LECTURE SLIDES ON DYNAMIC PROGRAMMING

BASED ON LECTURES GIVEN AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASS

FALL 2003

DIMITRI P. BERTSEKAS

These lecture slides are based on the book: "Dynamic Programming and Optimal Control: 2nd edition," Vols. I and II, Athena Scientific, 2001, by Dimitri P. Bertsekas; see

http://www.athenasc.com/dpbook.html

Last Updated: December 2003

The slides are copyrighted, but may be freely reproduced and distributed for any noncommercial purpose.

6.231 DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

- Problem Formulation
- Examples
- The Basic Problem
- Significance of Feedback

DP AS AN OPTIMIZATION METHODOLOGY

Basic optimization problem

$$\min_{u \in U} g(u)$$

where u is the optimization/decision variable, g(u) is the cost function, and U is the constraint set

- Categories of problems:
 - Discrete (U is finite) or continuous
 - Linear (g is linear and U is polyhedral) or nonlinear
 - Stochastic or deterministic: In stochastic problems the cost involves a stochastic parameter w, which is averaged, i.e., it has the form

$$g(u) = E_w \{G(u, w)\}$$

where w is a random parameter.

ullet DP can deal with complex stochastic problems where information about w becomes available in stages, and the decisions are also made in stages and make use of this information.

BASIC STRUCTURE OF STOCHASTIC DP

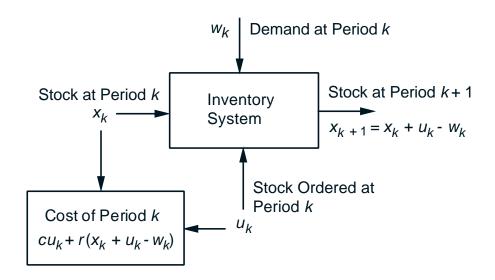
Discrete-time system

$$x_{k+1} = f_k(x_k, u_k, w_k), \qquad k = 0, 1, \dots, N-1$$

- k: Discrete time
- $-x_k$: State; summarizes past information that is relevant for future optimization
- $-u_k$: Control; decision to be selected at time k from a given set
- $-w_k$: Random parameter (also called disturbance or noise depending on the context)
- $-\ N$: Horizon or number of times control is applied
- Cost function that is additive over time

$$E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k)\right\}$$

INVENTORY CONTROL EXAMPLE



Discrete-time system

$$x_{k+1} = f_k(x_k, u_k, w_k) = x_k + u_k - w_k$$

Cost function that is additive over time

$$E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k)\right\}$$

$$= E\left\{\sum_{k=0}^{N-1} \left(cu_k + r(x_k + u_k - w_k)\right)\right\}$$

• Optimization over policies: Rules/functions $u_k = \mu_k(x_k)$ that map states to controls

ADDITIONAL ASSUMPTIONS

- The set of values that the control u_k can take depend at most on x_k and not on prior x or u
- Probability distribution of w_k does not depend on past values w_{k-1}, \ldots, w_0 , but may depend on x_k and u_k
 - Otherwise past values of w or x would be useful for future optimization
- Sequence of events envisioned in period k:
 - $-x_k$ occurs according to

