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ABSTRACT

With advancements in high fidelity home audio and theater, many claims,
theories, ideologies, and products concerning the improvement of sound in high fidelity
audio systems have hit the market, regularly confusing consumers. Often, in the quest for
better sounding audio systems, audio enthusiasts succumb to false or unresearched claims
of ways to improve sound quality, and in doing so, often spend a lot of money. As an
example of an unresearched area, companies exist that charge hundreds to thousands of
dollars for a "specialized" power cord that connects an audio component (e.g. amplifier)
to the AC-line, and purports to offer improved bass response, increased dynamic range,
and greater transient-delivering capability.

Another area in the high fidelity audio market that has seen relatively little
research is audio component interconnects. These cables are used to connect audio
components together in order to transfer the signal from one to another, such as for
sending the signal from a CD player to a preamplifier. For many years, simple coaxial
cable (RCA/phono connectors on both ends) was used to accomplish this task. However,
in recent years, companies have surfaced that have technologies (some of which are
patented) which tout improved dynamic range, imaging, clarity, or other audible quality
enhancement over the simple coaxial cable.

The goal of this thesis, and the research presented in it, is to determine whether
these audio interconnects have any measurable qualities which would affect the audible
sound quality of an audio system. Specifically, the intent is to show whether interconnect
quality/construction has an impact on sound quality and to what extent price and
performance are correlated.

Thesis Supervisor: Byron M. Roscoe
Title: Technical Instructor; Director of Undergraduate Teaching Labs
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Chapter 1

Introduction

1.1 Background

In the audio industry, a noteworthy debate exists in the area of audio component

interconnects (hereafter referred to as interconnects or cables). These interconnects carry

the audio signal from one piece of audio equipment to another, and some assert that they

affect the sonic performance of the audio system. Often, when a compact disc player or

other piece of audio equipment is purchased, a pair (one for each of right and left

channels) of basic interconnects is packaged with it. These interconnects, if purchased

separately, are relatively inexpensive - costing two to three dollars. Their construction is

simple: typically a one-meter coaxial design with a 20 - 24 gauge, multi-stranded center

conductor, a braided or wrapped copper shield/ground, and RCA/phono plugs on each

end.

Particularly in the last five to ten years, a handful of interconnect manufacturers

have made a name for themselves by offering interconnects that are supposedly superior

to basic interconnects in construction, design, and performance. The manufacturers patent

their cables as the result of a new method of wire winding technology or because their

design employs exotic insulation. For example, Monster Cable Products, Inc., which is a



well-known interconnect and speaker cable manufacturer, produces the M550i. In

addition to winning awards and top reviews1, this product boasts "greater overall clarity,

extended frequency response, lower noise floor and extended dynamic range, and

improved reproduction of imaging, soundstage and depth". The advertised characteristics

of the M550i include a 100% copper foil shield, 24k gold contacts, special dielectric

insulation, two conductors with "multiple-gauge wire networks", and heavy duty

construction that is capable of withstanding years of use.

One group of devout audiophiles suggests that cable construction and quality has

a large effect on the quality of sound produced by an audio system. On the other hand,

another group insists that these supposedly higher-quality interconnects do nothing more

than add cost to the audio system; they believe that the cables negligibly affect the signal

being passed through them. In other words, they contend that interconnects do not affect

the signal enough to alter quality of the sound. While both sides have convincing and

compelling points, gray areas still exist in both arguments. The side advocating the

benefits of cable quality often cites listening tests in which subjects decided which

cable(s) made the overall system sound better in comparison to others. However, this

group has no measurements or anything else concrete to support the listening test results.

Those who do not believe that interconnects affect system performance insist that

because of the short length of the cables and the small frequency range of audio, the

parasitic elements - series inductance and resistance and shunt capacitance - of the

interconnect are of no noticeable consequence.

1 The M550i was the winner of the Hi-Fi Grand Prix Award from AudioVideo Magazine International and
was given a "unanimous, unequivocal top rating" by Home Theater Magazine.



1.2 Previous Work

Much of the work done thus far in audio component interconnection has been in

the area of speaker cables. Various audio magazines have conducted tests on speaker

cables, as has the Audio Engineering Society in more than one issue of their journal2.

These magazine articles, as well as basic engineering knowledge, make it clear that it is

best to be cautious when buying speaker cable. Despite the fact that people still disagree

as to which type of cable is best, it is clear that the lengths of cables used to connect

speakers to amplifiers - often between 15 and 30 feet in today's surround sound systems

- are significant. Therefore wire should be chosen that is sized to handle the current

involved in driving a speaker, low enough in resistance to avoid wasting a significant

amount of power, and low enough in capacitance to avoid attenuating high frequencies or

causing power amplifier instability.

The main motivation for this thesis came after reading Brent Butterworth and Al

Griffin's article, "String 'Em Up", in the August 1997 issue of Home Theater. In this

article, the authors present the results of a supposedly single-blind listening test (the

listeners did not know which cable was connected to the system). The article states that,

"Each panelist ranked the cables in three groups, roughly corresponding to 'OK', 'good',

and 'great', and each panelist also picked a favorite." This rating scheme seems

acceptable; however, in the authors' final results, there were numeric quantities for the

interconnects' performance, build quality, ergonomics, features, value, and overall rating,

leading one to wonder from where the numbers came. The source of the numbers is

never explained, and the qualifications of performance are a bit arbitrary. For example,

2 See Reference section for Audio Engineering Society publications concerning speaker cable tests.



in the review of AudioQuest's "Turquoise" product, "edgy" was a word used by one

listener to describe the sound, while another said, "The percussion had a nice, full sound,

with lots of drive." These descriptions and classifications are not at all scientific and are

indeed subjective opinion. It is, therefore, the goal of the work conducted in this thesis to

show scientific measurements and test results which determine whether these

interconnects have any perceptible effects in audio systems.

1.3 Objective

The objective of this thesis is to evaluate various models of interconnect cables in

order to determine the impact of their electrical characteristics and performance on the

rest of the audio system. In particular, 11 different models of interconnect were tested

and evaluated based upon their lumped parameter values, impedance, amplitude and

phase response, and total harmonic distortion, crosstalk, and intermodulation distortion

performance. An approximately 15-year-old Tandy Corporation interconnect was used

as a reference to which all of the other cables will be compared.

In running the aforementioned tests, the following pieces of N.I.S.T. (National

Institute for Standards Technology) traceable equipment were used: Hewlett Packard

4192A Low Frequency Impedance Analyzer, Hewlett Packard 34401A Digital

Multimeter, Hewlett Packard 33120A Arbitrary Waveform Generator, and the Audio

Precision Portable One Plus Analog Domain Audio Analyzer. In addition, various pieces

of audio equipment were evaluated for such things as input and output impedances, so

that realistic numbers could be obtained for use in frequency and phase response

calculations.



1.4 Thesis Organization

This thesis is divided into three major sections. Chapter 2 provides an overview

of the different pieces of test equipment, audio equipment, and interconnects that were

used or tested in the various experiments. Primarily, this chapter is provided for

background purposes in the event that future experimenters intend to reproduce the

results presented in this thesis. Chapter 3 lays out the various electrical tests that were

run on the interconnects, and finally, Chapter 4 summarizes all of the experimental

findings in a qualitative manner and discusses the importance of interconnects in audio

systems.



Chapter 2

Overview of Equipment Used

2.1 Audio and Test Equipment

The following audio and test equipment was used in conducting the experiments

for research presented in this paper. A brief description3 of each, with pertinent

performance specifications, has been provided for background information in case one

desires to reproduce the tests/results that are discussed.

Hewlett Packard 34401A Digital Multimeter: S/N US36047341, Calibrated (NIST
traceable) 2/5/98 by HP
* 6/2 digit, 15 parts-per-million basic DC accuracy
* AC Voltage Measurement Accuracy: ±(0.06% of reading + 0.03% of range)

for 10 Hz to 20 kHz.

