6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

- Deterministic continuous-time optimal control
- Variants of the Pontryagin Minimum Principle
- Fixed terminal state
- Free terminal time
- Examples
- Discrete-Time Minimum Principle

REVIEW

- Continuous-time dynamic system

$$
\dot{x}(t)=f(x(t), u(t)), \quad 0 \leq t \leq T, \quad x(0): \text { given }
$$

- Cost function

$$
h(x(T))+\int_{0}^{T} g(x(t), u(t)) d t
$$

- $J^{*}(t, x)$: optimal cost-to-go from x at time t
- HJB equation/Verification theorem: For all (t, x)
$0=\min _{u \in U}\left[g(x, u)+\nabla_{t} J^{*}(t, x)+\nabla_{x} J^{*}(t, x)^{\prime} f(x, u)\right]$
with the boundary condition $J^{*}(T, x)=h(x)$.
- Adjoint equation/vector: To compute an optimal state-control trajectory $\left\{\left(u^{*}(t), x^{*}(t)\right)\right\}$ it is enough to know

$$
p(t)=\nabla_{x} J^{*}\left(t, x^{*}(t)\right), \quad t \in[0, T] .
$$

- Pontryagin theorem gives an equation for $p(t)$.

NBC. CONDITION: PONTRYAGIN MIN. PRINCIPLE

- Define the Hamiltonian function

$$
H(x, u, p)=g(x, u)+p^{\prime} f(x, u)
$$

- Minimum Principle: Let $\left\{u^{*}(t) \mid t \in[0, T]\right\}$ be an optimal control trajectory and let $\left\{x^{*}(t) \mid t \in\right.$ $[0, T]\}$ be the corresponding state trajectory. Let also $p(t)$ be the solution of the adjoint equation

$$
\dot{p}(t)=-\nabla_{x} H\left(x^{*}(t), u^{*}(t), p(t)\right),
$$

with the boundary condition

$$
p(T)=\nabla h\left(x^{*}(T)\right)
$$

Then, for all $t \in[0, T]$,

$$
u^{*}(t)=\arg \min _{u \in U} H\left(x^{*}(t), u, p(t)\right)
$$

Furthermore, there is a constant C such that

$$
H\left(x^{*}(t), u^{*}(t), p(t)\right)=C . \quad \text { for all } t \in[0, T]
$$

VARIATIONS: FIXED TERMINAL STATE

- Suppose that in addition to the initial state $x(0)$, the final state $x(T)$ is given.
- Then the informal derivation of the adjoint equation still holds, but the terminal condition $J^{*}(T, x) \equiv$ $h(x)$ of the HJB equation is not true anymore.
- In effect,

$$
J^{*}(T, x)= \begin{cases}0 & \text { if } x=x(T) \\ \infty & \text { otherwise }\end{cases}
$$

So $J^{*}(T, x)$ cannot be differentiated with respect to x, and the terminal boundary condition $p(T)=$ $\nabla h\left(x^{*}(T)\right)$ for the adjoint equation does not hold.

- As compensation, we have the extra condition

$$
x(T) \text { : given, }
$$

thus maintaining the balance between boundary conditions and unknowns.

- Generalization: Some components of the terminal state are fixed.

EXAMPLE WITH FIXED TERMINAL STATE

- Consider finding the curve of minimum length connecting two points $(0, \alpha)$ and (T, β). We have

$$
\dot{x}(t)=u(t), \quad x(0)=\alpha, \quad x(T)=\beta
$$

and the cost is $\int_{0}^{T} \sqrt{1+(u(t))^{2}} d t$.

- The adjoint equation is $\dot{p}(t)=0$, implying that

$$
p(t)=\text { constant }, \quad \text { for all } t \in[0, T] .
$$

- Minimizing the Hamiltonian $\sqrt{1+u^{2}}+p(t) u$:

$$
u^{*}(t)=\text { constant }, \quad \text { for all } t \in[0, T]
$$

So optimal $\left\{x^{*}(t) \mid t \in[0, T]\right\}$ is a straight line.

