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ABSTRACT

The time required to simulate an ultrascale computing environment in software is the core
bottleneck of Amorphous Computing research. This environment is simply a multitude of
almost-identical processing units connected in some communications medium. A hard-
ware implementation of the amorphous computing microchip would greatly decrease sim-
ulation time, thereby increasing the efficiency of research in the area. This paper specifies
such a design of an amorphous computing unit using contemporary VLSI techniques.

In addition to increasing the productivity of Amorphous Computing research, this hard-
ware implementation will allow for observation of more real-world problems implicit to
this computing environment. This paper is intended to serve as a reference manual into the
specifications for the chip, and focuses on the test structures and glue-logic portions of the
chip design.
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Amorphous Computing Project

Chapter 1 Introduction

1.1 Background - The Amorphous Computing Project

Recent technological developments will enable inexpensive production of large

numbers of tiny information-processing elements with integrated sensors and microactua-

tors. It is hoped that these sensor-rich processing elements can be distributed and embed-

ded into structural building materials to create intelligent and responsive environments,

such as bridges with load sensing capabilities or smart surfaces that monitor the weather.

If these elements are small and inexpensive enough to be mixed into materials that

are produced in bulk, such as paints, gels, and concrete, then these smart materials may be

able to reduce the need for strength and precision in mechanical and electrical apparatus,

through the application of computational intelligence.

Imagining for the moment that we have the hardware necessary for building these

kinds of structures, we then require new programming paradigms for obtaining organized,

fault-tolerant, and coherent behavior in such environments. We have come to call this

effort of identifying the engineering principles and languages that can be used to observe,

control, organize, and exploit the behavior of programmable multitudes the study of amor-

phous computing [1].

Amorphous computing considers the following questions fundamental in deter-

mining how best to organize ultrascale computing systems:

How do we obtain coherent behavior from the cooperation of large
numbers of unreliable parts that are interconnected in unknown,
irregular, and time-varying ways?
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Amorphous Computing Project

What are the methods for instructing myriads of programmable
entities to cooperate to achieve particular goals?

1.2 Motivation for hardware implementation now

Software and board-level simulation of the amorphous computing environment

have allowed researchers to make the first level of discoveries in these new programming

methodologies. These methods have matured to such size and complexity that software

and board-level environments are now too slow to be suitable for productive research.

Generally speaking, many methods for organizing processors [2] into approximate hierar-

chies, shapes, sizes, and orientations, and variably overlapping clubs have been developed

based loosely on LaPlace equations for analytical surfaces.

These methods of spontaneously collecting processors into larger groups have

greatly increased the numbers of calculations needed in software simulation. As these

larger blocks are now communicating with each other, interactions have become an order

of magnitude more complex.

For this reason and others, a microchip implementation of the amorphous com-

puter is now desired. The highly parallel nature of processing in this hardware environ-

ment should save orders of magnitude in simulation time. In essence, software

environments necessitate that one or a few processors emulate many thousands of amor-

phous computing units, while this hardware environment will allow for simultaneous pro-

cessing of information.

We are designing a chip capable of operating at 100MHz, but however fast our cur-

rent implementation may be, it is important to note that even today's most advanced tech-
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nologies would not permit a feasible processor small and inexpensive enough to fabricate

in bulk and create the aforementioned smart materials. However, the silicon microfabrica-

tion processes which we are using to create the amorphous computing prototype have an

excellent chance of being, or being closely related to, the medium on which these ideal

processors are created in the future.

Assuming that amorphous computers will in fact be realized in some VLSI pro-

cess, this first design of the amorphous computer in silicon will allow observation of many

more real-world reactions and problems implicit to the amorphous computing environ-

ment.

Implementation size in today's processes also allow for large numbers of input/

output pins on the chip exterior. In the future, we anticipate this luxury will no longer be

available since pins on chip packages have not been scaling with transistor minimum fea-

ture sizes.

In the extreme case, we imagine the final amorphous computing unit with only

three exterior connections: ones for power, ground, and communication. In this case, our

only way of determining the chip's internal state for debugging purposes will be through

the chip's radio module. If the radio module is faulty, this complicated matters even more.

It is therefore desirable that we have well-tested hardware cores which we can use

in later implementations. At the very least, it is desirable to have a robust interconnection

scheme, including test structures, through which the major modules on-chip may commu-

nicate and be thoroughly tested, perhaps easily replaced.

Last Updated: May 20, 1998 
page 12 of 61

Han Chou

page 12 of 61Last Updated: May 20, 1998



Amorphous Computing Project

1.3 Goals

This paper is intended to be a reference manual for all users of the chip. This

includes hardware debuggers, amorphous computing programmers, and designers of

future versions of amorphous computing units. Since many of the specifications and

design techniques and decisions have changed in mid-design, and still other decisions

have not yet been made, this document is expected to be amended to reflect any late

changes made in this previously document-sparse project.

The design of this chip is the culmination of the efforts of many. Overall function-

ally and all major modules are described in this paper, although the design work was not

necessarily done by the author. These module design descriptions are included simply so

that this document may be used as a reference guide for the chip. The author of this thesis

designed the test structures and the glue-logic (module interfacing and layout) for this

chip. Hopefully these structures will be reusable should any additional modules be placed

in later chips, or should any changes in current module implementations be needed.

The commonalities which we feel will be valid through several iterations of this

chip include a protocol and medium for communication between modules (a single-cycle

processor-mastered internal bus) a debugging mechanism which will allow us to view the

state of the chip from its external pins, and a self-test scheme which provides a fast means

of functional verification.

Fast design time was a major goal of the design team for this chip. Thus we have

made design trade-offs to keep designs simple. We assume that future iterations of this
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chip will perform the necessary minimizations or other optimizations that will increase

performance, area, and power metrics.

Hoping that many parts of this prototype design will be re-used in later (potentially

optimized) chips, we are motivated to provide extensive and complete test structures so

that we will be able to find any potential hardware bugs easily and quickly, especially

since we anticipate some amount of hardware bugs in this first design. It is also a goal to

provide later designs with well-tested and functional (at least at the logic level) modules.

Even if these modules should change, hopefully, their I/Os will remain similar, such that

they can be easily plugged into the existing design for test.

1.4 Roadmap to this thesis

This document is divided into four parts. First is a logic description of the normal

operation of this chip including broad specifications for the main modules on the chip and

their interfaces to the internal bus. Several high level abstractions such as the memory

address space allocations and Beta processor description are described here, which may be

useful to programmers, or people debugging code compiled for this processor. Signal

names are given here, which may serve as a good reference point for people discussing

this chip's design and possible enhancements or derivations, or other low-level discus-

sions.

Next, test and debug structures are described. These test structures have a mode in

which they do not affect (but perhaps can observe, or capture) the state of the chip. Those

investigating the fabricated chips should find the description of the test interfaces here use-

ful. Both single-step (interactive) and built-in self testing (BIST, hardware for fast func-
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tionality verification) are described in this section. The hardware pieces are shown, and

testing examples and methods are shown.

The third section describes the physical specifications of this design. The general

floorplan is specified, the dimensions of each module are listed, and power supply and

clock distribution are diagramed. Relevant information on the process technology is

included.

