6.231 DYNAMIC PROGRAMMING
LECTURE 24
LECTURE OUTLINE

e Additional methods for approximate DP
e ()-Learning
e Aggregation

e Linear programming with function approxima-
tion

e Gradient-based approximation in policy space

Q-LEARNING |

e To iImplement an optimal policy, what we need
are the Q-factors defined for each pair (i, u) by

_ pr(u) (g(i, u,j) + J*(J))

e Bellman’s equationis J*(j) = min, /¢y ;) Q(J, '),
so the ()-factors solve the system of equations

pr ((¢,u,j)+ min Q(j,u)),V(i,U)

u’ eU(j)

e One possibility Is to solve this system iteratively
by a form of value iteration

Q(i,u) = (1 =7)QU w)+7 Y pis(w) (90, u.)

+ min Q(],u’))

u'eU(j)

where ~ is a stepsize parameter with v € (0, 1],
that may change from one iteration to the next.

Q-LEARNING I

e The Q-learning method IS an approximate ver-
sion of this iteration, whereby the expected value
IS replaced by a single sample, i.e.,

Qi,u) = Qi u) + (g, v,)
+ min Q(j,w) - Qi,u))

u'€U(j)
e Here j and ¢(i, u, j) are generated from the pair
(7,) by simulation, i.e., according to the transition

probabilities p;;(u).

e Thus ()-learning can be viewed as a combina-
tion of value iteration and simulation.

e Convergence of the method to the (optimal) @
factors can be shown under some reasonable (but
quite technical) assumptions.

e Strong connections with the theory of stochastic
iterative algorithms (such as stochastic gradient
methods).

e Challenging analysis, limited practicality (only
for a small number of states).

AGGREGATION I

e Another major idea in approximate DP is to ap-
proximate the cost-to-go function of the problem
with the cost-to-go function of a simpler problem.

e The main idea of aggregation approach:

Lump many states together into a few “ag-
gregate” states

View the aggregate states as the states of
an “aggregate” system

Formulate and solve (optimally) the “aggre-
gate” problem by any kind of value or policy
iteration method (including simulation-based
methods, such as (-learning)

Use the optimal cost of the aggregate prob-
lem for a piecewise-constant approximation
of the optimal cost of the original problem
(all states that belong to the same aggre-
gate state are restricted to have the same
cost, the optimal cost of the aggregate state)

e The aggregate problem could also be solved
approximately.

AGGREGATION Il

|
|
|
Feature |
Vector I Cost Approximation
. =
|
|
|
|

Svstem/ State | Feature
ystem/ i— Extraction

Simulator Mapping

Cost
Approximator

: Approximator for the
: Aggregate System

Aggregate System/
Simulator

e Main steps to define the aggregate system

e Form the aggregate states by partitioning the
original state space (features can be used for this).

— Each aggregate state is a subset S of states
of the original system

— Each state of the original system belongs to
a unique aggregate state

e Define the dynamics of the aggregate system

Current aggregate state S +— New aggregate state S’

Example: Ifthe currentaggregate stateis S, gen-
erate a “typical” state ¢ within S in some probabilis-
tic way, then generate j according to the p;;, then
declare S’ to be the aggregate state to which j
belongs.

SOFT AGGREGATION

e A more general approach is to specify that each
original system state 5 “belongs to each aggregate
state k& with prescribed probability 7;z.” Then find
the costs .J;, of the aggregate states by solving an
aggregate problem, and approximate the cost of
an original system state j by » , wjkjk.

e Define the dynamics of the aggregate system
as follows: from the current aggregate state, gen-
erate a “typical” state < in some probabilistic way,
then generate j according to the p;;, then gen-
erate probabilistically the next aggregate state k
according to probabilities 7.

e A variant of this approach when the aggregate
states are themselves states of the original sys-
tem (so aggregation here represents a coarse dis-
cretization of the original state space).

— Define the dynamics of the aggregate sys-
tem as follows: from the current aggregate
state, generate a next state 5 according to
the original system transition probabilities,
then generate the next aggregate state k ac-
cording to probabilities .

APPROXIMATE LINEAR PROGRAMMING

e Approximate J* using a linear architecture

J = or
where r = (r1,...,7s) IS @ weight vector, and ® is
an n x s feature matrix.

e Use J in place of J* in the linear programming
approach, i.e., compute r by solving

maximize ' ®or
subjectto ®r < g, +aP,Pr, Vpu

where c Is a vector with positive components.

e This Is a linear program with s variables but an
enormous number of constraints (one constraint
for each state-control pair).

e Special large-scale linear programming meth-
ods (cutting plane or column generation methods)
may be used for such problems.

e Approximations using only a “sampled” subset
of state-control pairs are possible (see the papers
by de Farias and Van Roy).

APPROXIMATION IN POLICY SPACE |

e Consider an average cost problem, where the
problem data are parameterized by a vector r,
l.e., a cost vector g(r), transition probability ma-
trix P(r). Let A(r) be the (scalar) average cost per
stage, satisfying Bellman’s equation

A(r)e +o(r) = g(r) + P(r)o(r)

e Consider minimizing A(r) over r (here the data
dependence on control is encoded in the param-
eterization). We can try to solve the problem by
nonlinear programming/gradient descent methods.

e Important fact: If A)is the change in A due
to a small change Ar from a given r, we have

AX-e =7 (Ag+ APv),
where p Is the steady-state probability distribu-
tion/vector corresponding to P(r), and all the quan-
tities above are evaluated at r:

AN = A(r + Ar) — A(r),

Ag = g(r+Ar)—g(r), AP = P(r+Ar)—P(r)

APPROXIMATION IN POLICY SPACE I

e Proof of the gradient formula: We have,
by “differentiating” Bellman’s equation,

AX(r)-e+Av(r) = Ag(r)+AP(r)v(r)+P(r)Av(r)
By left-multiplying with 7/,
P AN(r)-e+D Av(r) = (Ag(r)+AP(r)v(r)) +5 P(r) Av(r)

Since p’AX(r) - e = AX(r)e and p’ = p' P(r), this
equation simplifies to

AXN-e=7D(Ag+ APv)

e Since we don’'t know p, we cannot implement a
gradient-like method for minimizing A(r). An alter-
native is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (<o, 71, . ..), and change
r once in a while, in the direction of a simulation-
based estimate of p'(Ag + APv).

e There is much recent research on this subject,
see e.g., the work of Marbach and Tsitsiklis, and
Konda and Tsitsiklis.

