
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-034 July 15, 2009

CG2Real: Improving the Realism of
Computer Generated Images using a
Large Collection of Photographs
Micah K. Johnson, Kevin Dale, Shai Avidan,
Hanspeter Pfister, William T. Freeman, and
Wojciech Matusik

CG2Real: Improving the Realism of Computer Generated Images using a Large
Collection of Photographs

Micah K. Johnson1,2 Kevin Dale3 Shai Avidan2 Hanspeter Pfister3 William T. Freeman1 Wojciech Matusik2

1MIT
{kimo, billf}@mit.edu

2Adobe Systems, Inc.
{avidan, wmatusik}@adobe.com

3Harvard University
{kdale,pfister}@seas.harvard.edu

Figure 1: Given an input CG image (left), our system finds the most similar photographs to the input image (not shown). Next, it identifies similar regions
between the CG image and photographs, transfers these regions into the CG image (center), and uses seamless compositing to blend the regions. Finally, it
transfers local color and gradient statistics from the photographs to the input image to create a color and tone adjusted image (right).

Abstract

Computer Graphics (CG) has achieved a high level of realism, pro-
ducing strikingly vivid images. This realism, however, comes at the
cost of long and often expensive manual modeling, and most often
humans can still distinguish between CG images and real images.
We present a novel method to make CG images look more realis-
tic that is simple and accessible to novice users. Our system uses
a large collection of photographs gathered from online reposito-
ries. Given a CG image, we retrieve a small number of real images
with similar global structure. We identify corresponding regions be-
tween the CG and real images using a novel mean-shift cosegmen-
tation algorithm. The user can then automatically transfer color,
tone, and texture from matching regions to the CG image. Our sys-
tem only uses image processing operations and does not require a
3D model of the scene, making it fast and easy to integrate into dig-
ital content creation workflows. Results of a user study show that
our improved CG images appear more realistic than the originals.

1 Introduction

The field of image synthesis has matured to the point where photo-
realistic Computer Graphics (CG) images can be produced with
commercially available software packages (e.g., Renderman and
POVRay). However, reproducing the details and quality of a nat-
ural image often requires a considerable investment of time by a
highly skilled artist. Even with large budgets and many man-hours
of work, it is still often surprisingly easy to distinguish CG images
from photographs.

CG images differ from real photographs in three major ways.
First, the color distribution of CG images is often overly saturated
and exaggerated. Second, multi-scale image statistics, such as the
histogram of filter outputs at different scales, rarely match the statis-
tics of natural images. Finally, CG images often lack details (i.e.,
high frequencies, texture, and noise) that make them look too pris-
tine.

Recently, the proliferation of images available online through
photo-sharing sites such as Flickr has allowed researchers to col-
lect large databases of natural images and to develop data-driven
methods for improving photographs. This work leverages a large
collection of images to improve the realism of computer generated
images in a data-driven manner with minimal user input.

CG2Real takes a CG image to be improved, retrieves and aligns a
small number of similar natural images from a database, and trans-
fers the color, tone, and texture from the natural images to the CG
image. A key ingredient in the system is a novel mean-shift coseg-
mentation algorithm that matches regions in the CG image with re-
gions in the real images. If the structure of a real image does not fit
that of the CG image (e.g., because of differences in perspective),
we provide a user interface to correct basic perspective differences
interactively. After cosegmentation, we use local style transfer be-
tween image regions, which greatly improves the quality of these
transfers compared to global transfers based on histogram match-
ing. The user has full control over which regions and which styles
are being transferred. Color and tone transfers are completely au-
tomatic, and texture transfer can be controlled by adjusting a few
parameters. In addition, all operations are reasonably fast: an av-
erage computer can run the cosegmentation and all three transfer
operations in less than a minute for 600×400 pixel image.

The primary contribution of this paper is a novel data-driven
approach for improving the look of CG images using real pho-
tographs. Within this system, several novel individual operations
also further the state of the art, including (1) an improved image
search tuned for matching global image structure between CG and
real images; (2) an image cosegmentation algorithm that is both fast
and sufficiently accurate for color and tone transfer; and (3) meth-
ods for local transfer of color, tone, and texture that take advantage
of region correspondences. As a final contribution, we describe
several user studies that demonstrate that our improved CG images
appear more realistic than the originals.

Input

Image Database Similar images Cosegmentation

Color

Tone

Texture

Local style transfer

Output

A

B

A

B

A

B

A

B

Figure 2: An overview of our system. We start by querying a large collection of photographs to retrieve the most similar images. The user selects the k closest
matches and the images, both real and CG, are cosegmented to identify similar regions. Finally, the real images are used by the local style transfer algorithms
to upgrade the color, tone, and/or texture of the CG image.

2 Previous Work

Adding realistic texture to an image is an effective tool to improve
the photo-realistic look and feel of CG images. In their seminal
work, Heeger and Bergen [1995] proposed a novel texture synthe-
sis approach. Their method starts with a random noise image and
iteratively adjust its statistics at different scales to match those of
the target texture, leading to new instances of the target texture.
This approach was later extended by De Bonet [1997] to use joint
multi-scale statistics. Alternatively, one can take an exemplar based
approach to texture synthesis. This idea was first illustrated in the
work of Efros and Leung [1999] and was later extended to work on
patches instead of pixels [Efros and Freeman 2001; Kwatra et al.
2003]. The image analogies framework [Hertzmann et al. 2001]
extends non-parametric texture synthesis by learning a mapping be-
tween a given exemplar pair of images and applying the mapping
to novel images. Freeman et al. [2002] proposed a learning-based
approach to solve a range of low-level image processing problems
(e.g., image super-resolution) that relies on having a dictionary of
corresponding patches that is used to process a given image.