The last section is a list of improvements for the next iteration. Possible optimiza-

tions which were identified but not implemented are noted, and areas where minimization

could be performed if deemed useful are outlined. Potential units to add to the chip are

described, some of which implement required functionality in the applications described

in the motivation and background section of this thesis.
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Chapter 2 Functional Description

Bus Master

slave module slave module slave module

Figure 1. Functional Unit Blocks
This picture does not reflect actual or relative size, shape, or placement of modules.

2.1 Top-Level Description

This section describes operation of the chip in normal mode. In normal mode, all

test structures are transparent to the functional units shown above. Normal and other

modes of chip operation are determined by the command word in the Instruction Register.

This register and all modes of chip operation are described in detail in Chapter 3. Besides

test structures, driver controls and external pins are also not discussed in this section.

Last Updated: May 20, 1998 
page 16 of 61

Han Chou

page 16 of 61Last Updated: May 20, 1998



Amorphous Computing Project

2.1.1 High Level Description of Operation

This implementation uses the basic units necessary for an amorphous computer.

We need a processor to run code and control data transfer on-chip, we need memory to

store data, and we need a radio unit to transmit and receive data with other amorphous

computers. We also have an interrupt timer, through which we can provide the chip with

some sense of time -- counting either global bus clock cycles or on-chip oscillator cycles

(for real-time calculation if the global clock is irregular). There is a single data bus which

will allow communication between these modules, and this structure will be called the

internal bus. As we shall see later, since the internal bus interfaces to module input/out-

puts, it turns out to be the right place to place test structures.

2.1.2 Processor-Mastered Internal Bus

We call any agents which can drive the control (address and write-enable) lines on

the internal bus the master of the bus. In our implementation, the processor is the sole mas-

ter of the bus, and so we refer to operations from the point of view of the processor. We

refer to all other modules connected to the internal bus as slave modules.

Slave module enable signals are encoded in the high order bits of the address lines,

and specific functions (for the radio and timer module) or memory locations are encoded

in the remaining (offset) address bits. Since the processor will be performing a bus trans-

action on every clock cycle, all slave modules are required to complete and be valid in

exactly one bus cycle.

Most of these transactions will be the processor attempting to fetch its next instruc-

tion from memory. When we were previously using a Sparc DSP as our processor, there
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was some interface logic needed to convert the processor's Harvard (dual bussing for

simultaneous instruction and data memory access) to our architecture. The present inter-

face logic, however, consists simply of logic to decode the memory write byte enable sig-

nals to determine the direction (read or write) for modules' bi-directional i/o drivers.

2.1.3 Internal Bus Signals

The following is a list of named signals through which the chip's functional unit

blocks communicate:

TABLE 1. Internal Bus Signals

Signal Name Description

Brst Global Reset

Bclk Global Clock

Birq Interrupt Request (driven to the processor from the timer circuity)

Baddr<15:O> Address Lines driven by the processor

Bmwe<3:0> Memory Write Enable -- each correspond to one byte of the 32-bit data word

Bdata<31:0> 32-bit data word, driven by the processor on writes, by slave modules on reads

2.1.4 Memory Address Space Allocation

Although the processor has 32 address lines, we could only fit 40 kilobytes (KB)

of memory onto this chip, so we only use 16 address lines corresponding to a total (byte-

addressed) memory space of 64 KB. The processor drives all 32-bits of data when any sin-

gle or combination of the 4 Memory Write Enables are active, although anywhere from 1

to 4 of the bytes are valid and intended to be written in the cycle. Slave modules infer the

Read operation when all four write enables are inactive.

Last Updated: May 20, 1998 
page 18 of 61

Han Chou

page 18 of 61Last Updated: May 20, 1998



Amorphous Computing Project

TABLE 2. Memory Address Space Allocation

Memory Space Range Module Function

Ox0000 to Ox4FFF ROM 20KB read-only memory -- see Memory Section

Ox5000 to Ox7FFF Unspecified Unspecified

0x8000 to OxCFFF RAM 20KB read/write memory -- see Memory Section

OxD000 to OxD01F Radio See Radio Section

OxDO20 to OxDO3F Timer See Timer Section

OxDO40 to OxFFFF Unspecified Unspecified
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2.2 Beta2 Processor

BETA2 (Cr 3/98)
Ad imlmtaPflanono the am.A04 BIetar"Msw
witha stay apilu and &Ms brnh Mdj M laot

ld ry padranMw(LDAOIUST) ta two tefls;
otlh itnactans tSa a aiae cyd&

Figure 2. BETA2 Datapath
Chris Terman's design of the BETA2. Note that all clocked elements but the Register File are part of the scan chain.
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2.2.1 Datapath

This processor was designed by Chris Terman (cjt@mit.edu). It is a 32-bit proces-

sor with a 2-stage pipeline with one branch delay slot. Memory accesses take an additional

cycle and thus stall the pipeline. This processor has 32 general purpose registers, and no

caching is implemented (as we do not have enough space for this). The simple architecture

has a RISC instruction set [3] which is well-tested, and easy to learn and debug.

2.2.2 Major Control Signals and I/O
TABLE 3. Beta I/O and Major Internal Control Signals

Signal Name type Description

Prst input Processor Reset (connected to global reset BRST)

Pclk input Processor CLK (directly connected to global BCLK)

Pirq input Processor Interrupt Request (generated only by the timer
circuit in this chip)

Pmode<1:0> input 00 or 01 means normal operation, 10 means scan data, 11
means run built-in self test.

Ptdi input Input to (tail of) Processor's serial scan chain

Ptdo output Output from (head of) Processor's serial scan chain

Pmwe<3:0> output Processor Memory Write Byte Enables. Passed to bound-
ary scan registers before becoming BMWE<3:0>

Paddr<31:0> output Least significant 16 bits are passed through tristate-able
boundary scan registers to the internal bus.

Pdata<31:0> input/output All 32 bits are passed through tristate-able bi-directional
boundary scan registers to the internal bus.

Pmsel control Interior control signal for processor. Active when making
a data memory access. Stalls the pipeline since memory
operations take two-cycles.

Pwerf control Interior Register File Write Enable

Pasel control ALU input 1 (A) select

Pbsel control ALU input 2 (B) select

Pcsel control Literal or offset (C) select

Ppcsel control Program Counter Select

Pwasel control Write Address Select

Pz condition Register Value = Zero?

Pjt pointer Jump address

Pconst pointer Exception pointer
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2.2.3 Processor Modes

The processor operates in three modes. In normal mode, a rising edge clock

(PCLK) either advances everything in the pipeline (including doing the fetch for the next

instruction), or performs a data memory read/write. In Test Mode, a rising edge clock

shifts read-only data out of the processor's internal registers. In BIST Mode, the LFSR

provides memory access data (both instruction and data).

2.3 RF Transceiver (Radio)

Figure 3. Radio Module Block Diagram
Data queue controls controls when data is read out of the incoming buffer or written into the outgoing buffer.
Data queue controls2 controls when data is read out of the outgoing buffer or written into the incoming buffer.

'Front end controls' manage shift channel codes, exchange registers, synchronize the receiver, and provide threshold
parameters for the front end.