Hewlett Packard 33120A Arbitrary Waveform Generator: SN US36018116,
Calibrated (NIST traceable) 2/10/98 by HP
* Features sine, triangle, square, ramp, and noise waveforms, a 12-bit, 40 Mega

Samples/second arbitrary waveform generator, with sweep and modulation
capabilities.

* 6/2 digit, 15 MHz synthesized function generator
* Amplitude (into 50 Q): 50 mVp., to 10 Vp_,
* Accuracy (at 1 kHz): 1% of specified output
* Flatness (sine wave relative to 1 kHz): ±1% (0.1 dB) for frequencies less than

100 kHz.

3 Descriptions are taken from respective manufacturers data books. Refer to the References section for a
listing of these books.



Hewlett Packard 4192A Low Frequency Impedance Analyzer: SN 2830J07258,
Calibrated (NIST traceable) 1/28/98 by HP
* Performs network analysis and impedance analysis from 5 Hz to 13 MHz.
* Measures amplitude, phase, group delay, inductance, capacitance, resistance,

impedance magnitude, conductance magnitude, etc.
* Capacitance accuracy: 0.15% from 0.1 pF to 199 mF
* Inductance accuracy: 0.27% from 0.01 nH to 1000 H
* Resistance accuracy: 0.15% from 1.00 0 to 1.00 MQ

Audio Precision Portable One, Analog Domain: SN PIP-52083, Calibrated (NIST
traceable) 3/13/98 by Audio Precision
* A comprehensive two-channel audio test set
* Measurement functions include: level, noise or signal-to-noise ratio, phase,

amplitude, impedance, total harmonic distortion plus noise, intermodulation
distortion, crosstalk, and AC impedance.

* Since this was the main piece of test equipment used, its spec sheets from the
User's Manual have been reproduced in Appendix B.

Teac EQA-220 Graphic Equalizer
* 2-channel, 10-band, +12 dB boost/cut
* Center frequencies: 30 Hz, 60 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4

kHz, 8 kHz, and 16 kHz
* Input impedance: 47 kQ at 0.3 V nominal level
* Output impedance: 1 kQ at 6 V maximum level
* Frequency Response: 10 Hz - 100 kHz, +1 dB

Apt Corporation "Holman" Pre-amplifier
* Old piece of equipment - specs unknown

Figure 2-1 shows output impedance measurements taken on the Teac EQA-220

equalizer and Apt pre-amplifier.



Audio Component Output Impedance versus Frequency

Figure 2-1: Audio Component Output Impedances Versus Frequency

The output impedance measurements were measured using the HP34401A DMM, the

HP33120A AWG, and a resistor selector box. The open circuited (unloaded) output

voltage was taken (using a set input), and then the output was loaded with a known value

of resistor using the resistor selector box. Then, a loaded output voltage measurement

was taken. The resulting output impedance was found by using the following equation:

Rout = Rload Vout-unloaded - Ro (2.1)
Vout-loaded

2.2 Audio Interconnects

The audio interconnects tested varied somewhat in geometry, but greatly in price.

For example, the "reference" interconnect was similar in construction to those included

with audio equipment, costing a couple of dollars. This reference cable was about 15
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years old, with basic nickel- or zinc-plated connectors that were somewhat dirty and

oxidized. Likewise, the wire was of a basic coaxial design - the center conductor was a

small gauge and the return was a braided or wrapped copper shield return with no EMI

foil shielding (foil shielding is found in most of the interconnects tested).

The top of the line product that was tested was the Monster Cable M1000i, one of

Monster's elite audiophile cables, selling for $129.95 per two-meter pair. The M1000i

was constructed of two identical, twisted-pair conductors (for signal and return), a 100%

foil shield, 95% braided copper shield, 24k gold contacts for better conductivity, and,

among other features, specially wound wire networks (see numbers 11 and 12 in Figure

2-2) which separately carry low, middle and high frequencies. See Figure 2-2 for a

diagram of the M1000i's construction. 4 All of Monster Cable's other interconnects

included some of these features, although only the Interlink 800, M850i and M1000i

included both the copper and the foil shielding.

Figure 2-2: Monster Cable M i UUUo Interconnect Construcuon viagram

4 Monster Cable M 1000i information taken, and diagram reproduced, from its retail packaging.



The following items list the cables tested and their physical characteristics. 5 All

cables tested were two meters (6.6 feet) in length, unless otherwise noted. Prices are

shown strictly for comparison purposes. 6

* Tandy Corporation "Reference" Cable (1.82 meter length) - model number and
price unknown: Coaxial design with multistranded center conductor, braided
shield/return, and nickel or zinc RCA connectors.

* Radio Shack Cat. #42-2605 (1.82 meter length) - $10.95: Coaxial design with
multistranded center conductor, braided copper shield/return, and gold plated
RCA connectors

* Monster Cable Interlink 100 - $12.95: Approximately the same construction as
the Radio Shack product.

* Monster Cable Interlink 250 - $23.95: 24k gold plated split-tip center pin, heavy
duty RCA connector, 100% foil shield that is grounded at the source, and two
balanced twisted-pair conductors.

* Monster Cable Interlink 400 Mk II - $41.95.: In addition to the I250's
characteristics, two different types of special dielectric insulation material, dual
solid core center conductors, and separately wound low and high frequency wire
networks. These networks supposedly bundle two separate wire windings into
one larger wire (for example, see numbers 11 and 12 in Figure 2-2). Monster
Cable claims that these separate networks better carry different frequency bands
for "precise imaging and natural tonal reproduction."

* Monster Cable Interlink 800 - $83.95: In addition to the 1400 Mk II's
characteristics, silver content solder joints, 100% foil and 95% braided copper
shield.

* Monster Cable Interlink CD - $30.95: Same as 1400 Mk II's characteristics, but
an older design.

* Monster Cable M350i - $49.95: Same as the 1400 Mk II's characteristics, in a
newer design, with seemingly heavier gauge conductors, minus one of the special
dielectric insulating materials.

5 Characteristics taken from the respective interconnects' retail packaging. The technologies used in
Monster's interconnects were not explained in technical detail on the packaging, and are thus not discussed
in this paper.
6 The prices shown for most of the Monster Cable products were obtained from retail store chain Tweeter,
Etc.'s Monster Cable displays. Prices for the 1250, 1400 Mk II, 1800, and ICD were approximated from the
price listings on Monster Cable's website, www.monstercable.com.



* Monster Cable M550i - $69.95: Same as the 1800's characteristics, minus the
braided copper shield. Possible heavier gauge conductors.

* Monster Cable M850i - $99.95: Same as the M550i's characteristics, plus braided
copper shield.

* Monster Cable M1000i - $129.95: Same as the M850i's characteristics, but with
three multiple-gauge separately wound networks (instead of two), for low,
middle, and high frequencies, and an improved RCA connector.



Chapter 3

Interconnect Measurements

3.1 Lumped-parameter Model

The lumped-parameter model for the cables' resistance, capacitance, and inductance

characteristics was used to calculate the theoretical magnitude and phase response of the

interconnects, with specific load and source impedances. It should be noted, however,

that this lumped-parameter model, which is shown in Figure 3-1, is only approximate and

therefore has been verified via other tests. See sections 3.2, 3.3, and 3.4 for these other

tests, which include impedance, magnitude, and phase response (respectively).

