3-31. (CH 4 + Graphite) "C" Conversion to CO vs. Power Input at 10 1/min CH 4
and 1:15:1 MgO:CH 4 with and without Carbon Addition

3.4.3 Product Morphology and Elemental Distribution

The STEM/EDS analysis results of a solid sample from Run MC5 are shown in Figure 3-

32A while SEM images of the same sample at increasing magnification levels are

presented in Figures 3-32B to 3-32D. Figure 3-32A shows that the sample is composed

primarily of magnesium metal. Since the oxygen signals observed are less intense than

those of magnesium, except on the rightmost cluster, the oxygen again exists as an oxide

layer on the magnesium. The strong oxygen signals on the rightmost agglomerate

correspond to similarly intense signals from C and Si. Thus, this particular cluster is

probably a mixture of magnesium oxide and silicon oxide with some carbon on them. The

150



less intense carbon signals suggest that a relatively small amount of carbon is dispersed

throughout the sample. Mg2C 3 and MgC 2 were not detected in this sample.

Similar to the products of the MgO-CH 4-Ar system, the solid products of the MgO-

CH4-C-Ar system are agglomerates of very fine particles in the 0.1 to 1 ýpm size range.

Although some small hexagonal particles are seen in the sample, the particles are

prominently spherical in shape. These spheres also exhibit rough surfaces with scale-like

tiny particles depositing on or fusing with them. Figures 3-32C and 3-32D show this

phenomenon clearly. This observation again suggests that the products heterogeneously

condense and grow on previously formed solid particles during quenching.



ADF Mg 0 C b

Figure 3-32A. STEM Images and Elemental Mapping of Sample from Run MC5

(10 1/min CH 4; 1.15:0.4:1 MgO:C:CH4; 64% MgO "Mg"Conversion to Mg)



Figure 3-32B. SEM of Run MC5 Sample, x3,500

Figure 3-32C. SEM of Run MC5 Sample, x35,000

Figure 3-32D. SEM of Run MC5 Sample, x100,000
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3.5 Mg-CH4-Ar System

A study of the reaction of magnesium metal with CH4 in the plasma reactor was

conducted in order to assess the feasibility of synthesizing Mg2C3 according to Reaction

(1-21). Mg powder entrained in 4.2 1/min Ar was introduced at a rate of 7 g/min with 10

1/min CH 4 into the plasma reactor in three experimental runs, designated Runs MG1 to

MG3. A fourth run, Run MG4, was performed by feeding the Mg powder at 7 g/min into

an 11 1/min Ar plasma with 10 1/min secondary CH4 quench. The inlet Mg:CH 4 molar

ratio in all four runs was set at 0.7:1 to match the stoichiometric ratio of Reaction (1-21).

The reactor conditions for these runs are presented in Table 3-21.

Table 3-21. Summary of Reactor Conditions for Mg-CH 4-Ar System [Ave (± 1 s.d.)]

Run MG1 MG2 MG3 MG4
Main CH4 Flow, 1/min 10.0 10.1 10.1
Secondary CH 4 Flow, 1/min 9.9
Main Argon Flow, 1/min 10.9
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2
Mg Feedrate, g/min 7.0 7.0 7.0 7.0
Inlet Mg/CH 4 Molar Ratio 0.69 0.69 0.69 0.69
Mg Particle Size, p[m 74 to 140 74 to 140 74 to 140 74 to 140
Chamber Pressure, mm Hg 760 ± 7 756 ± 8 761 ± 8 754 ± 5
Arc Voltage, V 51.9±14.0 63.6±14.5 59.0±15.3 14.9 + 0.2
Arc Current, A 587 108 416 118 434 114 706 2
Arc Power Input, kW 29.0 3.6 24.8 +2.9 23.9 2.7 10.5 + 0.2
Quench Distance, in 5 5 5 5
Magnetic Field, G 118 118 118 118

The solid product in this system is a finely divided gray powder and is found to be

composed predominantly of Mg, with up to 25% by weight non-carbide C and small

amounts of Mg2C 3 and MgC 2. In addition to the H2, C3H4 and C2H2 evolved upon

hydrolysis, some C2H6, C 2H4, C 3H8 and C3H6 have also been detected in the headspace

above the hydrolyzed solids, which probably desorbed from the solids upon hydrolysis.

The gaseous product in Runs MG1 to MG3 is comprised mainly of H2, with less than 2%

of C2H 2, C 3H4 and unreacted CH 4 and with trace amounts of C2H 4, C 2H6 and C3H,. In



MG4, the gas sample was mostly unreacted CH4, some H2 and small amounts of C2H2,

C2H4, C2H6, C3H4, C3H6 and C3H,.
Material balances on the constituent elements of CH 4 and Mg for Runs MG1 to

MG4 are given in Tables 3-22 and 3-23, respectively. The carbon in CH 4 is converted to

solid C, solid Mg2C3 and MgC2, and other gaseous HCs while the hydrogen in CH4 is

transformed to H2 gas and other HCs. The magnesium metal is recovered as Mg, Mg 2C3

and MgC 2 in the solid products.

Table 3-22. Percent Methane Molar Conversion to Products in Mg-CH 4-Ar System

Run MG1 MG2 MG3 MG4

Products CH 4 CH4 CH 4 CH 4 CH4 CH 4 CH 4 CH 4
"C" ".H" "C" ".H" "C" "H" "C" ".H"

Mg 2C3  4.2 1.8 1.9 0.8

MgC2  0.3 0.1 0.1 0.1
Non-carbide C 24.4 47.7 7.6 2.9

C2H2  1.1 0.3 0.4 0.1 0.0 0.0 0.0 0.0

C3H4  0.8 0.3 0.8 0.3 2.3 0.8 0.1 0.0
Other C2, C3, C4 2.6 2.0 2.7 2.0 6.4 4.8 0.3 0.3
Unreacted CH4  0.4 0.4 0.5 0.5 2.1 2.1 88.5 88.5
H2 84.1 98.0 82.2 1.3
Total 33.8 87.0 54.0 100.9 20.4 89.9 92.7 90.1

Table 3-23. Percent Magnesium Molar Conversion
to Products in Mg-CH 4-Ar System

Run MG1 MG2 MG3 MG4

Products

Mg 2C3  4.0 1.8 1.8 0.7

MgC 2  0.2 0.1 0.1 0.0
Unreacted Mg 75.7 75.7 76.4 88.9
Total 79.9 77.6 78.3 89.6

The conversion of Mg metal to Mg2C3 is observed to be less than 5% in all cases.

Therefore, Mg 2C3 is not formed in significant yields from CH 4 and Mg according to

Reaction (1-21) under the conditions studied. Since Reaction (1-21) is known to occur at

973 K (Durrant and Durrant, 1970), the operating conditions of the plasma reactor are

probably much more severe than those favorable for Mg2C3 formation. Furthermore, the

reaction products are most likely quenched from a much higher temperature than 973 K.

On the other hand, greater than 80% CH 4 "H" conversion to H2 is achieved under the
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plasma conditions studied. Thus, CH 4 is reduced to H2 and solid C under these

conditions. Statistics on the reactant conversion data are summarized in Table 3-24.

Table 3-24. Summary Statistics of Reactant Conversion
to Products for Mg-CH 4-Ar System

% Conversion Mean Std. Dev. 95% C.I. Minimum Maximum

(Mg)aMgg2C3 2.5 1.3 [-0.6,5.7] 1.8 4.0

(H)aC2 88.1 8.6 [66.7,109.5] 82.2 98.0

(C)a4 26.6 20.1 [-23.4,76.5] 7.6 47.7

Figure 3-33A shows the STEM/EDS analysis of a solid sample from Run MG1,

which is composed mostly of magnesium metal. The large particle at the top exhibits the

hexagonal feature characteristic of magnesium crystal. MgO is present in the sample as

an oxide layer on the metal surface. Much smaller carbon particles in the 50-200 nm size

range can also be seen in the sample but no evidence of magnesium carbide can be found.

SEM images of the same sample are shown in Figures 3-33B to 3-33D. The solid

particles range from 0.1 to 1 p.m in size and are prominently spherical in shape, with the

same rough surfaces seen in the products of the MgO-CH 4-C-Ar system.

156



ADF Mg
C Si

Figure 3-33A. STEM Images and Elemental Mapping of Sample from Run MG1 (10 1/min CH 4; 0.7:1 Mg:CH 4; 4% Mg Conversion to Mg2C 3)



Figure 3-33B. SEM of Run MGI Sample, x3,500

Figure 3-33C. SEM of Run MG1 Sample, x35,000

Figure 3-33D. SEM of Run MG1 Sample, xl00,000
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3.6 CaO-CH4-Ar System

An exploratory plasma reactor study of the CaO-CH 4-Ar system was undertaken for

comparison with the MgO-CH4-Ar system. Four experimental runs, designated Runs Cl

to C4, were conducted to gain an insight on the fundamental differences between the two

systems. CaO powder entrained in 4.2 1/min Ar was introduced at a rate of 7.8 g/min

with 10 1/min CH 4 into the plasma reactor in all the runs. The arc was operated in the 21-

29 kW power input range and the inlet CaO:CH 4 molar ratio was set at 0.34:1 to match

the stoichiometric ratio of Reaction (1-1). The reactor conditions for these runs are

summarized in Table 3-25.

Table 3-25. Summary of Reactor Conditions for
CaO-CH 4-Ar System [Ave (± 1 s.d.)]

Run C1 C2 C3 C4
Main CH 4 Flow, 1/min 10.1 10.0 10.0 10.1
Secondary CH 4 Flow, 1/min
Main Argon Flow, 1/min
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2
CaO Feed, g/min 7.8 7.8 7.8 7.8
Inlet CaO/CH4 Molar Ratio 0.34 0.34 0.34 0.34
CaO Particle Size, Vm 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 760 + 4 760 + 4 757 ± 5 759 ± 4
Arc Voltage, V 36.5 + 3.7 30.7 + 2.5 31.0 + 0.8 33.4 + 2.8
Arc Current, A 585 30 720 +17 434 114 718 49
Arc Power Input, kW 21.2 1.1 22.1 1.3 28.9 0.3 23.9 0.6
Quench Distance, in 5 5 5 5
Magnetic Field, G 118 118 118 118

Compared to the MgO-CH 4-Ar system, the CaO-CH 4-Ar system exhibits a higher

degree of product selectivity. The major reaction products of this system are CaC2, C2H2,

H2 and CO, which can be attributed globally to the carbide formation reaction, Reaction

(1-1), and to the overall methane decomposition reaction to acetylene, Reaction (1-24).

The solid product is a light gray powder composed of CaC2 and non-carbide solid carbon.

Upon hydrolysis, the solids evolve C2H2 and a trace amount of n-C4H1 0 but no H2. The

gaseous product is mainly H2 and CO, with some C2H2 and unreacted CH4. Other C2, C3

and C4 species observed in the MgO-CH4-Ar system were not detected in this system.



Material balances on the constituent elements of the CH4 and CaO reactants for

Runs Cl to C4 are given in Tables 3-26 and 3-27, respectively. The carbon in methane is

converted to CaC2 and non-carbide C in the solid product and to CO and C2H2 in the

gaseous product. The hydrogen in methane is recovered as H2 and C2H2 gas. The

calcium in CaO is converted to solid CaC2 while the oxygen is transformed to CO gas.

Table 3-26. Percent Methane Molar Conversion to Products in CaO-CH4-Ar System

Run Cl C2 C3 C4

Products CH 4 CH4 CH4 CH 4  CH 4  CH4 CH 4 CH4
"C" ... H" "C" "H" "C59 "H" "C" "H"

CaC 2  35.5 32.0 60.0 28.9

Non-carbide C 27.2 15.9 8.2 15.0

CO 34.5 34.6 47.6 34.4

C2H 2  11.6 2.9 9.0 2.3 9.5 2.4 12.4 3.1

Unreacted CH 4  0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.1

H2  64.8 65.7 87.2 66.2

Total 109.0 67.9 91.5 68.0 125.3 89.6 90.8 69.4

Table 3-27. Percent Calcium Oxide Molar Conversion
to Products in CaO-CH 4-Ar System

Run Cl C2 C3 C4

Products CaO CaO CaO CaO CaO CaO CaO CaO
"Ca" "O" "Ca" "O" "Ca" "O" ".Ca" " O"

CaC2  53.0 47.6 89.4 43.1

CO 103.0 103.1 141.8 102.6

Total 53.0 103.0 47.6 103.1 89.4 141.8 43.1 102.6

The average CaO "Ca" conversion to CaC2 is 58% while the mean CH4 "H"

conversion to H2 is 80% for the four experimental runs. The extent of conversion of CH4

"C" to CO ranges from 34 to 48%, in good agreement with the expected conversion of

33%. But the CH4 "C" conversion to CaC2 ranges only from 29 to 60%, which is below

the expected 67% according to Reaction (1-1). The shortfall is accounted for by an 8-

27% CH4 "C" conversion to non-carbide C and an 11% CH4 "C" conversion to C2H 2.