The Radio module is currently being designed by Chris Hanson. Much of the digi-

tal portions of the radio have already been fabricated and tested, with verified functional-

ity. However, we will be making some changes to this circuitry for the amorphous
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prototype. The prototype will have the first silicon implementation of the analog front-end

circuitry.

2.3.1 Radio Operation - Transmitting and Receiving

Figure 4. Block diagram of the radio (front-end) transceiver.

This block diagram shows the separate transmitter and receiver circuits on the

chip. An important logic block in this circuit (and also in test structures) is the pseudo-ran-

dom bit stream (PRBS) generator. This is really a shift register, where the lowest order bit

is generated by properly XORing together certain bits in the 31- bit register [4]. The other

bits are shifted to one higher place of significance. The XORs which compose the new

(lowest order) bit to be shifted in are created in such a way such that the resulting

sequence of 31-bit values cycles through the 231 - 1 values encoded in the register. The

zero value in this register is the single value that is not cycled through. The PRBS is

unable to leave the zero state unless it is reset.
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We will call the PRBS a Linear Feedback Shift Register (LFSR) in the context of

testing structures. We call it a PRBS in the context of the radio because usually we want to

think of this structure as generating a pseudo-random sequence of bits whereas we want to

think of a pseudo-random cycling through of many 31-bit values when we use it for test-

ing.

The transmitter simply mixes the input data with a high-speed pseudo-random bit

stream (PRBS) to produce a modulated baseband output. That is, each data bit input con-

trols whether the next several bits (in our case, 512 bits) generated in the PRBS are sent

through the (analog) transmitter in their true or complemented version.

The receiver accepts a modulated baseband signal as input. It expects this signal to

be like the transmitter output -- a single bit mixed with a sequence of 512 bits generated in

the PRBS. The receiver collects the modulated baseband signal bit-stream into a 31-bit

shift register. This value is fed to a correlator, which counts the number of bit-wise

matches the current 31-bit sequence has with in the locally-generated copy of the PRBS.

Thus, a 5-bit value (there can be anywhere from 0 to 31 bits which matched the

current PRBS) will be generated each clock cycle, each being either two more, two less, or

exactly the same as the previous 5-bit value. Now we can imagine having a 512 long

sequence of 5-bit values for each bit that we want to transmit. The low-pass filter block

attempts to remove high frequency components in the 512 sample-long sequences.

The low-pass filtering actually implements an averaging of the many 5-bit samples

into a single 5-bit value. This averaging occurs on clock cycles of powers of two, such that

we finally have one 5-bit value every 5.12 gs (the data rate). If this averaged 5-bit value is
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greater than an upper threshold or less than a lower threshold which we can program, then

we decide that the data is valid (Data_In_Valid is asserted). The data bit itself (Data_In) is

determined by whether it is above or below the threshold. The upper and lower thresholds

are composed of 4 bits each. This is because we will require that the number of matches

(or differences) with the PRBS be greater or less than one half (16) the total possible to

consider the data to be valid.

The "synchronize" command instructs the receiver to assume that the modulated

input data is valid and to synchronize (load) its internal PRBS with that data. In practice,

this will not always work, so there will be a state machine responsible for iterating this

process until synchronization is achieved.

The transmitter/receiver pair works with a 5.12 gsec/bit data stream (about 191

kbit/sec), and a 231-1 bit PRBS running at 100 Mbit/sec.The PRBS rate and the data rate

may be varied but the data rate must be exactly 512 times slower than the PRBS rate. This

PRBS has been fabricated and tested. It runs at PRBS rates up to 125 Mbit/sec. The PRBS

will be clocked by the global clock pin on the amorphous prototype.

The rate ratio of 512 provides a theoretical "process gain" of about 27 dB, which

will in practice be about 15-20 dB. The process gain provides a measure of immunity to

other non-correlated signals in the same frequency range -- specifically, such signals must

be 15-20 dB stronger than the signal of interest before they will cause significant interfer-

ence. Due to the process gain, we are able to have multiple transmissions simultaneously

sharing the same physical channel.
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2.3.2 Processor-Directed Functions in the Radio

Below is a table of memory offset values which correspond to memory-mapped

commands the processor may issue to the Radio Module.

TABLE 4. Radio Address Space Offset Decode

Mem read/ Function/ Data MSB Data LSB
offset write Description Bdata<31:24> Bdata<23:16> Bdata<15:8> Bdata<7:0>

Ox00 write Reset A

0x04 write Synchronize K

0x08 write Enable Test T

Ox0c write Register Xfer SSDD

Ox10 write Set Threshold UUUU LLLL

0x14 write Code Shift RR+ NNNN NNNN

Oxlc write Write Buffer IIII IIII IIII IIII IIII IIII IIII IIII

Ox00 read Radio Status FFFF FVBT PPPP PPPP UUUU LLLL

OxlO read Read Buffer 0000 0000 0000 0000 0000 0000 0000 0000

Note that the Memory offset values represent only the 5 least significant bits of the

bus address (BADDR<4:0>). A write command to the base address in the radio module's

enabled region asserts the radio reset signal, thereby initializing the state of the radio. This

reset signal may also require the least significant data bit active high (logic 1). The effect

of a reset includes presetting all PRBS registers high, clearing the radio buffer, putting the

radio in operational mode (not test mode), and putting all radio FSMs in their initial states.

The threshold values may also be reset to some value, as yet to be determined.

TABLE 5. Address Space Data Symbol Elaboration

code Representation code Representation code Representation

A Reset Data D Destination Register + Up/Down

K Synchronize U Upper Threshold N Amount to shift

T Test Enable/Disable Data L Lower Threshold I Data into buffer

S Source Register R Register to shift O Data out of buffer

F FSM state bits read out P Pointer values for incom- B Data In
during status checks - ing head/tail and outgo- V Data In Valid
this is how to tell when ing head/tail
functions are done
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The synchronize command attempts to synchronize the receiver's PRBS to some

transmitter's channel code by observing the incoming data stream, and assuming that

transmission occurred smoothly, as described in section 2.3.1. An FSM is used to deter-

mine whether or when this channel code capturing has succeeded. This is done by examin-

ing the Data_In and DataInValid signals.

The radio status command allows the processor to read various status registers in

the radio module. This data includes the current values for the upper and lower thresholds,

the data valid and data valid in signals, whether the radio is in test mode, the states of the

channel code shifting and synchronization FSMs. These bits are yet to be assigned, and

they may extend into higher order data bits on the bus than we have shown here. We will

be most interested in when these FSMs have completed their tasks. The command also

allows us to read the current positions of the pointers into the data buffer.

As will be explained in the section below, we have determined that four entries in

each direction (incoming and outgoing data buffers) should ensure that data is not inappro-

priately overwritten. Each pointer (head and tail of each buffer) is therefore two-bits long.

Higher order data bits correspond to high order bits for the value of the pointers. The

pointers are (in order from most significant to least) incoming head, incoming tail, outgo-

ing head, and outgoing tail.

Our present threshold values are 4 bits long each. They loosely correspond to how

"off' we are willing to be and still decide that the incoming data is valid. We say loosely,

since some low-pass filtering is done to smooth the correlating function. These threshold
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values can be read out during the status command, and are written in the set thresholds

command.