$$x_k = f_{k-1}(x_{k-1}, u_{k-1}, w_{k-1})$$

 $-u_k$ is selected with knowledge of x_k , i.e.,

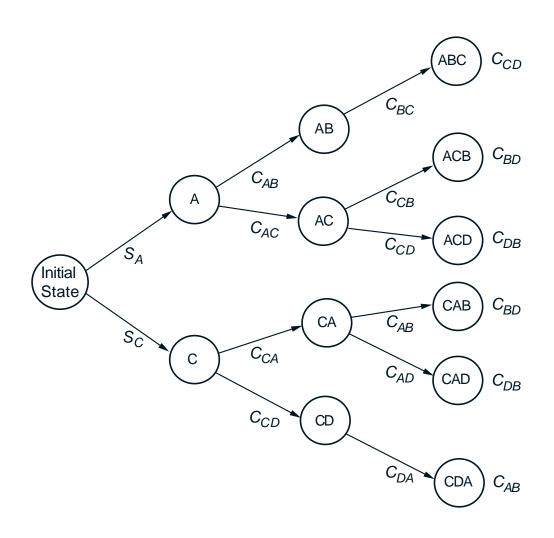
$$u_k \in U(x_k)$$

 $-\ w_k$ is random and generated according to a distribution

$$P_{w_k}(x_k,u_k)$$

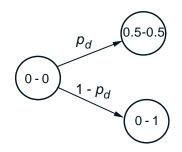
DETERMINISTIC FINITE-STATE PROBLEMS

- Scheduling example: Find optimal sequence of operations A, B, C, D
- A must precede B, and C must precede D
- Given startup cost S_A and S_C , and setup transition cost C_{mn} from operation m to operation n

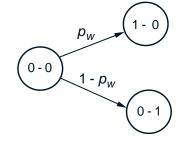


STOCHASTIC FINITE-STATE PROBLEMS

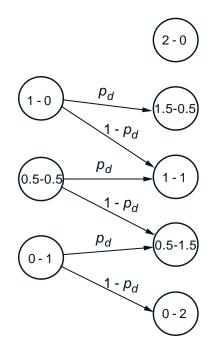
- Example: Find two-game chess match strategy
- Timid play draws with prob. $p_d > 0$ and loses with prob. $1 p_d$. Bold play wins with prob. $p_w < 1/2$ and loses with prob. $1 p_w$

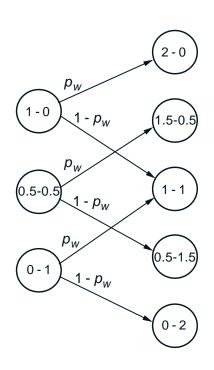


1st Game / Timid Play



1st Game / Bold Play





2nd Game / Bold Play

BASIC PROBLEM

- System $x_{k+1} = f_k(x_k, u_k, w_k)$, k = 0, ..., N-1
- Control contraints $u_k \in U(x_k)$
- Probability distribution $P_k(\cdot | x_k, u_k)$ of w_k
- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k maps states x_k into controls $u_k = \mu_k(x_k)$ and is such that $\mu_k(x_k) \in U_k(x_k)$ for all x_k
- Expected cost of π starting at x_0 is

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

Optimal cost function

$$J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$$

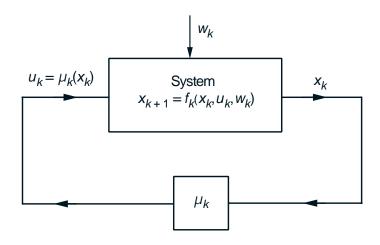
• Optimal policy π^* satisfies

$$J_{\pi^*}(x_0) = J^*(x_0)$$

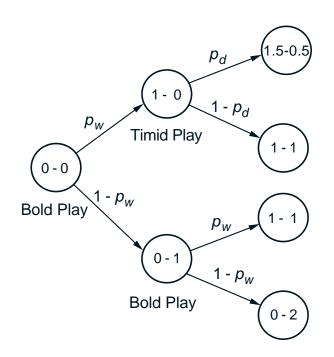
When produced by DP, π^* is independent of x_0 .

SIGNIFICANCE OF FEEDBACK

Open-loop versus closed-loop policies



- In deterministic problems open loop is as good as closed loop
- Chess match example; value of information



A NOTE ON THESE SLIDES

- These slides are a teaching aid, not a text
- Don't expect a rigorous mathematical development or precise mathematical statements
- Figures are meant to convey and enhance ideas, not to express them precisely
- Omitted proofs and a much fuller discussion can be found in the text, which these slides follow