Lecture 31 - The "Short" Metal-Oxide-Semiconductor Field-Effect Transistor (cont.)

November 18, 2002

Contents:

1. Short-channel effects (cont.)

Reading assignment:

P. K. Ko, "Approaches to Scaling."

Seminar:

Nov. 19 - C. Stork (TI): Sub 100 nm Process Development for System-on-Chip Devices. Rm. 34-101, 4 PM.

Key questions

- Why does the threshold voltage seem to depend on the gate length of a MOSFET?
- Why does the threshold voltage of a MOSFET seem to depend on V_{DS} ?

1. Short-channel effects

$\Box V_{th}$ dependence on L

Ideally, V_{th} does not depend on L, it only depends on x_{ox} and N_A .

If L is short enough, depletion regions of source and drain start overlapping underneath channel.

Complex 2D electrostatic problem:

- ΔV_{th} depends on the relative strength of the lateral electrostatics vs. the transversal electrostatics ("electrostatic integrity").
- The tighter the gate controls ϕ_s , the weaker ΔV_{th} dependence on L.

Key dependencies:

- $x_{ox} \downarrow \Rightarrow |\Delta V_{th}| \downarrow$
- $N_A \uparrow \Rightarrow |\Delta V_{th}| \downarrow$
- $x_j \downarrow \Rightarrow L_{eff} = L 2 \times 0.7 \, x_j \uparrow \Rightarrow |\Delta V_{th}| \downarrow$

This is bad! long MOSFET: $V_{th} = f(x_{ox}, N_A)$ short MOSFET: $V_{th} = f(x_{ox}, N_A, L, x_j)$

Most important consequence: V_{th} harder to control in manufacturing environment.

 V_{th} model in next section.

\Box Drain-induced barrier lowering (DIBL)

Depletion region associated with drain junction expands as $V_{DS} \uparrow \Rightarrow$ additional V_{th} shift.

[from Liu et al., TED 40, 86 (1993)]

Simple analytical approximation to ΔV_{th} [Liu et al., TED 40, 86 (1993)]:

$$\Delta V_{th} = [3(\phi_{bi} - \phi_{sth}) + V_{DS}]e^{-L_{eff}/\lambda}$$

+ $2\sqrt{(\phi_{bi} - \phi_{sth})(\phi_{bi} - \phi_{sth} + V_{DS})}e^{-L_{eff}/2\lambda}$

with characteristic length:

$$\lambda = \sqrt{\frac{\epsilon_s}{\epsilon_{ox}} x_{ox} x_{dmax}}$$

and

$$L_{eff} = L - 2 \times 0.7 \, x_j$$

Quantification of DIBL:

$$DIBL = \left|\frac{V_{th}(V_{DS} = V_{DD}) - V_{th}(V_{DS} = 0.1 \ V)}{V_{DD} - 0.1}\right| \ mV/V$$

for a certain L device.

MOSFET design approach to manage DIBL:

- 1. shallower S/D junctions: $x_i = 0.1 \ \mu m \rightarrow 0.05 \ \mu m$
- 2. thinner gate oxide: $x_{ox} = 9 \ nm \rightarrow 6 \ nm$
- 3. increased body doping: $N_A = 1.2 \times 10^{17} \, cm^{-3} \rightarrow 2.4 \times 10^{17} \, cm^{-3}$

Comparison of simple model with 2D simulations:

Fig. 4. A comparison of the V_{th} calculated using the charge sharing model, the two-dimensional numerical simulation (MINIMOS), and our model. The device parameters used are the same as those in Fig. 3.

[from Liu et al., TED 40, 86 (1993)]

Comparison of simple model with experiments:

Fig. 5. Experimental and calculated threshold voltage versus effective channel length for non-LDD MOSFET's from different technologies, i.e., Device A: $T_{OX} = 55$ Å, $N_{SUB} = 3.6 \times 10^{17} \text{ cm}^{-3}$, $X_j = 0.25 \,\mu\text{m}$, $l = 0.04 \,\mu\text{m}$; Device B: $T_{OX} = 86$ Å, $N_{SUB} = 1.5 \times 10^{17} \text{ cm}^{-3}$, $X_j = 0.2 \,\mu\text{m}$, $l = 0.05 \,\mu\text{m}$; and Device C: $T_{OX} = 156$ Å, $N_{SUB} = 4 \times 10^{16} \text{ cm}^{-3}$, $X_j = 0.2 \,\mu\text{m}$, $l = 0.01 \,\mu\text{m}$; $L = 0.01 \,\mu\text{m}$; L = 0.

Fig. 7. Typical threshold voltage behavior for LDD device.

DIBL also affects I_{off} : $V_{DS} \uparrow \Rightarrow V_{th} \downarrow \Rightarrow I_{off} \uparrow$

[from Fichtner and Potzl, 1979]

Empirical criteria for short-channel effects (from 2D simulations):

Figure 1, Graph from: High-Speed Semiconductor Devices. S.M. S2- 1990 John Wiley & Sons.

Critical gate length for short-channel behavior (set by DIBL):

$$L_{min} (\mu m) = 0.41 [x_j x_{ox} (W_S + W_D)^2]^{1/3}$$

with:

- $x_j \equiv$ source and drain junction depth $[\mu m]$
- $x_{ox} \equiv \text{gate oxide thickness } [\mathring{A}]$
- $W_S, W_D \equiv$ source and drain depletion region thickness $[\mu m]$

Key conclusions

- V_{th} depends on L and V_{DS} :
 - For short L, V_{th} depends on $L: L \downarrow \Rightarrow V_{th} \downarrow$.
 - Drain-induced barrier lowering (DIBL): impact of V_{DS} on V_{th} : $V_{DS} \uparrow \Rightarrow V_{th} \downarrow$.
- ΔV_{th} reflects relative strength of lateral electrostatics vs. transveral electrostatics ("electrostatic integrity").
- Electrostatic integrity improves if $x_{ox} \downarrow$, $N_A \uparrow$, $L \uparrow$, $x_j \downarrow$.
- DIBL problematic because:
 - $-V_{th}$ hard to control

$$-I_{off}\uparrow$$