Lecture 32 - The "Short" Metal-Oxide-Semiconductor Field-Effect Transistor (cont.)

November 20, 2002

Contents:

1. MOSFET scaling

Reading assignment:

P. K. Ko, "Approaches to Scaling."

Key questions

- What happens if a MOSFET gate length is simply shrunk in size without changing anything else?
- How should the MOSFET design change as it shrinks down in size?

1. MOSFET scaling

Several driving forces for scaling down size of MOSFET:

- higher density circuits: SSI, MSI, LSI, VLSI, ULSI, RLSI, ...
- higher performance: $L \downarrow \Rightarrow I_D \uparrow \Rightarrow \tau_{switch} \downarrow$
- lower power consumption: $L \downarrow \Rightarrow V_{DD} \downarrow$

Simple L scaling compromises *electrostatic integrity* and produces *punchthrough* (extreme case of short-channel effects):

To avoid punchthrough:

- $N_A \uparrow \Rightarrow V_{th} \uparrow \Rightarrow I_D \downarrow$
- $V_{DD} \downarrow \Rightarrow I_D \downarrow$
- $x_{ox} \downarrow \Rightarrow V_{th} \downarrow \Rightarrow I_D \uparrow$

Physics of Semiconductor Devices, 2nd ed., Wiley, 1981 (470)

Constant electron density contours for 3 MOSFETs with channel lengths 2.23, 0.73, and 0.23 µm.

Adapted from S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 1981 (481).

Need smart way of scaling:

- constant field scaling
- constant voltage scaling
- generalized scaling

\Box Constant field scaling

Scale keeping vertical and horizontal electric fields constant.

Define: scaling factor S > 1

parameter	scaling factor
device dimensions (L, W, x_{ox})	1/S
doping level (N_A)	S
supply voltage (V_{DD})	1/S

Consequences (use simple long-channel theory):

• gate capacitance:

$$C'_{gs} = C'_{ox}L'W' = SC_{ox}\frac{L}{S}\frac{W}{S} = \frac{C_{gs}}{S} \downarrow$$

• threshold voltage:

$$V_{th}' = V_{FB} + \phi_{sth} + \gamma \sqrt{\phi_{sth}} \simeq \frac{1}{C_{ox}'} \sqrt{2\epsilon_s q N_A' \phi_{sth}} \sim \frac{V_{th}}{\sqrt{S}} \downarrow$$

• drive current:

$$I'_D = \frac{W'}{2L'} \mu_e C'_{ox} (V'_{DD} - V'_{th})^2 = \frac{\frac{W}{S}}{2\frac{L}{S}} \mu_e S C_{ox} (\frac{V_{DD}}{S} - \frac{V_{th}}{\sqrt{S}})^2 = \frac{I_D}{S} \downarrow$$

• gate delay:

$$\tau' = \frac{C'_{gs}V'_{DD}}{I'_{D}} = \frac{\frac{C_{gs}V_{DD}}{S}}{\frac{I_{D}}{S}} = \frac{\tau}{S} \downarrow$$

• power dissipation:

$$I'_D V'_{DD} = \frac{I_D}{S} \frac{V_{DD}}{S} = \frac{I_D V_{DD}}{S^2} \downarrow \downarrow$$

• power density:

$$\frac{I'_D V'_{DD}}{L'W'} = \frac{\frac{I_D}{S} \frac{V_{DD}}{S}}{\frac{L}{S} \frac{W}{S}} = \frac{I_D V_{DD}}{LW} \quad unchanged$$

• power-delay product (or *switching energy*):

$$C'_{gs}V'_{DD}{}^2 = \frac{C_{gs}}{S}(\frac{V_{DD}}{S})^2 = \frac{C_{gs}V_{DD}^2}{S^3} \downarrow \downarrow \downarrow$$

• inverse subthreshold slope:

$$n' = 1 + \frac{C'_{sth}}{C'_{ox}} = 1 + \frac{\sqrt{S}C_{sth}}{SC_{ox}} = 1 + \frac{C_{sth}}{\sqrt{S}C_{ox}} \downarrow$$

but since $V_{th} \downarrow$, $I_{off} \uparrow\uparrow$.

Two key problems with constant field scaling:

- system designers don't want to scale V_{DD}
- $I_{off} \uparrow \uparrow \Rightarrow$ more static power

More rigorous study of constant field scaling using 2D simulations[P. Vande Voorde, HP Journal, 1997]

Simulated device structures. Dark shading is oxide. Lighter shading is silicide. Dashed lines are doping contours.

(a) $L_g = 0.35 \,\mu m$, $T_{ox} = 8.0 \,\mu m$. (b) $L_g = 0.25 \,\mu m$, $T_{ox} = 6.0 \,\mu m$. (c) $L_g = 0.18 \,\mu m$, $T_{ox} = 4.5 \,\mu m$. (d) $L_g = 0.13 \,\mu m$, $T_{ox} = 3.4 \,\mu m$. (e) $L_g = 0.10 \,\mu m$, $T_{ox} = 2.5 \,\mu m$. (f) $L_g = 0.07 \,\mu m$, $T_{ox} = 1.9 \,\mu m$. Adapted from P. Vande Voorde, HP Journal, 1997.