The formation of significant amounts of C2H2 is a noticeable difference in the CaO-CH 4-

Ar system compared to the MgO-CH 4-Ar system. The H2/CO ratio is fairly constant at
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3.8, which is lower than the expected ratio of 6 according to Reaction (1-1), because of

the methane carbon conversion to non-carbide C. Table 3-28 summarizes the statistics on

the CaO and CH4 conversion and H2/CO ratio.

Table 3-28. Summary Statistics of Reactant Conversion
to Products and H, /CO Ratio for CaO-CH4-Ar System

% Conversion Mean Std. Dev. 95% C.I. Minimum Maximum

(Ca)aca2 58.3 21.1 [24.6,91.9] 43.1 89.4
H2 80.0 10.8 [53.7,88.2] 64.8 87.2

(C)aO 37.8 6.6 [27.4,48.2] 34.4 47.6

(C)a§fC2 39.1 14.2 [16.5,61.6] 28.9 60.0

(C)aC42H2 10.6 1.6 [8.0,13.2] 9.0 12.4

(C)caH 16.6 7.9 [4.0,29.1] 8.2 27.2

H2/CO Ratio 3.8 0.1 [3.6,3.9] 3.7 3.9

The solid products from this system exhibit a different texture from that observed

with the products of the MgO-CH4-Ar system. The solids resemble ash in constituency,

are lighter gray compared to the solids from the previous systems and are more easily

removed from the chamber walls. STEM/EDS analysis results for a sample from Run C3

are presented in Figure 3-34A, which shows a cluster composed mostly of CaO. No CaC2

particle was readily identified in the sample by STEM/EDS, apparently due to

degradation and decomposition of the very fine carbide particles during the exposure to

the atmosphere prior to mounting in the microscope. Carbon is present in the sample,

although dispersed throughout the cluster. The corresponding SEM images of the same

sample at three levels of magnification are shown in Figures 3-34B to 3-34D. The

sample is observed to be composed of agglomerates of very fine particles in the 0.1 to 1

ptm size range. The small particles have irregular geometry with rounded edges and seem

to fuse with one another.
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Figure 3-34A. STEM Images and Elemental Mapping of Sample from Run C3 (10 1/min CH 4; 0.34:1 CaO:CH 4; 89.4% CaO "Ca" Conversion to CaC 2)



Figure 3-34B. SEM of Run C3 Sample, x3,500

Figure 3-34C. SEM of Run C3 Sample, x35,000

Figure 3-34D. SEM of Run C3 Sample, x100,000
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3.7 MgO-CaO-CH4-Ar System

An exploratory study of the MgO-CaO-CH 4-Ar system was also undertaken to determine

the product selectivity and yields of a system with the two alkaline earth metal oxides

combined, such as is found in calcined dolomite. Five experimental runs, designated

Runs CM1 to CM5, were conducted with this system. A mixture of MgO and CaO

powder at a 1:1 molar ratio entrained in 4.2 1/min Ar was introduced at a rate of 8.2 g/min

with 10 1/min CH 4 into the plasma reactor. This corresponds to an inlet MgO:CaO:CH 4

molar ratio of 1:1:5. The arc was operated in the power input range of 19-32 kW. The

reactor conditions for these runs are given in Table 3-29.

Table 3-29. Summary of Reactor Conditions for
MgO-CaO-CH4-Ar System [Ave (± 1 s.d.)]

Run CM1 CM2 CM3 CM4 CM5
Main CH4 Flow, 1/min 10.0 10.0 10.0 10.0 10.0
Secondary CH4 Flow, 1/min
Main Argon Flow, 1/min
Carrier Argon Flow, 1/min 4.2 4.2 4.2 4.2 4.2
CaO/MgO Feed, g/min 8.2 8.2 8.2 8.2 8.2
CaO:MgO:CH4 Molar Ratio 1:1:5 1:1:5 1:1:5 1:1:5 1:1:5
CaO/MgO Particle Size, ýtm 44 to 104 44 to 104 44 to 104 44 to 104 44 to 104
Chamber Pressure, mm Hg 759 + 4 759 + 5 760 ± 2 759 ± 8 757 ± 9
Arc Voltage, V 31.9 1.4 35.1 1.4 51.0 2.2 38.5±13.3 32.9 1.6
Arc Current, A 824 24 688 26 611 14 539 118 826 11
Arc Power Input, kW 26.3 0.4 24.1 0.1 31.1 0.8 19.2 2.5 27.2 1.0

Quench, in 5 5 5 5 5
Magnetic Field, G 118 118 118 118 118

The major reaction products of the combined system are CaC2, Mg, H2, CO and

C2H2, which can be attributed globally to CaC2 formation, Reaction (1-1), Mg metal

formation, Reaction (1-4), and the overall methane decomposition reaction to acetylene,

Reaction (1-24). The solid product is composed of CaC2, Mg, Mg2C3 and non-carbide

carbon. Upon hydrolysis, the solids evolve C2H2, H2 and C3H4. Trace amounts of C2H4,

C2H6, C 3H6, C 3H8 and n-C4H10 are also detected in the headspace above the hydrolyzed

solids. Since MgC2 also yields C2H2 upon hydrolysis, MgC 2 is also probably present in
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the solid product, although most likely in small quantities as in the MgO-CH 4-Ar system.

The gaseous product is mainly H2 and CO with some C2H2, unreacted CH4 and trace

amounts of C2H4.

Material balances on the constituent elements of the CH4, MgO and CaO reactants

for Runs CM1 to CM5 are presented in Tables 3-30 and 3-31, respectively. The carbon

in methane is converted to solid CaC2, Mg2C3 and non-carbide solid C, as well as to CO

and C2H2 in the gaseous product. The hydrogen in methane is transformed to H2 and

C2H2 gas. The magnesium in MgO is converted to solid Mg and Mg2C3 while the calcium

in CaO is converted to solid CaC2. The oxygen in the two oxides cannot be readily

identified separately in the final CO gas product; thus, the reported conversion is for the

total oxygen of the two oxides.

Table 3-30. Percent Methane Molar Conversion
to Products in MgO-CaO-CH 4-Ar System

Run CM1 CM2 CM3 CM4 CM5

Products CH 4 CH 4 CH4 CH 4 CH 4 CH4 CH 4 CH 4 CH 4 CH 4
"C" "1H" "C" 66H" ".C" 66H" "C"5 "H" 66C"5 "H"

Mg2C3  0.7 0.8 0.7 0.7 0.8

CaC2  22.9 22.7 13.2 11.9 23.6
Non-carbide C 10.9 10.4 7.0 17.2 4.6
CO 46.4 42.5 46.3 43.9 56.7

C2H2  6.8 1.7 4.8 1.2 2.8 0.7 10.0 2.5 6.6 1.7

C3H4  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other C2, C3, C 4 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Unreacted CH4  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
H2 88.6 91.1 89.6 88.9 97.7
Total 87.9 90.4 81.3 92.4 70.2 90.5 83.8 91.5 92.4 99.5

Table 3-31. Percent Magnesium Oxide and Calcium Oxide Molar
to Products in MgO-CaO-CH 4-Ar System

Conversion

Run CM1 CM2 CM3 ,  CM4 CM5
Products CaO MgO CaO/ CaO MgO CaO/ CaO MgO CaO/ CaO MgO CaO/ CaO MgO CaO/

"Ca" ."Mg" MgO "Ca" ."Mg" MgO "Ca" ."Mg" MgO "Ca" ."Mg" MgO "Ca" ."Mg" MgO
"O" "O." "O" "O" "O"

CaC 2  56.5 56.0 32.5 29.4 58.2

Mg2C3  2.2 2.4 2.2 2.1 2.5
Mg 66.3 64.9 64.9 66.6 63.8
CO 113.7 104.7 113.5 107.7 138.7
Total 56.5 68.5 113.7 56.0 67.3 104.7 32.5 67.1 113.5 29.4 68.7 107.7 58.2 66.3 138.7
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Under the conditions investigated, the extent of MgO "Mg" conversion to Mg is

relatively constant at 65% while the MgO "Mg" conversion to Mg 2C3 is below 3% in all

the runs. Thus, the extents of conversion of MgO "Mg" to Mg and to Mg 2C3 do not seem

to be affected by the presence of CaO feed in the system. The average CaO "Ca"

conversion to CaC2 is 47%. The hydrogen in CH 4 is almost completely converted to H2

while the carbon is converted in decreasing levels to CO (43-57%), CaC2 (12-24%), non-

carbide C (5-17%), C2H2 (3-10%) and Mg 2C3 (<1%). There is no readily apparent

dependence of conversion on arc power input under the conditions studied. The mean

H2/CO ratio is 3.9 over the power range investigated, which is comparable to that of the

CaO-CH 4-Ar system. The summary statistics of reactant conversion and H,/CO ratio for

the MgO-CaO-CH 4-Ar system is presented in Table 3-32.

Table 3-32. Summary Statistics of Reactant Conversion
to Products and H2/CO Ratio for MgO-CaO-CH 4-Ar System

% Conversion Mean Std. Dev. 95% C.I. Minimum Maximum

(Ca)acac2  46.5 14.3 [28.8,64.2] 29.4 58.2

(Mg)ag 65.3 1.1 [63.9,66.7] 63.8 66.6

(Mg) a ,Mjc 2.3 0.2 [2.1,2.5] 2.1 2.5

(H)a2 91.2 3.8 [86.5,95.9] 88.6 97.7

(C)aco 47.2 5.6 [40.2,54.1] 42.5 56.7

(C)ac•Cc2 18.9 5.8 [11.7,26.0] 11.9 23.6

(C)aC CH2 6.3 2.6 [3.0,9.5] 2.9 10.0

(C)aC4 10.0 4.8 [4.1,15.9] 4.6 17.2

H2/CO Ratio 3.9 0.3 [3.5,4.3] 3.5 4.3

The solid products from this system resemble those from the MgO-CH 4-Ar

system in terms of color and texture. The STEM/EDS analysis of a sample from Run

CM1, presented in Figure 3-35A, shows a cluster composed of CaO, Mg and CaC 2. The

presence of CaC2 can be deduced from the almost equally intense signals corresponding

to the particle on upper right hand corner of the Ca and C images, without any similarly
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intense oxygen signals in the same area. The associated SEM images of the sample at

three levels of magnification are shown in Figures 3-35B to 3-35D. The sample is seen to

be composed of agglomerates of very fine particles also in the 0.1 to 1 ýtm size range.

Similar to the CaO-CH 4-Ar system, the small particles have irregular geometry with

rounded edges and seem to fuse with one another.
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Figure 3-35A. STEM Images and Elemental Mapping of Sample from Run CM1
(10 1/min CH 4; 1:1:5 MgO:CaO:CH4; 66% MgO "Mg" Conversion to Mg and 57% CaO "Ca" Conversion to CaC2)



Figure 3-35B. SEM of Run CM1 Sample, x3,500

Figure 3-35C. SEM of Run CM1 Sample, x35,000

Figure 3-35D. SEM of Run CM1 Sample, x100,000



3.8 Operational Characteristics

The voltage-current curves of the CH 4 arc during MgO feeding, depicted in Figure 3-36,

illustrate the falling voltage-rising current characteristic of a low to medium intensity arc.

The effect of increasing the gas flow rate is to shift the curves upward. The higher voltage

levels measured at the same current under the higher CH 4 flow rates are due to the

increased convective cooling of the arc column as well as to the elongation of the column

which is sustained in a cross flow of the gas.

O 30 slpm CH4

O 20 slpm CH4

A 10 slpm CH4

0 100 200 300 400 500 600 700 800 900 1000

Arc Current, A

Figure 3-36. Voltage-Current Curves of CH 4 Arc with MgO Feeding

Setting the arc to operate at a particular power input level proved to be challenging

as the voltage and current were continuously fluctuating. The arc was observed to be more

stable in the runs at 10 and 20 1/min CH 4 flow rates. Although a discharge can be sustained

at a flow rate of 30 1/min CH 4, this arc is very difficult to establish without MgO feeding.