Unfortunately, these approaches require correspondence be-
tween the source and target images (or patches), a fairly strong as-
sumption that cannot always be satisfied. Rosales et al. [2003] later
relaxed this assumption by framing the problem as a large inference
problem, where both the position and appearance of the patches are
inferred from a pair of images without correspondence. While the
results look convincing for a variety of applications, the specific
problem of improving realism in CG images was not addressed.

Instead of requiring corresponding images (or patches) in order
to learn a mapping, one can take a global approach that attempts
to transfer color or style between images. Reinhard et al. [2001]
modified the color distribution of an image to give it the look and
feel of another image. They showed results on both photographic
and synthetic images. Alternatively, Pitié et al. [2005] consider this
problem as estimating a continuous N-dimensional transfer func-
tion between two probability distribution functions and present an
iterative non-linear algorithm. Bae et al. [2006] take yet another
approach, using a two-scale nonlinear decomposition of an image
to transfer style between images. In their approach, histograms of
each layer are modified independently and then recombined to ob-
tain the final output image. Finally, Wen et al. [2008] provide a
stroke-based interface for performing local color transfer between
images. In this system, the user provides a target image and input
in the form of stroke pairs.

We build on and extend this line of work with several important
distinctions. First, the work discussed so far does not consider the
question of how the model images are chosen, and instead it is as-
sumed that the user provides them. However, we believe a system
capable of handling a variety of types of input images should be
able to obtain model images with a minimum of user assistance.
Given a large collection of photographs we assume that we can find
images with similar global structure (e.g., trees next to mountains
below a blue sky) and transfer their look and feel to the CG image.
Moreover, because the photographs are semantically and contextu-
ally similar to the CG image, we can find corresponding regions
using cosegmentation, and thus can more easily apply local style
transfer methods to improve realism.

Recently, several authors have demonstrated the use of large col-
lections of images for image editing operations. In one instance,
Hays and Efros. [2007] use a large collection of images to com-
plete missing information in a target image. The system works by
retrieving a number of images that are similar to the query image
and using their data to complete a user-specified region. We take a
different approach by automatically identifying matching regions
and by stitching together regions from multiple images. Liu et
al. [2008] perform example-based image colorization using images
from the web that is robust to illumination differences. However
their method involves image registration between search results and
input and requires exact scene matches. Our approach instead uses
a visual search based on image data, and our transfers only assume
similar content between CG input and real search results. Finally,
Sivic et al. [2008] show a novel use of large image collections by
retrieving and stitching together images that match a transformed
version of the query real image. While not related to image editing,
this work provides a unique image-browsing experience.

In work based on annotated image datasets, Lalonde and
Efros [2007] use image regions drawn from the LabelMe
database [Russell et al. 2008] to populate the query image with new
objects. Johnson et al. [2006] allow the user to create novel com-
posite images by typing in a few nouns at different image locations.
Here the user input is used to retrieve and composite relevant parts
of images from a large annotated image database. In both cases,
the system relies on image annotations to identify image regions
and region correspondences. In contrast, our approach uses an au-
tomatic cosegmentation algorithm for identifying local regions and
inter-region correspondences.

Researchers have also studied the characteristics of natural ver-
sus synthetic images. For example, in digital forensics, Lyu and

Farid [2005] examine high order image statistics to distinguish be-
tween synthetic and natural images. Lalonde and Efros [2007] use
color information to predict if a composite image will look natu-
ral or not. Others have focused solely on learning a model for the
statistics of natural images [Weiss and Freeman 2007; Roth and
Black 2005]. These works suggest that natural images have rela-
tively consistent statistical properties and that these properties can
be used to distinguish between synthetic and natural images. Based
on this observation, our color and tone transfer algorithms work
statistically, adjusting color and gradient distributions to match cor-
responding distributions from real images.

3 Image and Region Matching
Figure 2 shows an overview of our system. First, we retrieve the
N closest real images to the query CG image. The N images are
shown to the user, who selects the k most relevant images; typically,
N = 30 and k = 5. Next, we perform a cosegmentation of the k real
images with the CG image to identify similar image regions. Once
the images are segmented, the user chooses among three different
types of transfer from the real images to the CG image: texture,
color and tone. We find that all three types of style transfer can
improve the realism of low-quality CG images. Since high-quality
CG images often have realistic textures, we typically transfer only
color and tone for these inputs.

3.1 Image Database
Our system leverages a database of 4.5 million natural images
crawled from the photo-sharing site Flickr using keywords related
to outdoor scenes, such as ‘beach’, ‘forest’, ‘city’, etc. Each im-
age, originally of Flickr’s large size with a maximum dimension
of 1024 pixels, was downsampled to approximately 75% its orig-
inal size and stored in PNG format (24-bit color) to minimize the
impact of JPEG compression artifacts on our algorithms.

3.2 Visual Search
The goal of the visual search is to retrieve semantically similar im-
ages for a CG input. For example, for a CG image depicting a park
with a tree line on the horizon, the results of the query should de-
pict similar scenes at approximately the same scale, with similar
lighting, viewpoint, and spatial layout of objects within the image
(e.g., a park with trees and a skyline). Using a very large database
of real photographs greatly enhances the chances of finding good
matches. Searching a large database, however, requires an efficient,
yet descriptive, image representation.

The gist scene descriptor [Oliva and Torralba 2001] is one choice
of representation that has been used successfully for image match-
ing tasks [Hays and Efros 2007]. The gist descriptor uses his-
tograms of Gabor filter responses at a single level. We used gist
in an early implementation of our system and were not fully sat-
isfied with the results. In a recent study, Gabor-based descriptors,
such as gist, were out-performed by SIFT-based descriptors for tex-
ture classification [Zhang et al. 2007], justifying our decision to use
a more detailed image representation.

