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LECTURE 16

LECTURE OUTLINE

• More on rollout algorithms

• Simulation-based methods

• Approximations of rollout algorithms

• Rolling horizon approximations

• Discretization issues

• Other suboptimal approaches



ROLLOUT ALGORITHMS

• Rollout policy : At each k and state xk, use the
control µk(xk) that

min
uk∈Uk(xk)

Qk(xk, uk),

where

Qk(xk, uk) = E
{
gk(xk, uk, wk)+Hk+1

(
fk(xk, uk, wk)

)}

and Hk+1(xk+1) is the cost-to-go of the heuristic.

• Qk(xk, uk) is called the Q-factor of (xk, uk), and
for a stochastic problem, its computation may in-
volve Monte Carlo simulation.

• Potential difficulty: To minimize over uk the Q-
factor, we must form Q-factor differences Qk(xk, u)−
Qk(xk, u). This differencing often amplifies the
simulation error in the calculation of the Q-factors.

• Potential remedy: Compare any two controls u
and u by simulating Qk(xk, u)−Qk(xk, u) directly.



Q-FACTOR APPROXIMATION

• Here, instead of simulating the Q-factors, we
approximate the costs-to-go Hk+1(xk+1).

• Certainty equivalence approach: Given xk, fix
future disturbances at “typical” values wk+1, . . . , wN−1

and approximate the Q-factors with

Q̃k(xk, uk) = E
{
gk(xk, uk, wk)+H̃k+1

(
fk(xk, uk, wk)

)}

where H̃k+1

(
fk(xk, uk, wk)

)
is the cost of the heuris-

tic with the disturbances fixed at the typical values.

• This is an approximation of Hk+1

(
fk(xk, uk, wk)

)

by using a “single sample simulation.”

• Variant of the certainty equivalence approach:
Approximate Hk+1

(
fk(xk, uk, wk)

)
by simulation

using a small number of “representative samples”
(scenarios).

• Alternative: Calculate (exact or approximate)
values for the cost-to-go of the base policy at a
limited set of state-time pairs, and then approx-
imate Hk+1 using an approximation architecture
and a “least-squares fit.”



ROLLING HORIZON APPROACH

• This is an l-step lookahead policy where the
cost-to-go approximation is just 0.

• Alternatively, the cost-to-go approximation is the
terminal cost function gN .

• A short rolling horizon saves computation.

• “Paradox”: It is not true that a longer rolling
horizon always improves performance.

• Example: At the initial state, there are two con-
trols available (1 and 2). At every other state, there
is only one control.
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ROLLING HORIZON COMBINED WITH ROLLOUT

• We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

• Example: N -stage stopping problem where the
stopping cost is 0, the continuation cost is either
−ε or 1, where 0 < ε < 1/N , and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is −mε.
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• Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of l ≤ m steps.

• It will continue up to the first m − l + 1 stages,
thus compiling a cost of −(m− l+1)ε. The rollout
performance improves as l becomes shorter!



DISCRETIZATION

• If the state space and/or control space is con-
tinuous/infinite, it must be replaced by a finite dis-
cretization.

• Need for consistency, i.e., as the discretiza-
tion becomes finer, the cost-to-go functions of the
discretized problem converge to those of the con-
tinuous problem.

• Pitfalls with discretizing continuous time.

• The control constraint set changes a lot as we
pass to the discrete-time approximation.

• Example:

ẋ1(t) = u1(t), ẋ2(t) = u2(t),

with the control constraint ui(t) ∈ {−1, 1} for i =
1, 2. Compare with the discretized version

x1(t+∆t) = x1(t)+∆tu1(t), x2(t+∆t) = x2(t)+∆tu2(t),

with ui(t) ∈ {−1, 1}.

• “Convexification effect” of continuous time.



GENERAL APPROACH FOR DISCRETIZATION I

• Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.
Assume stationarity for convenience, i.e., that the
system equation and cost per stage are the same
for all times.

• We define an approximation to the original prob-
lem, with state space S, as follows:

• Express each x ∈ S as a convex combination
of states in S, i.e.,

x =
∑

xi∈S

γi(x)xi where γi(x) ≥ 0,
∑

i

γi(x) = 1

• Define a “reduced” dynamic system with state
space S, whereby from each xi ∈ S we move to
x = f(xi, u, w) according to the system equation
of the original problem, and then move to xj ∈ S
with probabilities γj(x).

• Define similarly the corresponding cost per stage
of the transitions of the reduced system.



GENERAL APPROACH FOR DISCRETIZATION II

• Let Jk(xi) be the optimal cost-to-go of the “re-
duced” problem from each state xi ∈ S and time
k onward.

• Approximate the optimal cost-to-go of any x ∈ S
for the original problem by

J̃k(x) =
∑

xi∈S

γi(x)Jk(xi),

and use one-step-lookahead based on J̃k.

• The choice of coefficients γi(x) is in principle
arbitrary, but should aim at consistency, i.e., as
the number of states in S increases, J̃k(x) should
converge to the optimal cost-to-go of the original
problem.

• Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

• Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients γi(x)
admit a meaningful interpretation that quantifies
the degree of association of x with xi.



OTHER SUBOPTIMAL CONTROL APPROACHES

• Minimize the DP equation error: Ap-
proximate the optimal cost-to-go functions Jk(xk)
with functions J̃k(xk, rk), where rk is a vector of
unknown parameters, chosen to minimize some
form of error in the DP equations.

• Approximate directly control policies: For
a subset of states xi, i = 1, . . . , m, find

µ̂k(xi) = arg min
uk∈Uk(xi)

E
{
g(xi, uk, wk)

+ J̃k+1

(
fk(xi, uk, wk), rk+1

)}
.

Then find µ̃k(xk, sk), where sk is a vector of pa-
rameters obtained by solving the problem

min
s

m∑

i=1

‖µ̂k(xi) − µ̃k(xi, s)‖2.

• Approximation in policy space: Do not
bother with cost-to-go approximations. Parametrize
the policies as µ̃k(xk, sk), and minimize the cost
function of the problem over the parameters sk.


