- Dynamic Programming middler Solutions Falls Fa November pm<u>s avat bertsekasse bertsekand</u>

Problem

are the same is the same as the same as the same asset selling problem in parts showing the same that the same state evolution as the case of correlation prices on p \mathbb{R}^n . See the substituting \mathbb{R}^n algorithm is then

$$
J_k(x_k) = \begin{cases} \max\{\underbrace{(1+r)^{N-k}x_k}_{\text{sell}}, \underbrace{E_{w_k}[J_{k+1}(\lambda x_k + w_k)]}_{\text{do not sell}}\} & x_k \neq T \\ 0 & x_k = T \end{cases}
$$

$$
J_N(x_N) = \begin{cases} x_N & x_N \neq T \\ 0 & x_N = T \end{cases}
$$

 $\mathbf{0}$ turns out for each stage k a threshold for $\mathbf{0}$ is optimal to sell and to se below which it is optimal to not sell. These thresholds are decreasing as k increases.

Let $V_k(x_k) = \frac{k}{(1+r)^{N-k}}$. The DP algorithm then becomes:

$$
V_k(x_k) = \begin{cases} \max\{\underbrace{x_k}_{\text{sell}}, \underbrace{(1+r)^{-1}E_{w_k}[V_{k+1}(\lambda x_k + w_k)]}_{\text{do not sell}}\} & x_k \neq T \\ 0 & x_k = T \end{cases}
$$

$$
V_N(x_N) = \begin{cases} x_N & x_N \neq T \\ 0 & x_N = T \end{cases}
$$

The optimal stopping set for stage $N - 1$ is straightforward to find.

$$
V_{N-1}(x) = \max\{x, (1+r)^{-1}E_{w_{N-1}}[\lambda x + w_{N-1}]\}
$$

\n
$$
T_{N-1} = \{x|x \ge \frac{\lambda x + \bar{w}}{1+r}\}
$$

\n
$$
= \{x|x \ge \alpha_{N-1}\}
$$

where $\alpha_{N-1} = \frac{1}{1+r-\lambda}$ and $w = E[w_k]$ for all k. It can be shown by induction, using $V_{N-1}(x)$ as a base case that V is the following piecewise linear convex function α function for α $N = 0, 1, \ldots, N = 1.$

$$
V_k(x) = \max\{\underbrace{x}_{\text{sell}} \underbrace{f_k(x)}_{\text{dof not sell}}\}
$$

where $f_k(x) = \max\{\frac{\lambda}{1+r}x + \frac{\bar{w}}{1+r}, (\frac{\lambda}{1+r})^2x + \frac{(\lambda+1)\bar{w}}{(1+r)^2},\$

$$
\dots, (\frac{\lambda}{1+r})^{N-k}x + \frac{(\lambda^{N-k-1} + \dots + \lambda+1)\bar{w}}{(1+r)^{N-k}}\}
$$

Because $(\frac{\lambda}{1+r})^k < 1$ for $k \geq 1$, all the linear functions of $f_k(x)$ have slope less than 1, meaning $V_k(x) = x$ as $x \to \infty$ and $V_k(x) = f_k(x)$ as $x \to -\infty$. Therefore, we have

$$
V_k(x) = \begin{cases} x & x > \alpha_k \\ f_k(x) & x < \alpha_k \end{cases}
$$

we know the satisfactor $\{h\}$, f is convexed to the such that $\{h\}$ is convex-such that f is convex-such that $\{h\}$ the optimal stopping set at stage k is $T_k = \{x | x \ge \alpha_k\}$, corresponding to the optimal policy:

$$
\begin{aligned}\n\text{sell} & \quad \text{if } x_k > \alpha_k \\
\text{do not sell} & \quad \text{if } x_k < \alpha_k\n\end{aligned}
$$

Using $V_{N-1}(x) = \max\{x, (1+r)^{-1}E_{w_{N-1}}[\lambda x + w_{N-1}]\} \ge x = V_N(x)$ for all x as a base case, it can be shown by induction that $V_k(x) \geq V_{k+1}(x)$ for all $x, k = 0, 1, \ldots, N-1$. Therefore, $\alpha_k \geq \alpha_{k+1}$ for $k = 0, 1, \ldots, N-1$.

c- The optimal policy remains the same Assume we can sell a fraction of the stock on one a and the fraction $(1 - p)$ on a uniefent day. Then it is optimal to sell when the value of the stock exceeds μ_k and $\mu = \mu_k$ respectively. Dut this will happen simultaneously, so if It is optimal to sell the fraction ρ it is also optimal to sell the fraction $(T - \rho)$.

Problem

a- Because the problem is deterministic we may model it as a longest path problem For $i \in \{1,2\}$, we have the following DP algorithm:

$$
J_k(i) = \max \{ \underbrace{r_{k+1}^i + J_{k+1}(i)}_{\text{stay}}, \underbrace{r_{k+1}^i - c + J_{k+1}(\overline{i})}_{\text{switch}} \} \text{ for } k = 0, 1, ..., N - 1
$$

$$
J_N(i) = 0
$$

An alternative DP algorithm is

$$
J_k(i) = r_k^i + \max\{\underbrace{J_{k+1}(i)}_{\text{stay}}, \underbrace{-c + J_{k+1}(\overline{i})}_{\text{switch}}\} \text{ for } k = 1, 2, \dots, N-1
$$

$$
J_N(i) = r_N^i
$$

(b) If $R_k^i \leq 0$, then it is optimal to stay because there is no reason to pay c to earn a smaller profit. If $R_k^i \geq 2c$, then it is optimal to switch because the increase in profit is greater than the cost of switching to the other location and of switching back