Our representation is based on visual words, or quantized SIFT
features [Lowe 1999], and the spatial pyramid matching scheme of
Lazebnik et al. [2006]. This approach has been shown to perform
well for semantic scene classification. Although our transfer op-
erations are local, the system benefits from global structural align-
ment between the CG input and real matches, justifying a descrip-
tor with significant spatial resolution. Additionally, since textures
in the original CG image often only faintly resemble the real-world
appearance of objects they represent, we use smaller visual word
vocabularies than is typical to more coarsely quantize appearance.

Specifically, we use two vocabularies of 10 and 50 words and
grid resolutions of 1× 1, for the 10-word vocabulary, and 1× 1,

AAA

BBB

A A A

B B B

A A A

B
BB

C CC

Figure 3: Results from our cosegmentation algorithm. In each row, the CG
image is shown on the left and two real image matches, on the right. Note
that in all cases, segment correspondences are correct, and the images are
not over-segmented.

2×2, 4×4, and 8×8, for the 50-word vocabulary, for a final pyra-
mid descriptor with 4346 elements. This representation has some
redundancy, since a visual word will occur multiple time across
pyramid levels. The weighting scheme specified by the pyramid
match kernel [Grauman and Darrell 2005] accounts for this; it also
effectively provides term-frequency (tf) weighting. We also apply
inverse document frequency (idf) weighting to the pyramid descrip-
tor.

In addition, we represent a rough spatial layout of color with
an 8× 8 downsampled version of the image in CIE L*a*b* space
(192 elements). Since the search is part of an interactive system,
we use principal component analysis (PCA) to reduce the descrip-
tor dimensionality to allow for an efficient in-core search. We keep
700 elements for the pyramid term and 48 for the color term and
L2-normalize each. The final descriptor is the concatenation of the
spatial pyramid and color terms, weighted by α and (1−α), respec-
tively, for α ∈ [0,1]. Similarity between two images is measured by
Euclidean distance between their descriptors.

For low quality CG images, texture is only a weak cue, so smaller
α values achieve a better balance of color versus texture cues.
We found that presenting the user with 15 results obtained with
α = 0.25 and 15 with α = 0.75 yielded a good balance between
the quality of matches, robustness to differences in fidelity of CG
inputs, and time spent by the user during selection. We use a kd
tree-based exact nearest-neighbor search, which requires about 2
seconds per query on a 3 GHz dual-core machine.

3.3 Cosegmentation

Global transfer operations between two images, such as color and
tone transfer, work best when the images have similarly-sized re-
gions, e.g., when there are similar amounts of sky, ground, or build-
ings. If the images have different regions, or if one image contains
a large region that is not in the other image, global transfers can
fail. Similar to Tai et al. [2006], we find that segmenting the im-
ages and identifying regional correspondences before color transfer
greatly improves the quality and robustness of the results. But in
contrast to their work, we use cosegmentation [Rother et al. 2006]
to segment and match regions in a single step. This approach is
better than segmenting each image independently and matching re-
gions after the fact because the content of all images is taken into
account during the cosegmentation process and matching regions
are automatically produced as a byproduct.

CG input Color model Global histogram matching Local color transfer

Figure 4: Transferring image color using cosegmentation. On the left are CG images and real images that serve as color models; white lines are superimposed
on the images to denote the cosegmentation boundaries. On the right are results from two color transfer algorithms: a global algorithm based on N-dimensional
histogram matching, and our local color transfer algorithm. In the top example, the global result has a bluish color cast. In the bottom exmaple, the global
result swaps the colors of the building and the sky. Local color transfer yields better results in both examples.

The cosegmentation approach of Rother et al. [2006] uses an NP-
hard energy function with terms to encode both spatial coherency
and appearance histograms. To optimize it, they present a novel
scheme that they call trust-region graph cuts. It uses an approximate
minimization technique to obtain an initial estimate and then refines
the estimate in the dual space to the original problem.

While our goal is similar to Rother et al., we take a simpler ap-
proach. Building upon the mean-shift framework [Fukunaga and
Hostetler 1975], we define a new feature vector with color, spatial,
and image-index terms. We can compute reasonable cosegmenta-
tions in seconds using a standard mean-shift implementation.

Our feature vector at every pixel p is the concatenation of the
pixel color in L*a*b* space, the normalized x and y coordinates at
p, and a binary indicator vector (i0, . . . , ik) such that i j is 1 when
pixel p is in the jth image and 0 otherwise. Note that the problem
of segmenting a set of related images is different from the problem
of segmenting video—there is no notion of distance across the im-
age index dimension as there is in a video stream (i.e., there is no
time dimension). Thus, the final components of the feature vector
only differentiate between pixels that come from the same image
versus those that come from different images and do not introduce
an artificial distance along this dimension. In addition, the compo-
nents of the feature vector are weighted by three weights to balance
the color, spatial, and index components. We find that the weights
and the mean-shift bandwidth parameter do not need to be adjusted
for individual image sets to achieve the types of segmentations that
are useful to our color and tone transfer algorithms.

A disadvantage of mean-shift is that it can be costly to compute
at every pixel of an image without using specific assumptions about
feature vectors or kernel [Paris and Durand 2007]. Since we are af-
ter coarse regional correspondences, we reduce the size of the im-
age by a factor of 8 along each dimension and use a standard mean-
shift algorithm with the feature vectors described above. We then
upsample the cosegmentation maps to full resolution using joint bi-
lateral upsampling [Kopf et al. 2007].