The register transfer command is currently planned to be implemented as a copy

from one register to another (overwriting the destination value). Eventually, we may want

it to be a parallel exchange (swapping) of the values of two (31-bit) PRBS registers.

We will have 4 pseudo-random bit stream generators, each corresponding to a spe-

cific modulation channel. One PRBS keeps track of the receiver channel code, another the

transmitter channel code. The other two PRBSs keep track of channel codes which we are

presently not using but may want to switch into either the transmitter or the receiver. Later

radio units may have multiple transmitter or receiver units, so that multiple channels can

be decoded or encoded simultaneously.

Besides swapping existing channel codes, we may want to shift channel codes

forward or backward in time. The command takes data from the bus in a sign-magnitude

representation, with the most significant bit determining the direction we want to shift the

channel code. Advancing the code in time corresponds to allowing more clocks to the reg-

ister than normal, and moving the code backwards just disables clocking to a particular

register for the number of cycles.

Valid data received in the receiver (incoming data) and data intended to be sent out

by the processor (outgoing data) are stored in the radio's data queue. The processor will

perform read incoming buffer and write outgoing buffer commands to perform these

queue accesses. The pointers will be moved to reflect where the new pointers of the head
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and tail of the queue are. These processor accesses (and thus all entries in the data queue)

are full 32-bit accesses.

To enable radio testing, we write to the proper address and make the least signifi-

cant data bit BDATA<O> active high (logical 1). This effectively connects the transmitter

output to the receiver input, allowing us to test the analog circuitry by sending data

through the outgoing buffer and (hopefully) back into our own incoming buffer. To dis-

able radio testing (and put the radio into normal operating mode), we write an inactive

low value (logical 0) to the lowest data bit of the specified address.

We note that test structures require us to provide a read for every write command

in a module's given address space. Therefore, the radio will perform a radio status read for

the address offset range Ox00 - OxOF, and it will perform a radio buffer read for any

address in the offset range Ox10 - OxlE

2.3.3 Radio Data Queue

The radio unit defaults to actively trying to decode incoming data. It operates at the

bus clock frequency. Transparently to the processor, a FIFO buffer in the radio will be

filled as incoming data is successfully received. Because the radio unit is a slave module, it

cannot take control of the bus and request data transactions. Therefore, we must prevent

accidental overwriting of data in this buffer by ensuring that the processor moves data

from the incoming buffer on a regular basis. How frequently this must happen depends on

the size of the data buffer, and the maximum speed at which it can become filled.
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The data rate ratio is 512 global clock cycles per bit, and we store 32-bit words in

the each entry of the data buffer. Therefore we expect (a maximum of) one word to enter

the buffer every 16,384 cycles. We have then decided to make the buffer four entries deep

such that we have to check the buffer at a minimum period of once every 65,536 cycles. At

the estimated operating frequency of 100MHz, this corresponds to checking the radio

buffer approximately every 650 gsec.

Since the processor we are using only has one interrupt request line, we have cho-

sen not to allow the radio to directly cause an interrupt to the processor. Although this

could be implemented in a simple design, there are other several other routines which we

probably want to run in timed intervals as well. Therefore, we have chosen to implement

an on-chip timer, which will interrupt the processor relative to either a programmable,

real-time period as generated by an on-chip oscillator or a programmable number of glo-

bal BCLK signals.The specific routine of checking the radio's data buffers we will refer to

as radio buffer polling. Radio buffer polling may also include similar measures to ensure

that the processor does not write values into the outgoing radio buffer as well.

A datapath for the radio's data buffer is shown below. Several optional signals are

calculated such as INfull which may be useful in generating radio-initiated interrupts to

the processor in future designs.
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OUTfull

Write Outgoing Data

ResetPtrs

Read Outgoing Data

Transmit Data Out (to transceiver)

Write Outgoing Data

Outgoing/Transmit Data (from bus)

Incoming/Received Data (from transceiver)

Received Data Write Incoming Data

Read Incoming Data Write Incormng Data

ResetPtrs

INfull

Figure 5. Radio Data Queue
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2.3.4 Interrupt Timer

This module is a simple programmable counter. We will clock this timer with the

global bus clock, as this will be operating at a consistent real-time period. The timeout sig-

nal from the timer goes through internal bus structures and eventually acts as the IRQ

input to the processor.

As with the radio, we need to ensure active reads are possible from every address

available in our allocated memory space. Therefore, the timer module reads the current

value for memory offsets Ox00-0x0F, and reads the period for Ox10-0x1F.

Figure 6. Interrupt Timer Block Diagram
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TABLE 6. Interrupt Timer Functions

mem offset type function/description data

0x00 read readout current count value Bdata<31:0>

0x04 write enable count - sets or resets register which Bdata<0> high
enables or disables the counting in the counter. enables, lo disables

0x08 write write new timeout period Bdata<31:0>

Ox0c write reset Bdata<O> high resets

0x10 read readout current timeout period Bdata<31:0>

Note that the Memory Offset values represent only the 5 least significant bits of the

bus address (BADDR<4:0>)

2.3.5 RAM and ROM (Memory)

The memory cells were designed by Tim McNearny and redesigned by Chris Han-

son. These cells were designed to be operate at 100 MHz. Their layouts were made as

small as possible, then used to fill the chip with memory cells after the other modules were

completed (or at least, their boundary boxes restricted to an agreed size).

Half (20 kilobytes) of the total memory (40 kilobytes) is Read-Only Memory, and

the other half is Read-Write memory. The density of the ROM cells is about 4 times that of

the RAM cells, and so there is 4 times as much space used by RAM cells as by ROM cells.

ROM cells come in 4 kilobyte blocks (1024 32-bit words) each and RAM cells come in 1

kilobyte blocks (256 32-bit words) each.

Both the RAM and ROM have 14 address pins. That means that we have 2 pins

which we can "program" in the ROM, and 4 such free pins in the RAM. We group our

RAM cells into groups of four to match the structure of the ROM cells, and to simplify the

process of interfacing to our 16-bit address bus. We need to program 2 of the RAM pins in
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order to accomplish this grouping, and we are left with two free pins to enable the correct

memory grouping. This decoding is shown below, along with a rough routing picture.

These memory cells were designed to allow the routing of address and data lines

vertically over them (they are wider than they are tall). In order to maximize the number of

memory cells we could fit onto the chip, and still make use of the vertical routing over the

cells, we eliminated I/O pins on the sides of the chip. We created vertical stacks of five

memory cells, with a ROM being on top, and four RAM cells stacked below. Every verti-

cal stack has the same base decode as shown in the selector below.

Figure 7. Memory Cell Grouping, Decode, and Signal Routing
Note - Figure not to scale (See Chapter 4)
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Chapter 3 Chip Testing

The on-chip hardware structures which we have provided for observing and setting

the state of our machine is based upon suggested design implementations of the IEEE

Boundary Scan Architecture (standard # 1149.1) [5]. This approach focuses on transpar-

ency of test-hardware to normal operation, a small number of 1O0 connections to control

the test-hardware, and ease of design. We have used the IEEE user interface so that exist-

ing software can be used to interact with our test hardware.