Initially, the MgO feeding was started after the switchover from Argon to methane, as was

done by Kim (1977) with his CH4-CaO arc. However, this practice usually resulted in the

arc being extinguished before a complete transition is achieved. As methane displaces
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Argon in the arc discharge, the arc voltage starts to increase and the arc current starts to

decrease. If the current control is not adjusted rapidly enough to keep the arc current above

200 A, the arc is extinguished. In order to enable a smoother transition, the procedure was

modified by initiating the MgO feeding before the switchover to methane. The

commencement of MgO feeding results in a drop in the arc voltage due to ionization of the

MgO, giving rise to a lower arc voltage during the transition period.

The wear and tear of the graphite electrodes was gauged by weighing the electrodes

before and after each run. The erosion of the cathode tip was always less severe than that

of the anode insert, despite the rotation of the arc over the larger annular surface of the

anode insert. In fact, the graphite cathode tip gained 0.8 g on average over all the runs.

This represents an average of only 2% of the carbon content of the CH4 feed. The cathode

tip was found to grow radially at the bottom from deposition and fusion of carbon from the

CH 4. With the downward flow of gas restricting the cathodic end of the arc to the bottom

of the cathode tip, a flared bottom with a crater-like center developed from carbon

deposition after each run. The bottom section grew radially from the original diameter of

0.75 in. to a maximum of 0.87 in. and the cathode was elongated at the skirts of the bottom

section from an overall length of 1.5 in. to as much as 1.6 in. in some runs. Hardly any

axial recession of the cathode tip was observed in any of the runs. Thus, the cathode tip

may not have been heated as intensely as the anode, with the current density at the cathode

tip having reached a maximum of only 350 A/cm 2 under the most severe arc current of

1000 A.

The anode insert always had the inner surface of its bottom 1 in. section receding

away in a spiral direction. The anode itself gained an average of 1 g while the anode insert

lost an average of 0.5 g over all the runs which lasted for about five minutes each. Thus,

there is a net gain (average of 1.3 g) on the graphite anode, anode insert and cathode tip,

corresponding to about 1% of the carbon in the CH4.

In most runs, a certain amount of solids is deposited on the inside walls of the anode

insert, which spilled onto the inner surface of the graphite anode. These hard deposits

amount to an average of 7.4 g per run over all the runs. Assuming the deposits are all

MgO, this corresponds to about 7% of the solid feed. However, no correction is made in



the conversion calculations because the deposition is believed to occur mostly prior to

methane switchover, when the plasma is still relatively cool.

The MgO-CH4-C-Ar system is operationally similar to the MgO-CH 4-Ar system in

terms of voltage-current arc characteristics and erosion rates of the graphite electrodes.

Likewise, a plasma with Mg-CH4-Ar was not difficult to sustain under the experimental

conditions investigated. However, the post-operation procedures for this system proved to

be extremely hazardous because of the large quantities of very finely divided pyrophoric

magnesium powder produced and deposited on the chamber walls and lines. In the Mg-

CH4-Ar runs, the graphite anode inserts were eroded at their inner walls but the cathode tips

grew radially from an original diameter of 0.75 in. to as much as 0.875 in. over the bottom

0.5 in. section. The deposition on the cylindrical surface of the cathode resembles

solidified droplets. The graphite anode, anode insert and cathode tip gained an average of

2 g over 3 runs which lasted about 5 minutes each.

The operational characteristics of the plasma reactor with the CaO-CH4-Ar system

are very different from those of the other systems investigated. Although a stable arc can

be sustained in this system, the anode nozzle always clogged up with brittle but abundant

deposits. This clogging eventually led to the arc being extinguished in a few instances.

Furthermore, solidified droplets of CaO have been found at the bottom of the chamber and

even in the sampler after each run. Relative to the other systems, the anode insert and

cathode tip were more severely eroded in this system. The inner surface of the insert

always had a deep spiral groove and its wall thickness was reduced drastically. The sharp

circular edge of the cylindrical cathode tip was always rounded after every run, although a

radial growth developed on the bottom '/2 in. section and the tip did not recede axially. The

graphite anode, anode insert and cathode tip lost an average of 5.8 g over the four runs

which lasted about 5 minutes each. The deposits collected from the electrodes weighed 9.5

g per run on average.

Unlike the CaO-CH 4-Ar system, operation of the MgO-CaO-CH 4-Ar system in the

plasma reactor did not result in as much clogging of the anode nozzle. However, the anode

insert and cathode tip were just as severely eroded. The wall thickness of the insert was

reduced drastically and the sharp circular edge of the cylindrical cathode tip was always
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rounded after every run. Although axial recession of the cathode tip was not significant in

most runs, the tip receded in one run from 1.5 in. to 1.1 in. and widened from 0.75 in. to

about an inch in diameter. The radial growth on the bottom '/2 in. section increased the

diameter of the tip to 0.87 in. in most of the runs. The graphite anode, anode insert and

cathode tip lost an average of 11.6 g over the five runs which lasted about 5 minutes each

while the deposits collected from the electrodes weighed 19.3 g per run on average.



Chapter 4

Thermodynamic Analysis

To obtain an assessment of the thermodynamic driving forces of possible chemical

reactions within the plasma, multiphase equilibrium composition calculations based on

the minimization of Gibbs free energy were performed for the Mg-C-H-O-Ar, Mg-C-H-

Ar, Ca-C-H-O-Ar and Mg-Ca-C-H-O-Ar systems. The calculations were made with the

GIBBS routine of HSC Chemistry for Windows version 2.03 from Outokumpu Research

Oy (Talonen et al., 1994).

The GIBBS program determines the most stable phase combination and

individual phase compositions at which the Gibbs free energy, G, of the system reaches a

minimum subject to mass balance, constant pressure and constant temperature

constraints. The Gibbs free energy is determined from enthalpy H, entropy S and

temperature T according to:

G = H- TS Equation (5-1)

The enthalpy, H(T), and entropy, S(T), at temperature T are calculated from the standard

enthalpy, Hý , and standard entropy, S; , of formation at 298.15 K and the constant

pressure heat capacity cp as

T

H(T)=H + Jc,dT+±H, Equation (5-2)
298.15



"c H
S(T) 8 JT T+ H Equation (5-3)

298.15T Tt

where Ht is the enthalpy of transformation of the substance at temperature Tt. The

temperature dependence of the heat capacity is accounted for by using a polynomial fit to

experimental data. The Kelley equation is used in the program in the following form:

c, = A + B x 10-3T+ Cx 105 T-2 + Dx 10-6T 2  Equation (5-4)

where A, B, C and D are coefficients fitted to the available data.

The available species in the HSC database from the elements specified in each

system, divided into gas and condensed phases, have been included in the calculations.

The gases are assumed to be ideal and to form ideal mixtures. Condensed phases are also

assumed to be pure or to form ideal solutions, with the activity coefficient of each species

in the mixture taken as 1.

The equilibrium composition calculations are for systems at atmospheric pressure

(except where the pressure is stated otherwise) and have been performed at temperatures

between 298 K and 6000 K in 50 K increments. With plasma temperatures likely to

exceed 10,000 K, all reactants injected into the plasma are completely vaporized into

atomic species provided that there is sufficient residence time. Since most elements are

in the atomic gas state above 6000 K and chemical reactions with the atomic gas species

begin as the reactants cool down from this temperature, the equilibrium calculations start

from 6000 K all the way down to 298 K. Most atomic gases are not sufficiently ionized

at T < 6000 K, so there are no ionized atomic species considered in the calculations.

These considerations are primarily based on the study of the thermochemistry of thermal

plasma chemical reactions by Chang and Pfender (1987). Only species with equilibrium

amounts greater than 10-4 mole have been included in the equilibrium diagrams.

The maximum possible temperature for the MgO-CH 4 reaction system as a

function of the specific gas energy input is presented in Figure 4-1. For each specific gas

energy, the maximum temperature that can be reached by a reacting system composed of
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one mole of CH 4 and one mole of MgO, assuming that Reaction (1-4) goes to completion

and that there is no heat loss from the system, has been calculated. Since the arc power

input levels and methane flow rates investigated correspond to specific gas energies in the

1500-5500 kJ/g atom C range, the results of the calculations show that the reaction

system is conceivably well over 6000 K even at the lower limit of the experimental

specific gas energy range.
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Figure 4-1.

4.1

Maximum Reaction Temperature as a Function of Specific Gas Energy
for 1 CH 4 (g) + 1 MgO - 1 Mg (g) + 1 CO (g) + 2 H2 (g)

Mg-C-H-O-Ar System

The thermodynamic equilibrium diagram for the 1.15 MgO + 1 CH 4 + 0.42 Ar reaction

system at 1 atmosphere, which corresponds to 10 1/min CH 4 with 4.2 1/min Ar carrier gas,

is shown in Figure 4-2. According to this analysis, MgO introduced above 6000 K
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immediately dissociates into atomic Mg and O gases while CH 4 dissociates into atomic C

and 0. However, above 6000 K (not shown in Figure 4-2), C and O combine to form

carbon monoxide as represented by:

C (g) + O (g) -> CO (g) Reaction (4-1)

The CO is seen to be stable over a wide temperature range down to about 2000 K.

Because the MgO reactant is in stoichiometric excess, there will still be free oxygen

atoms when the carbon is fully consumed. Water is gradually formed from the reaction

of atomic hydrogen and the excess atomic oxygen starting at around 5000 K:

2 H (g) + 0 (g) -+ H20(g)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0 1000 2000 3000

T, K

Figure 4-2. Thermodynamic Equilibrium Diagram

Reaction (4-2)

4000 5000 6000

for 1.15 MgO + 1 CH 4 + 0.42 Ar
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At 2600 K, the following possible reactions can take place to form MgO and H2:

Mg (g) + H20 (g) - H2 (g) + MgO (s) Reaction (4-3)

H20 (g) - 2 H (g) + O (g) Reaction (4-4)

2 H (g) -+ H2 (g) Reaction (4-5)

Mg (g) +O(g) - MgO (g) Reaction (4-6)

Just below 2000 K, magnesium starts to form MgO at the expense of carbon

monoxide with the formation of solid carbon according to the reverse of Reaction (1-15) :

Mg (g) + CO (g) - MgO (s) + C (s) Reaction (4-7)

At 1600 K, Reaction (4-7) is complete and all the magnesium has reverted back to MgO

form. Neither Mg2C3 nor MgC2 exists at equilibrium in significant amounts over the

entire temperature range.

Experimentally, the major final products of the reaction system have been found

to be Mg, H2, CO and non-carbide C. In general, very little (<5%) magnesium carbides

and only trace amounts of C2, C3 and C4 hydrocarbons have been detected. Under

equivalent experimental starting conditions, the average extents of conversion in the

plasma reactor are 52% for MgO "Mg" to Mg, 3% for MgO "Mg" to Mg2C 3, 84% for

CH4 "H" to H2, 71% for CH4 "C" to CO and 16% for CH 4 "C" to non-carbide solid C.

The equilibrium composition that would match these observations corresponds to the

temperature range from 2000 to 1800 K. Accordingly, the reaction rates may be fast

enough to allow equilibrium to be maintained as the temperature decreases to 2000-1800

K, where the rates may be slow enough for the mixture composition to be frozen. The

reaction products are therefore hypothesized to be quenched down to room temperature

from somewhere in the 2000 to 1800 K temperature range. However, despite the

agreement with experimental data, the detection of small amounts of Mg2C 3, MgC 2 and

C2, C3 and C4 hydrocarbon species in the final products suggests that complete

thermodynamic equilibrium is not attained in the plasma reaction.
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In Section 3.2.5, the dilution of the MgO-CH4 system with 15 1/min Argon has

been shown to increase the conversion of MgO "Mg" to Mg from an average of 52 to

82%. CH 4 "H" conversion to H2 is likewise observed to proceed to virtual completion

from an average of 84% while CH4 "C" conversion to CO is enhanced from 71 to 82%.

These observations are consistent with Le Chatelier's Principle, the effect being similar to

that of a system pressure reduction.

The equilibrium diagram for the 1.15 MgO + 1 CH 4 + 1.92 Ar system,

corresponding to the 10 1/min CH 4 condition with 4.2 1/min Ar carrier gas plus 15 1/min

Ar dilution, is presented in Figure 4-3. In comparison to Figure 4-2, Figure 4-3 shows

that there is a slight reduction, from 2000 K to 1950 K, in the temperature at which Mg is

favored to start to react to form MgO at the expense of CO according to Reaction (4-7).