In Fig. 3, we show three cosegmentation results, each with three
images (one CG, two real). In the first two cases, the algorithm
segments the images into sky and non-sky. In the last case, the
images are segmented into three regions: ground, sky, and water.
In all cases, the segment correspondences are correct, and although

our color and tone transfer algorithms are robust to it, the images
have not been over-segmented.

4 Local Style Transfer Operators
After cosegmentation, we apply local style transfer operations for
color, tone and texture.

The simplest style transfer is color transfer, where colors of
the real images are transferred to the CG image by transferring
the statistics of a multi-dimensional histogram. This method was
shown to work quite well for color transfer between real images,
but it often fails when applied to CG images. The main difficulty
is that the color histogram of CG images is typically different from
the histogram of real images—it is much more sparse (fewer colors
are used). The sparsity and simplicity of the color distributions can
lead to instability during global transfer where colors are mapped
arbitrarily, as shown in the bottom row of Fig. 4.

We mitigate these problems by a combination of joint bilateral
upsampling and local color transfer. We downsample the images,
compute the color transfer offsets per region from the lower resolu-
tion images, and then smooth and upsample the offsets using joint
bilateral upsampling. Working on regions addresses the problem of
images that contain different proportions of colors and joint bilat-
eral upsampling smooths color transfer in the spatial domain.

Within each sub-sampled region, our color transfer algorithm
uses 2D histogram matching on the a* and b* channels, and 1D his-
togram matching on the L* channel. The advantage of histogram
matching methods is that they do not require per pixel correspon-
dences, which we do not have. Unfortunately, unlike 1D histogram
matching, there is no closed form solution for 2D histogram trans-
fer. We use an iterative algorithm by Pitié et al. [2005] that projects
the 2D histogram onto random 1D axes, performs standard 1D his-
togram matching, and reprojects the data back to 2D. The algo-
rithm typically converges in fewer than 10 iterations. We found
that marginalizing the distributions and performing the remapping
independently for the a* and b* channels produces inferior results.

In Fig. 4, we show two examples of color transfer. From left
to right, we show the original CG images, the real images used
as color models, the results of global N-dimensional color transfer
(in L*a*b* space), and results of our region-based transfer. In the

CG input Tone model Local color and tone transfer Close-up

Figure 5: Transferring image tone. From left to right: an input CG image, a real image that will serve as a color and tone model, the result of region-based
transfer of subband distributions, and close-up view of before and after tone transfer.

top example, the global algorithm produces a blue color cast over
the entire image because the real image has significantly more sky
than the CG image. In the bottom example, the house and sky are
influenced by the opposite regions in the model image: the house
becomes blue and the sky becomes a neutral gray. These problems
are avoided by local color transfer.

4.1 Local Tone Transfer

In addition to transferring the color histogram from the photographs
to the CG image we are also interested in adjusting gradient his-
tograms at different scales. To this end, we apply a method similar
to Bae et al. [2006] to match filter statistics of the luminance chan-
nel of the CG image to the photographs. Our method, however,
transfers detail locally within cosegmentation regions and uses a
4-level pyramid based on a quadrature mirror filter [Adelson et al.
1987] instead of a bilateral filter.

Our tone transfer algorithm is similar to the algorithm for color
transfer. First, we decompose the luminance channel of the CG
image and one or more real images using a QMF pyramid. Next,
we use 1-D histogram matching to match the subband statistics of
the CG image to the real images in every region. After transferring
on subbands, we model the effect of histogram transfer on subband
signals as a change in gain:

s′i(p) = gi(p)si(p), (1)

where si(p) is the level i subband coefficient at pixel p, and s′i(p)
is the corresponding subband coefficient after regional histogram
matching, and gi(p) is the gain. Gain values greater than one will
amplify detail in that subband and gain values less than one will
diminish detail. To avoid halos or other artifacts, we employ the
gain-scaling strategies described by Li et al. [2005] to ensure that
lower subbands are not amplified beyond higher subbands and that
the gain signals are smooth near zero-crossings.

The results of color and tone transfer are shown in Figure 5.
As can be seen, the look and feel of the CG image changes sub-
tly. Since color and tone transfers do not fundamentally change
the structure of the image, they can be used even when the image
matches returned from the database are poor or when the CG image
is already close to being photorealistic.

4.2 Texture Transfer

In addition to color and tone transfer, we also transfer texture from
photographs, which improves realism especially for low-quality CG

images. This is different from texture synthesis, where the goal is
to synthesize more of the same texture given an example texture.
In our case, we do not want to reuse the same region many times
because this often leads to visual artifacts in the form of repeated
regions. Instead, we rely on the k similar photographs we retrieved
from the database to provide us with a set of textures to help up-
grade the realism of the CG image.

We start local texture transfer by aligning the CG image with the
real images. Simply working on a region-by-region basis, as was
done for color and tone transfer did not work well. This is because
region boundaries do not always correspond to strong edges in the
image. As a result, slightly different textures can be transferred to
neighboring regions, leading to noticeable visual artifacts.

To overcome these challenges, we take a more global approach.
First, we generate multiple, shifted copies of each real image and
align them with the CG image based on strong-edge maps. Then we
transfer the texture using graph-cut. The result is a coherent texture
transfer that respects strong scene structure.

We perform the alignment as follows. For each cosegmented re-
gion in the CG image, we use cross-correlation of edge maps (mag-
nitudes of gradients) to find the real image, and the optimal shift,
that best matches the CG image for that particular region. We repeat
the process in a greedy manner until all regions in the CG image are
completely covered. To reduce repeated textures, we only allow up
to c shifted copies of an image to be used for texture transfer (typi-
cally c = 2).