Fig. 2. Scaling of power supply voltage V_{dd} and oxide thickness T_{ox} .

Fig. 3. Scaling of effective channel length L_{eff} and extension junction depth $X_j.$

Fig. 5. Scaling of maximum drain current and total gate capacitance.

Fig. 4. Scaling of threshold voltage V_t and off-state leakage current $I_{\text{off}}.$

Fig. 10. Inverter delay versus gate length.

Fig. 11. Inverter delay versus power supply voltage. The stars show the expected operating points. W_n and W_p are the widths of the n-channel and p-channel transistors.

\Box Constant voltage scaling

Scale all device dimensions but do not scale V_{DD} .

parameter	scaling factor
device dimensions (L, W, x_{ox})	1/S
doping level (N_A)	S
supply voltage (V_{DD})	1

Consequences (using long-channel theory):

figure of merit	scaling factor
C_{gs}	1/S
V_{th}	$1/\sqrt{S}$
I_D	S
au	$1/S^2$
$I_D V_{DD}$	S
$I_D V_{DD}/LW$	S^3
$C_{gs}V_{DD}^2$	1/S

Features of constant voltage scaling:

- \bullet Performance $\uparrow\uparrow$
- But:
 - It does not address I_{off} problem.
 - Electric field across oxide $\uparrow:$

$$\mathcal{E}_{ox} = \frac{V_{DD}}{x_{ox}} \propto S \uparrow$$

Reliability problems when $\mathcal{E}_{ox} \simeq 4 \ MV/cm$.

– Electric field in semiconductor (at drain end of channel) \uparrow :

$$\mathcal{E}_m = \sqrt{rac{V_{DS} - V_{DSsat}}{l^2} + \mathcal{E}_{sat}} \propto S \uparrow$$

with

$$l^2 = \frac{\epsilon_s}{\epsilon_{ox}} x_{ox} x_j \propto S^{-2}$$

Reliability problems when $\mathcal{E}_m \simeq 0.5 \ MV/cm$.

– Power density $\uparrow \Rightarrow$ system power \uparrow

\Box Generalized scaling

- scale oxide thickness more slowly than other device dimensions
- scale V_{DD} keeping \mathcal{E}_{ox} constant

parameter	scaling factor
L, W	1/S
x_{ox}	1/R
N_A	S
V_{DD}	1/R

with 1 < R < S.

In generalized scaling:

- I_{off} problem alleviated by not scaling V_{th} so aggresively; trade-off: performance
- V_{DD} scales;

trade-off: performance

Fig. 12. Drain current and off-state leakage current I_{off} versus threshold voltage V_t for the 0.1- μm generation.

Fig. 13. Inverter delay versus threshold voltage V_{t} for the 0.1- μm generation.

Oxide thickness will be in the range of 6-10 nm for 0.35 µm generation technologies and will scale to less than 4 nm for 0.10 µm generation technologies. The 0.35 µm generation marks a transition point between 3.3 V and 2.5 V operating voltage.

P-channel transister performance is plotted using the CV/I metric.

Adapted from M. Bohr, Semiconductor International, July 1995 (75).

\Box Modern generalized scaling

- Concept of *generation*: every 2 years, new technology is deployed with 30% reduced transistor delay (microprocessor performance doubling every 2 years).
- Everything scales: $L(\downarrow)$, $W(\downarrow)$, $x_{ox}(\downarrow)$, $N_A(\uparrow)$, $x_j(\downarrow)$, and $V_{DD}(\downarrow)$.
- Scaling goal: extract maximum performance from each generation (maximize I_{on}), for a given amount of:
 - short-channel effects (DIBL), and
 - off-current
- Currently two technology flavors:
 - high-performance: high V_{DD} (high I_D , low τ), high V_{th} (low I_{off});
 - low-power: low V_{DD} (low I_D , high τ), low V_{th} (high I_{off}).

Supply Voltage vs. Time

Key conclusions

• *Constant field scaling*: scale all device dimensions keeping vertical and horizontal electric fields constant.

Consequences:

 $-I_{off}\uparrow$

- system designers don't want to scale V_{DD}
- Constant voltage scaling: scale all device dimensions keeping voltage constant.

Consequences:

 $-I_{off}$ \uparrow

- fields everywhere $\uparrow \Rightarrow$ reliability compromised
- For a long time scaling proceeded through constant V_{DD} path with abrupt drops in V_{DD} .
- Scaling goal: extract maximum performance from each generation (maximize I_{on}), for a given amount of:
 - short-channel effects (DIBL), and
 - off-current
- Generalized scaling demands simultaneous scaling of L_g , x_{ox} , x_j , N_A , and V_{DD} .