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Lecture 32 - The ”Short”
Metal-Oxide-Semiconductor Field-Effect

Transistor (cont.)

November 20, 2002

Contents:

1. MOSFET scaling

Reading assignment:

P. K. Ko, ”Approaches to Scaling.”
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Key questions

• What happens if a MOSFET gate length is simply shrunk in size

without changing anything else?

• How should the MOSFET design change as it shrinks down in

size?
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1. MOSFET scaling

Several driving forces for scaling down size of MOSFET:

• higher density circuits: SSI, MSI, LSI, VLSI, ULSI, RLSI, ...

• higher performance: L ↓⇒ ID ↑⇒ τswitch ↓

• lower power consumption: L ↓⇒ VDD ↓

Simple L scaling compromises electrostatic integrity and produces

punchthrough (extreme case of short-channel effects):
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To avoid punchthrough:

• NA ↑⇒ Vth ↑⇒ ID ↓

• VDD ↓⇒ ID ↓

• xox ↓⇒ Vth ↓⇒ ID ↑
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Need smart way of scaling:

• constant field scaling

• constant voltage scaling

• generalized scaling
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2 Constant field scaling

Scale keeping vertical and horizontal electric fields constant.

Define: scaling factor S > 1

parameter scaling factor

device dimensions (L, W , xox) 1/S

doping level (NA) S

supply voltage (VDD) 1/S

Consequences (use simple long-channel theory):

• gate capacitance:
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oxL
′W ′ = SCox
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• threshold voltage:
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• drive current:
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• gate delay:
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• power dissipation:

I ′DV ′
DD =
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↓↓

• power density:
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• power-delay product (or switching energy):

C ′
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′
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2
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S
(
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S
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2
DD
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• inverse subthreshold slope:

n′ = 1 +
C ′

sth

C ′
ox

= 1 +

√
SCsth

SCox
= 1 +

Csth√
SCox

↓

but since Vth ↓, Ioff ↑↑.
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Two key problems with constant field scaling:

• system designers don’t want to scale VDD

• Ioff ↑↑⇒ more static power
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2 More rigorous study of constant field scaling using 2D simulations

[P. Vande Voorde, HP Journal, 1997]
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2 Constant voltage scaling

Scale all device dimensions but do not scale VDD.

parameter scaling factor

device dimensions (L, W , xox) 1/S

doping level (NA) S

supply voltage (VDD) 1

Consequences (using long-channel theory):

figure of merit scaling factor

Cgs 1/S

Vth 1/
√

S

ID S

τ 1/S2

IDVDD S

IDVDD/LW S3

CgsV
2
DD 1/S
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Features of constant voltage scaling:

• Performance ↑↑

• But:

– It does not address Ioff problem.

– Electric field across oxide ↑:

Eox =
VDD

xox
∝ S ↑

Reliability problems when Eox ' 4 MV/cm.

– Electric field in semiconductor (at drain end of channel) ↑:

Em =

√√√√√VDS − VDSsat

l2
+ Esat ∝ S ↑

with

l2 =
εs

εox
xoxxj ∝ S−2

Reliability problems when Em ' 0.5 MV/cm.

– Power density ↑ ⇒ system power ↑
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2 Generalized scaling

• scale oxide thickness more slowly than other device dimensions

• scale VDD keeping Eox constant

parameter scaling factor

L, W 1/S

xox 1/R

NA S

VDD 1/R

with 1 < R < S.

In generalized scaling:

• Ioff problem alleviated by not scaling Vth so aggresively;

trade-off: performance

• VDD scales;

trade-off: performance
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2 Modern generalized scaling

• Concept of generation: every 2 years, new technology is de-

ployed with 30% reduced transistor delay (microprocessor per-

formance doubling every 2 years).

• Everything scales: L (↓), W (↓), xox (↓), NA (↑), xj (↓), and

VDD (↓).

• Scaling goal: extract maximum performance from each gen-

eration (maximize Ion), for a given amount of:

– short-channel effects (DIBL), and

– off-current

• Currently two technology flavors:

– high-performance: high VDD (high ID, low τ ), high Vth (low

Ioff);

– low-power: low VDD (low ID, high τ ), low Vth (high Ioff).
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Key conclusions

• Constant field scaling: scale all device dimensions keeping ver-

tical and horizontal electric fields constant.

Consequences:

– Ioff ↑
– system designers don’t want to scale VDD

• Constant voltage scaling: scale all device dimensions keeping

voltage constant.

Consequences:

– Ioff ↑
– fields everywhere ↑ ⇒ reliability compromised

• For a long time scaling proceeded through constant VDD path

with abrupt drops in VDD.

• Scaling goal: extract maximum performance from each gen-

eration (maximize Ion), for a given amount of:

– short-channel effects (DIBL), and

– off-current

• Generalized scaling demands simultaneous scaling of Lg, xox, xj, NA,

and VDD.