VARIATIONS: FREE TERMINAL TIME

- Initial state and/or the terminal state are given, but the terminal time T is subject to optimization.
- Let $\left\{\left(x^{*}(t), u^{*}(t)\right) \mid t \in[0, T]\right\}$ be an optimal state-control trajectory pair and let T^{*} be the optimal terminal time. Then $x^{*}(t), u^{*}(t)$ would still be optimal if T were fixed at T^{*}, so
$u^{*}(t)=\arg \min _{u \in U} H\left(x^{*}(t), u, p(t)\right), \quad$ for all $t \in\left[0, T^{*}\right]$
where $p(t)$ is given by the adjoint equation.
- In addition: $H\left(x^{*}(t), u^{*}(t), p(t)\right)=0$ for all t [instead of $H\left(x^{*}(t), u^{*}(t), p(t)\right) \equiv$ constant].
- Justification: We have

$$
\left.\nabla_{t} J^{*}\left(t, x^{*}(t)\right)\right|_{t=0}=0
$$

Along the optimal, the HJB equation is
$\nabla_{t} J^{*}\left(t, x^{*}(t)\right)=-H\left(x^{*}(t), u^{*}(t), p(t)\right), \quad$ for all t
so $H\left(x^{*}(0), u^{*}(0), p(0)\right)=0$.

MINIMUM-TIME EXAMPLE I

- Unit mass moves horizontally: $\ddot{y}(t)=u(t)$, where $y(t)$: position, $u(t)$: force, $u(t) \in[-1,1]$.
- Given the initial position-velocity $(y(0), \dot{y}(0))$, bring the object to $(y(T), \dot{y}(T))=(0,0)$ so that the time of transfer is minimum. Thus, we want to

$$
\operatorname{minimize} T=\int_{0}^{T} 1 d t
$$

- Let the state variables be

$$
x_{1}(t)=y(t), \quad x_{2}(t)=\dot{y}(t)
$$

so the system equation is

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=u(t)
$$

- Initial state $\left(x_{1}(0), x_{2}(0)\right)$: given and

$$
x_{1}(T)=0, \quad x_{2}(T)=0
$$

MINIMUM-TIME EXAMPLE II

- If $\left\{u^{*}(t) \mid t \in[0, T]\right\}$ is optimal, $u^{*}(t)$ must minimize the Hamiltonian for each t, i.e.,

$$
u^{*}(t)=\arg \min _{-1 \leq u \leq 1}\left[1+p_{1}(t) x_{2}^{*}(t)+p_{2}(t) u\right] .
$$

Therefore

$$
u^{*}(t)= \begin{cases}1 & \text { if } p_{2}(t)<0 \\ -1 & \text { if } p_{2}(t) \geq 0\end{cases}
$$

- The adjoint equation is

$$
\dot{p}_{1}(t)=0, \quad \dot{p}_{2}(t)=-p_{1}(t)
$$

so

$$
p_{1}(t)=c_{1}, \quad p_{2}(t)=c_{2}-c_{1} t
$$

where c_{1} and c_{2} are constants.

- So $\left\{p_{2}(t) \mid t \in[0, T]\right\}$ switches at most once in going from negative to positive or reversely.

MINIMUM-TIME EXAMPLE III

(b)

- For $u(t) \equiv \zeta$, where $\zeta= \pm 1$, the system evolves according to
$x_{1}(t)=x_{1}(0)+x_{2}(0) t+\frac{\zeta}{2} t^{2}, \quad x_{2}(t)=x_{2}(0)+\zeta t$.
Eliminating the time t, we see that for all t

$$
x_{1}(t)-\frac{1}{2 \zeta}\left(x_{2}(t)\right)^{2}=x_{1}(0)-\frac{1}{2 \zeta}\left(x_{2}(0)\right)^{2}
$$

MINIMUM-TIME EXAMPLE IV

- For intervals where $u(t) \equiv 1$, the system moves along the curves

$$
x_{1}(t)-\frac{1}{2}\left(x_{2}(t)\right)^{2}: \text { constant }
$$

- For intervals where $u(t) \equiv-1$, the system moves along the curves

$$
x_{1}(t)+\frac{1}{2}\left(x_{2}(t)\right)^{2}: \text { constant }
$$

(a)

(b)

MINIMUM-TIME EXAMPLE V

- To bring the system from the initial state $x(0)$ to the origin with at most one switch, we use the following switching curve.