Output Impedance Input Impedance
of Component Interconnect Equivalent Circuit of Component

Vs

Figure 3-1: Lumped-parameter Model of the Interconnect Characteristics,
Shown with Source and Load Impedances

An explanation of the component variables follows. Zs is the output impedance of

the audio component from which the signal is being sent. R1 and L1 are the resistance

Ri Li L2 R2T



and inductance of the center conductor of the interconnect, while R2 and L2 are the

resistance and inductance of the ground (return) wire. Technically, R2 and L2 exist in

the ground connection between the load impedance, Zin, and the capacitor. However,

after running simulations on both circuits, it was found that over the frequency range 10

Hz - 50 kHz, the choice of placement for R2 and L2 made no difference in magnitude or

phase response. However, with higher frequencies, R2 and L2 placed in the ground led to

responses that were monotonically decreasing, rather than exhibiting spikes near 10 MHz

(see Chapter 3, section 3.1.1 and 3.1.2), since the inductance L2 has no effect on the

circuit and thus no L2-C resonance occurs. C is the lumped-capacitance of the

interconnect, and is thus the most inaccurate value of measurements, since the

capacitance is distributed along the length of the cable, while the measurement is taken

across the center conductor and shield at one end of the cable. Finally, Zin is the input

impedance of the audio equipment to which the interconnect is delivering the signal.

The Hewlett Packard 4192A Low Frequency Impedance Analyzer was used to

obtain the values for R1, R2, L1, L2, and C. In order to measure C, the interconnect was

connected to the analyzer, with the center conductor connected to the "high" side and

signal return to the "low" side, and the other end of the interconnect left open-circuited so

as to quantify the center conductor-to-signal return capacitance. For the inductance and

resistance measurements, the end of the interconnect not connected to the analyzer was

shorted - the center conductor was connected directly to the return so that the center

conductor and return wire resistance and inductance would be determined in one

measurement. The resulting inductance and resistance readings given by the analyzer

were, therefore, the values for the entire length of the cable twice - down the center



conductor and back through the return. Therefore, the measurement returned by the

analyzer was divided by two and set equal to R1 and R2 (or L1 and L2). For example, if

the analyzer read 0.30 Q, then R1 = R2 = 0.15 0 - a valid approximation, since for most

of the cables, the center conductor and return were identical wires in a twisted pair

configuration. The shields of the cable with twisted pair conductors were only grounded

at one end (the side that should be connected to the source), and therefore, did not add

impedance to the cable. The resulting values were then recorded for use in calculating

the magnitude and phase plots, which are discussed in the following text.

The transfer function for the lumped-parameter circuit shown in Figure 3-1 is

V",, Z,,Zc (3.1)
V, (Z,,, +R2 +ZL2XZ + R + ZLI)+ Zc(Rx + ZL,&

where Rx = Zs + R1. For simplicity, it will be assumed for the remainder of the text that

Zs is purely resistive.7 If it is assumed that Zin has a resistive and a capacitive component,

then Zin = R|IIZy, where Zv is the impedance of the capacitive component of Zin.

Substituting this into equation (3.1), it follows that

v,, RYZY Z (3.2)
V, RYZ(Zc +Rx +±ZLJ)+(RY +Z,~f(R 2 +ZL2XZc +R ZL +Z,)+Zc(Rx +ZL1)]

After much algebra, letting Re equal the real part of the denominator and Im equal the

imaginary part, it follows that the numerator is equal to Rv, and that

Re = R2 + Rx + Rr - 2 (L1 Ry C + L2 R C + CCR 2 Rx R + L2Rx C

+ LR 2C + LRCY )+ to4CC, LL 2RY  (3.3)

and

7 Often, power amplifier output impedance rises with frequency as a result of decreased feedback.
However, the two pieces of line-level audio equipment examined in this thesis exhibited flat output
impedance from approximately 100 Hz to 25 kHz (see Figure 2-1).



Im = w(CRxRY + CR 2 R, + L2 + CR2Rx + CRxR, + L,)

- 3(CCy L2 Rx R + CCY LI R2R, + L, L2C) . (3.4)

Consequently,

V ,,(o) _ R_ (3.5)
V (co0) ý(Re) 2 +(Im)

and

ZH() = -tan'j I (3.6)
SRe)

A simple check for the transfer function is to set c equal to zero and verify the

result with what would be expected at DC (inductors short circuited and the capacitors

open circuited). Setting co = 0, it follows that

V, (0) R, R (3.7)
V,(O) (Rx +R R 2

+ +(O2 Rx +R 2 + R,

because Im is purely a function of w, and equals zero. The answer is the expected result

- a simple voltage divider relationship.

3.1.1 Matlab Simulation

The transfer function and phase response given in equations 3.5 and 3.6, respectively, are

good candidates for use in Matlab simulations. Using these equations and some of the

measured values (shaded) of interconnect resistance, capacitance, and inductance given in

the following table, Table 3-1, Matlab was utilized to find the ideal response of the

system given in Figure 3-1.



Cable Resistance R1 + R2 (i) Inductance L, + L2 (jIH) Capacitance C (nF)
Reference 0.210 0.68 0.1966
Radio Shack 0.234 0.85 0.1371
Int 100 0.256 1.23 0.1598
Int 250 0.378 1.98 0.1822
Int 400 0.137 1.34 0.3328
Int 800 0.122 1.18 0.2853
Int CD 0.418 1.19 0.3328
M350i 0.266 1.68 0.2413
M550i 0.116 1.37 0.3411
M850i 0.112 1.35 0.3386
M1000i 0.073 1.36 0.3655

Table 3-1: Interconnects' Lumped Parameter Values at 10 kHz

This table gives all of the lumped parameter measurements taken on all of the

interconnects that were used in the tests. The listings and description of each

interconnect is given in Chapter 2. The Hewlett Packard 4192A was used to take each of

the above measurements for R, L, and C at 1 kHz, 10 kHz, 25 kHz, and 50 kHz. Values

at 10 kHz were used. See Chapter 2 for a description of the HP4192A.

The values for R1, R2, L1, and L2 were worst case values from actual interconnect

measurements (see shaded boxes in Table 3-1 above) - R1 = R2 = 0.209 Q and L1 = L2 =

0.99 ýpH. The value chosen for the capacitance, C = 0.3386 nF, was nearly the highest

value of all the cable measured, and it was the worst-case measurement at the time that

these simulations were run. The actual worst-case capacitance measured was 0.3655 nF,

which would presumably add 7.4% error over using C = 0.3386 nF (i.e. a 7.4% lower

break point frequency).

The following magnitude and phase plots in Figure 3-2 are the result of the

Matlab simulations with Zin equal to a purely resistive 100 ko load and Zs set to an ideal

value of zero ohms. Zoomed plots that cover only the audible frequency range have been

provided since it is the range of interest in dealing with audio system performance. As a



note: Matlab wraps the phase; therefore, any discontinuities in the phase response are

places where the phase falls too low to fit into the -180' to 1800 y-axis values.

lo0 lo2 4o'
Frequency [Hz]

9

0.0-

0.0

10

0

10o 10' 10i 10
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)1 . .. ..
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Figure 3-2: Matlab Magnitude and Phase Plots for System Under Ideal Conditions,
Plus 20 Hz - 20 kHz Zoomed Plots

Figure 3-2 shows that the system response is flat over the audible frequency

range. Furthermore, neither the magnitude nor phase deviates from flat until frequencies

above 1 MHz. However, these simulations were performed using the ideal conditions of

zero source impedance and very high input impedance of 100 kQ. A more relevant

simulation would be one that embraces a more worst-case scenario. One such simulation

that better approximates real-world situations is to use a source impedance that is closer

to that found in a piece of audio equipment. A source impedance, Zs, equal to 1 kQ is a

0.01

.-.
c-
2



more realistic value since, during output impedance measurements, the Teac EQ-220A

Graphic Equalizer exhibited approximately this value over most of the audible range .

Therefore, this value for Zs was added to the circuit model. In addition, the input

impedance Zin was changed to mirror a worst-case load.

