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LECTURE OUTLINE

More on rollout algorithms
Simulation-based methods
Approximations of rollout algorithms
Rolling horizon approximations
Discretization issues

Other suboptimal approaches



ROLLOUT ALGORITHMS

e Rollout policy. At each k and state xy, use the
control 1, (xy) that

min =~ Qx(xk, ug),
up €U (7))

where
Qr(Tr,ur) = E{gk(ivk, Uk, Wk )+ Hp 41 (fk(ﬂfk, Uk, wk))}

and Hy.1(xr+1) is the cost-to-go of the heuristic.

o Qi(xk,ur)lis calledthe Q-factorof (zy,ur), and
for a stochastic problem, its computation may in-
volve Monte Carlo simulation.

e Potential difficulty: To minimize over u; the Q-
factor, we must form Q-factor differences Q. (xx, u)—
Qr(xr,w). This differencing often amplifies the
simulation error in the calculation of the ()-factors.

e Potential remedy: Compare any two controls u
and u by simulating Q. (x, v) — Qr(zg, w) directly.



Q-FACTOR APPROXIMATION

e Here, instead of simulating the ()-factors, we
approximate the costs-to-go Hy11(xg11).

e Certainty equivalence approach: Given zy, fix
future disturbances at “typical” values w11, ..., WxN_1
and approximate the )-factors with

Qr(zh, ur) = E{gk(fbk, g, W)+ i1 (fk(wk, U, wk))}

where Hy 1 (f& (2, uk, wi)) isthe cost of the heuris-
tic with the disturbances fixed at the typical values.

e Thisisanapproximation of Hy1 (fx(zk, uk, wi))
by using a “single sample simulation.”

e Variant of the certainty equivalence approach:
Approximate Hj1( fx(xk, uk, wy)) by simulation
using a small number of “representative samples”
(scenarios).

e Alternative: Calculate (exact or approximate)
values for the cost-to-go of the base policy at a
limited set of state-time pairs, and then approx-
Imate Hj., using an approximation architecture
and a “least-squares fit.”



ROLLING HORIZON APPROACH

e This is an [-step lookahead policy where the
cost-to-go approximation is just O.

e Alternatively, the cost-to-go approximationis the
terminal cost function g .

e A short rolling horizon saves computation.

e “Paradox”. It is not true that a longer rolling
horizon always improves performance.

e Example: At the initial state, there are two con-
trols available (1 and 2). Atevery other state, there
IS only one control.
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ROLLING HORIZON COMBINED WITH ROLLOUT

e \We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

e Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

e Example: N-stage stopping problem where the
stopping cost is 0, the continuation cost Is either
—e or 1, where 0 < ¢ < 1/N, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost Is —me.

e

Stopped State

e Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of [ < m steps.

e |t will continue up to the first m — [ 4+ 1 stages,
thus compiling a cost of —(m — [+ 1)e. The rollout
performance improves as [ becomes shorter!



DISCRETIZATION

e If the state space and/or control space is con-
tinuous/infinite, it must be replaced by a finite dis-
cretization.

e Need for consistency, I.e., as the discretiza-
tion becomes finer, the cost-to-go functions of the
discretized problem converge to those of the con-
tinuous problem.

e Pitfalls with discretizing continuous time.

e The control constraint set changes a lot as we
pass to the discrete-time approximation.

e Example:

with the control constraint u;(t) € {—1,1} for ¢ =
1,2. Compare with the discretized version

r1(t+At) = z1(t)+Atui(t), x2(t+At) = z2(t)+Atua(t),
with uz(t) < {—1, 1}.

e “Convexification effect” of continuous time.



GENERAL APPROACH FOR DISCRETIZATION |

e Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.
Assume stationarity for convenience, i.e., that the
system equation and cost per stage are the same
for all times.

e We define an approximation to the original prob-
lem, with state space S, as follows:

e EXpress each z € S as a convex combination
of states in S, I.e.,

r = Z vi(x)x; where ~;(x) > 0, Z%(:U) =1

e Define a “reduced” dynamic system with state
space S, whereby from each z; € S we move to
T = f(x;,u,w) according to the system equation
of the original problem, and then move to z; € S
with probabilities v, ().

e Define similarly the corresponding cost per stage
of the transitions of the reduced system.



GENERAL APPROACH FOR DISCRETIZATION 1

o Let Ji(x;) be the optimal cost-to-go of the “re-
duced” problem from each state x; € S and time
k onward.

e Approximate the optimal cost-to-goofanyx € S
for the original problem by

27z Jk xz

x;ES
and use one-step-lookahead based on .J;.

e The choice of coefficients ~;(x) is in principle
arbitrary, but should aim at consistency, I.e., as
the number of states in S increases, Jj (x) should
converge to the optimal cost-to-go of the original
problem.

e Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

e Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients ~; ()
admit a meaningful interpretation that quantifies
the degree of association of x with x;.



OTHER SUBOPTIMAL CONTROL APPROACHES

¢ Minimize the DP equation error: Ap-
proximate the optimal cost-to-go functions Ji (xy )
with functions J(z, ), where 7, is a vector of
unknown parameters, chosen to minimize some
form of error in the DP equations.

e Approximate directly control policies: For
a subset of states z¢, 7 =1,...,m, find

jin(at) —arg min  B{ga*, u, wy)
up €U (z*)

+ Jpr1 (fr(@h, up, wi), Tg1) }-

Then find iy (g, si), Where s is a vector of pa-
rameters obtained by solving the problem

; () — [ (i 2
msm;\!uk(x) fur (7, 8)]2.

e Approximation in policy space: Do not
bother with cost-to-go approximations. Parametrize
the policies as jix (g, si), and minimize the cost
function of the problem over the parameters s;..