To compare the effect of Argon dilution to one of reduced system pressure, the

thermodynamic equilibrium composition diagram for 1.15 MgO + 1 CH 4 was also

prepared on an Argon-free basis at the lower system pressure of 0.34 atm, equivalent to

the original inlet conditions with inert gas dilution. The same effect, although more

pronounced, is seen in the equilibrium diagram for this system at 0.34 atm, shown in

Figure 4-4. The temperature at which Mg can start to reoxidize is decreased from around

2000 K at 1 atm system pressure to 1900 K in the Ar-free system at 0.34 atm. Similarly,

the temperature at which MgO can first start to form by the reaction of Mg with H20

according to Reaction (4-3) is reduced by about 100 K.

With a reduction in the temperature at which Reaction (4-7) begins, the product

composition is then richer in Mg and CO at the temperature from which the products are

quenched, assuming that the plasma effluent is quenched at the same rate from the same

temperature range of 2000 to 1800 K. Thus, the thermodynamic analysis is consistent

with the observation of higher Mg and CO yields upon addition of Argon.
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Figure 4-3. Thermodynamic Equilibrium Diagram for 1.15 MgO + 1 CH 4 + 1.92 Ar
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Figure 4-4. Thermodynamic Equilibrium Diagram for 1.15 MgO + 1 CH 4 (0.34 Atm)
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Kim (1977) postulated that the formation of CaC2 can be enhanced by H atoms

which can directly reduce CaO to Ca and H20. With the large yields of H2 resulting from

the nearly complete conversion of CH 4, the recycling of H2 as a potential source of H

atoms to enhance the reduction of MgO to Mg may be of practical interest from a process

point of view. The addition of H2 to the MgO-CH 4 system can improve the formation of

Mg, according to the reverse of Reaction (4-3). Thus, thermodynamic calculations were

performed for the 1.15 MgO + 1 CH 4 + 0.42 Ar + 2 H2 reaction system to simulate full

recycling of H2 back into the system. The results of these calculations are presented in

the equilibrium diagram in Figure 4-5. Although the temperature at which MgO first

forms is decreased from 2600 to 2500 K (also possibly due to a system pressure reduction

effect), Mg depletion via Reaction (4-7) still dominates at 2000 to 1800 K. Therefore, the

recycling of H2 back into the process is not expected to increase Mg yields significantly

given the same quenching rate.
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The equilibrium diagram for the 0.46 MgO + 1 CH4 + 0.42 Ar reaction system is

shown in Figure 4-6. With a substoichiometric initial amount of MgO in the system,

there is still appreciable atomic gaseous C at 6000 K, after complete reaction with atomic

O to form CO according to Reaction (4-1). The atomic C species is steadily depleted by

the formation of C2 starting at 5600 K, formation of C2H beginning at 5000 K and

formation of C2H2 starting at 4200 K:

2 C (g) - C2 (g) Reaction (4-8)

2C(g) (g ) (g) C2H (g) Reaction (4-9)

2 C (g) + 2 H (g) - C2H2 (g) Reaction (4-10)

C2 and C2H can also be consumed by reaction with H via:

C 2 (g) + H (g) C2H (g) Reaction (4-11)

C 2H (g) + H (g) - C2H2 (g) Reaction (4-12)

and solid C is formed starting at 3150 K by:

½ C2H (g) -> C (s) + /4 H2 (g) Reaction (4-13)

½ C2H2 (g) - C (s) + /2 H2 (g) Reaction (4-14)

Magnesium exists completely as atomic gaseous Mg above 1850 K, in contrast to the

1.15 MgO + 1 CH4 + 0.42 Ar reaction system at 1 atmosphere, where about 15% of the

magnesium already exists as MgO from 2600 to 2000 K. The backward reaction of

magnesium with carbon monoxide via Reaction (4-7) starts at a lower temperature of

1850 K and is complete at 1600 K. Neither Mg2C3 nor MgC 2 exists at equilibrium in

significant amounts over the entire temperature range. With enough carbon to keep

oxygen from reacting with Mg above 1850 K, the product composition is then richer in

Mg at the temperature from which the products are possibly quenched. Again, the
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thermodynamic analysis is consistent with the observation of higher Mg and lower CO

yields when the MgO is stoichiometrically deficient.

Under similar initial experimental conditions, the average extents of conversion in

the plasma reactor are 68% for MgO "Mg" to Mg, 3% for MgO "Mg" to Mg2C3, 83% for

CH4 "H" to H2, 42% for CH4 "C" to CO and 25% for CH4 "C" to non-carbide solid C.

The extents of conversion to Mg and CO would still roughly correspond to the same

temperature of 2000 to 1800 K. The reaction products are thus proposed to be quenched

down to room temperature from somewhere in the 2000 to 1800 K temperature range,

although the detection of magnesium carbides and other hydrocarbons also suggests that

full equilibrium at these temperatures is not reached.
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Figure 4-7 shows the equilibrium diagram for the 1.15 MgO + 1 CH 4 + 0.4 C +

0.42 Ar reaction system, corresponding to the inlet conditions of the experiments with the

MgO feed doped with graphite. With the addition of solid carbon in the reactants, MgO

is no longer stoichiometrically deficient. All the magnesium exists as atomic gaseous Mg
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above 2000 K, as there is sufficient carbon to keep the oxygen bound as CO above this

temperature.

Under similar experimental conditions, the average extents of conversion in the

plasma reactor are 66% for MgO "Mg" to Mg, 3% for MgO "Mg" to Mg 2C 3, virtually

complete for CH4 "H" to H2, 72% for CH 4 "C" to CO and 10% for CH 4 "C" to non-

carbide solid C, which would correspond to the product composition in the 2000 to 1800

K range. Consistent with analysis of the other experimental systems studied, the reaction

products are presumed to quenched down from the 2000 to 1800 K temperature range.
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Figure 4-7. Thermodynamic Equilibrium Diagram for
1.15 MgO + 1 CH 4 + 0.4 C + 0.42 Ar

4.2 Mg-C-H-Ar System

The 0.7 Mg + 1 CH4 + 0.42 Ar system was also investigated in the plasma reactor to test

the feasibility of carbide formation in the absence of oxygen. The thermodynamic

equilibrium diagram for this system is presented in Figure 4-8. As in the analysis of the
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Mg-C-H-O-Ar system, the formation of Mg 2C 3 and MgC2 is found not to be

thermodynamically favored even in the absence of oxygen. Reactions (4-8) to (4-10) in

the 0.46 MgO + 1 CH4 + 0.42 Ar reaction system are also possible reactions pathways for

atomic carbon depletion in this system. However, without oxygen, the C2, C2H and C2H2

species are more abundant. In addition, C3 starts to form at around 5200 K according to:

C (g) + C2(g) --> C3 (g) Reaction (4-15)

and solid carbon formation begins at a higher temperature of 3350 K.

Based on the experimentally observed products composed of H2, solid C and Mg,

with small amounts of other hydrocarbon species, the probable quenching temperature

window is a much wider. The equilibrium diagram shows that the product mix and

composition are relatively invariant from 2400 K down to 1400K. Thus, the plasma

effluent was presumably quenched somewhere in this temperature range.
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4.3 Ca-C-H-O-Ar System

The equilibrium calculation results for the 0.34 CaO + 1 CH 4 + 0.42 Ar reaction system

significantly differ from those of the previous MgO systems with the formation of a solid

carbide phase. The thermodynamic equilibrium diagram for this system is shown in

Figure 4-9. According to this diagram, solid calcium carbide starts to form at 2700 K via:

Ca (g) + 2 C (s) -> CaC2 (s) Reaction (4-16)

But at 2000 K, the carbide starts to decompose according to:

CaC2 (s) + CO (g) -_ 3 C (s) + CaO (s) Reaction (4-17)

which is complete at 1700 K.

Experimental results show that the products of this system are composed of CaC2,

CO, H2, C2H2 and non-carbide C. Furthermore, compared to the Mg-C-H-O-Ar system,

the product selectivity of this system is higher in that no other hydrocarbon species are

detected even in minute quantities. The average extents of conversion are 39% for CH 4

"C" to CaC2, 38% for CH 4 "C" to CO, 11% for CH4 "C" to C2H2, 80% for CH4 "H" to H2,

17% for CH 4 "C" to non-carbide C and 58% for CaO "Ca" to CaC2. These

experimentally observed extents of conversion suggest a quenching temperature in the

2800 to 2200 K range.
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188



That solid carbon is more thermodynamically favored to form starting at 3200 K

before CaC2 is noteworthy. The formation of carbon in the solid phase in this system is

represented by Reactions (4-13) and (4-14). Pfender and Chang (1987) have postulated

that solid carbon will not form from C2H at temperatures down to 2000 K according to

Reaction (4-13) and will not form at all from C2H2 according to Reaction (4-14). This is

because the log Kp for Reaction (4-13) is only 1.17 at 2500 K and 2.8 at 2000 K while the

log Kp for Reaction (4-14) is -5.48 at 2000 K and -8.28 at 1500 K (Chang and Pfender,

1987). Homogenous nucleation from the gas phase occurs appreciably only when the

supersaturation ratio S exceeds a critical value. With S proportional to the equilibrium

constant Kp for a deposition reaction, a higher log Kp would entail a higher S. Thus, they

used log Kp for predicting precipitation at various temperatures.

Using classical nucleation theory, Chang and Pfender (1987) proposed a

modification to the standard technique of Gibbs free energy minimization for predicting

the composition of products from thermal plasma reactions to account for the dominating

effect of nucleation kinetics which is a non-equilibrium effect. In their approach, species

with low supersaturation pressures are considered unlikely to precipitate and are excluded

from the calculations. The nucleation rate of liquid droplets from the supersaturated

vapor is dependent on temperature and on surface energy. For inorganic solids with

surface energies on the order of 103 ergs/cm2 , production of droplets requires a

supersaturation ratio as high as 10' (Hecht et al., 1980). Thus, they used a log Kp of 5 as

a criterion for powder formation from deposition reactions.

Applying this technique to the Ca-C-H-O-Ar system, the formation of solid

carbon is suppressed by eliminating this species altogether in the equilibrium

calculations. Figure 4-10 shows the quasi-equilibrium diagram of the system without

free carbon formation. Calcium carbide can start to form at 3000 K through:

Ca (g) + C2H2 (g) CaC2 (s) + H2 (g) Reaction (4-18)

Ca (g) + C2H (g) - CaC2 (s) + H (g) Reaction (4-19)
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The calculated log Kp values for Reaction (4-18) are 1.76 at 3000 K, 3.22 at 2500

K and 5.46 at 2000 K. Those for Reaction (4-19) are 1.54 at 3000 K, 3.05 at 2500 K and

5.38 at 2000 K. Therefore, CaC2 should be able to form and nucleate via the above

reactions at temperatures from 3000 K down to as low as 1500 K. In contrast to the

conventional equilibrium calculations, the backward reaction of CaC2 with CO through

Reaction (4-17) does not occur until the temperature is down to about 1400 K. The

proposed quenching temperature range is not significantly affected, as the yields of CaC2,

CO, H2 and C2H2 would still match the quasi-equilibrium amounts in the 2800 to 2000 K

temperature range.

4.4 Mg-Ca-C-H-O-Ar System

The thermodynamic equilibrium diagram for the 0.2 MgO + 0.2 CaO + 1 CH 4 + 0.42 Ar

reaction system in Figure 4-11 shows that a combined MgO-CaO feed in a methane

plasma reaction system will have a combined product stream of Mg, CaC2, CO and H2.

Neither Mg2C3 nor MgC 2 is favored to form in this system. MgO can start to form at the

expense of Mg and CO at 2000 K as represented by Reaction (4-7). Similarly, CaO can

form at the expense of CaC2 and CO at 2000 K as represented by Reaction (4-17).