The Electronics Industries Association (E.I.A.) has published guidelines on

standard loads to be used in audio component tests9. One guideline is that audio

components should be loaded with a 1 kQ resistor in parallel with 1000 pF capacitor

during testing, called the IHF (for the Institute of High Fidelity, which created the testing

guideline) standard load. Therefore, one more simulation was conducted with Zn set

equal to this standard load of 1 kQ in parallel with 1000 pF. This can be considered a

worst-case simulation for the system, since the E.I.A.'s recommendation for input

impedances is 100 kC2 minimum, and none of the audio equipment input impedances

tested for this thesis even approached 1 kQ over most of the audible range. Figure 3-3

shows the 0 - 100 MHz and 20 Hz - 20 kHz results of this IHF standard load simulation

with Zs set equal to 1 kQ2, as discussed in the previous paragraph.

8 The actual impedance was approximately 930 0 over most of the range, going as high as 1178.8 0 at 20
Hz. See Figure 2-1 for a plot of output impedance versus frequency.
9 E.I.A. Standard RS-490: Standard Test Methods of Measurement for Audio Amplifiers, Electronic
Industries Association, November, 1981. See Appendix A for a listing of pertinent standards.
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Figure 3-3: Matlab Magnitude and Phase Plots for System Using IHF Standard Load
Values, Plus 20 Hz - 20 kHz Zoomed Plots

In this worst-case scenario, there are a few points of interest. According to these

simulations, the magnitude of the system is approximately 6 dB down, compared to the

previous simulation shown in Figure 3-2, right from the beginning. However, this -6 dB

level is due to the output impedance, Zs, of 1 kQ forming a voltage divider with the 1 kQ

input resistance of the IHF standard load values. This divider relationship caused the 6

dB of loss. Therefore, the other -0.022 dB (see zoomed magnitude plot) is due to the

0.418 Q of cable resistance. This very small loss is constant over most of the audible

range, so it would unnoticeable to the human ear since there are no magnitude variations.

Near 10 - 20 kHz, though, the response falls another -0.03 dB. This change is due to



capacitance of the IHF simulated input (load) impedance starting to make a measurable

difference in the resistor/capacitor parallel combination. The same reasoning can be

applied to the phase response. Therefore, over the audible frequency range, the cable can

be taken to have a flat response; the capacitive component of the input impedance (which

is higher than would ever exist in audio components) is the culprit disturbing the response

in the 20 Hz - 20 kHz range.

3.1.2 ICAP/4 Spice Simulation

Using Intusoft's ICAP/4Windows (Student Version) Circuit Design Software, the

circuit in Figure 3-1 was simulated, using R, L, and C values obtained as explained

above, in order to find the theoretical response of the system under various situations, and

as a check for the Matlab simulations. The circuit in Figure 3-1 was entered into the

software identically as shown, except that Zs was assumed to be resistive (as noted

earlier) and was lumped together with R1, and Zin was assumed to be a resistance in

parallel with a capacitance. Figure 3-4 shows the system's response with Zs assumed to

be zero (an ideal case), and Zin to be 100 kQ in parallel with no capacitance - the

recommended standard input impedance for audio equipment 1°

10 Preferred Voltage and Impedance Values for the Interconnection of Audio Products - Consumer
Products Engineering Bulletin No. 6-A, Electronic Industries Association, July, 1974.
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Figure 3-4: ICAP/4 Spice Magnitude and Phase Plots for System Under Ideal Conditions

As can be seen, the magnitude and phase are flat until nearly 1 MHz - well

)eyond the audible range. Referring back to Figure 3-2, the magnitude closely agrees

with the Matlab simulation. Obviously, the real world is not ideal, especially concerning

-he approximation that output (source) impedance is zero. As mentioned earlier, the Teac

EQ-220A had a measured output impedance of approximately 1 k2. Therefore, a more

ealistic simulation would be with a source impedance of 1 ko (to model the EQ-220A's

)utput impedance), and the same 100 kQ input impedance which models the E.I.A.'s

ecommendation for input impedance for audio components. Figure 3-5 shows the

results of the simulation using these values and the previously discussed cable lumped-

parameter values.
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In this case, the source impedance actually damped out the natural self-resonant

frequency of the cable (the peak at approximately 8 MHz in Figure 3-2). However, the

system begins to lose its flatness at around 50 kHz, and is down 3 dB at nearly 500 kHz.

The phase is down -4' at 20 kHz. However, this is insignificant when one considers all

of the phase added in other parts of audio systems - namely, the speakers. Therefore, the

simulations thus far give no indication that the interconnects' performance affects the

audible quality of audio systems.

Figures 3-6 and 3-7 are the resulting plots of simulations run with Zs = 1 kQ and

Zin equal to the IHF standard load. These plots mirror the Matlab simulations that

resulted in Figure 3-3, except that Figure 3-7 was taken over the range from 10 Hz to 50

kHz, rather than 20 Hz to 20 kHz as in the Matlab simulations. The simulations were run

for comparison purposes with the Matlab results.
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Figure 3-6: ICAP/4 Magnitude and Phase Plots for System Using IHF Standard Load
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Figure 3-7: ICAP/4 Zoomed Magnitude and Phase Plots for System Using IHF Standard Load

These figures closely agree with Matlab. For example, the magnitude is down

about 0.02 dB at 20 kHz, and the phase is down approximately four degrees. Again, the

roll-offs in the responses are due to the 1000 pF capacitive component of Zin, and are not

attributable to the response of the cable itself.

3.2 Interconnect Impedance Measurements

Impedance measurements using the Audio Precision Portable One were taken so

as to obtain plots of interconnect impedance verses frequency. These measurements were

very useful since they were a reality check for the calculations and simulations presented

in the previous two sections. Figure 3-8 shows the plots for all of the various

interconnects that were available for testing.
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Figure 3-8: Interconnect Impedances versus the Logarithm of Frequency

As can be seen, half of the interconnects' impedances generally fall below the

"reference", and half above. It is interesting to note that the half that are below the

reference actually climb above the reference at approximately 25 kHz. This is due to the

reference cable having the lowest inductance of all the cables tested; inductive impedance

becomes significant at higher frequencies since ZL = j2ifL. Regardless, all of the

impedances remain below seven-tenths of an Ohm over the frequency range 10 Hz - 50

kHz. Since the output impedance of audio equipment is to be no greater than 10 kQ and

the input impedance no greater than 100 kM, according to the E.I.A. 11, then the resultant

loss due to the interconnect's added impedance to the system is negligible. Even if the

input impedance of the audio equipment falls below 100 kM, the interconnect impedance

" Consumer Products Engineering Bulletin No. 6-A, Electronic Industries Association, July, 1974.
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still does not matter, since for 0.43 Q (the Interlink CD's approximate impedance at 20

kHz) to have a noteworthy impact on the system, the input impedance would have to be

below 100 Q. For example, if the a CD player had 0.0 Q of source impedance and was

connected through two meters of Monster Cable Interlink CD to an amplifier with 50 0

of input impedance, then the interconnect would cause a loss of 8.53 mV for every volt of

input voltage. In other words, the interconnect would cause a loss of 0.074 dB over an

ideal interconnect that results in 0 dB of loss. This small change in amplitude would not

be perceivable by the ear. In fact, 3 dB is commonly assumed to be the smallest

difference an untrained listener (1 dB for a trained listener) can detect.

3.3 Amplitude

The amplitude measurement is closely related to impedance, since the

interconnect only affects the voltage received at the scope or analyzer input as a result of

a voltage divider with the input impedance. Consequently, assuming a fairly accurate

lumped-parameter model, the amplitude measurements should not deviate significantly

from the Matlab and Spice predictions. In fact, it turned out that none of the

interconnects tested in the amplitude measurements exhibited any unexpected response or

roll-off.

