
6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• Variants of the Pontryagin Minimum Principle

• Fixed terminal state

• Free terminal time

• Examples

• Discrete-Time Minimum Principle



REVIEW

• Continuous-time dynamic system

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given

• Cost function

h
(
x(T )

)
+

∫ T

0

g
(
x(t), u(t)

)
dt

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation/Verification theorem: For all (t, x)

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]

with the boundary condition J∗(T, x) = h(x).

• Adjoint equation/vector: To compute an op-
timal state-control trajectory {(u∗(t), x∗(t))

}
it is

enough to know

p(t) = ∇xJ∗(t, x∗(t)
)
, t ∈ [0, T ].

• Pontryagin theorem gives an equation for p(t).



NEC. CONDITION: PONTRYAGIN MIN. PRINCIPLE

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u).

• Minimum Principle: Let
{
u∗(t) | t ∈ [0, T ]

}
be an optimal control trajectory and let

{
x∗(t) | t ∈

[0, T ]
}

be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH
(
x∗(t), u∗(t), p(t)

)
,

with the boundary condition

p(T ) = ∇h
(
x∗(T )

)
.

Then, for all t ∈ [0, T ],

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.

Furthermore, there is a constant C such that

H
(
x∗(t), u∗(t), p(t)

)
= C, for all t ∈ [0, T ].



VARIATIONS: FIXED TERMINAL STATE

• Suppose that in addition to the initial state x(0),
the final state x(T ) is given.

• Then the informal derivation of the adjoint equa-
tion still holds, but the terminal condition J∗(T, x) ≡
h(x) of the HJB equation is not true anymore.

• In effect,

J∗(T, x) =
{

0 if x = x(T )
∞ otherwise.

So J∗(T, x) cannot be differentiated with respect
to x, and the terminal boundary condition p(T ) =
∇h

(
x∗(T )

)
for the adjoint equation does not hold.

• As compensation, we have the extra condition

x(T ) : given,

thus maintaining the balance between boundary
conditions and unknowns.

• Generalization: Some components of the ter-
minal state are fixed.



EXAMPLE WITH FIXED TERMINAL STATE

• Consider finding the curve of minimum length
connecting two points (0, α) and (T, β). We have

ẋ(t) = u(t), x(0) = α, x(T ) = β,

and the cost is
∫ T

0

√
1 +

(
u(t)

)2
dt.

T t0

|

}x*(t)

• The adjoint equation is ṗ(t) = 0, implying that

p(t) = constant, for all t ∈ [0, T ].

• Minimizing the Hamiltonian
√

1 + u2 + p(t)u:

u∗(t) = constant, for all t ∈ [0, T ].

So optimal
{
x∗(t) | t ∈ [0, T ]

}
is a straight line.



VARIATIONS: FREE TERMINAL TIME

• Initial state and/or the terminal state are given,
but the terminal time T is subject to optimization.

• Let
{(

x∗(t), u∗(t)
) | t ∈ [0, T ]

}
be an optimal

state-control trajectory pair and let T ∗ be the opti-
mal terminal time. Then x∗(t), u∗(t) would still be
optimal if T were fixed at T ∗, so

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
, for all t ∈ [0, T ∗]

where p(t) is given by the adjoint equation.

• In addition: H(x∗(t), u∗(t), p(t)) = 0 for all t
[instead of H(x∗(t), u∗(t), p(t)) ≡ constant].

• Justification: We have

∇tJ∗(t, x∗(t)
)∣∣

t=0
= 0

Along the optimal, the HJB equation is

∇tJ∗(t, x∗(t)
)

= −H
(
x∗(t), u∗(t), p(t)

)
, for all t

so H
(
x∗(0), u∗(0), p(0)

)
= 0.



MINIMUM-TIME EXAMPLE I

• Unit mass moves horizontally: ÿ(t) = u(t),
where y(t): position, u(t): force, u(t) ∈ [−1, 1].

• Given the initial position-velocity (y(0), ẏ(0)),
bring the object to (y(T ), ẏ(T )) = (0, 0) so that
the time of transfer is minimum. Thus, we want to

minimize T =
∫ T

0

1dt.

• Let the state variables be

x1(t) = y(t), x2(t) = ẏ(t),

so the system equation is

ẋ1(t) = x2(t), ẋ2(t) = u(t).

• Initial state
(
x1(0), x2(0)

)
: given and

x1(T ) = 0, x2(T ) = 0.



