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LECTURE OUTLINE

• Suboptimal control

• Certainty equivalent control

• Implementations and approximations

• Issues in adaptive control



PRACTICAL DIFFICULTIES OF DP

• The curse of modeling

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

− Intractability of imperfect state information
problems

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning



CERTAINTY EQUIVALENT CONTROL (CEC)

• Replace the stochastic problem with a deter-
ministic problem

• At each time k, the uncertain quantities are fixed
at some “typical” values

• Implementation for an imperfect info problem.
At each time k:

(1) Compute a state estimate xk(Ik) given the
current information vector Ik.

(2) Fix the wi, i ≥ k, at some wi(xi, ui). Solve
the deterministic problem:

minimize gN (xN )+
N−1∑
i=k

gi

(
xi, ui, wi(xi, ui)

)

subject to xk = xk(Ik) and for i ≥ k,

ui ∈ Ui, xi+1 = fi

(
xi, ui, wi(xi, ui)

)
.

(3) Use as control the first element in the optimal
control sequence found.



ALTERNATIVE IMPLEMENTATION

• Let
{
µd

0(x0), . . . , µd
N−1(xN−1)

}
be an optimal

controller obtained from the DP algorithm for the
deterministic problem

minimize gN (xN ) +

N−1∑
k=0

gk

(
xk, µk(xk), wk(xk, uk)

)

subject to xk+1 = fk

(
xk, µk(xk), wk(xk, uk)

)
, µk(xk) ∈ Uk

The CEC applies at time k the control input

µ̃k(Ik) = µd
k

(
xk(Ik)

)

xk
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System Measurement

µ k
d

u k =µk
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CEC WITH HEURISTICS

• Solve the “deterministic equivalent” problem us-
ing a heuristic/suboptimal policy

• Improved version of this idea: At time k minimize
the stage k cost and plus the heuristic cost of the
remaining stages, i.e., apply at time k a control ũk

that minimizes over uk ∈ Uk(xk)

gk

(
xk, uk, wk(xk, uk)

)
+Hk+1

(
fk

(
xk, uk, wk(xk, uk)

))

where Hk+1 is the cost-to-go function correspond-
ing to the heuristic.

• This an example of an important suboptimal
control idea:

Minimize at each stage k the sum of approxima-
tions to the current stage cost and the optimal
cost-to-go.

• This is a central idea in several other suboptimal
control schemes, such as limited lookahead, and
rollout algorithms.



PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

• Important special case: Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimate xk(Ik) of xk as if it were
exact.

• Multiaccess Communication Example: Con-
sider controlling the slotted Aloha system (dis-
cussed in Ch. 5) by optimally choosing the proba-
bility of transmission of wating packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

• Natural partially stochastic CEC:

µ̃k(Ik) = min
[
1,

1
xk(Ik)

]
,

where xk(Ik) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is Ik).



SYSTEMS WITH UNKNOWN PARAMETERS

• Let the system be of the form

xk+1 = fk(xk, θ, uk, wk),

where θ is a vector of unknown parameters with a
given a priori probability distribution.

• To formulate this into the standard framework,
introduce a state variable yk = θ and the system

(
xk+1

yk+1

)
=

(
fk(xk, yk, uk, wk)

yk

)
,

and view x̃k = (xk, yk) as the new state.

• Since yk = θ is unobservable, we have a prob-
lem of imperfect state information even if the con-
troller knows the state xk exactly.

• Consider a partially stochastic CEC. If for a fixed
parameter vector θ, we can compute the corre-
sponding optimal policy

{
µ∗

0(I0, θ), . . . , µ∗
N−1(IN−1, θ)

}
a partially stochastic CEC applies µ∗

k(Ik, θ̂k), where
θ̂k is some estimate of θ.



THE PROBLEM OF IDENTIFIABILITY

• Suppose we consider two phases:

− A parameter identification phase (compute
an estimate θ̂ of θ)

− A control phase (apply control that would be
optimal if θ̂ were true).

• A fundamental difficulty: the control process
may make some of the unknown parameters in-
visible to the identification process.

• Example: Consider the scalar system

xk+1 = axk + buk + wk, k = 0, 1, . . . , N − 1,

with the cost E
{∑N

k=1(xk)2
}

. If a and b are known,

the optimal control law is µ∗
k(xk) = −(a/b)xk.

• If a and b are not known and we try to esti-
mate them while applying some nominal control
law µ̃k(xk) = γxk, the closed-loop system is

xk+1 = (a + bγ)xk + wk,

so identification can at best find (a + bγ) but not
the values of both a and b.



CEC AND IDENTIFIABILITY I

• Suppose we have P{xk+1 |xk, uk, θ} and we
use a control law µ∗ that is optimal for known θ:

µ̂k(Ik) = µ∗(xk, θ̂k), with θ̂k: estimate of θ

There are three systems of interest:
(a) The system (perhaps falsely) believed by the

controller to be true, which evolves proba-
bilistically according to

P
{
xk+1 |xk, µ∗(xk, θ̂k), θ̂k

}
.

(b) The true closed-loop system, which evolves
probabilistically according to

P
{
xk+1 |xk, µ∗(xk, θ̂k), θ

}
.

(c) The optimal closed-loop system that corre-
sponds to the true value of the parameter,
which evolves probabilistically according to

P
{
xk+1 |xk, µ∗(xk, θ), θ

}
.



CEC AND IDENTIFIABILITY II

System Believed to beTrue

P{xk + 1 | xk,µ*(xk, k), k }

Optimal Closed-Loop System

P{xk + 1 | xk,µ*(xk,£),£ }

True Closed-Loop System

P{xk + 1 | xk,µ*(xk, k),£ }

£
^
£
^

£
^

• There is a built-in mechanism for the parameter
estimates to converge to a wrong value

• Assume that for some θ̂ �= θ and all xk+1, xk,

P
{
xk+1 |xk, µ∗(xk, θ̂), θ̂

}
= P

{
xk+1 |xk, µ∗(xk, θ̂), θ

}

i.e., there is a false value of parameter for which
the system under closed-loop control looks ex-
actly as if the false value were true.

• Then, if the controller estimates at some time
the parameter to be θ̂, subsequent data will tend
to reinforce this erroneous estimate.


