
6.231 DYNAMIC PROGRAMMING

LECTURE 24

LECTURE OUTLINE

• Additional methods for approximate DP

• Q-Learning

• Aggregation

• Linear programming with function approxima-
tion

• Gradient-based approximation in policy space



Q-LEARNING I

• To implement an optimal policy, what we need
are the Q-factors defined for each pair (i, u) by

Q(i, u) =
∑

j

pij(u)
(
g(i, u, j) + J∗(j)

)

• Bellman’s equation is J∗(j) = minu′∈U(j) Q(j, u′),
so the Q-factors solve the system of equations

Q(i, u) =
∑

j

pij(u)
(
g(i, u, j)+ min

u′∈U(j)
Q(j, u′)

)
, ∀ (i, u)

• One possibility is to solve this system iteratively
by a form of value iteration

Q(i, u) := (1 − γ)Q(i, u)+γ
∑

j

pij(u)
(
g(i, u, j)

+ min
u′∈U(j)

Q(j, u′)
)
,

where γ is a stepsize parameter with γ ∈ (0, 1],
that may change from one iteration to the next.



Q-LEARNING II

• The Q-learning method is an approximate ver-
sion of this iteration, whereby the expected value
is replaced by a single sample, i.e.,

Q(i, u) := Q(i, u) + γ
(
g(i, u, j)

+ min
u′∈U(j)

Q(j, u′) − Q(i, u)
)

• Here j and g(i, u, j) are generated from the pair
(i, u) by simulation, i.e., according to the transition
probabilities pij(u).

• Thus Q-learning can be viewed as a combina-
tion of value iteration and simulation.

• Convergence of the method to the (optimal) Q
factors can be shown under some reasonable (but
quite technical) assumptions.

• Strong connections with the theory of stochastic
iterative algorithms (such as stochastic gradient
methods).

• Challenging analysis, limited practicality (only
for a small number of states).



AGGREGATION I

• Another major idea in approximate DP is to ap-
proximate the cost-to-go function of the problem
with the cost-to-go function of a simpler problem.

• The main idea of aggregation approach:

− Lump many states together into a few “ag-
gregate” states

− View the aggregate states as the states of
an “aggregate” system

− Formulate and solve (optimally) the “aggre-
gate” problem by any kind of value or policy
iteration method (including simulation-based
methods, such as Q-learning)

− Use the optimal cost of the aggregate prob-
lem for a piecewise-constant approximation
of the optimal cost of the original problem
(all states that belong to the same aggre-
gate state are restricted to have the same
cost, the optimal cost of the aggregate state)

• The aggregate problem could also be solved
approximately.



AGGREGATION II

Feature
Vector

System/
Simulator

Feature
Extraction
Mapping

State

Aggregate System/
Simulator

Cost
Approximator

Cost Approximation

Approximator for the
Aggregate System

• Main steps to define the aggregate system

• Form the aggregate states by partitioning the
original state space (features can be used for this).

− Each aggregate state is a subset S of states
of the original system

− Each state of the original system belongs to
a unique aggregate state

• Define the dynamics of the aggregate system

Current aggregate state S �→ New aggregate state S′

Example: If the current aggregate state is S, gen-
erate a “typical” state i within S in some probabilis-
tic way, then generate j according to the pij , then
declare S′ to be the aggregate state to which j
belongs.



SOFT AGGREGATION

• A more general approach is to specify that each
original system state j “belongs to each aggregate
state k with prescribed probability πjk.” Then find
the costs J̃k of the aggregate states by solving an
aggregate problem, and approximate the cost of
an original system state j by

∑
k πjkJ̃k.

• Define the dynamics of the aggregate system
as follows: from the current aggregate state, gen-
erate a “typical” state i in some probabilistic way,
then generate j according to the pij , then gen-
erate probabilistically the next aggregate state k
according to probabilities πjk.

• A variant of this approach when the aggregate
states are themselves states of the original sys-
tem (so aggregation here represents a coarse dis-
cretization of the original state space).

− Define the dynamics of the aggregate sys-
tem as follows: from the current aggregate
state, generate a next state j according to
the original system transition probabilities,
then generate the next aggregate state k ac-
cording to probabilities πjk.



APPROXIMATE LINEAR PROGRAMMING

• Approximate J∗ using a linear architecture

J̃ = Φr

where r = (r1, . . . , rs) is a weight vector, and Φ is
an n × s feature matrix.

• Use J̃ in place of J∗ in the linear programming
approach, i.e., compute r by solving

maximize c′Φr

subject to Φr ≤ gµ + αPµΦr, ∀ µ

where c is a vector with positive components.

• This is a linear program with s variables but an
enormous number of constraints (one constraint
for each state-control pair).

• Special large-scale linear programming meth-
ods (cutting plane or column generation methods)
may be used for such problems.

• Approximations using only a “sampled” subset
of state-control pairs are possible (see the papers
by de Farias and Van Roy).



APPROXIMATION IN POLICY SPACE I

• Consider an average cost problem, where the
problem data are parameterized by a vector r,
i.e., a cost vector g(r), transition probability ma-
trix P (r). Let λ(r) be the (scalar) average cost per
stage, satisfying Bellman’s equation

λ(r)e + v(r) = g(r) + P (r)v(r)

• Consider minimizing λ(r) over r (here the data
dependence on control is encoded in the param-
eterization). We can try to solve the problem by
nonlinear programming/gradient descent methods.

• Important fact: If ∆λ is the change in λ due
to a small change ∆r from a given r, we have

∆λ · e = p′(∆g + ∆Pv),
where p is the steady-state probability distribu-
tion/vector corresponding to P (r), and all the quan-
tities above are evaluated at r:

∆λ = λ(r + ∆r) − λ(r),

∆g = g(r+∆r)−g(r), ∆P = P (r+∆r)−P (r)



APPROXIMATION IN POLICY SPACE II

• Proof of the gradient formula: We have,
by “differentiating” Bellman’s equation,

∆λ(r)·e+∆v(r) = ∆g(r)+∆P (r)v(r)+P (r)∆v(r)

By left-multiplying with p′,

p′∆λ(r)·e+p′∆v(r) = p′
(
∆g(r)+∆P (r)v(r)

)
+p′P (r)∆v(r)

Since p′∆λ(r) · e = ∆λ(r)e and p′ = p′P (r), this
equation simplifies to

∆λ · e = p′(∆g + ∆Pv)

• Since we don’t know p, we cannot implement a
gradient-like method for minimizing λ(r). An alter-
native is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (i0, i1, . . .), and change
r once in a while, in the direction of a simulation-
based estimate of p′(∆g + ∆Pv).

• There is much recent research on this subject,
see e.g., the work of Marbach and Tsitsiklis, and
Konda and Tsitsiklis.