MINIMUM-TIME EXAMPLE II

• If
{
u∗(t) | t ∈ [0, T ]

}
is optimal, u∗(t) must min-

imize the Hamiltonian for each t, i.e.,

u∗(t) = arg min
−1≤u≤1

[
1 + p1(t)x∗

2(t) + p2(t)u
]
.

Therefore

u∗(t) =
{

1 if p2(t) < 0,
−1 if p2(t) ≥ 0.

• The adjoint equation is

ṗ1(t) = 0, ṗ2(t) = −p1(t),

so
p1(t) = c1, p2(t) = c2 − c1t,

where c1 and c2 are constants.

• So
{
p2(t) | t ∈ [0, T ]

}
switches at most once in

going from negative to positive or reversely.



MINIMUM-TIME EXAMPLE III

T t0

p2(t)

T t0 T t0 T t0

(a)

(b)

T t0

u*(t)

1

p2(t) p2(t) p2(t)

T t0

-1

u*(t)

T t0

-1

1

u*(t)

T t0

1

-1

u*(t)

• For u(t) ≡ ζ, where ζ = ±1, the system evolves
according to

x1(t) = x1(0)+x2(0)t+
ζ

2
t2, x2(t) = x2(0)+ζt.

Eliminating the time t, we see that for all t

x1(t) − 1
2ζ

(
x2(t)

)2 = x1(0) − 1
2ζ

(
x2(0)

)2
.



MINIMUM-TIME EXAMPLE IV

• For intervals where u(t) ≡ 1, the system moves
along the curves

x1(t) − 1
2
(
x2(t)

)2 : constant.

• For intervals where u(t) ≡ −1, the system
moves along the curves

x1(t) +
1
2
(
x2(t)

)2 : constant.

x1

x2

u(t) [ 1

0

(a)

x1

x2

0

u(t) [ -1

(b)



MINIMUM-TIME EXAMPLE V

• To bring the system from the initial state x(0)
to the origin with at most one switch, we use the
following switching curve.

x1

x2

u*(t) [ 1

u*(t) [ -1

0

(x1(0),x2(0))

(a) If the initial state lies above the switching curve,
use u∗(t) ≡ −1 until the state hits the switch-
ing curve; then use u∗(t) ≡ 1.

(b) If the initial state lies below the switching curve,
use u∗(t) ≡ 1 until the state hits the switch-
ing curve; then use u∗(t) ≡ −1.

(c) If the initial state lies on the top (bottom)
part of the switching curve, use u∗(t) ≡ −1
[u∗(t) ≡ 1, respectively].



DISCRETE-TIME MINIMUM PRINCIPLE

• Minimize J(u) = gN (xN ) +
∑N−1

k=0 gk(xk, uk),
subject to uk ∈ Uk ⊂ 	m, with Uk: convex, and

xk+1 = fk(xk, uk), k = 0, . . . , N−1, x0 : given.

• Introduce Hamiltonian function

Hk(xk, uk, pk+1) = gk(xk, uk) + p′k+1fk(xk, uk)

• Suppose {(u∗
k, x∗

k+1) | k = 0, . . . , N − 1} are
optimal. Then for all k,

∇ukHk

(
x∗

k, u∗
k, pk+1

)′(uk−u∗
k) ≥ 0, for all uk ∈ Uk,

where p1, . . . , pN are obtained from

pk = ∇xkfk · pk+1 + ∇xkgk,

with the terminal condition pN = ∇gN (x∗
N ).

• If, in addition, the Hamiltonian Hk is a convex
function of uk for any fixed xk and pk+1, we have

u∗
k = arg min

uk∈Uk

Hk

(
x∗

k, uk, pk+1

)
, for all k.



DERIVATION

• We develop an expression for the gradient∇J(u).
We have, using the chain rule,

∇uk
J(u) = ∇uk

fk · ∇xk+1
fk+1 · · ·∇xN−1

fN−1 · ∇gN

+ ∇uk
fk · ∇xk+1

fk+1 · · ·∇xN−2
fN−2 · ∇xN−1

gN−1

· · ·
+ ∇uk

fk · ∇xk+1
gk+1

+ ∇uk
gk,

where all gradients are evaluated along u and the
corresponding state trajectory.

• Iintroduce the discrete-time adjoint equation

pk = ∇xkfk · pk+1 +∇xkgk, k = 1, . . . , N − 1,

with terminal condition pN = ∇gN .

• Verify that, for all k,

∇ukJ(u0, . . . , uN−1) = ∇ukHk(xk, uk, pk+1)