3.1 Logic Testing - Chip Observability

One of the main goals of our test structures is to provide near-complete observabil-

ity of the internal state of our chip. That is, we would like to sample the state of the

machine at discrete points in time, then somehow get this information to the exterior of the

chip. We implement this exporting of data through a serial chain, in anticipation of insuffi-

cient pins to do this any other way in the future. Although not particularly applicable to

our chip, this will become increasingly important with future designs. State observability

will be crucial in isolating and debugging low-level hardware bugs or fabrication prob-

lems.

Since the majority of the state of the chip is already found in the chip's registers,

we need only provide some way of getting this data to the chip exterior. Using some rout-

ing and a large selector, we create a serial sequence to the exterior as shown below. Note

that this method allows transparent observation of this data, potentially during normal

operation.
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Figure 8. Observability Implementation
In this example the state bits of two modules are routed to a selector, then converted to a serial sequence of bits at the

chip exterior. A low (inactive) test enable signal synchronously resets the count -- high (active) allows counting.

The radio module has some internal structures still under construction, and may

have a similar observability structures implemented for its internal state. We may refer to

the above read-only registers as module-internal observable registers.

3.2 Logic Testing -- Chip controllability

In addition to transparent observation of the state of our logic, we would like to

have some control -- that is, the ability to put our machine into a known state. To imple-

ment either mode (observe or control), we place boundary scan cells (BSCs) at module

interfaces.

Our basic BSCs consist of two registers and two multiplexors each as shown on the

following diagram.
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Figure 9. Basic Boundary Scan Cell
This is an example of a BSC implemented at a module's (in the case, the processor's) output. Note that if we can

emulate the processor's outputs, we are in effect emulating the inputs to the slave modules. For module input BSCs,
we reverse the above picture -- The Interrupt Request Line from the Timer Circuit and the Bus Reset Line (BIRQ,

BRST) would be placed on the left in the above picture and PIRQ, PRST would be on the right.

Notice the test data input (in bold) which can be shifted into the register chain.

BSCs can be placed in a mode where they provide inputs to the module in place of the

nominal chip circuitry. We call this the ability to emulate the chip (from the perspective of

the module), and the mode in which we do this is referred to as a module's internal test.

We may also emulate the module (from the perspective of the rest of the chip) by

providing the module's outputs (to the rest of the chip) from the BSCs. This is known as a

module's external test.

Because there is only one master of the bus (the processor), there is no need to

place BSCs around both inputs and outputs of every module. The output of the processor

is really the inputs to all the slave modules, and the outputs of the slave modules are really

Last Updated: May 20, 1998 
page 37 of 61

test (scan) data out
to next cell

Last Updated: May 20, 1998

Logic Block

serial scan data
(to next stage)
and propagated
control signals

normal data
from chip

BSC
selected data
to chip

serial scan data
(from previous stage)
and control signals

Han Chou

page 37 of 61



Amorphous Computing Project

the inputs to the processor (except for the global clock signal, and the like). Therefore, we

have implemented our test strategy with BSCs completely around the processor, and a few

others in special cases. Below is a picture of BSCs completely surrounding a module,

allowing emulation of the module (for the rest of the chip) or emulation of the rest of the

chip (for the module).

Notes: The Boundary-Scan Register is shifted TDI to TDO.

Figure 10. Boundary Scan Method
Surrounding a module with BSCs allows us to fully simulate inputs to the module under test, as well as simulate
module outputs (inputs for some other module on-chip). The TAP and the instruction register are the two main

structures used to control the BSCs. These are described in the next section.
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Of slightly more complication is the bi-directional I/O BSC, shown below.

Figure 11. BSC for Bi-Directional Module I/O
One cell of a bi-directional boundary scan chain. Note that there are two paths for scan data. The desire to separate
these two paths will become apparent in the following section when LFSRs and Signature Analyzing abilities are

added to these cells. The need to separately tristate data also becomes apparent in BIST discussion.

The time required to shift in data and progress through functional clock cycles is

too slow to be practical for a quick chip functionality test. Instead, we provide for more

specialized hardware so that modules can perform at-speed tests, which will be called

Built-In Self Tests (BIST). Self-test for slave modules uses hardware that is added to par-

ticular BSCs. Self-testing the processor uses hardware that is internal to the processor.

3.3 Built-in Self Test(BIST) - At-speed testing

The general approach taken towards at-speed testing is verifying the input/output

behavior of modules. We provide a stream of inputs to a module at operating speed, and

either observe the outputs at the chip exterior at-speed (verify them as they occur), or

direction

st (scan) data in B
next cell

BDATA<0>

PDATA<O>

test (scan) data out A
from previous cell
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observe a checksum (an accumulation the consecutive outputs) after incremental numbers

of cycles.

Verification of the outputs at the externals of the chip relies on finding software

and hardware interfaces which can operate at the estimated 100MHz operating speed of

the chip. This is, in general, difficult. It may be possible to drive the pin externals at a rate

of 100 MHz, but even if we do not connect our chip to a printed circuit board, the load of

some oscilloscope probes may still be too much for the chip. In addition, having to precal-

culate and store what the values should be for each cycle is laborious. Verifying the match-

ing of this value probably has such latency that makes this method highly difficult, and

therefore we do not discuss the external verification method further in this document.

We have decided to design on-chip hardware to collect test data. This should then

allow us to use known, tested software to retrieve the results of our tests stored as check-

sums in the BSCs.

The checksum technique requires that we begin BIST from a known machine state.

We should then be able to calculate how this checksum should end up after a large number

(on the order of millions) of cycles, and compare our calculated version with one we

shifted out of the chip after applying the correct number of global clock cycles.

Although the resulting checksum is not completely assured of finding errors, it

gives us a very probabilistic assurance that we will catch any errors that exist. This is qual-

ified by our correctly placing the signature analyzer in an appropriate place (to maximize

capturing the effects of our inputs) and our correct method of collecting this checksum.
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These issues are discussed in the following sections which also discuss how the BSCs are

manipulated to provide us with LFSR and Signature Analyzer functionality.

Figure 12. BIST Method
Notice we have separated testing of the processor and testing of the slave modules. Both testings require a pseudo-

random number generators (LFSRs) which provide inputs to the module(s) under test, and a signature analyzer
which collects the outputs of the module(s) under test and allows this data to be serially shifted to the chip exterior.

3.3.1 BIST for slave modules

The inputs which we must provide to the slave modules during BIST are the

address and write-enable lines. We implement the input stream using BSCs modified to

produce LFSR outputs, so we will cycle pseudo-randomly through the available addresses.

Since our address space is not completely filled (about 40Kbytes out of 64Kbytes are

used), some addresses will correspond to no active slave modules and therefore, nothing

will drive the data bus. These data lines are the outputs of the slave modules, and thus

to
rior

slave moduleslave module slave module
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where we implement our signature analyzer -- the BSCs at the data I/O lines. We do not

want to capture these unknown (undriven) values in our Signature Analyzer, so we disable

the Signature Analyzer accumulation during reads to addresses where no module enables

are active.

We allow two kinds of BIST for slave modules. In the first, we do all reads, and in

the second we perform a write then a read to each pseudo-randomly calculated address.