Once the alignment step is over we have a set of ck shifted real
images that we can now use for texture transfer. We model the
problem as label assignment over a Markov Random field (MRF)
and solve it using graph cuts. The set of labels at each pixel location
consists of up to ck + 1 labels, corresponding to c shifted versions
of each of the k real images, as well as a copy of the CG image,
in case no matching texture was found. We look for the best label
assignment to optimize an objective function C(L) that consists of
a data term Cd over all pixels p and an interaction term Ci over all
pairs of pixels p,q. Specifically:

C(L) = ∑
p

Cd(p,L(p))+∑
p,q

Ci(p,q,L(p),L(q)) (2)

where the data penalty term Cd(p,L(p)) that measures distance be-
tween a 3×3 patch around pixel p in the CG image and a real image
is given by:

Cd(p,L(p)) = α1Dc(p,L(p))+α2Dg(p,L(p))+Dl(p,L(p)) .
(3)

Figure 6: CG image (upper left) with regions transferred from three refer-
ence photographs (upper right to lower right). The composite after Poisson
blending and color transfer (bottom left).

In Eqn. 3, Dc(p,L(p)) is the average distance in L*a*b* space be-
tween the 3×3 patch centered around pixel p in the CG image and
the patch centered around pixel p in real image L(p). Likewise, the
term Dg(p,L(p)) is the average distance between the magnitudes
of the gradients of the patches, and the term Dl(p,L(p)) is the re-
gion label term that is set to 0 if the CG patch and real patch are in
the same segmented region, a constant (in our case we fix it to be
0.3) when the patches are from different regions, and a value in be-
tween for patches that span boundaries. The value of Cd(p,L(p))
is set to a constant when L(p) corresponds to the CG label. This
way, if the distance of all real images from the CG image is above
that constant, the graph-cut algorithm will prefer keeping the CG
texture.

The interaction term Ci(p,q,L(p),L(q)) is zero if the labels
L(p),L(q) are the same, and a constant (modulated by its distance
from a strong edge in the CG image) otherwise. Specifically:

Ci(p,q,L(p),L(q)) =
{

0 L(p) = L(q)
M(p) otherwise (4)

where M(p) is a distance transform mask computed around the
largest gradients in the CG image (e.g., 10%). This helps preserve
the large structures in the CG image.

Once the graph cut has determined the label assignment per pixel
(i.e., the image from which to transfer texture), we copy gradients
from the selected image into the CG image and then reconstruct the
image by solving Poisson’s equation with Neumann boundary con-
straints. To minimize reconstruction errors near region boundaries,
we use a mixed guidance field, selecting the gradient based on its
norm [Pérez et al. 2003].

An example of texture transfer from three real images to a CG
image is shown in Fig. 6. The input CG image is shown in the
upper left and two matches returned from our database are shown
in the upper right; we allowed two shifted copies of each real image
(c = 2). Gradients were copied from the real images into the CG
image in regions specified by the graph-cut. The resulting image,
after color and tone adjustment, is shown in the lower left.

5 User Interaction
In our system, color and tone transfer operations are completely au-
tomatic. And for the examples shown in Fig. 1 and Fig. 9, texture
transfer only requires the user to specify a few parameters. The first
parameter sets the percentage of large gradients to preserve in the
CG image, typically 5–10%. We found that without this parameter,
the texture transfer algorithm would often synthesize images that,

while realistic, did not sufficiently resemble the CG image. The
second parameter is the assigned cost of choosing a CG patch. It ad-
justs the preference of the algorithm between real and CG textures:
setting this parameter to a high value will cause the algorithm to
recreate the CG image, as best it can, with only real patches, while
setting it to a low value will cause the algorithm to only choose real
patches that are very close to the CG patch. Typical values of this
parameter range from 0.2 to 0.5 since the data term Cd in Eqn. 3
often lies in the range 0 to 1. Because all transfer operations are
reasonably fast, these parameters can be adjusted to synthesize dif-
ferent versions of an image.

As shown in Figs. 1, 6 and 9, many natural scenes can be syn-
thesized using an automatic approach. These scenes are primarily
composed of stationary textures, and the global structure of the im-
age is conveyed by the composition, boundaries, and scale of the
textures within each image. For scenes with more structure, how-
ever, such as those in Fig. 7, automatic texture transfer can fail. For
these scenes, differences in perspective, scale, and scene geometry
between the CG input and real matches can lead to objectionable ar-
tifacts in the final result. These problems are due to the fact that our
MRF-based texture transfer makes local decisions, which are based
solely on 2D image data. Therefore global properties of the image,
such as symmetry, and properties that are strongly dependent on the
geometry of the original scene, can be mishandled.

Fortunately, a few operations are sufficient to extend our method
to a larger class of scenes, including those with significant structure.
These operations allow the user to specify locally the importance of
different regions of the CG and real images, as well as correct for
differences in perspective and planar geometry.

Scribble interface. Here the user can indicate with a scribble
regions from real image matches that should not be chosen dur-
ing texture transfer. This is useful when, for example, only part
of the real image is a good structural match. Likewise, the user can
also scribble on the CG image to specify regions that should be pro-
tected. This allows the user to ensure that important, novel structure
in the CG image not well-represented in the real image matches is
maintained.

These scribbles are easily incorporated into texture transfer. For
a scribble marking out a region of a real image, we simply set
Cd(p,L(p)) to infinity for all pixels p under the scribble when L(p)
corresponds to the marked image. Similarly, for scribbles protect-
ing regions of the CG image, we set Cd(p,L(q)) to zero for pixels q
beneath the scribble when label L(q) corresponds to the CG image.