However, the formation of CaO occurs over a much narrower temperature range than the

formation of MgO. The reaction of CaC2 with CO is complete at 1900 K whereas Mg is

fully converted to MgO only at 1500 K. Thus, Mg appears to be even more stable than

CaC2 in the presence of CO below 2000 K. A probable non-equilibrium explanation for

the experimentally observed higher CaC2 stability relative to Mg in the presence of CO is

a possibly much slower rate of the heterogeneous reverse reaction of CaC2 with CO

according to Reaction (4-17) compared to the homogeneous backward reaction of Mg

with CO via Reaction (4-7).
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The formation of solid carbon at 3200 K from C2H2 and C2H again precedes the

formation of the solid calcium carbide phase, as in the previous system. Applying Chang

and Pfender's approach, the quasi-equilibrium diagram of the same system with carbon

formation suppressed is shown in Figure 4-12. The depletion of Mg by reaction with CO

starts at a much lower temperature of 1800 K and is complete at 1500 K. On the other

hand, the formation of CaC2 commences at 2900 K and its backward reaction with CO

begins only at 1500 K (when all the Mg has been converted to MgO), reaching

completion at 1000 K.

Experimentally, the observed average extents of CH 4 "C" conversion are 47% to

CO, 19% to CaC 2, 6% to C2H2, 10% to non-carbide C and 1% to Mg 2C 3. The mean CH 4

"H" conversion to H2 is 91%. The CaO "Ca" conversion to CaC2 is 47% and the MgO

"Mg" conversion to Mg is 65%, on average. Based on Figure 4-12, this product

composition would correspond to a temperature range of 2000 to 1600 K. The plasma

effluent is therefore believed to be quenched down to room temperature from this

temperature range.
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4.5 Accuracy and Sensitivity Analysis of

Thermodynamic Calculations

The accuracy of the thermodynamic analysis was assessed by comparison with well-

established equilibrium calculations. Equilibrium composition calculations using HSC

Chemistry were benchmarked against the calculations of Chang and Pfender (1987) on

the 2CH 4 _ C2H2 + 3H2 reaction system. Chang and Pfender used a modified program

based on SOLGASMIX (Besmann, 1977). Quasi-equilibrium calculations for the case

where solid carbon formation is suppressed were also performed. The results of these

calculations using HSC Chemistry, shown in Figures 4-13 and 4-14, are found to be

virtually identical to the results of Chang and Pfender (1987). The original plots of

Chang and Pfender can be found in Ref. 9.
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Figure 4-13. Thermodynamic Equilibrium Diagram for 2 CH 4 -> C2H2 + 3 H2
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Figure 4-14. Thermodynamic Equilibrium Diagram for 2 CH 4 -> C2H2 + 3 H2 with
Solid Carbon Formation Suppressed

To the extent that thermodynamic properties of the different species in the

reaction systems of interest have uncertainties, a sensitivity analysis of the equilibrium

calculations to these thermodynamic properties would help in establishing a level of

confidence for interpretation of the results. A simple sensitivity analysis of the

equilibrium calculations for the 0.46 MgO + 1 CH4 + 0.42 Ar reaction system to the

standard heat of formation of MgO, A Hf, gO, was performed to gain an insight on the

robustness of these calculations. The standard heat of formation of MgO at 298.15 K,

A HfMgo (298.15 K), is reported as -601.241 kJ/mol with an uncertainty of ± 0.63 kJ/mol

or about 0.1% (JANAF Tables, 1985). Equilibrium calculations were carried out using

heats of formation of MgO at 298.15 K that are 10% below and 10% above this standard

value over the 6000 to 300 K temperature range. The resulting equilibrium diagrams are

presented in Figures 4-15 and 4-16. The baseline diagram for comparison is Figure 4-6.



In Figure 4-6, the temperature window for the backward reaction of Mg with CO

to form MgO and C is 1900-1600 K. In Figure 4-15 where A Hf,go (2 9 8 .15K)

0.9A HMgo (298.15K), this temperature window was shifted down to 1700-1400 K,

whereas in Figure 4-16 where A Hf, Mg (298.15K) = 1.1A Hf'MgO (298.15K), the window

was shifted up to 2100-1800 K. Thus, the 10% change in standard heat of MgO

formation resulted in shifts of the equilibrium composition in both directions by about

200 K. These shifts would entail significantly different postulated quenching

temperatures. Thus, although the reported uncertainties in the standard heat of formation

of MgO are actually two orders of magnitude smaller, the results of this sensitivity

analysis should serve as a caution and should be kept in mind when interpreting any

thermodynamic equilibrium calculation results.
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Figure 4-15. Thermodynamic Equilibrium Diagram for 0.46 MgO

AHf,Mgo (298.15K) = 0.9 AH,mgo (298.15K)

5000 6000

+ 1 CH 4 + 0.42 Ar with
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Chapter 5

Mechanistic Interpretation and

Practical Implications

A mechanism for the formation of magnesium metal from the overall reaction of MgO

with CH 4, depicted in Figure 5-1, is proposed in order to shed some light on the complex

physico-chemical nature of the plasma reaction. The mechanism is deduced from

experimental observations, thermodynamic analysis and mass transfer considerations.

Since plasma temperatures may exceed 104 K, the assumption of full vaporization of

reactants into atomic species is justified as long as the reactants have sufficient residence

time in the plasma reactor (Chang and Pfender, 1987). For the present reactor system,

residence times have been estimated to be on the order of 2 to 5 ms. These estimates are

based on assumptions of an average gas temperature of 6000 K, complete conversion of

the methane reactant to hydrogen and a reactor volume consisting of the 3-in. long, 1-in.

diameter cylindrical volume from the base of the cathode tip to the anode nozzle exit.

Chemical reactions are considered to proceed as the reaction system cools down

from 6000 K to below 1000 K. Although an electrical arc discharge generates free

electrons and ions (in addition to neutral radicals) which have a higher chemical potential

than the original reactants, the proposed mechanism does not explicitly include these

species because most atomic gases are not sufficiently ionized below 6000 K.
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CH 4(g)

CH 4(g) -+ C(g) + 4H(g)

MgO(s) -- MgO(g)

MgO(g) -> Mg(g) + O(g)

C(g) + O(g) -> CO(g)

MgO(s) + C(g) -> Mg(g) + CO(g)

Rapid Quenching
>6000 K -* <1000 K
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H(g) -+ /2 H2(g)

O 0.1-1 Itm Mg(g) -+ Mg(s) Mg(g) + CO(g) -+ MgO(g) + C(g)

MgO(s) C(s)

Figure 5-1. Proposed Overall Mechanism for Mg Formation
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As the reaction system exits the anode nozzle, it is rapidly quenched from plasma

temperatures by expansion into the cooling chamber and with the application of Argon

quench gas at the tip of the sample collection probe. Quenching rates for this system

have been estimated to be on the order of 104 to 106 K/s. The contribution of the Argon

quench gas injected at the probe tip is not expected to be significant because solid

products collected from the chamber walls and bottom show indications of magnesium

metal content comparable to samples collected through the probe.

5.1 Reactant Evaporation and Decomposition

The gaseous methane reactant, upon introduction into the electric arc discharge, absorbs

energy through inelastic collisions which is channeled into the instantaneous production

of atomic, radical and ionic species. With plasma temperatures above 104 K, methane is

dissociated into atomic C and H species, according to the following path:

2 CH4 * C2H6  C2H4 -C C2H2 - 2 C + H2  Reaction (1-24)

+ H 2  + H 2  + H2

which is very rapid at temperatures above 1500 K.

The initiation step of methane decomposition follows one or both of the following

reactions (Chen et al., 1975):

CH 4  CH 3 + H AH 2 98 K= 435 kJ Reaction (1-25)

CH 4  -+ CH2 + H2  2 98 K = 464 kJ Reaction (1-26)

The CH 3 and CH 2 radicals are transient species and do not exist in significant quantities

in thermodynamic equilibrium even at temperatures substantially greater than 2000 K.

When allowed to reach thermodynamic equilibrium, the reaction mixture ultimately

decomposes to C and H2. Chen et al. (1975) calculated the overall activation energy in

the pressure-independent region based on Rice-Ramsperger-Kassel-Marcus (RRKM)



theory to be 448 kJ/mol assuming that the initiation step is Reaction (1-25). Kim (1977)

postulated that the presence of a critical specific gas energy in his experiments

corresponds to the activation energy of the initiation step of methane decomposition

when an outburst of atoms and free radicals of carbon and hydrogen occurs. The high

enthalpy but thermodynamically unstable species thus liberated then diffuse to the solid

particles to form more stable species by recombination or decomposition or by direct

reaction with CaO to form CaC2.

Although no analogous critical specific gas energy for magnesium metal

formation was observed in the present study, the calculated specific gas energies of more

than 1500 kJ/g atom C nevertheless exceed the overall activation energy for methane

decomposition. Thus, there is more than sufficient energy in the electric discharge for

methane decomposition.

For the 100 .Im MgO particles, two possible pathways for decomposition are

considered. Upon introduction into the plasma, the oxide particles are heated very

rapidly. MgO can vaporize in the plasma environment and then dissociate into its

constituent atomic species, Mg and 0:

MgO (s) - MgO (g) Reaction (5-1)

MgO(g) - Mg (g)+ O (g) Reaction (5-2)

MgO (s) - Mg (g) + O (g) AH = 1,250 kJ Reaction (5-3)

298 K 6000 K

The time scale for complete evaporation of a 100 ý.m MgO particle is evaluated

assuming, for simplicity, that the particle is spherical and is at an average gas temperature

of 6000 K. For vapor diffusion from an evaporating solid into the surrounding gas:

-1 dN-- dNt- = h(C, -Cc) Equation (5-1)47rr 2 dt
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where NMgO is the number of moles of diffusing MgO vapor, r is the radius of the particle,

t is time, h is the mass transfer coefficient and C is the concentration of the diffusing

species. The subscripts s and oo refer to the surface of the particle and to infinite distance

from the particle, respectively. The boundary conditions for this problem are C, =

PMgo/RT at r = 50 ptm and Co = 0 at r = 00, where PmgO is the partial pressure of MgO,

taken to be 1 atm, R is the universal gas constant and T is the temperature.

Substituting p(4ffr3/3)/M for NMgo, where p is the density of MgO, 4zrr3/3 is the

volume of a spherical particle with radius r and M is the molecular weight of MgO,

Equation (5-1) reduces to:

Sp dr h(C - C) Equation (5-2)
M dt

For droplet evaporation, Ranz and Marshall (1952), whose experiments were confined to

Reynolds numbers of 0-200, give the following correlation:

hd
- 2.0 + 0.6N / 2 N 3  Equation (5-3)

D Re Sc

where d is the diameter of the droplet, D is the binary diffusion coefficient, NRe is the

Reynolds number and Ns, is the Schmidt number. When particles are injected into a

plasma jet, the particles are initially accelerated but, as the velocity of the plasma jet

decays, the particle velocity will exceed the velocity of plasma flow due to inertia.

Between these two regimes, the particle and the plasma have a relative velocity that

approaches zero (Chen and Pfender, 1982). Thus, NRe can be taken as zero and Equation

(5-3) simplifies to:

hd
- 2.0 Equation (5-4)

D
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The binary diffusion coefficient, D, can be evaluated for a mixture of MgO and H2

according to the equation developed by Fuller et al. (1966):

1.013x10-
7 T1.75  1+ 1 M1/2

M Mj
DA-B - 1/3 A 1/3 -2 Equation (5-5)

where DA-B

T

MA, MB

P

A B

= binary diffusivity of a vapor mixture of species A and B, m2/s

= temperature, K

= molecular weights of species A and B

= total pressure, bar

= summation of the special diffusion volume coefficients for A and B

Substituting Equation (5-4) in Equation (5-2) gives

p dr D(C)

M dt r
Equation (5-6)

which, when integrated from r = r, = 50 p~m at t = 0 to r = 0 at t = ze, the time scale for

complete evaporation, results in:

r2 pRT
2DMP

MgO

Equation (5-7)

When appropriate values are substituted in Equation (5-7), the time for complete

evaporation of a 100 ýtm spherical MgO particle, ze, is determined to be 4.3 ms. This

time scale does not include the time required for additional processes such as initial

heating or melting. For comparison, Chen and Pfender (1982) considered the effect of

evaporation on the heat flux to a particle exposed to steady-state plasma conditions. For a

50 p~m diameter particle exposed to an Argon plasma at 12,000 K, they reported a time

204



scale for complete evaporation of 41.5 ms for an alumina particle and 50.2 ms for

graphite. Kitamura et al. (1992) studied steady-state heat conduction of a spherical

particle in a uniform 10,000 K plasma and calculated the time scales for complete

evaporation of a 100 ptm diameter Fe20 3 particle to be 17.4 ms in an Ar plasma, 1.4 ms in

an H2 plasma and 2.1 ms in an N2 plasma.