During both read and write cycles, we supply pseudo-random address line inputs. In addi-

tion, during write cycles, we supply pseudo-random data to the bus data lines, disable the

accumulation in the signature analyzer, and disable the address LFSR from going to the

next address. During read cycles, we accumulate the bus data in the signature analyzer (if

we have enabled some slave module), and enable the LFSR to bring us to the next pseudo-

random address.

3.3.2 BIST for the processor

Processor self-test can be run simultaneously with slave module BIST. Starting

with the processor in a known state, we enable BIST and perform several global clocks to

the chip. During each BIST-enable clock cycle, the processor takes (instruction fetch and

memory) data from its internal memory bus which is driven by an internal LFSR as shown

in the Beta datapath diagram. The tristate driver which buffers the signal from the data

BSCs must be then disabled (hardware is implemented which performs this) during pro-

cessor BIST. The signature analyzer is connected to the outputs of the processor ALU.

Many of the pseudo-random instructions passed to the processor will be invalid instruc-
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tions (and thus treated as no-ops), but the ALU will still provide useful test data to have

accumulated in the signature analyzer.

3.3.3 Adding BIST functionality to Boundary Scan Cells

To provide the slave modules with an input stream of random addresses and data,

we modify the BSCs at the processor address, write-enable, and outgoing data lines. These

modified address and write-enable BSCs are shown below.

Figure 13. LFSR-enabled BSC
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The XOR function is chosen so that a maximal number of values are cycled through before repetition.

Figure 14. BSC for Processor Write-Enables
Write enables should be preloaded all high to start BIST testing. During BIST, they invert every cycle.

The sample/shift registers in the above BSCs implement a Linear Feedback Shift-

Register function (as discussed in the Radio section) by allowing the first cell to take data

from the XOR function, and allowing global clocks to update the sample/shift registers

during BIST. The rest of the BSCs simply provide the shift function to complete the

requirements for an LFSR.

Note that we additionally need to bypass the "update" registers to provide the

pseudo-random sequence to the slave modules. The update register normally allows us to

shift data transparently, thereby allowing discrete transitions into wanted states. During

BIST, we are counting on every cycle's change to be input to the module.

Every BSC for the address lines then requires only one extra multiplexor to allow

this bypassing of the update register. Additionally, another multiplexor, some routing, and

a few XOR gates are needed for the first cell only.
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The write-enable BSCs should be preloaded inactive for slave-module BIST2

(read-only). During this kind of BIST, the sample/shift register will still provide data to the

exterior, however, it will not be clocked by the global clock. During 2-cycle slave BIST

(write followed by read to the same address) the write enables toggle between all-high and

all-low, and in this mode, the sample/shift registers should be clocked by the global clock.

The values for the write-enables should be preloaded to an all-high or all-low values for

this mode as well.
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Figure 15. LFSR and Signature Analyzer at Processor Data I/O
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3.4 User-Interface -- Test Structure Controls

The test structure controls are divided into two regions - user interface control

(TAP pins and FSM controller) and on-chip instructions (the modes as encoded in the

instruction register).

3.4.1 Test Access Port (TAP)

The Boundary-Scan registers are controlled via a Test Accessibility Port5 (TAP).

The TAP is a set of designated pins on the chip package through which the user may

change the control signals to the test structures.

The IEEE implementation of the TAP focuses on using as few resources (connec-

tions to the outside world, or pins) as possible. The pins required to control these struc-

tures are listed in the following table:

TABLE 7. TAP Pins

signal description

TRST* Forces the TAP Controller FSM state bits to the RESET state,
sets the instruction register to a default of sample/preload, and poten-
tially presets all BSCs (LFSR and Signature Analyzers -- this is not
implemented, so we are expecting that these will be preloaded to cor-
rect values, notably not the zero-value for the LFSRs)

TMS Test Mode Select. This input determines the next state in the
TAP FSM. Five rising edge clock signals with TMS asserted (high)
will always result in the TAP Controller FSM going to the RESET
state.

TCK Test Clock. Clocks the TAP Controller FSM. May be clock
gated in the CLOCK and the UPDATE signals passed to the BSC
registers.

TDI Test Data input - Scan in data comes from here.

TDO Test Data output - Scan out data comes from here.

(*) denotes an optional pin

Last Updated: May 20, 1998 
page 47 of 61

Han Chou

page 47 of 61Last Updated: May 20, 1998



Amorphous Computing Project

The TAP signals TCK, TRST, and TMS are inputs to an FSM (called the Tap con-

troller FSM) which provides control signals to the rest of the machine. Each state in this

FSM corresponds to an action that some test structures can be doing -- in some states, we

are shifting data in the instruction register. In other states, we are capturing the parallel

data into a scan chain data register.

The TAP Controller FSM is shown below.

Figure 16. Tap Controller FSM
DRshift, IRshift, enable, and reset control lines are registered to avoid glitchy or hazards. This FSM is taken from a

suggested design given in Weste and Eshraghian [x]
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3.4.2 Instruction register

We use a suggested design for an instruction register given in Weste and

Eshraghian [x]. This cell looks exactly like the basic boundary scan cells except there is no

selector at the output.

The instructions in the instruction register are listed below. They differ by tristating

different modules on-chip, which BSC chain to activate (that is, which BSC should be

allowed to capture, shift, and update data), which modes the BSC are in, and if any self-

testing mechanisms should be activated.

Either the processor or all the slave modules can be tristated so that a user may

drive values at the external pins and emulate either the processor or the slaves. The two

choices for active data register chains are the processor's internal test registers or the BSCs

around the processor's externals. Each of these chains can be either transparent, or provide

data to the chip modules, as determined by that chain's mode. BIST functions were

described in the previous section.

TABLE 8. Instruction Register Chip Modes

Bit tristated scan mode
Instruction Name Code active data chain module activation Description

Sample/Preload 000 processor --none-- --none-- Normal Operation. Trans-

"Normal" mode external parent Observation

Read Processor's Inter- 001 processor slave --none-- Read Data from Processor
nal Registers internal Internal Scan Chain

Offchip Emulation of 010 -- processor --none-- Processor outputs driven
processor from offchip

Boundary Scan Emula- 011 processor none processor Processor outputs driven
tion of processor external outputs from the scan chain

Offchip Emulation of 100 processor slave --none-- Slave outputs driven from
Slave Modules external offchip

Boundary Scan Emula- 101 processor --none-- processor Slave outputs driven from
tion of slave modules external inputs the scan chain
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The diagram below shows flow of control signal groups from the external pins to

Figure 17. Test Control Signal Flow (in signal groups)
Shaded blocks are BIST-modified BSCs.

All registers in the processor's internal scan chain are 32-bits long. All registers in

the Processor External Chain are 1-bit unless otherwise noted. There is presently no data

accessed in an additional Radio Scan Chain.
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When shifting data out of the processor's internal scan chain, the TAP controller

FSM must be in the DRshift state, the instruction register must be set to Reading the pro-

cessor's internal scan chain, and the Global Clock (BCLK) must be clocking.