Geometry interface. Here we focus on tools for adjusting the
perspective, and to a lesser degree, the scale and orientation, of
approximately planar regions. In the simplest case, the user spec-
ifies the vertices of corresponding rectangles in the CG and real
images. From these rectangles, we compute the homography that
maps the real image to the CG image and then warp accordingly.
Once warped, texture transfer proceeds as in Sec. 4.2.

For corridor scenes, or those that can be approximated as such,
we use the spidery mesh of Horry et al. [1997] to specify coarse
scene geometry. The spidery mesh consists of a background rectan-
gle and vanishing point, both of which are interactively positioned
by the user. Together they determine five 3D rectangles that capture
the coarse geometry of the scene. Once the user specifies geometry
for CG and real images, we compute a homography for each rect-
angle in a real image that maps it to the corresponding rectangle in
the CG image and warp to align real to CG. As above, the warped
real image is then used for texture transfer.

6 Results

Figures 9 and 10 show results generated by our system for a number
of different scenes. These examples include city scenes and various
landscapes–e.g., forest, meadow, lake, and beach (the reviewers are

Figure 7: Failure cases. The texture transfer algorithm does not account for geometric differences between objects in the source images. As a result, images
of structured scenes are difficult to blend without user interaction. See Fig. 10 for examples of tools for improving these images.

encouraged to look at the supplementary material for additional ex-
amples). To generate these results, we applied all three stages of our
system, transferring color, tone, and texture to the input CG images.
Each of these stages modified a different aspect of the CG image
and increased its photorealism. We have observed that when the
input images have low complexity then the region transfer greatly
improves the realism of the image. However, when the input im-
ages are already complex, the color and tone adjustment steps are
sufficient to improve realism.

The results in Fig. 9 were obtained using the automatic approach,
where we selected the k best real images (typically two or three),
from which our system synthesized the result. With a few adjust-
ments to the parameters to balance real vs. CG textures, we were
able to create reasonable results.

In Fig. 10, the challenging examples from Fig. 7 were edited via
the geometry and scribble interfaces to produce more compelling
results. In the top row, the road from a real image was warped us-
ing the spidery mesh tool to more closely match the road of the CG
image. Trees, mountains, and the sky from other (unwarped) image
matches were added to produce the final result. In the second row,
textures of buildings were warped by specifying planes in both the
real and CG images. The color and tone of the image was also mod-
ified to match a real image (not shown). In the third row, buildings
were warped using the spidery mesh tool to match the buildings in
the CG image. However even after warping, there was an inconsis-
tency that the graph-cut could not solve—there were multiple sets
of dashed lines on the street. This error was easily fixed using the
scribble interface to block the lines from the real images and allow
those from the CG image to propagate to the final result.

In some cases, a user may not want a region of the image to be
modified substantially. For example, if the user has spent hours
editing a 3D model they probably want the model to appear exactly
as they have designed it. In these cases, the user can specify an
alpha mask and the system will operate outside the mask. In this
scenario, the system provides an easy way to synthesize a realistic
background for a 3D model. Two examples of 3D models with
backgrounds synthesized by our system are shown in Fig. 11.

7 Evaluation

We conducted a user study in order to quantitatively evaluate the
effectiveness of our system. For a set of 10 example CG images,
we generated 10 CG2Real results. Note that all results used in the
study were generated without the use of scribbles or geometric ad-
justment. We did, however, adjust the two parameters discussed in
Sec. 5 to create the most compelling result for each input. A third
set of 10 images was selected from the real photographs used to
enhance the corresponding CG2Real results. Each of 20 partici-
pants viewed a sequence of 10 images drawn from this set, with a
total 30 images from 3 categories. Each test sequence was selected

randomly, with the constraint that the sequence contain at least 3
images from each category, and that multiple instances of images
from the same example did not appear in the sequence. Participants
were instructed to identify each image as ‘real’ if they felt that the
image was captured by a camera and ‘fake’ if they felt it was gen-
erated by a computer program. They were also informed that their
responses would be timed but that they should respond accurately
rather than quickly.

Here we report a number of findings. With unlimited viewing
time:

• 17% of the subjects classified real images as fake;
• 52% of the subjects classified CG2Real images as fake; and
• 97% of the subjects classified CG images as fake.

As can be seen, our system improved the “realism” of CG images
by 45%. After 5 seconds of viewing:

• 12% of the subjects classified real images as fake;
• 27% of the subjects classified CG2Real images as fake; and
• 82% of the subjects classified CG images as fake.

In this case we have improved the “realism” of CG images by 55%.
Figure 8 shows the complete results. It describes the percentage of
images marked as fake as a function of maximum response time.

What cues are viewers using to distinguish CG from real? To
begin to answer this question, we repeated the real vs. fake discrim-
ination task at various scales. By changing the size of the images,
we change the amount of high-frequency information, and our goal
was to quantify the effect of this information on the perception of
realism.

We presented three sets of images (CG, CG2Real, and Real) and
we fixed the presentation time at five seconds. We varied the image
width in powers of two from 32 to 512 pixels and asked the viewer
to identify the images as ‘real’ or ’fake’ using the same definitions
as the previous study.

We used the 30 images as the previous study (10 of each type)
and collected 20 judgements per image at 5 different sizes. Due
to the size of this study (30× 5× 20 = 3000 responses), we used
Amazon’s Mechanical Turk [Amazon.com 2009]. Mechanical Turk
is an online marketplace for human intelligence tasks. Requestors
can publish tasks and the rate they are willing to pay per task; work-
ers can browse for tasks they are willing to perform. We divided the
study into experiments by image size, collecting 20 responses for
each image in each experiment. The average time per experiment
was twelve minutes and the average number of contributing work-
ers was thirty-nine.