The amplitude measurement, and all of the rest of the measurements discussed in

the sections that follow, was conducted in the following way: the Audio Precision

instrument was set for 40 0 unbalanced output impedance and 1/3 octave measurement

intervals. Then, a reference test was conducted in which the response of the two XLR-to-

phono jacks (connected by an RCA-RCA adapter plug) were tested - the generator output

was connected to an XLR-to-phono that was linked to the other phono-to-XLR via the



RCA-RCA, which was then connected to the analyzer input. The purpose of this

reference test was to obtain the response of the XLR-to-phone connectors, so that they

could be "normalized away" once the response of the two XLR-to-phono cables and

interconnect under test (IUT) was obtained. For example, at 10 Hz, the reference

(baseline) measurement was -0.02 dBV and the Monster Cable Interlink 100's

measurement was -0.03 dBV. Therefore, the I100 actually had a response that was down

0.01 dB at 10 Hz. Not all of the interconnects were tested. Rather, going up the product

line, approximately every other interconnect was used for testing. The reason for this is

that from one product to the next, there was not a big change in construction, and using

each yielded test results that showed insignificant changes in performance between two

subsequent model numbers. As such, the following interconnects were used for the

amplitude, phase, noise, total harmonic distortion plus noise (THD+N), and

intermodulation distortion (IMD) tests: reference, MC 1100, MC 1400 Mk II, MC 1800,

MC ICD, MC M550i, MC1000i, and the Radio Shack product.

After running the Matlab and Spice simulations, the amplitude measurement was

uninformative - the measurement results of the IUTs never deviated from the reference

measurement by more than ±0.01 dB. As a result, no plots have been provided since all

of the responses would overlap each other and no interesting visual information would

result. To give this tolerance some meaning, it is interesting to note that loudspeakers are

often specified to have some frequency response (say 25 Hz - 21 kHz, for example), with

a magnitude tolerance of ±3 dB (some of the highest quality speakers are specified at +1

dB). In other words, the speaker will have a magnitude response that is 0 dB centered,

which may deviate from that center by as much as ±3 dB. Therefore, a change in the



system of 0.01 dB due to the interconnects is negligible compared to this wide variation

in loudspeaker response. Furthermore, a comparison between the actual responses of the

interconnects themselves (neglecting the reference measurement) shows that they all

exhibit nearly identical responses, and therefore switching from cable to cable would

yield nearly identical frequency response.

3.4 Phase

The phase response tests produced as little useful information as the amplitude

tests. A phase plot is provided in Figure 3-9 to show how close the phase measurements

were to baseline reference. The response for only two cables has been provided because

any more cable phase plots would clutter the graph and would yield no additional helpful

information since all of the cable phase responses were nearly identical.

Figure 3-9: Interconnect Phase Responses
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The phase tests were run on the Audio Precision Portable One from 10 Hz to 50

kHz, using 1/3 octave measurement intervals. It turns out, as seen in Figure 3-9, that the

phase response tests yielded interconnect performance of -0.0'/+0. 1' from baseline over

the entire frequency range.

3.5 Total Harmonic Distortion and Noise (THD+N)

The total harmonic distortion plus noise (THD+N) tests yielded somewhat more

interesting results. In this case, THD+N was measured against frequency (10 Hz - 50

kHz), with the reference (baseline) test being performed with the XLR-to-phono

connectors and RCA-RCA plug as in the previous two tests discussed in sections 3.3 and

3.4. Then, the RCA-RCA plug was removed and the interconnect under test was put in

its place.

The plot in Figure 3-10 on the following page shows the results of all the THD+N

tests. The Audio Precision instrument was set for medium integration speed, rather than

fast, in order to yield more accurate results. The bottom (lowest level) plot is the

reference measurement, labeled baseline test. All of the interconnect measurements fall

at, or above, this reference level, with the one exception of the M1000i at 3125 Hz. This

discrepancy is likely due to the selected integration speed of the Portable One and the

randomness of white noise in the environment. For instance, at the period of time when

the Audio Precision instrument was measuring the THD+N performance of the M1000i at

3125 Hz, some of the noise samples may have been slightly lower in magnitude than

when the reference measurement was taken. 12 If the measurement falls on the same point

12 For a discussion of white noise, refer to a textbook dealing with signals and systems or discrete time
signal processing.



as the reference (e.g. the Radio Shack product, MC 1100, and MC M1000i at some

frequencies), then the cable is adding negligible THD+N to the system at that particular

frequency because the cable and reference measurements have the same value.

Figure 3-10: Total Harmonic Distortion + Noise Measurements Versus Frequency

As Figure 3-10 shows, most of the cables fall in a general grouping between -100

dB and -95.92 dB over most of the audible range. However, two interconnects fall

outside that range - the MC Interlink CD and MC Interlink 400 Mk II. This result - that

both interconnects exhibit approximately similar THD+N performance - is not too

surprising since the ICD appears to be an earlier model of, or of the same construction as,

the 400 Mk II. The performance of the 1100 and Radio Shack interconnects were

noteworthy, since neither made use of a 100% foil shield.
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Consequently, the THD+N test gives one possibility as to why some cables are

believed to sound better that others. However, in this case, it is not possible to find a

price/performance correlation since the two cheapest and the most expensive interconnect

tested all exhibited the same average THD+N performance over the audible frequency

band (-97.72 dB average) and over the entire test bandwidth (-97.08 dB average).

Furthermore, the issue of whether the ear can actually hear the difference between a

reference system and the same system with 6 dB of noise added to it arises when

determining the cable's effect on sound quality. In fact, a closer examination into what

these results mean lead to the realization that is unlikely a listener would ever hear this

distortion or noise. The threshold of pain is approximately 120 dBSPL. Therefore, if one

was listening to music at 120 dBSPL peak, the noise/distortion floor would be down below

30 dBSPL, since Figure 3-10 shows that the distortion and noise is down 90 dB below the

signal level of 1 VAC. Because background noise levels are well above 30 dBSPL

(background noise in an anechoic chamber may approach this low level) the

noise/distortion would not be perceivable.

3.6 Noise

The noise measurements were made in the exact same manner as the THD+N

measurements. Again, the Audio Precision instrument was set on medium speed

integration. Figure 3-11, below, shows the results of the noise measurements.



Figure 3-11: Interconnect Noise Measurements Versus Frequency

The noise ends up being (nearly) flat with frequency because it can be considered

white noise, which has equal energy per Hertz. It turns out that the Monster Cable

M1000i exhibited the best noise performance - adding less than half of a decibel of noise

(over baseline levels) to the system. Following closely behind the M1000i is the Interlink

100, which added less than 3 dB of noise to the system. Here again, as in the THD+N

test, the Interlink CD and 400 Mk II were the worst performers as a result of being

approximately 16 dB above the noise floor, leading to the theory that it was these cables'

noise performance that lead to the poorer THD+N performance.

It would make sense that the M1000i has very good noise performance, since it is

shielded by 100% foil and 95% copper shielding. On the other hand, the Interlink 100,

which has nothing other than the signal return as a "shield", performed nearly as well.
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Therefore, no construction/performance correlation is readily seen, as well as a

price/performance correlation being nonexistent, since the M550i is near the top in price

and yet only average in noise performance.

3.7 Intermodulation Distortion (IMD)

Intermodulation distortion is a measure of the non-linearity of a device under test.

Two sinusoids of frequencies fi and f2 are the stimuli in the IMD test. It turns out that a

non-linear device under test will output the original two sinusoids, plus an infinite

number of IMD products given by a -f ±+ P f2 , where a and 8 are all possible integers.

Absolutely no differences between the interconnects' effect on intermodulation

distortion was seen, as could be expected since nothing about the cable should be non-

linear. The only case where non-linearities could occur are in the contact boundaries

between the RCA connector on the cable and RCA jack on the audio equipment. An

example would be a gold plated RCA connector connected to a nickel plated (and

possibly dirty or oxidized) RCA jack. There exists the possibility that this poor

connection could yield very poor diode-like results. However, this is particularly

unlikely since the cables tested had snug fitting RCA connectors that removed oxidation

when being twisted onto the RCA jack.