All data in the processor scan chain is read-only except for the LFSR and the Sig-

nature Analyzer. All data in the processor external scan chain will be updated in the

Update_DR (DRupdate) state if the processor external scan chain is active, so we must be

careful to return the same value that we shifted out of the scan chain back in when we are

done if we want to preserve the state of the machine.

Below is a table of signals which are used in testing.

TABLE 9. Test Control Signals

signal / group(s) source / derivation

Pmode<1:0> 00 or 01 means normal operation, 10 means scan data, 11 means run
built-in self test. Scan data when FSM is in DRshift state and
TapIRstate is Read Processor Internal Scan. Processor expects GLO-
BAL clock signals in order to advance the test data in its scan chain
(not the test clock). Run BIST when TapIRstate is BIST1 or BIST2
and TapFSMstate is Run-Test/Idle.

AddrOutRange asserted when no slave modules are active. It is derived by NORing
the module enable signals. This signal tells the signature analyzer not
to be clocked during BIST read cycles, as there will be nothing driv-
ing the bus

direction asserted when any of the Bmwe<3:0> are high -- tristates one of the

(passed to all I/O BSCs) bi-directional drivers for processor and external I/O pins. Controls
whether BIST address advances or not (advance when direction is
low (processor is reading).

tristate_proc asserted when TapIRstate is Offchip Emulation of Processor -

(all proc outs and I/O) tristates processor outputs when active

tristate_slave asserted when TapIRstate is Offchip Emulation of Slaves or BIST1

(all proc ins and I/O) or BIST2 - tristates slave module outputs when active

BSCprocMode asserted when TapIRstate is Scan Emulation of processor or BIST1

(all proc outs and I/O) or BIST2 -- processor outputs come from scan chain when active.
Controls the mode selector for the Address and write-enable pins.

BSCslaveMode asserted when TapIRstate is Scan Emulation of Slaves - processor

(all proc ins and I/O) inputs come from scan chain when active
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signal / group(s) source / derivation

BSCenable Enables the Processor External Scan registers for shifting, sam-
pling, and updating. Occurs when instruction register word is any-
thing except Processor Internal Scan. This signal is the negation of
the processor's internal-scan enable signal.

BSCclock clock signal to all other boundary scan signals on the chip (the ones
not enabled for BIST) -- excluding the processor's internal scan reg-
isters. This is simply DRclock AND BSCenable.

BSCshift DRshift AND BSCenable

BSCupdate DRupdate AND BSCenable

BIST! asserted when TaplRstate is BIST1 or BIST2 and TapFSMstate is

All BIST-modified BSCs Run-Test/Idle. controls two muxes -- one allows LFSR and Signature
Analyzers to XOR and shift in new data, other brings that data to the
exterior, bypassing the update register.

BSCbistClockl clock signal to the "sampling" register in the boundary scan cells at
the write-enable lines. This signal follows the global clock (BCLK)
when BIST! is asserted. Otherwise this signal follows DRclock AND
BSCenable AND NOT((BIST1 or BIST2) AND DRcapture).

BSCbistClock2 clock signal to the "sampling" register in the boundary scan cells
which have LFSR or signature analysis capability. This signal is
exactly like BSCbistClockl but this only follows BCLK if direction
is inactive (update only on reads)

BSCbistShift asserted when DRshift AND BSCenable, or BIST!

3.5 Radio Testing

The analog portions of the chip consist of transistors so large that they are probabi-

listically going to be error-free (in terms of fabrication faults). The testing method we will

use for this piece involves connecting the output of the chip's transmitter to the input of

the receiver. The data is then placed in the outgoing buffer and a known number of clock

cycles are provided. Since the group delay is constant, the arrival time of the data is

known, so if the same data that we intended to send returned to the incoming buffer, then

we can be somewhat satisfied that our radio is working. The memory addresses needed to

perform these operations are described in the Radio Module section.
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Chapter 4 Floorplan and Physical Layout

Figure 18. Fullchip integration
Note: Not to scale, but approximate relative sizes are shown

4.1 Module Sizing and Placement Strategy

The extent of fullchip design was limited by the lack of definition of the module

dimension specifics. This is partly due to portions still being designed. Nevertheless, a lay-
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out has been specified such that we should be able to plug-in all the modules by the time

they are finished.

Floorplan design began with estimating module sizes. The following information

was used to determine the layout above, which allows us 80 Input/Output pads, has a reg-

ular memory structure, and gives us enough room for guard rails, power and clock distri-

bution, and bus routing:

TABLE 10. Module Size Specifications

Dimensions: Dimensions:
Cell/Module (WxH) in ptm Area (mm2 ) (WxH) in lambda Area (lambda2 )

Die 6,800.0 x 6,800.0 46.2400 22,666 x 22,666 513 sq klambda

Beta Processor 2,500.0 x 1,600.0 4.0000 8,333 x 5,333 44 sq klambda

Radio w/ grd rng 2,500.0 x 1,600.0 4.0000 8,333 x 5,333 44 sq klambda

1 KB RAM cell 1,297.2 x 933.0 1.2100 4,324 x 3,110 13 sq klambda

4 KB ROM cell 1,133.4 x 779.1 0.8830 3,778 x 2,597 -10 sq klambda

Clock Driver 240.0 x 240.0 0.0576 800 x 800 0.64 sq klambda

TAP Controller & 240.0 x 240.0 0.0576 800 x 800 0.64 sq klambda
Instruction Regis-
ter & Decode

BIST-enabled scan 300.0 x 480.0 0.144 1,000 x 1,600 1.60 sq klambda
address cell

BIST-enabled scan 300.0 x 960.0 0.288 1,000 x 3,200 3.20 sq klambda
data I/O cell

Entire BSC chain 300.0 x 1,650.0 0.495 1,000 x 5,500 5.50 sq klambda

Corner I/O Pad 219.3 x 219.3 0.048 731 x 731 0.53 sq klambda

Other I/O Pad 167.4 x 219.3 0.037 558 x 731 0.41 sq klambda

4.1.1 Layout Specifics

We are using a 0.5 jtm process, which corresponds to the minimum feature length

of a transistor in this process. We are also using lambda-design rules and the Magic layout

editor for this design, in which lambda represents 0.3 gtm. A minimum-sized transistor is

represented in this technology with a two-lambda long channel.
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In the general floorplan design, an attempt was made to isolate the radio from digi-

tal noise (mainly in the processor) while at the same time maintaining structures memory

arrays. Spacing was left for guard rails which surround the I/O pads to prevent latch-up.

Guard rails are also used around the radio, since crosstalk can be reduced by placing sup-

ply lines around the module which will act as some kind of capacitive shielding for the

analog circuitry. Internal bus routing and power/clock distribution are discussed below.

4.1.2 Layout Height Spacing

The difference between the sum of module's heights and the total height of usable

space on the die is 834 lambda. Of this, 257 lambda is given both above and below the

area designated for the processor and radio. The processor and the radio are assigned

boundary boxes of the same size, and are placed at the same height on-chip). This amount

is given in order to allow a spacing of 25 lambda for each guard rail. Approximately 70

lambda is allocated for clock, power, and ground lines, which may be in the range of 20

lambda wide each. This leaves 137 lambda to route signals to the edges of the circuit. This

will allow about 10 lambda for about 10 internal bus lines which need to be routed to the

corners of the chip. We shouldn't have to allocate space for routing for those pins near the

middle of the I/O pads, since these should be easily accessible.