Given residence times on the order of 2 to 5 ms, a time scale of 4.3 ms would

seem to be insufficient for complete evaporation of 100 ýpm MgO particles. Thus, MgO

depletion according to the proposed pathway of vaporization followed by decomposition

into atomic species is not likely to be significant. Rather than accounting for the MgO

disappearance by evaporation, an alternative pathway for MgO consumption is by the

heterogeneous reaction of C vapor with the solid MgO particles according to a shrinking

particle model:

MgO (s) + C (g) Mg (g) + CO (g) H298 K = -79 kJ Reaction (5-4)

The observations of higher magnesium yields upon doping of the MgO with graphite and

of the inverse trends in CO and non-carbide C yields support this mechanism for

magnesium vapor formation. The higher CH4 "C" conversion to non-carbide C at higher

CH 4 flow rates also suggests that the carbon vapor may not have sufficient residence time

for reaction with the MgO. Since experimental observations from SEM and STEM

analyses of solid samples from lower CH4 flow rate runs do not show indications of

unreacted MgO particles in the solid products collected, Reaction (5-4) is believed to go

to completion under these conditions.

5.2 Nucleation and Growth of Magnesium Particles

The magnesium vapor formed by dissociation of MgO (Reaction (5-3)) and by MgO

reaction with carbon vapor (Reaction (5-4)) is rapidly quenched from plasma

temperatures greater than or equal to 6000 K down to 1000 K or lower, together with

atomic carbon and hydrogen in the gaseous state. Any carbon vapor that did not have
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sufficient residence time to react with the MgO or that was in stoichiometric excess

would be precipitated as solid carbon. Any remaining H atoms, on the other hand, once

quenched, would rapidly react to form molecular hydrogen. CO is postulated to form

primarily via Reaction (5-4), although some of it is also formed from its constituent

atomic species above 6000 K, as suggested by the thermodynamic analysis. CO remains

stable down to around 2000 K, when the backward reaction with Mg becomes favorable.

Rapid quenching of the plasma effluent is crucial to attaining the desired products

particularly if the desired composition corresponds to equilibrium at high temperatures

and is drastically different at low temperatures. The species which are stable at high

temperatures may undergo undesirable transformations if cooled gradually to room

temperature. The pyrolysis of methane for acetylene formation is a good example of how

rapid quenching preserves the equilibrium composition corresponding to high

temperatures. If the quenching rate is inadequate, the acetylene formed at high

temperatures is transformed to carbon and hydrogen. Similarly, the magnesium metal

vapor formed from the plasma reaction of MgO and CH4 will be reoxidized by CO back

to MgO and form C, if the reaction mixture were allowed to cool down gradually.

The rapid quenching of the plasma product species in the vapor state gives rise to

a high supersaturation, which, in turn, leads to homogeneous nucleation (Granqvist et al.,

1976). Since nucleation rates increase very sharply with decreasing temperature, the

particles produced will all solidify within a small temperature range (McPherson, 1973;

Young and Pfender, 1985). The observation of high yields of magnesium in the solid

products supports nucleation and condensation as the primary pathway for magnesium

vapor depletion. Furthermore, STEM and SEM analyses which revealed submicron

hexagonal magnesium crystals suggest that the magnesium particles were directly

crystallized from the vapor phase. Crystallization in a cooling environment occurs at a

temperature substantially below the solid melting point T, (Young and Pfender, 1985).

Turnbull (1950) experimentally found that the solidification temperature of a group of

isolated particles is 0.82 T, for a wide range of metals in the 10 to 1000 ýpm particle size

range at slow cooling rates (<103 K/s). McPherson (1973) postulated a solidification

temperature lower than 0.82 T, for plasma-prepared particles which are subjected to
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much higher quenching rates. This would suggest that the plasma effluent in the present

study was quenched down to lower than 0.82(923 K) or 757 K.

For a decaying plasma containing only supersaturated vapor, homogeneous

nucleation will occur. However, even in the presence of heterogeneous nuclei or

remaining condensed material that can act as condensation sites, homogeneous nucleation

is still the dominant mechanism for particle formation from vapor phase reactions,

(Young and Pfender, 1985; Chang and Pfender, 1987). Heterogeneous nucleation would

occur to some extent, as was observed by Kong et al. (1986) in the thermal cracking of

methane in a free-burning Argon arc. With pure methane injection, the carbon product

was amorphous but, with the addition of a small amount of graphite powder in the

methane, only graphitic carbon was found.

In the case of homogeneous nucleation, Dahlin et al. (1981) and Chang and

Pfender (1987) describe the particle formation process as a series of events. First, the

gas-phase reaction proceeds until a critical supersaturation ratio is exceeded. Nucleation

then occurs like a burst over a very short period of time (10-6 s). When nucleating species

are depleted by diffusion to newly formed particles, the nucleation terminates and the

particles continue to grow by physical condensation and particle coagulation.

Based on the STEM and SEM results, the magnesium particles are postulated to

crystallize after nucleation from the supersaturated magnesium vapor. These particles

then grow by condensation of vapor as well as of smaller particles on the surface of larger

particles. The observations of tiny scale-like particles on the surface of larger hexagonal

crystals are consistent with this proposed sequence.

The time scale for nucleation and growth of magnesium particles from the vapor,

which represents the first of two pathways for metal vapor depletion presented in Figure

5-1, is considered here. The second path which involves reoxidation by CO will be

discussed in the next section.

The rate of homogeneous nucleation depends on the net number of molecular

clusters per unit time that grow beyond a critical nucleus size. At this critical size, the

cluster's growth rate equals its decay rate. Clusters that grow larger than the critical

nucleus are likely to grow to macroscopic size while those smaller than the critical size
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tend to evaporate. The critical nucleus size, dc, is given by the Kelvin relation

(Friedlander, 1977):

4ov
dc = pi Equation (5-8)

RT ln
P,

where c is the surface tension, v is the molar volume, R is the universal gas constant, T is

temperature, Pi is the equilibrium vapor pressure of a drop of species i, taken to be equal

to the partial pressure of i in the gas mixture, and Pv is the vapor pressure of i above a flat

surface.

The critical nucleus size, dc, is now determined for magnesium nucleating from a

supersaturated gas that is rapidly quenched to the metal melting point of 923 K. The gas

is assumed to be composed of 25% Mg, 25% CO and 50% H2, corresponding to complete

reaction of stoichiometric inputs of MgO and CH4. Thus, at a system pressure of 1 atm,

Pi is 0.25 atm or 190 mm Hg. At the melting point, the surface tension of magnesium is

559 mN/m and the liquid density is 1.59 g/cm 3 (Smithells and Brandes, 1976). The vapor

pressure of magnesium at 923 K is 2.75 mm Hg (Emley, 1966). Substituting these values

into Equation (5-8) gives a critical nucleus size of 10.5 A.

The time scale for a nucleus to reach this critical size is governed by gas phase

kinetics. For a nucleating particle, the molar flux is equal to the root-mean-square (rms)

velocity of the gas, vms, times the concentration, C, of the species in the gas phase

corrected by a factor of 1/3 for the directional component of velocity resulting in effective

collisions:

1 dN 1
A dt =3 vmsC Equation (5-9)

where N is the number of moles of nucleating species over a surface area A. Assuming a

spherical nucleus and substituting p(4zrg3/3)/M for N, 4r2 for A, ý3RT/M for v,,n, and

PMIRT for C, where p is the density of Mg, 4)7r3/3 is the volume of a spherical particle

208



with radius r, M is the molecular weight of Mg and PMg is the partial pressure of

magnesium in the gas mixture, Equation (5-9) can be written as:

p dr 1 3RT Pmg
Equation (5-10)

Mdt 3 M RT

Integrating Equation (5-10) from r = 0 at t = 0 to r = dc/2 = r, at t = 1, the time scale for

nucleation, gives

3RT p
rf = PMg r Equation (5-11)

Solving for z at 923 K and at PMg = 0.25 atm results in a time scale for nucleation of 3.2

x 10-8 s.

The growth of the particle beyond the critical nucleus size by condensation is

controlled by diffusion. Analogous to the evaporation of a droplet, the diffusion of

magnesium vapor to the growing spherical particle assumed to be at the metal melting

point is described by:

p dr )h(C - C) Equation (5-12)

where p is the density of magnesium, r is the radius of the particle, t is time, h is the mass

transfer coefficient and C is the concentration of magnesium vapor. The subscripts oo and

s refer to infinite distance from the particle and to the surface of the particle, respectively.

The boundary conditions for this problem are Co = PMgRT at r = oo and C, = 0 at r = rp.

Equation (5-4) is used to determine h, assuming a zero relative velocity between the

particle and the gas. The binary diffusion coefficient, D, is evaluated for a mixture of Mg

and H2 according to Equation (5-5).

Substituting Equation (5-4) in Equation (5-12) gives
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p dr D(C)
M dt r

Equation (5-13)

Integrating Equation (5-13) from r = r, = 5.25 A at t = -, = 3.2 x 108- s to r = r, = 0.5 pm

at t = Tg, the time for a magnesium particle to grow to a conservatively large diameter of 1

r 2 2 pRTr1 = 2 +  
T,

Z- 2) DMPMg
Equation (5-14)

gives a total time scale of 4.7 x 10-6 S.

5.3 Backward Reaction of Mg Vapor with CO

The second pathway for magnesium vapor depletion is by the backward reaction with CO

which, according to the thermodynamic analysis, starts at around 2000

Mechanistically, this involves the homogeneous reaction:

Mg (g) + CO (g) -- MgO (g) + C (g) AH2000 K = 763 kJ Reaction (5-5)

followed by rapid precipitation of the supersaturated MgO and C vapor:

-- MgO (s)

-) C (s)

A•2000 K = -654 kJ

AH2000K = -717 kJ

Reaction (5-6)

Reaction (5-7)

The overall combined reaction of Reactions (5-5) to (5-7) is Reaction (4-7)

Mg (g) + CO (g) - MgO (s) + C (s) AllH2000K = -608 kJ Reaction (4-7)

which is highly exothermic.
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The experimental results suggest that the dominant pathway for magnesium vapor

consumption is by nucleation and condensation and that the loss of magnesium via

Reaction (5-5) is not as significant. The relative rates of these two pathways are now

assessed. Having estimated zg, the time needed for a magnesium particle to grow to a

maximum diameter of 1 jLm, the extent of Reaction (5-5) can be determined during this

time scale. If the nucleation and condensation kinetics are indeed faster the kinetics of

Reaction (5-5), the magnesium vapor concentration at the end of zg should not be

significantly different from the initial concentration of the supersaturated vapor.

The rate of the bimolecular homogeneous reaction of Mg with CO, dCMg/dt, is

given by

dCM
- = kCMgCco

Equation (5-15)

where k is the rate constant, CMg is the concentration of magnesium vapor and Cco is the

CO concentration. For equimolar initial concentrations of Mg and CO, which correspond

to a complete reaction of stoichiometric inputs of MgO and CH 4, Equation (5-15)

simplifies to

dCMg 
k-kC2

dt Mg
Equation (5-16)

Integrating Equation (5-16) from t = 0 to t = Tg yields

1 1

C C
Mg,f Mg,i

Equation (5-17)

where the subscriptsf and i on CMg refer to the final and initial values, respectively.



The final magnesium vapor concentration, CMgf, can be calculated from Equation

(5-17) given CMg,i and Vg, if the rate constant k is known at the temperature of interest.

The temperature dependence of k is given by the Arrhenius equation

k = Ae - E /IRT Equation (5-18)

where E, is the activation energy. Although a literature search uncovered the work on the

oxidation of magnesium with a CO/CO2 mixture by several workers (Shafirovich et al.,

1992; Yuasa and Fukuchi, 1994; Fukuchi et al., 1996), no experimentally determined

values of the rate constant k for homogeneous Reaction (5-5) or Reaction (4-7) was

found.