Tests were conducted at 50 Hz/8 kHz, 70 Hz/8 kHz, and 250 Hz/8 kHz. All

cables, as well as the baseline reference test, yielded 0.0013% IMD for the 50 Hz/8 kHz

and 70 Hz/8 kHz tests, and 0.0012 % IMD for the 250 Hz/8 kHz.



3.8 Crosstalk

Crosstalk is unwanted signal coupling from one channel of a multi-channeled

system to another channel. 13  Since audio signals travel in pairs - via right and left

channels - two cables usually exist in space very close the each other. Often, the right

and left interconnects are physically connected by their flexible rubber jackets. As a

result, the possibility exists for coupling between the two lengths of cable. Figure 3-12

shows the results of the crosstalk measurements.
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Figure 3-12: Interconnect Crosstalk Measurements Versus Frequency

The crosstalk response of the cables is nearly identical. Since most of the cables

tested were not linked together by their jackets - instead, they were two completely

13 Definitions for IMD and crosstalk taken from the Audio Measurement Handbook, authored by Bob
Metzler, and published by Audio Precision, Inc. of Beaverton, Oregon.



separate cables - it would be expected that they would exhibit better crosstalk

performance. However, this measurement was taken using only the input impedance of

the Audio Precision instrument (100 k2). Therefore, since the input voltage to the cables

was 1 Vrms, only 10 gA of current flowed. However, when the IHF standard load was

placed in parallel with the Audio Precision input impedance, the current increased by a

factor of -100, and the crosstalk performance degraded by between 5 - 20 dB over the

frequency range 10 Hz - 50 kHz (using the reference cable). Still, worst-case crosstalk in

the audible frequency range using the IHF standard load and the reference cable was -

69.94 dB at 20 kHz. According to Bob Metzler 14,

"Good values for crosstalk and stereo separation in electronic devices
range from 50 dB upwards, with crosstalk in excess of 100 dB achievable by
sufficient isolation. When the application is stereo, such values are far higher
than really necessary for a full stereo effect. Psychoacoustic experiments have
shown that stereo separation of 25 dB to 30 dB at midband audio frequencies (500
Hz - 2 kHz) is sufficient for good stereo effect, with even less stereo separation
acceptable at frequency extremes)."

Consequently, all of the cables' crosstalk responses are well beyond this 30 dB

recommendation for full stereo effect.

14 Metzler, page 92.



Chapter 4

Summary and Conclusions

The measurements conducted on the cables, aside from the noise and THD+N

tests, failed to conclude anything as to why some cables allegedly sound better than

others. The THD+N and noise tests gave one remotely possible explanation as to why

some cables might sound better, but it failed to give any correlation between price and

performance or construction and performance. Therefore, it is the basic conclusion of

this research that cable quality is of very little consequence in audio systems.

During my search for interconnects to test, I talked to a salesman at two different

stores, and both gave me about the same advice/information regarding cables. In effect,

what they said was that different cables sound better in different systems - that some

cables may make one system sound bright and "airy" while making another sound flat

and dull. They recommended trying different cables to see which sounded better in my

system. This was about the same information that was written in Butterworth and

Griffin's article in Home Theatre.

Upon hearing this advice, it lead me to wonder what about a cable could make

one system sound good and another sound not as good. A big issue in all of this is



pyschoacoustics and the perception of sound. What sounds good to one person may not

sound good to another. Furthermore, if someone knows that they purchased the

supposedly best cable on the market, it may lead them to believe it is making his audio

system sound better - the "paying more must lead to better performance" thought. In

reality, a listener who was unaware of the change may never notice the difference.

No clear formula exists for choosing which manufacturers' cable to buy, what

model to buy, and how much to spend. It is surprising how well the Radio Shack product

and the MC Interlink 100 performed (and how low their lumped-parameter values were

in comparison to the more expensive cables), despite their low cost and simple

construction. My recommendation is to buy the $10.95 Radio Shack cables, the $12.95

Monster Cable Interlink 100s (cables with low parasitic inductance and capacitance), or

use the ones that come packaged with the audio components, especially if you need very

short lengths of a meter or less. In any case, rather than spending $50 - $100 (or more)

on interconnects, save that money and apply it towards a better set of speakers. This

action has the potential to improve the system's sound much more than the expensive

interconnects could.



Appendix A

Reproduced from the E.I.A. Standard RS-490, November 1981:
Standard Test Methods of Measurement for Audio Amplifiers

Operating Temperature
2.2.1 A power amplifier, integrated amplifier, or receiver shall be preconditioned by

driving all channels simultaneously with a 1 kHz sinusoidal signal to a nominal
power output into the rated load equal to 33% of the rated power output until one
hour of operating time has been accumulated.

2.2.2 A preamplifier shall be preconditioned by operating it undriven for one hour.

Output Reference Level
2.4.1 For output terminals whose primary function is to deliver signal voltage to a

subsequent device, the output reference level shall be 0.5 Vrs.

Load Impedance
2.5.2 Each output terminal whose primary function is to deliver signal voltage to a

subsequent device shall be terminated with a load consisting of a 1000 ohm ±5%
resistor in parallel with a 1000 pF ±5% capacitor.

Input Termination
2.6.1 The input termination for each line input shall consist of a 1000 ohm ±10%

resistor.
2.6.2 The input termination for each MM-phono input shall consist of a 1000 ohm

±10% resistor.
2.6.3 The input termination for each MC-phono input shall consist of a 10 ohm ±10%

resistor.

Control Settings
2.8.1 Gain control, whose primary function is the simultaneous adjustment of gain of

all inputs, shall be preset so that a reference-input level produces a reference-
output level except that the gain control of a power amplifier (if available) shall
be preset to the position of maximum gain.

2.8.2 Tone, loudness-contour, and other controls, whose primary function is the
adjustment of frequency response, shall be switched out (if possible) or shall be
preset for flattest electrical frequency response as indicated by markings.

2.9 Test Equipment

The net input impedance of all test equipment connected to the output terminals shall be
considered as a portion of the load impedance.

The net source impedance of all test equipment connected to the input terminals shall be
considered as a portion of the input termination impedance.



Input signal levels shall be the level of the Thevenin-equivalent generator of the input
circuitry.

All measuring instruments used shall be at least five times more accurate than the test
results to be recorded, so that no more than 20% uncertainty will be introduced. If this is
not possible, then the accuracy of the measurement shall be stated as part of the test data.

2.9.1 The test frequency shall be within 1% of specified value
2.9.2 The voltmeter shall have full-wave average rectifying characteristics and be

calibrated to read the RMS voltage of a sine wave to an accuracy of at least 2% of
full scale at any frequency to be measured. A voltmeter having true RMS
characteristics shall be an acceptable substitute.

2.9.3 The harmonic distortion measurement device shall be capable of measuring
distortion components within a 50 kHz bandwidth to an accuracy of at least +3%
of full scale.



Appendix B

The following are specification sheets for the Portable One, reproduced from the Audio
Precision Portable One Plus User's Manual, pages 9-1 and 9-2.

9. SPECIFICATIONS

GENERATOR CHARACTERISTICS
Signals Sine, square, IMD signal (optional)
Frequency Range 10 Hz-120 kHz. sinewa\e

20 Hz-30 kHz. squarewave
Frequency Resolution 0 02%

Frequency Accuracy (0.5%
Amplitude Range' 0.25 mV-26.25 V [-70 to +30.6 dBu]

for 20 Hz-30 kHz sinewaves.
0 25 mV-12 28 V [-70 to +24 dBuj
for all other signals

Amplitude Resolution 0 01 dB

Ampltude Accuracy (0 2 dB, sinewave:
(0.3 dB, squarewave and IMD

Output Impedances 600 BAL, 1502 BAL. 40 BAL.
40 UNBAL; all (2 Ohms.
Transformer coupled

Maximum Output 75 mA peak BAL,
Current 150 mA peak UNBAL

Sinewave Flatness (005 dB. 10 Hz-20 kHz:
(0.3 dB. 20 kHz-120 kHz

Sinewave THD+N
3  

0.0025% + 3 pV (80 kHz BW),
25 Hz-20 kHz:
0 010% + 10 pV (>300 kHz BW).
10 HI-50 kHz.