The results are shown in Fig. ??. At 32 pixels, most images were
labelled as ‘real,’ though there was some ability to distinguish be-
tween the three types of images even at this scale. As the image
size increased, the task became easier, though the ability to detect
a CG image as fake increased more dramatically with size than the
ability to detect a CG2Real image (based on the slope of the curves
between 32 and 256 pixels). In addition, the viewer’s confidence

in real images increased after 128 pixels—they mislabelled fewer
real images as fake. This study suggests that high frequencies con-
tribute to the perception of realism in CG images, though they do
not account for all of it.

In our system, we apply three types of transfer and the previous
experiments have established that all three of these operations to-
gether improve realism for CG images. But how much realism is
due to texture transfer and how much is due to color and tone trans-
fer? To address this question, we ran another Mechanical Turk task
showing images for five seconds and asking viewers to label the im-
ages as real or fake. For this experiment, we introduced CG2Real
images without texture transfer (only color and tone), but kept the
other parameters of the experiment the same. We found that 69%
of color and tone images were classified as fake, which is between
the results for CG and CG2Real (full pipeline) found in previous
studies. This result suggests that color and tone transfer improve
realism somewhat, but most of the gain shown in Figs. 8 and ??
comes from texture transfer.

7.1 Search descriptors

As we mentioned in section 3.2, we originally used the gist descrip-
tor for image search but were not satisfied with the results. Our
experience has been that the spatial pyramid descriptor consistently
returns better matches, but we sought to quantify this observation.
We used Mechanical Turk again for this task but with a different
experimental setup.

We selected 50 CG images at random from a working set of 120
CG images obtained via Google Images and performed queries on
two separate databases: one using the spatial pyramid descriptor
and one using gist. We hired 10 workers per image for a total of
1000 tasks (50 inputs × 10 workers per input × 2 match sets).

In a given task, we presented the user with a CG image and
twenty image matches. Users were instructed to “select all images
that were good matches to the query image.” There were additional
instructions to clarify that a good match is an image that depicts a
similar scene. Users responsed via checkboxes, and their responses
were not timed.

Here we consider a match “good” if 3 or more users (out of 10)
considered it so. Across 50 images, at this 30% acceptance thresh-
old, the spatial pyramid descriptor returned an average of 4.6 good
matches per image, while gist returned 1.7 good matches per image.

Note that the CG images were randomly selected; there were
several that could not be expected to have similar matching im-
ages. In general, our approach is only as good as the database of
photographs upon which it is built, and moreover, can only iden-
tify appropriate matches for input CG images of sufficient quality.
However, the user can manually add images that resemble the CG
scene or that they would like to use for transfers.

8 Conclusions
Our system takes a radically different approach to synthesizing pho-
torealistic CG images. Instead of adding geometric and texture de-
tails or using more sophisticated rendering and lighting models, we
take an image-based approach that exploits the growing number of
real images that are available online. We transfer realistic color,
tone, and texture to the CG image and we show that these trans-
fers improve the realism of CG images by 45%. To improve upon
these results, future work will have to consider other operations,
perhaps perspective and scale adjustments. But even the best CG
often lacks realism, so what cues are people using to distinguish
CG from real? Are they high or low-level? This is a human vision
question with implications beyond computer graphics and future
work on this problem could provide valuable insight.

Our system is easy to use, offers some artistic control, and can be
integrated into the visual content creation tool chain. It will benefit

Figure 11: Realistic backgrounds for CG models. In some cases, a user
may not want regions of the image replaced. The user can specify an alpha
mask and the system will operate outside the mask, thus creating a realistic
context for a rendered model.

novice users, who do not have the time, skill, or access to high end
modeling tools. At the same time it can serve professional artists
that would like to add a photorealistic touch to their CG images.

References
ADELSON, E. H., SIMONCELLI, E. P., AND HINGORANI, R. 1987. Or-

thogonal pyramid transforms for image coding. In Proc SPIE Visual
Communications and Image Processing II, vol. 845, 50–58.

AMAZON.COM, 2009. Amazon mechanical turk. http://www.mturk.com.
BAE, S., PARIS, S., AND DURAND, F. 2006. Two-scale tone management

for photographic look. ACM Transactions on Graphics 25, 3 (July), 637–
645.

DE BONET, J. S. 1997. Multiresolution sampling procedure for analy-
sis and synthesis of texture images. In Proceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series, 361–368.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for texture
synthesis and transfer. In Proceedings of ACM SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by non-
parametric sampling. In IEEE International Conference on Computer
Vision, 1033–1038.

FREEMAN, W. T., JONES, T. R., AND PASZTOR, E. C. 2002. Example-
based super-resolution. IEEE Computer Graphics & Applications 22, 2
(Mar./Apr.), 56–65.

FUKUNAGA, K., AND HOSTETLER, L. D. 1975. The estimation of the
gradient of a density function, with applications in pattern recognition.
IEEE Trans. on Info. Theory 21, 1, 32–40.

GRAUMAN, K., AND DARRELL, T. 2005. The pyramid match kernel:
Discriminative classification with sets of image features. In ICCV.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using millions of
photographs. ACM Transactions on Graphics 26, 3 (July), 4:1–4:7.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture anal-
ysis/synthesis. In Proceedings of SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, 229–238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND
SALESIN, D. H. 2001. Image analogies. In Proceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Se-
ries, 327–340.