In the absence of empirical data on the kinetics of Reaction (5-5) or Reaction (4-

7), k can be estimated from the kinetic theory of collisions. According to collision

theory, the pre-exponential factor, A, corresponds to the collision frequency factor, z,

multiplied by the steric factor, p, which represents the fraction of properly energized

collisions with the geometry effective for chemical reaction (Benson, 1976; Laidler,

1987):

k = pze- /IRT Equation (5-19)

For bimolecular reactions, the collision frequency factor, zAB, for two unlike molecules A

and B is given by

1/2
z Nt2 8RT

ZAB AB - /l Equation (5-20)

where dAB is the distance between the centers of mass of A and B in the collision

complex, N is Avogadro's number and -fAB = MAMJ(MA + MB) is the reduced molar mass

of the colliding pair.
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As a first approximation, k is estimated with z, assuming p to be one and Ea to

approach zero. The high exothermicity of Reaction (4-7) would justify the latter

assumption. Such approximation then gives an upper limit for k. For the bimolecular

reaction of Mg and CO, dMg-co = rMg + rco = 3.33 A where rMg is the atomic (covalent)

radius of Mg = 1.45 A (Gillespie et al., 1986) and rco is the collision radius of CO =

1.8815 A (Hirschfelder et al., 1954). rco is taken as half the separation distance, a, at

which the Lennard-Jones potential is zero at an effective temperature of c/k = 100 K,

where E is the depth of the well and k is Boltzmann's constant. At T = 2000 K, ZMg-CO is

determined to be 3.8 x 1014 cm 3/mol-s. Substituting this value for k in Equation (5-17),

PMg/RT = 0.25 atm/[R(2000 K)] for CMgi and 4.7 x 10-6 S for zg, the final magnesium

partial pressure is estimated to be 9.2 x 10-5 atm. However, such an estimate implies that

virtually all the magnesium vapor would react with CO within the time scale zg, contrary

to experimental observations. For a rg of 4.7 x 10-6 s and an MgO "Mg" conversion to

Mg of 60%, k would need to take on a value of 9.3 x 1010 cm3/mol-s, which is four orders

of magnitude lower than that predicted by collision theory. Therefore, the use of ZMg-co to

approximate k does not appear to be valid.

A much slower rate of reaction between Mg and CO is conceivable if the reaction

is taking place in its pressure-dependent region where k is in the fall-off region and thus

takes on a lower value. Furthermore, the steric factor p, or the fraction of effective

collisions, is very likely to be less than 1. The colliding Mg and CO could be so

energetic that the atoms and molecules simply fly apart before any reaction can occur.

A modified Lindemann scheme has been postulated to describe the collisional

mechanism underlying Reaction (5-5). When a magnesium atom collides with a CO

molecule, an energized adduct, Mg-O-C*, is formed. This adduct can re-dissociate or

collide with a third body M, which may be Mg, CO, H2 or even the adduct Mg-O-C*

itself, to form MgO and C.

Mg + CO Mg-O-C* Reaction (5-8)

Mg-O-C* k-1 Mg + CO Reaction (5-9)
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Mg-O-C* +M k MgO + +C + M

where kl, k-l and k2 are rate constants for Reaction (5-8) to (5-10), respectively. The

essential step here is that both the energy of the adduct and the bond dissociation energy

of CO has been transferred to M and to MgO in Reaction (5-10). Applying a pseudo-

steady state treatment to this mechanism yields

dCMg-O-C*

dt = k CMg Cco - k_ CMg--c* - k2 CMg-O-C*CM = 0 Equation (5-21)

where CMg-o-C* is the concentration of the Mg-O-C* adduct and CM is the concentration of

species M. Solving Equation (5-21) for CMg-O-C* leads to

kIC Mg Cco0
CMgO-c* = k_ + k2C M

Equation (5-22)

The rate of disappearance of magnesium vapor is given by

dCsM kk2 CMg CcCM
dt -k2 CMg-O-C* CM k_, + k2CM

Equation (5-23)

With equimolar Mg and CO initial concentrations, Equation (5-23) simplifies to

dCMg kk 2 CgCM

dt k_ + k2 CM
Equation (5-24)

When CM is sufficiently large, k2CM >> kl1, the overall rate is controlled by the rate

of formation of the adduct which is rapidly de-energized and Equation (5-24) is reduced

to Equation (5-16) for bimolecular collisions. On the other hand, when the pressure is

sufficiently low, k_ >> k2CA,
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dCg kk 2 
2 K 2

dt - CgCM M2 Mg
Equation (5-25)

with an apparent trimolecular rate constant, kr = K1 k2 where K1 is the equilibrium constant

for the formation of Mg-O-C* from Mg and CO. Integrating Equation (5-25) from t = 0

to t = Tg assuming Cm is constant yields

1 1
=krCMrgCMg1.f CMgj

Equation (5-26)

where the subscriptsf and i on CMg refer to the final and initial values, respectively.

Analogous to the previous analysis with bimolecular collisions, the collision

frequency factor, ZABC, for molecules A, B and C can be used to estimate the trimolecular

rate constant, ki. Assuming a steric factor of unity and a zero activation energy would

again give an upper limit for the rate constant. For most trimolecular reactions, very

small, zero or even negative Arrhenius activation energies are found experimentally,

validating the assumption of unit exponential term (Moore and Pearson, 1981). However,

for a three-body collision, the hard sphere assumption has to be relaxed because the

probability of having simultaneous contact of the spherical surfaces of three molecules is

zero. For a finite number of trimolecular collisions, a collision may be assumed to

consist of the approach of rigid spheres to within some arbitrary distance of each other.

The collision number is then given by

B1/2 

1 /2 

1/2

2RT 
11 1

zABC _ 2 xdAB X dBc)3y -- +
OPAB I2BC

for collision among A, B and C such that

is the collision diameter of A and B, dec

MAMB/(MA + MB) and 1BC = MBMB/(MB

Equation (5-27)

A and C are within a distance 6 of B, where dAB

is the collision diameter of B and C, and -AB

+ Mc) are the reduced molar masses of the

215



colliding pairs. Without much loss of accuracy, 6 can be taken as 1 A (Benson, 1976;

Moore and Pearson, 1981).

For the trimolecular reaction of Mg, CO and H2, assuming M to be H2 and H2

stays inert, dug-co = 3.33 A and dco_H2 = C+ rH = 3.37 A. The collision radius of H2,

rH , taken as o/2 at an effective temperature of A/k = 33.3 K, is 1.485 A (Hirschfelder et

al., 1954). At T = 2000 K, ZMg_CO_H2 is calculated to be 1.2 x 10io cm6/mol2-s.

Substituting this value for kr in Equation (5-26), 0.25 atm/[R(2000 K)] for Cgi,

0.5atm/[R(2000 K)] for CH2 and 4.7 x 10-6 s for rg, the final magnesium partial pressure is

estimated at 0.07 atm. The final concentration is the amount of magnesium vapor

remaining after reaction with CO during the time scale for crystallization and growth of

the particles to 1 jtm. Thus, the remaining magnesium vapor can be assumed to

precipitate and condense to the solid phase. This implies an MgO "Mg" conversion to

Mg of 28%, which is of the same order of magnitude as the observed conversion. Again,

the predicted rate constant is an upper limit with the collision efficiency assumed to be

100%. Although slightly lower than the experimental average value, the implied

conversion is conceivably consistent with experimental observations considering the

approximate nature of the calculations and the conservative assumptions used in this

analysis.

Estimation of the rate constant for the reaction of Mg with CO in the presence of

H2 according to a modified Lindemann mechanism supports the hypothesis that the

depletion of magnesium vapor via Reaction (4-7) or (5-5) is less significant than

consumption by nucleation and condensation. The preceding analysis, though

approximate at best, has provided a theoretical basis for postulating that the reverse

reaction of Mg with CO to form MgO and C can be sufficiently slow relative to the

nucleation and condensation kinetics of supersaturated magnesium vapor. The dramatic

change in the environment of the high-temperature plasma effluent brought on by rapid

quenching provides the majority of the magnesium vapor with enough driving force to

condense and form agglomerates of submicron particles before consumption via Reaction

(4-7) or (5-5) becomes dominant.
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5.4 Process Economics

The formation of magnesium by the reduction of its oxide is a high-temperature, energy

intensive process. The energy required is the enthalpy change of the reaction, AH, which

is composed of AG, the change in Gibbs free energy, and TAS, the absolute temperature

times the change in entropy. While the TAS requirement can be supplied with low quality

process heat, the AG component may have to be supplied as high quality energy in the

form of electrical work, for example. Alternatively, the use of a reducing agent such as

carbon can lower the AG requirement (Murray et al., 1995). The use of methane as

reductant is noteworthy because methane is reformed into hydrogen and carbon

monoxide using the metal oxide as oxidant without the need for catalysts. The

integration of the two high-temperature reactions, metal oxide reduction and methane

reforming, can therefore give rise to improved energy efficiencies.

Figure 5-2 shows that the endothermic requirement of Reaction (1-4) is relatively

constant over a wide temperature range except at the metal boiling point of 1383 K. But

with the increasing TAS component, the ratio of work to thermal energy needed, AG/TAS,

decreases with temperature. Such characteristic makes the implementation of Reaction

(1-4) favorable at high temperatures and therefore suitable for a plasma extractive

metallurgy process.

In the present study, the lowest Specific Energy Requirement (SER) achieved on

the laboratory-scale plasma reactor is 30.4 kWh/kg Mg. However, the experimental

results suggest that the energy efficiency can be enhanced at higher gas flow rates. Kim

(1977) observed a similar trend in his experiments. Gold et al. (1975) at Bethlehem Steel

demonstrated that a favorable energy efficiency for an endothermic heterogeneous

reaction in a thermal plasma reactor can be achieved when they reduced iron oxide in an

arc-heated mixture of hydrogen and natural gas at 100 kW and 1 MW at an SER of 1.2

times the thermodynamic minimum energy requirement.
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Figure 5-2. AH, AG and TAS as a Function of Temperature
for CH 4 + MgO - Mg + 2H 2 + CO

The theoretical energy requirement to produce a kilogram of magnesium as a

function of temperature is shown in Figure 5-3 for the conventional magnesium

production technologies, including carbothermic reduction, and for the contemplated

approach according to Reaction (1-4). The reduction of MgO with CH4 is seen to be on

par, at least on a theoretical basis, with electrolysis which is the most commonly used

industrial process. The energy requirement of Reaction (1-4) is higher than that for the

purely carbothermic reaction because of the additional energy needed to decompose

methane into C and H2 . However, no energy credit is taken for the H2 and CO by-

products, which can be utilized to significantly reduce the energy requirements in actual

operations.
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Figure 5-3. Theoretical Energy Requirement, AH, as a Function of Temperature for
Different Magnesium Production Processes

The actual energy consumption for the different approaches to magnesium

production are presented in Table 5-1. An upper limit of 30 kWh/kg Mg has been

estimated for the actual energy of Reaction (1-4), corresponding to the best laboratory

scale SER. The additional energy requirements for commercial scale operation of

Reaction (1-4) have been taken to be of the same magnitude as the energy needed for

sublimation and remelting, since the products are similar to those from the carbothermic

route. These energy requirements would, of course, be different if the magnesium can be

condensed in relatively pure form from the vapor phase, such as in a liquid metal

condenser. Even without accounting for the energy and/or chemical value of the H2 and

CO by-products, a commercial implementation of Reaction (1-4) appears to have

competitive potential from an energy standpoint.
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Table 5-1. Comparison of Theoretical and Actual Energy Requirement for Magnesium Production by Various Processes(a)

Theoretical Actual Energy Additional
Process Global Chemical Reaction AH n  for Reaction Energy

Requirements
(kWh/kg Mg) (kWh/kg Mg) (kWh/kg Mg)

Electrolysis MgC2 (1) 1073 K 6.8 12-18 -15 (b)

6.8 

Mg ) + C12 (g

Silicothermic 298 K
Reduction 2 MgO (s) +3 CaO (s) + 1.5 A120 3 (s) + Si (s) + Fe (s)

1800 K

S-2 Mg (g) + 3 CaO-SiO2-1.5 A120 3 + Fe (1) -5.3 17.2 11.7(c)
Carbothermic 298 K 2100 K

Reduction MgO (s) + C (s) -> Mg (g) + CO (g) 8.4 14.4 25.6 (d)

Present Study MgO (s)2000 K

Mg (g) + CO (g) + H2 (g) 8.0 8 - 30 > 8 (de)

(a)Adapted from Cameron et al. (1987) and Flemings et al. (1981).
(b)For preparing anhydrous feed for electrolytic cell.
(C)For preparation of ferrosilicon reductant.
(d)For Mg recovery by sublimation and remelting.
(e)Includes estimated 1.3 kWh/kg Mg for calcining magnesite and dolomite ores.



In assessing the feasibility of implementing Reaction (1-4) on a commercial scale,

one has to consider the overall process economics relative to the conventional magnesium

production technologies. Although it is a good starting point, the comparison of the

energy requirements for the various processes does not give a complete picture because

the total production costs would depend on both capital and operating requirements,

energy being but a component of the operating cost. Nonetheless, the potential energy

parity with the conventional routes is encouraging.