Residual Output Xtalk 10 gV or -110 dB to 20 kHz

Squarewave Risetime 2 5-3 0 psec

ANALYZER CHARACTERISTICS
Input Impedance 100 kOhms ((1%) // 150-200 pF.

each side to ground
Maximum Rated Input 350 Vpeak: 140 Vrms. dc-20 kHz

(250 Vrms. 48-63 Hz)

Common-Mode 70 dB, 50 Hz-20 kHz, Vn, 82 V,
Rejection 50 dB. 50 Hi-I kHi. Vn >2 V

AMPLITUDE/NOISE FUNCTIONS
Measurements can be
or SELECTIVE

unweighted (UN-WTD). weighted (WTD).

Measurement Range <ljsV-140 V [-118 to +45 dBul

Accuracy (0.2 dB UN-WTD,
(0 5 dB WTD or SELECTIVE

Flatness (UN-WTD) (0 05 dB, 20 Hz-20 kHz
(02 dB, 10 Hz-50 kHz
0 5 dB, 50 kHz-120 kHz

-3 dB at >300 kHz

UNWTD Mode 400 Hz (5% (3 pole)
Filters or <10 HL (no highpass)

22 kHz P5% (5 pole)4,
30 kHz I 5% (3 pole).
80 kHz ( 5% (3 pole).
or >300 kHz (no lowpass)

WTD Mode Filters

Selective Tuning
Range

Residual Noise

400 Hz (5% (3 pole) or
<10 Hz (no highpass)

plus
"IEC-A'" per IEC 179 (rms det ):
"CCIR-QPK" per CCIR Rec 468:

"CCIR-ARM" per Dolby Bulletin 19/4.
"'CCIR-RMS" (0 dB at I kHz. rms det )
AUXI or AUX2 (option filters)

20 Hz-120 LHL (3% (2-pole. Q=5)

1.5 pV 1-114 dBul. UNWTD 22-22 kH7.
I 0 lpV [-118 dBu]. WTD IEC-A
5 0 pV [-104 dBu]. WTD CCIR-QPK.

THD+N/SINAD FUNCTIONS
The THD+N function features three different tuning modes
"AUTO-TUNE" (determined by input frequency counter). "GEN-
TRACK" (ganged to generator setting), or "FIX-TUNE" (set us-
ing the front panel frequency controls. (3% lock range) Measure-
ments can be unweighted (UN-WTD) or weighted (WTD) using
the same filters as the Amplitude/Noise function Display also in-
cludes input level and frequency (notch frequency in FIX-TUNE
mode)

Fundamental Range 10 Hz-100 kHz. THD+N mode.
400 Hz or I kHz ((3%). SINAI) mode

Measurement Range <0 001%-100%

Accuracy (I dB. harmonics to 120 kHz

Residual THD+N' 0 0025% + 3 pV (80 kHz BW).
25 Hz-20 kHz:
0010% + 10 pV (>300 kHz BW).
10 Hz-50 kHz

Minimum Input 20 mV
5 

[-30 dBu] in AUTO-TUNE mode.
800S pV [-60 dBu] in other modes

Nulhng Time Typically 2-3 seconds above 25 Hz
Increases in a "I/V" fashion for inputs below
20 mV [-30 dBu]

WOW & FLUTTER FUNCTION
Measurements are processed to display only the highest
("PEAK") or second-highest ("20") of the previous 20 raw read-
ings Display also includes input level and frequency The fre-
quency readout can be selected to display the absolute frequency
or speed error relative to 3.(X) kHz or 3 15 kHL

Test Signal Frequency
Detection Modes
Response
Measurement Range

Accuracy

Residual W+F
Minimum Input

2.80 kHz to 3 35 kHz
IEC (quasi-peak). NAB (average). or JIS
UNWTD (0 5-200 Hz BW) or WTD per IEC 386
<0 005ck-3% (single range)

([5% of reading + 0 002%]

r0 005% WTD. 001% UNWTD

20 mV
5

1-30 dBul



LEVEL FUNCTION
Displays both input levels simultaneously, plus phase difference
or frequency of the selected input

Range
Accuracy
Response Flatness
(V,n 10 mV)

<10 mV-140 V [-38 to +45 dBul.

([0 1 dB +100 pV] (rms detection)

(0 05 dB, 20 Hz-20 kHz,
(0.2 dB, 10 Hz-50 kHz,
(0.5 dB, 50 kHz-120 kHz,
-3 dB at 1300 kHz

RATIO FUNCTION
Measurement Range <-80 dB to +100 dB,

0.01 dB resolution

Accuracy (0.1 dB, 20-20 kHz
Minmlum Input 10 mV [-38 dBu), numerator signal;

10 lpV [-98 dBu]. denominator signal

PHASE FUNCTION
Measurement Ranges -270/+90[, -1801+1880, or -90/+27(-,

0 IF resolution

Accuracy (2, 20 Hz-20 kHz,
(5f. 10 Hz-50 kHz

Minimum Input 20 mV
5 [-30 dBul, both channels

CROSSTALK FUNCTION
Similar to RATIO function except numerator signal is processed
by a tracking bandpass filter (2 pole, Q = 5).

Measurement Range -140 dB to 0 dB

Accuracy (0 5 dB
Frequency Range 10 Hz-120 kHz

Residual Input Xtalk -120 dB at 20 kHz, Rs ®600 Ohms

Minimum Input 20 mV
S [-30 dBu] in reference channel

AC MAINS CHECK FUNCTION
Displays voltage. THD+N (20 kHz BW limited), and frequency
of the ac mains

Measurement range
Voltage Accuracy

0 85-1.10 of nominal setting

(1%

GEN LOAD FUNCTION
Displays the equivalent ac resistive loading on selected generator
output Intended for checking input terminations. loudspeaker im-
pedance. or locating shorts

Measurement Range <I Ohm to 20 kOhm

Accuracy ([5%T +0 5 Ohm] for readings ® 1 kOhm
Degrades rapidly above I kOhm.
or with reactire loads

Frequency Range 20 Hz-20 kHz

Test Voltage 200 mV default Usable from 10 mV to
generator maximum

FREQUENCY MEASUREMENT (all functions)
Measurement Range

Accuracy
Resolution
Minimum Input

<10 Hz->200 kHz
(001% [1(X) PPMj
5 digits
20 mVs [-30 dBu]

AUXILIARY OUTPUT SIGNALS
Analyzer Signal Buffered analyzer output signal.

Typically 3 Vpp max, Rout - 600 Ohm (10%

Input Signal Buffered version of selected input.
0 8Vp-p-3 Vpp nominal range,
Rout = 600 Ohm (10%.

Generator Sync 3 Vpp smnewave at same frequency as
generator (LF tone only with IMD),
Rm,. = 680 Ohm (10%.