HORRY, Y., ANJYO, K.-I., AND ARAI, K. 1997. Tour into the picture:
using a spidery mesh interface to make animation from a single image.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

CG images

CG2Real images

Real photographs

Maximum response time (seconds)

Pe
rc

en
ta

ge
 o

f i
m

ag
es

 m
ar

ke
d

as
 fa

ke

32 64 128 256 512

10

20

30

40

50

60

70

80

90

100

Image Width (pixels)

P
er

ce
nt

ag
e

of
 im

ag
es

 m
ar

ke
d

as
 fa

ke

CG images
CG2Real images
Real photographs

(a) (b)

Figure 8: (a) Percentage of images marked as fake as a function of maximum response time for real photos, CG images, and CG2Real images produced by our
method. (b) Percentage of images marked as fake as a function of image width for real photos, CG images, and CG2Real images produced by our method.

Figure 9: Results of our CG2Real system. In each section, the CG input image appears above the output image. All of these results were synthesized without
the use of scribbles or geometric adjustment.

In SIGGRAPH ’97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 225–232.

JOHNSON, M., BROSTOW, G. J., SHOTTON, J., ARANDJELOVIC, O.,
KWATRA, V., AND CIPOLLA, R. 2006. Semantic photo synthesis. Com-
puter Graphics Forum 25, 3 (Sept.), 407–414.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE, M.

2007. Joint bilateral upsampling. ACM Transactions on Graphics
(Proc. ACM SIGGRAPH) 26, 3.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003.
Graphcut textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphics 22, 3 (July), 277–286.

LALONDE, J.-F., AND EFROS, A. A. 2007. Using color compatibility for
assessing image realism. In Proc. IEEE Int. Conf. Computer Vision.

Figure 10: CG2Real results on structured scenes. Top and middle rows: the real images (middle) were warped to align them with the corresponding CG
images (left) based on coarse scene geometry specified by the spidery mesh (overlaid, top row) and rectangle (overlaid, middle row) to generate the results on
the right. Bottom row: light and dark gray scribbles (middle) indicate that particular real image matches should not appear in those regions, and white areas
indicate that these regions in the CG image (left) should be protected in the final result (right).

LALONDE, J.-F., HOIEM, D., EFROS, A. A., ROTHER, C., WINN, J.,
AND CRIMINISI, A. 2007. Photo clip art. ACM Transactions on Graph-
ics 26, 3 (July), 3:1–3:10.

LAZEBNIK, S., SCHMID, C., AND PONCE, J. 2006. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories.
In CVPR.

LI, Y., SHARAN, L., AND ADELSON, E. H. 2005. Compressing and com-
panding high dynamic range images with subband architectures. ACM
Transactions on Graphics (Proc. ACM SIGGRAPH) 24, 3, 836–844.

LIU, X., WAN, L., QU, Y., WONG, T.-T., LIN, S., LEUNG, C.-S., AND
HENG, P.-A. 2008. Intrinsic colorization. ACM Transactions on Graph-
ics (Proc. of SIGGRAPH Asia) 27. 152:1-152:9.

LOWE, D. G. 1999. Object recognition from local scale-invariant features.
In ICCV.

LYU, S., AND FARID, H. 2005. How realistic is photorealistic? IEEE
Trans. Signal Processing 53, 2, 845–850.

OLIVA, A., AND TORRALBA, A. 2001. Modeling the shape of the scene: a
holistic representation of the spatial envelope. Int. Journal of Computer
Vision 42, 3, 145–175.

PARIS, S., AND DURAND, F. 2007. A topological approach to hierarchical
segmentation using mean shift. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 1–8.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing.
ACM Transactions on Graphics 22, 3 (July), 313–318.

PITIÉ, F., KOKARAM, A. C., AND DAHYOT, R. 2005. N-dimensional
probablility density function transfer and its application to colour trans-
fer. In Proc. IEEE Int. Conf. Computer Vision, 1434–1439.

REINHARD, E., ASHIKHMIN, M., GOOCH, B., AND SHIRLEY, P. S. 2001.
Color transfer between images. IEEE Computer Graphics & Applica-
tions 21, 5 (Sept./Oct.), 34–41.

ROSALES, R., ACHAN, K., AND FREY, B. 2003. Unsupervised image
translation. In Proc. IEEE Int. Conf. Computer Vision.

ROTH, S., AND BLACK, M. J. 2005. Fields of experts: A framework for
learning image priors. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, 860–867.

ROTHER, C., MINKA, T., BLAKE, A., AND KOLMOGOROV, V. 2006.
Cosegmentation of image pairs by histogram matching—incorporating a
global constraint into MRFs. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition.

RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., AND FREEMAN, W. T.
2008. Labelme: a database and web-based tool for image annotation. Int.
Journal of Computer Vision 77, 1–3 (May), 157–173.

SIVIC, J., KANEVA, B., TORRALBA, A., AVIDAN, S., AND FREEMAN,
W. T. 2008. Creating and exploring a large photorealistic virtual space.
In CVPR workshop on Internet Vision, 2008, archived in IEEE digital
library.

TAI, Y.-W., JIA, J., AND TANG, C.-K. 2006. Local color transfer via
probabilistic segmentation by expectation-maximization. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 747–754.

WEISS, Y., AND FREEMAN, W. T. 2007. What makes a good model
of natural images? In Proc. IEEE Conf. Computer Vision and Pattern
Recognition.

WEN, C.-L., HSIEH, C.-H., CHEN, B.-Y., AND OUHYOUNG, M. 2008.
Example-based multiple local color transfer by strokes. Computer
Graphics Forum (Proc. of Pacific Graphics) 27, 7, 1765–1772.

ZHANG, J., MARSZALEK, M., LAZEBNIK, S., AND SCHMID, C. 2007.
Local features and kernels for classification of texture and object cate-
gories: a comprehensive study. Int. Journal of Computer Vision 73, 2,
213–238.