Several features of an approach to magnesium production based on Reaction (1-4)

provide distinct advantages over existing processes. First, the proposed approach can be

operated continuously and thus can overcome the limitations of batch operation

associated with the metallothermic route. Second, it can directly utilize MgO and MgO

precursors (dolomite) as feed material which can lead to a chlorine-free process. MgO

and MgO precursors are in abundant supply worldwide, making them attractive as

feedstock material. Likewise, the abundance of potentially cheap methane or natural gas

can contribute to an economically competitive process. Third, the process can be

operated at atmospheric or even higher pressures which would reduce the product losses

from air influx experienced in vacuum thermal reduction processes. Atmospheric

pressure operation can also increase the production throughput significantly. Fourth,

there is potential for significant capital (and operating) cost reduction relative to the

electrolytic approach because the upstream process for feed preparation may not be as

capital-intensive. Cell feed preparation can account for a significant (~50% or more)

portion of the total capital requirements for electrolytic processes. In addition to this

potentially lower capital need for front-end operation, the simplicity of the rotating arc

reactor may also lead to even lower capital investment. Fifth, H2 and CO, which have

premium energy and chemical values, are co-products of magnesium.

5.5 Process Design and Development

Commercialization of a thermal plasma implementation of Reaction (1-4) would entail

scale-up of the laboratory scale reactor to successively larger prototypes, in addition to
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developing the upstream and downstream operations of the process. Alternatively, a

multijet reactor design composed of small-scale plasma torches can be used to increase

total processing capacity. Although no experimental work was performed to identify and

test scaling parameters, a brief introduction to the subject is given here. Gannon and

Krukonis (1972) gave specifications for a 1 MW rotating DC arc reactor to process 10

tons/day of coal with 500 scfm of H2 which was scaled up from their laboratory scale

reactor by a factor of 10. They based their design on the coal mass flux and the current

density at the cathode tip. These two parameters were maintained at levels representative

of stable operations.

Similarity theory can also be used to describe the interaction between an arc

discharge and its surrounding environment and to extrapolate experimental data to

different conditions as a way to circumvent expensive experimental testing. Zhukov

(1994) provides five similarity criteria that can be used in scaling DC plasma torches, in

addition to the widely used similarity criteria in classical hydrodynamics such as the

Mach number, NM, and the Prandtl number, Npr. The first similarity criterion is for

electrical field strength, SE, which is derived from Ohm's Law:

crEEd 2

SE - Equation (5-28)

where o- is the conductivity, defined as the ratio of current density, J - I/d2, to the electric

field strength E, d is the characteristic linear size (diameter of anode nozzle) and I is the

arc current. SE may be replaced by an equivalent criterion based on the voltage drop

across the arc, Sv:

crVd
S - Equation (5-29)

where V is the arc voltage drop. The second criterion applies to energy and is based on

the energy equation:
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Equation (5-30)
12

S, = opuhd 3

where S, is the energy criterion, p is the density of the medium, u is the characteristic

mean mass flow velocity and h is the characteristic flow enthalpy. With the dependence

of arc voltage drop on current and mass flow rate, G - pud2 , of the plasma-forming gas,

i.e. V(I,G), Si can more conveniently be expressed as:

12

-hCd
Equation (5-31)

A third criterion characterizes the contribution of radiant energy to the process of plasma

heat transfer, S,, and follows from the energy equation as well:

Equation (5-32)

where e is the emissivity and p is the medium viscosity. The combination criterion,

SINRe, gives the ratio of radiation energy to gas flow energy. The fourth similarity

criterion applies to the case of an external magnetic field. The magnetic interaction

criterion, SB, is based on the momentum equation and shows the correlation between

magnetic and inertial forces:

IB
Spu2d Equation (5-33)

where B is the magnetic field induction. The fifth criterion is the Reynolds number,

which is more conveniently expressed as:
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4G
NRe - Equation (5-34)

Furthermore, the breakdown voltage is a function of the Knudsen number, NK, = e/d,

where le is the mean free path of the electron in a given gas. The arc length depends on

the Knudsen number ( NY- Pd) where P is the characteristic pressure at the end of the

discharge nozzle. These similarity criteria can be used to develop semi-empirical

methods to calculate the electric and thermal properties of thermal plasma reactors for

different conditions and sizes based on available experimental data.
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Chapter 6

Conclusions

The reaction of methane with magnesium oxide in a rotating DC arc discharge (thermal

plasma) reactor was investigated in the present thesis. Originally proposed as an

alternative method for methane conversion to solid magnesium carbide intermediates to

overcome transportation limitations associated with remote natural gas, this approach has

developed into a novel plasma extractive metallurgy method for the formation of

magnesium metal. The key findings of this study are:

1. The extents of conversion of CH 4 and MgO to Mg 2C3 and MgC 2 according to

5 CH 4 + 2 MgO > Mg 2C3 + 10 H2 + 2 CO Reaction (1-2)

3 CH 4 + MgO - MgC 2 + 6 H2 + CO Reaction (1-3)

are not significantly appreciable under the thermal plasma conditions investigated.

The highest molar conversion of the magnesium in MgO to Mg 2C 3 achieved is 9%.

The reaction of CH4 with Mg metal in the thermal plasma reactor according to:

3 CH 4 + 2 Mg - Mg 2C 3 + 6 H2  Reaction (1-21)

likewise does not proceed to appreciable extents, although CH 4 is converted to carbon

and hydrogen;
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2. Rather, the global chemistry of the reaction of CH4 and MgO under the thermal

plasma conditions studied is attributed to:

CH 4 + MgO - Mg + 2 H2 + CO Reaction (1-4)

The magnesium formed is recovered as agglomerated, hexagonal crystalline particles

in the 0.1 to 1 pm size range. The molar conversion of the magnesium in MgO to

elemental Mg over the range of experimental conditions investigated has a mean of

64% and a standard deviation of 16%, with extents as high as 95% achieved. The

mean molar conversion of the hydrogen in CH 4 to H2 is 91%, with a standard

deviation of 16%;

3. A systematic study of preferred ranges of plasma operating conditions for magnesium

formation indicates that MgO conversion to Mg can be enhanced by:

a) feeding CH 4 in stoichiometric excess;

b) doping the MgO feed with solid carbon as an additional reducing agent; and

c) diluting the system with an inert gas which has an effect analogous to the reduction of

system pressure.

Similarly, the conversion of the carbon in CH4 to CO and of the hydrogen in CH 4 to

H2 can be enhanced by:

a) feeding MgO in stoichiometric excess;

b) doping the MgO feed with solid carbon as an additional reducing agent (only for

hydrogen conversion to H2);

c) diluting the system with an inert gas; and

d) increasing the residence time in the thermal plasma by lowering the methane flow rate

(only for carbon conversion to CO).

Operation at higher methane flow rates suggests that the energy efficiency of the

conversion process can be improved at higher throughputs. The formation of Mg has

also been found to be feasible even with a mixed feed of CaO and MgO. The CaO is

converted to CaC2 according to:
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3 CH4 + CaO -+ CaC2 + 6 H2 + CO

4. The CH 4 and MgO reactants are completely vaporized to their constituent atomic

species at plasma temperatures estimated to be well over 6000 K, provided there is

sufficient residence time. However, the estimated residence times in the thermal

plasma reactor are not likely to be long enough for complete evaporation of the 100

ptm MgO particles. Thus, the formation of magnesium is postulated to occur mainly

by the alternative pathway of nascent carbon species reaction with the MgO particles.

The observation of higher magnesium yields upon doping of the MgO reactant with

graphite supports this mechanistic pathway for magnesium formation; and

5. Thermodynamic considerations indicate that magnesium vapor and carbon monoxide

exist above 2000 K in equilibrium but that the reoxidation of Mg by CO back to MgO

would be favored below 2000 K. Rapid quenching of the plasma effluent to below

the metal melting point is postulated to freeze the equilibrium at the 2000 to 1800 K

temperature range. Such rapid cooling provides the magnesium vapor with enough

driving force to nucleate, crystallize, condense and form agglomerates of submicron

particles before consumption by reoxidation with CO becomes dominant. Estimated

reaction and condensation rates support the high experimental yields of Mg obtained

and suggest that the backward reaction of Mg with CO to form MgO and C can be

sufficiently slow relative to the nucleation and condensation kinetics of supersaturated

magnesium vapor.

A novel approach to magnesium metal formation based on the reaction of MgO with CH 4

in a rotating DC arc discharge reactor has been developed. Relative to the conventional

processes, a technology based on this chemistry potentially offers a chlorine-free,

continuous and atmospheric pressure process for magnesium production from low-cost

and abundant raw materials, such as natural gas and dolomite, at competitive energy,

environmental and capital costs.
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Chapter 7

Recommendations

Further research is needed to provide sound scientific and engineering foundations for the

assessment of the technical and economic promise of a magnesium metal production

process based on the reaction of CH 4 and MgO under thermal plasma conditions. Future

work is recommended to gain a better understanding of the chemical and physical

mechanisms for forming and preserving magnesium with the goal of developing a full-

scale commercial process as follows:

1. Investigate the role of impurities, MgO particle size and MgO preparation history on

the yields and generation rates of magnesium and its co-products in the interest of

understanding the issues needed to develop the upstream section of the process;

2. Study the relative kinetics of the backward reaction of magnesium vapor with CO and

of the nucleation and growth kinetics of magnesium from the vapor phase in the

presence of CO with the goal of minimizing Mg loss from reoxidation;

3. Elucidate the role of H2 in inhibiting the reverse reaction of magnesium vapor with

CO at low temperatures. Experiments with MgO and C with and without H2 as well

as with He instead of H2 can shed light on this issue. Experiments with CO and Mg

in the plasma reactor, if feasible, can likewise be used to assess the importance of the

presence of H2 in the system;
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4. Investigate various options for magnesium separation, recovery and purification with

their associated energy implications, including the use of in-line and downstream

separation devices, various quenching techniques and liquid metal condensers in the

interest of developing the downstream section of the process;

5. Undertake a process development and economic feasibility study;

6. Determine the role of the plasma in the implementation of the reaction of CH4 and

MgO to form Mg, H2 and CO. Perform experiments designed to assess the viability

of the reaction scheme without an electrical arc discharge using a purely thermal

approach; and

7. Investigate the feasibility of using a three-phase alternating current (AC) arc

discharge reactor to implement the reaction of CH4 and MgO to form Mg, H2 and CO.

The present scheme also presents opportunities for applications to other systems.

Research aimed to study the feasibility of producing various metals, metal carbides and

even metal nitrides from their parent metals, metal oxides, hydroxides or halides, which

are inherently high-temperature, energy intensive processes is recommended.
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Appendix A

Propagation of Errors Analysis

Sample Calculation

Two basic rules for the propagation of errors are presented by Day and Underwood

(1980) and are applied to the conversion computations in this study. First, where addition

or subtraction is performed, the absolute determinate errors are transmitted directly into

the result. Therefore, for a computed result, R, based on the measured quantities A, B,

and C, where R = A + B - C

R + p = (A + o)+(B + f)-(C-y) Equation (A-l)

where p is the maximum resulting error in R, and o, P and y represent the determinate

errors in A, B and C. The maximum error is given by

p = a- + / + y Equation (A-2)

Second, where multiplication or division is performed, the relative determinate errors are

transmitted directly into the result. For example, if R = AB/C,
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(A + cr)(B + fl)R+p= (c-y)
(C -'V)

Equation (A-3)

it can be shown, with simplifying assumptions that the errors are small compared to the

measured values, that

A B +-
Equation (A-4)

In computing the conversion of the magnesium in MgO to Mg, (Mg)ago, according to:

AHS

A si

A sid Ne Ne

x VIs x fjS

[Mg], x Vf x 22,412
x 100% Equation (2-14)

the relative error of (Mg)aMgo, e[(Mg)a mg o] is given by:

e[( Mg)a [A]+e[ ]+e[V ]+ d ]+e[ AHe]

Se[A d] + e[Vd] + e[fd] + e[Vi] + e[fs]

+e[[ Mg]] +e[V]

Equation (A-5)

Substituting

=1%, e[Ad ] = 1%, e[Vd]= 1% e[fj;]

e[V d] = 0.5% ,e[fýd = 2%, e[V] = 0.5% ,eftd] = 2% ,e [[Mg ] = 5% ,e V = 0.1%

into Equation (A-5) gives e[(Mg)amg] = 17.1%.
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