(a) If the initial state lies above the switching curve, use $u^{*}(t) \equiv-1$ until the state hits the switching curve; then use $u^{*}(t) \equiv 1$.
(b) If the initial state lies below the switching curve, use $u^{*}(t) \equiv 1$ until the state hits the switching curve; then use $u^{*}(t) \equiv-1$.
(c) If the initial state lies on the top (bottom) part of the switching curve, use $u^{*}(t) \equiv-1$ [$u^{*}(t) \equiv 1$, respectively].

DISCRETE-TIME MINIMUM PRINCIPLE

- Minimize $J(u)=g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}\right)$, subject to $u_{k} \in U_{k} \subset \Re^{m}$, with U_{k} : convex, and
$x_{k+1}=f_{k}\left(x_{k}, u_{k}\right), \quad k=0, \ldots, N-1, \quad x_{0}:$ given.
- Introduce Hamiltonian function

$$
H_{k}\left(x_{k}, u_{k}, p_{k+1}\right)=g_{k}\left(x_{k}, u_{k}\right)+p_{k+1}^{\prime} f_{k}\left(x_{k}, u_{k}\right)
$$

- Suppose $\left\{\left(u_{k}^{*}, x_{k+1}^{*}\right) \mid k=0, \ldots, N-1\right\}$ are optimal. Then for all k,
$\nabla_{u_{k}} H_{k}\left(x_{k}^{*}, u_{k}^{*}, p_{k+1}\right)^{\prime}\left(u_{k}-u_{k}^{*}\right) \geq 0, \quad$ for all $u_{k} \in U_{k}$,
where p_{1}, \ldots, p_{N} are obtained from

$$
p_{k}=\nabla_{x_{k}} f_{k} \cdot p_{k+1}+\nabla_{x_{k}} g_{k},
$$

with the terminal condition $p_{N}=\nabla g_{N}\left(x_{N}^{*}\right)$.

- If, in addition, the Hamiltonian H_{k} is a convex function of u_{k} for any fixed x_{k} and p_{k+1}, we have

$$
u_{k}^{*}=\arg \min _{u_{k} \in U_{k}} H_{k}\left(x_{k}^{*}, u_{k}, p_{k+1}\right), \quad \text { for all } k
$$

DERIVATION

- We develop an expression for the gradient $\nabla J(u)$. We have, using the chain rule,

$$
\begin{aligned}
& \nabla_{u_{k}} J(u)=\nabla_{u_{k}} f_{k} \cdot \nabla_{x_{k+1}} f_{k+1} \cdots \nabla_{x_{N-1}} f_{N-1} \cdot \nabla_{N} \\
& \quad+\nabla_{u_{k}} f_{k} \cdot \nabla_{x_{k+1}} f_{k+1} \cdots \nabla_{x_{N-2}} f_{N-2} \cdot \nabla_{x_{N-1}} g_{N-1} \\
& \quad \cdots \\
& \quad+\nabla_{u_{k}} f_{k} \cdot \nabla_{x_{k+1}} g_{k+1} \\
& \quad+\nabla_{u_{k}} g_{k}
\end{aligned}
$$

where all gradients are evaluated along u and the corresponding state trajectory.

- lintroduce the discrete-time adjoint equation

$$
p_{k}=\nabla_{x_{k}} f_{k} \cdot p_{k+1}+\nabla_{x_{k}} g_{k}, \quad k=1, \ldots, N-1
$$

with terminal condition $p_{N}=\nabla g_{N}$.

- Verify that, for all k,

$$
\nabla_{u_{k}} J\left(u_{0}, \ldots, u_{N-1}\right)=\nabla_{u_{k}} H_{k}\left(x_{k}, u_{k}, p_{k+1}\right)
$$