IMD OPTION CHARACTERISTICS
Generator Signal Selectable 50-60-70-250 Hz (01%) plus

7 kHz or 8 kl-I ((1%), mixed in a 4 1 ratio
(LF HF)

Analyzer Signal Any combination of 40-250 Hz (LF) and
Compatiblhty 3 kHz-20 kHz (HF) tones, mixed in any

ratio from 0.1-8:1 (LF:HF)

Measurement Range <0.0025%-20%

Accuracy (1 dB. per SMPTE RP120-1983, DIN 45403

Residual IMD
3  0.0025% 1-92 dBj, Vin 1200 mV

Minimum Input 100 mV
5

GENERAL CHARACTERISTICS
Temperature Range

Power Requirements

Dimensions (WxHxD)

Weight

OC to +40C, operating
-20C to +60C, storage

100/120/220/240 V (- 12%/+ 10%),
48-63 H7 50 VA max
16.5 x 6.0 x 13.6 inches
[41 9 x 15 2 x 34.5 cm]
Approx 20 lbs [9.1 kg]

NOTES TO SPECIFICATIONS

I Open-circuit, balanced source impedance selection. Reduce
maximum amplitude by a factor of 2 [-6 dB] with 40 Ohm UN-
BALanced output impedance selection. Accuracy and flatness
are unspecified below I mV.

2 2000 with option E.GZ installed

3 System specification including contnbutions from both gener-

ator and analyzer Generator Rl,,ad must be 16000

4 Combined with 22 Hz highpass per CCIR Rec 468 "22 kHz-
QPK" selection uses quasi-pcak detection per CCIR Rec 468

5 For fully specified performance. Usable with inputs as low as
10 mV Measurements are disabled for inputs below approxi-

maately 8 mV

6 Input must be 1 10 mV with "%" or "dB" unit for specified ac-
curacy



Appendix C

Matlab Simulation Code: In all cases, variable names are identical to those shown in
Figure 3-1. Zin is comprised of Rv in parallel with Cv, and Rx is Zs plus R1.

For Figure 3-2: Magnitude and Phase plots for interconnect transfer function with no
source impedance and Zin = 100 kQ.

RX = 0.2090;
R2 = 0.2090;
RY = 100e3;
L1 = 0.99e-6;
L2 = 0.99e-6;
C = 0.3386e-9;
CY = 0.0000;
F = [0:.1:8];
F= 10.^F;
W = 2*pi*F;
Re = R2+RX+RY-
(W.A2).*(L1 *RY*C+L2*RY*CY+C*CY*R2*RX*RY+L2*RX*C+L1*R2*C+L1 *RY*CY)

+(W.A4).*(C*CY*L1 *L2*RY);
Im = W.*(C*RX*RY+CY*R2*RY+L2+C*R2*RX+CY*RX*RY+L1)-

(W.A3).*(C*CY*L2*RX*RY+C*CY*L1 *R2*RY+L1 *L2*C);

Mag = RY./(sqrt((Re.A2)+(Im.^2)));
Phase = -(360./(2.*pi)).*atan2(Im,Re);

figure(l);
subplot(2,2,1);
semilogx(F,(20.*log(Mag))./log(10));
xlabel('Frequency [Hz]');
ylabel('Magnitude [dB]');
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8],'XTick',[1 10^2 10^4 10^6]);

subplot(2,2,2);
semilogx(F,Phase);
xlabel('Frequency [Hz]');
ylabel('Phase [degrees]');
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8],'XTick',[1 10^2 10^4 10"6]);
set(get(gcf,'CurrentAxes'),'YLim',[- 180 180],'YTick',[-90 0 90]);

F = 10.^[1.3:.1:4.3];
W = 2*pi*F;
Re = R2+RX+RY-
(W.A2).*(L1 *RY*C+L2*RY*CY+C*CY*R2*RX*RY+L2*RX*C+L1 *R2*C+L1 *RY*CY)

+(W.A4).*(C*CY*L1 *L2*RY);
Im = W.*(C*RX*RY+CY*R2*RY+L2+C*R2*RX+CY*RX*RY+L1)-

(W.A3).*(C*CY*L2*RX*RY+C*CY*L1 *R2*RY+L1 *L2*C);
Mag = RY./(sqrt((Re.A2)+(Im.A2)));
Phase = -(360./(2.*pi)).*atan2(Im,Re);

subplot(2,2,3);
semilogx(F,(20.*log(Mag))./log(10));
xlabel('Frequency [Hz]');



ylabel('Magnitude [dB]');
set(get(gcf,'CurrentAxes'),'XLim',[20 2e4],'XTick',[1e2 1e3 1e4]);
set(get(gcf,'CurrentAxes'),'YLim',[-0.01 0.01],'YTick',[-0.01 -0.005 0 0.005 0.01]);

subplot(2,2,4);
semilogx(F,Phase);
xlabel('Frequency [Hz]');
ylabel('Phase [degrees]');
set(get(gcf,'CurrentAxes'),'XLim',[20 2e4],'XTick',[1e2 1e3 1e4]);
set(get(gcf,'CurrentAxes'),'YLim', [-0.01 0.01],'YTick',[-0.01 -0.005 0 0.005 0.01]);

For Figure 3-3: Magnitude and Phase plots for interconnect transfer function with 1 kQ
source impedance and Zin = 1 kQ in parallel with 1000 pF. Shown are the value changes;
everything else is as shown in the code above (for Figure 3-2):

RX = 1000.209;
RY = 1e3;
CY = 1000e-12;

subplot(2,2,1);
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8]);
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8],'XTick',[1 10^2 10^4 10^\6]);

subplot(2,2,2);
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8],'XTick',[1 10^2 10^4 10^6]);
set(get(gcf,'CurrentAxes'),'XLim',[1 10^8],'YLim',[-180 180],'YTick',[-90 0 90]);

subplot(2,2,3);
set(get(gcf,'CurrentAxes'),'XLim',[20 2e4],'XTick',[1 e2 1e3 1e4]);

subplot(2,2,4);
set(get(gcf,'CurrentAxes'),'XLim',[20 2e4],'XTick',[1e2 1e3 1e4]);
set(get(gcf,'CurrentAxes'),'YLim',[-5 1],'YTick',[-5 -4 -3 -2 -1 0 1]);

ICAP/4 Simulation Setup Code: In all cases, R3 is the resistive component of Zin, and
C2 is the capacitive component of Zin in Figure 3-1.(these are the same as Rv and Cy in
the transfer function given in equation 3.2). All other variables are labeled as in Figure 3-
1.

For Figure 3-4: Interconnect simulation with no source impedance and 100 kQ Zin:

C:\SPICE4S\CIRCUITS\cable.cir
*SPICE NET
*INCLUDE STUDNT.LIB
R1 1 2 0.209
L1 2 3 0.99UH
L2 3 4 0.99UH
R2 4 5 0.209
C2 5 00
R3 5 0 100000



C1 3 0 0.3386NF
V1 10AC 1
.AC DEC 10 10 100MEG
.VIEW AC V(5) -10 0
.PRINT AC V(5) VP(5) VDB(5)
.END

For Figure 3-5: Interconnect simulation with 1 kQ source impedance and 100 kM Zin:

C:\SPICE4S\CIRCUITS\cable.cir
*SPICE NET
*INCLUDE STUDNT.LIB
R1 1 2 1000.209
L1 2 3 0.99UH
L2 3 4 0.99UH
R2 4 5 0.209
C2 5 00
R3 5 0 100000
C1 3 0 0.3386NF
VI 10AC 1
.AC DEC 10 10 100MEG
.VIEW AC V(5) -10 0
.PRINT AC V(5) VP(5) VDB(5)
.END

For Figure 3-6 and 3-7: Interconnect simulation with a 1 k2 source impedance and 1

kQ in parallel with 1000 pF (E.I.A. standard load) Zin:

C:\SPICE4S\CIRCUITS\cable.cir
*SPICE NET
*INCLUDE STUDNT.LIB
R1 1 2 1000.209
L1 2 3 0.99UH
L2 3 4 0.99UH
R2 4 5 0.209
C2 5 0 1000PF
R3 5 0 1000
C1 3 0 0.3386NF
V110 AC I1
.AC DEC 10 10 100MEG
.VIEW AC V(5) -10 0
.PRINT AC V(5) VP(5) VDB(5)
.END
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