Between the RAM and ROM cells we have left 150 lambda. About 70 lambda will

be dedicated to power, ground, and clock distribution as before. The rest will be used in

order to convert the wiring pattern from the ROM scheme to the RAM wiring scheme.

There is a 70 lambda gap between the top portion of RAM cells and the bottom

portion. This allows another line at which we can strap the supply lines into our grid.
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The remaining 100 lambda is left between the bottom of the SRAM cells and the

bottom I/O pads. Other than the guard rail, this space will be used to attach bus lines to the

I/O pads. Each of the 5 RAM modules along the bottom should interface to 8 I/O pads,

which should be straightforward with the leftover 75 lambda.

4.1.3 Layout Width Spacing

The I/O pads come in two varieties -- chip corner pads, which are 731 lambda on

each side of its square layout, and regular I/O pads, which have a width of 558 lambda.

These tile together to perfectly fit inside the 22,666 lambda frame, with a corner I/O pad

on the end of each line, and 38 I/0 pads between.

The Radio is placed along the left edge, although we may move it some distance in

should that become convenient for routing some supply lines. We anticipate that the

radio's analog pin may lie within the module's boundary box definition, and along the

edge of the left side when it is complete. The processor is placed flush along the right

edge, unless need arises to wire things on the its right side. This leaves us with approxi-

mately 6,000 lambda in the center to place test circuitry, drivers, random logic, and per-

haps one more memory cell.

Each ROM is centered relative to its vertical stack of RAM cells. This leaves 273

lambda between the edge of the ROM cell and the corresponding edge of the RAM in its

vertical stack on either side. In addition to this space, there is 210 lambda between each

RAM cell's side. This leaves 103 between the chip's left and right edges and the closest

RAM cell.
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4.2 I/O - Pinout

The I/O pads are placed only along the top and bottom edges of the chip (there are

none along the side edges). Power, ground, and clock have 7 pins each in order to reduce

inductance and resulting oscillations.

TABLE 11. Chip Pinout

Pin # Name Pin # Name Pin # Name Pin # Name

1 PWR 1 21 CLK2 41 GND4 61 PWR6

2 Bdata<2> 22 Tdo 42 Bdata<31> 62 Bdata<16>

3 Bdata<1> 3ý' rq 43 Bdata<30> 63 Bdata<15>

4 Bdata<0> 24 Baddr<12> 44 Bdata<29> 64 Bdata<14>

5 GND1 25 PWR3 45 CLK4 65 GND6

6 Baddr<15> 26 Baddr<11> 46 Bdata<28> 66 Bdata<13>

7 Baddr<14> 27 Baddr<10> 47 Bdata<27> 67 Bdata<12>

8 Baddr<13> 28 Baddr<9> 48 Bdata<26> 68 Bdata<11>

9 CLK1 29 GND3 49 PWR5 69 CLK6

30 Baddr<8> 50 Bdata<25> 70 Bdata<10>

31 Baddr<7> 51 Bdata<24> 71 Bdata<9>

32 Baddr<6> 52 Bdata<23> 72 Bdata<8>

I 13 1 PWR7 I 33 CLK3 53 GND5 73 7

34 Baddr<5> 54 Bdata<22> 74 Bdata<7>

35 Baddr<4> 55 Bdata<21> 75 Bdata<6>

36 Baddr<3> 56 Bdata<20> 76 Bdata<5>

17 GND2 37 PWR4 57 CLK5 77 CLK7

18 Tms 38 Baddr<2> 58 Bdata<19> 78 Bdata<4>

19 Tc k 39 Baddr<1> 59 Bdata<18> 79 Bdata<3>

20 Tdi 40 Baddr<0> 60 Bdata<1 7> 80 GND7
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Chapter 5 Conclusion

5.1 Notes for Improvements

Since performance in the system is now limited by communication speed, we

begin by looking for improvements in the radio. Using a more sophisticated modulating

strategy may allow a greater symbol rate. This means that we may be able to maintain the

data rate of one symbol per 5.12 msec, but we may be able to represent more than one bit

of information in each symbol. However many more bits we can reliably encode, we will

increase the communication rate by the same factor. The problem with this is that such

transmission schemes like QAM, PAM, and PSK, complicate both the transmitting and

receiving portions of the chip. Design time was an important reason why our radio was

implemented with this simplified radio.

Future designs may use specialized signal processing hardware which will enable

more sophisticated transmissions. These digital signal processors (DSP) will probably

include hardware units which can perform multiply and accumulates in one cycle -- a typ-

ical operation in computing convolutions or fast Fourier transforms. Signal processors also

tend to be able to optimize for expected tight loop operations. Currently, the amorphous

computing group is looking into buying signal processing cores (i.e., the Hitachi HF-3)

and building their own specialized signal processing hardware blocks. If we use the pro-

cessor to implement these signal processing computations, performance may again be a

design issue. Even if the processor is not used for performing DSP calculations, any

increase in the communication rate will make us begin to check whether computation

speed is a limiting factor in the system.
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Besides going to buy intellectual property (IP) processing cores, we discuss ways

in which we can increase our own processor's performance. One way to do this is to pro-

vide an instruction cache. This exploits our knowledge that again, many programs will

have large numbers of loops in performing computations with certain structures. While we

do not have very much memory to spend on a data cache (which typically need to be very

large), an instruction cache can keep a small number of instructions and still be effective in

decreasing the number of memory accesses. This will be useful in any implementation

which uses our singe bus for both instruction and memory data, but it will only be useful

on instructions that have memory accesses.

Other efforts to increase radio bandwidth may include the use of differential sig-

nals, which automatically filter out common mode noise. We may also add hardware for

multiple transmitters or receivers per chip, and simply set them to different channel codes.

Besides increasing the performance in the radio and processor, we will always be

looking to increase the amount of memory on the chip. More memory space makes pro-

gramming more flexible and allows for more complex operations.

5.2 Working Towards the Amorphous Computing Goals

Amorphous computing has already discovered that true random number generation

in processors will be very useful in assigning (probabilistically) unique identifiers to each

processor, which is important in setting up chains of communication, and other hierarchi-

cal structures. Implementing a hardware random number generator in the amorphous com-

puter is therefore a goal. This random number generation can be done using a zener diode,
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which provides a good statistical white-noise (truly random) output. This is qualified by

the need to biased the diode at the correct voltage [6].

Amorphous computers will eventually also need a clock generation unit on chip.

This break from synchronicity with the rest of the chips will cause a certain amount of

redesign, as the current design assumes synchronized global clock signals. The vitality of

this synchronicity can be seen in the radio unit -- the transmitter and receiver pair will

work much less effectively if out of synchronization.

As mentioned before, we will be working towards lower pin counts. This is most

quickly solved by removing the address and bus data I/O pins. Efforts will also be made

toward low power design. Amorphous chips are eventually intended to be powered by the

heat of a human being, solar cells, or wind. Unused portions of the chip may be shut down,

and alternative designs for shift registers may be used, since shift registering tends to

cause latching of many potentially unnecessary values.
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