For the first DP algorithm, we first show $-c \leq J_k(i) - J_k(i) \leq c$.

$$
J_k(i) - J_k(\bar{i}) = \max\{r_{k+1}^i + J_{k+1}(i), r_{k+1}^i - c + J_{k+1}(\bar{i})\} - \max\{r_{k+1}^i + J_{k+1}(\bar{i}), r_{k+1}^i - c + J_{k+1}(i)\}
$$

\n
$$
= -c + \max\{r_{k+1}^i + c + J_{k+1}(i), r_{k+1}^i + J_{k+1}(\bar{i})\}
$$

\n
$$
- \max\{r_{k+1}^{\bar{i}} + J_{k+1}(\bar{i}), r_{k+1}^i - c + J_{k+1}(i)\}
$$

\n
$$
= -c + \max\{R_{k+1}^i + c + J_{k+1}(i) - J_{k+1}(\bar{i}), 0\} - \max\{R_{k+1}^i - c + J_{k+1}(i) - J_{k+1}(\bar{i}), 0\}
$$

--c

It is optimal to stay if $r_k^* + J_k(i) \ge r_k^* - c + J_k(i) \Leftrightarrow c + J_k(i) - J_k(i) \ge R_k^*$. From above we know $c + J_k(i) - J_k(i) \geq c - c = 0$. So if $R_k^i \leq 0$, then it is optimal to stay. Similarly, it is optimal to switch if $r_k^* + J_k(i) \le r_k^* - c + J_k(i) \Leftrightarrow c + J_k(i) - J_k(i) \le R_k^*$. From above we know $c + J_k(i) - J_k(i) \leq c + c = 2c$. So if $R_k^i \geq 2c$, then it is optimal to switch. For the second Dr algorithm, we compare the quantities $-c + J_k(i)$, the future cost-to-go if we switch and the future cost of the future cost of α if we stay the future cost α

$$
\begin{array}{rcl}\n(-c + J_k(\bar{i})) - J_k(i) & = & -c + r_k^{\bar{i}} + \max\{J_{k+1}(\bar{i}), -c + J_{k+1}(i)\} - r_k^i - \max\{J_{k+1}(i), -c + J_{k+1}(\bar{i})\} \\
& = & R_k^i + \underbrace{\max\{0, -c + J_{k+1}(i) - J_{k+1}(\bar{i})\} - \max\{0, c + J_{k+1}(i) - J_{k+1}(\bar{i})\}}_{\leq 0, \geq -2c}\n\end{array}
$$

If $R_k^i \leq 0$, then $(-c + J_k(i)) - J_k(i) \leq 0$ and it is optimal to stay. If $R_k^i \geq 2c$, then $(-c + J_k(i)) - J_k(i) \geq 0$ and it is optimal to switch.

- (c) we simply replace the revenues, r_k , with the expected revenues, $(1-p) r_k + p' \rho' r_k$, and we may still formulate the problem as a "longest" path problem.
- der problem is now genuing to channel and cannot be modeled as a longest pathology of \mathbb{R}^n problem. We augment the state with the current accurate forecast $w_k = [w_k \ w_k]$, where w_k is equal to ρ -with probability p -the probability it rains) and is equal to 1 otherwise.

$$
J_k(i, w_k) = \max\{r_{k+1}^i w_k^i + E[J_{k+1}(i, w_{k+1})], r_{k+1}^i w_k^i - c + E[J_{k+1}(\overline{i}, w_{k+1})]\} \text{ for } k = 0, 1, ..., N-1
$$

$$
J_N(i, w_N) = 0
$$

Problem

a- This problem allows two controls at each stage search or stop searching Once we decide to stop searching at a particular time, we cannot search at future times. Let k^* be the optimal stage at which to stop searching assuming the treasure has not yet been founded by \mathcal{L} priori probability is $p_0 < 1$. Let T be the event that the treasure is present at the site. Consider the evolution of p_k for $0 \leq k \leq k^*$, assuming the treasure is not found:

$$
p_k = P(T|k \text{ unsuccessful searches})
$$

$$
= \frac{p_0(1-\beta)^k}{p_0(1-\beta)^k + 1 - p_0}
$$

From the above equation we see that $p_k > p_{k+1}$ for $k = 0, 1, \ldots$ and $p_k \to 0$ as $k \to \infty$. The book tells us we know by induction that we stop searching if $p_k \leq \frac{C}{\beta V}$ where $\frac{C}{\beta V} > 0$. Therefore k^* is the smallest k such that $p_k \leq \frac{\omega}{\beta V}$. Since $J_k(p_k) = 0$ for $k^* \leq k \leq N$, $J_0(p_0) = 0$ is the same for all $N \geq k^*$.

b-

$$
J_0(p_0) = E[\text{reward from } k^* \text{ searches}]
$$

= $VP(\text{find treasure within } k^* \text{ searches}) - CE[\text{number of searches}]$
= $VP(T)P(\text{find treasure within } k^* \text{ searches}|T)$
 $-C(P(T)E[\text{number of searches}|T] + P(\bar{T})E[\text{number of searches}|\bar{T}])$
= $Vp_0(1 - (1 - \beta)^{k^*}) - C(p_0 \frac{1 - (1 - \beta)^{k^*}}{\beta} + (1 - p_0)k^*)$

(c) The probabilities p_k^r and p_k^r each evolve the same way as p_k from part (a). The possible controls at each stage are search 1 , search 2 , or do not search. If we do not search, the expected reward-to-go is 0. If we search site i, we incur a cost C, a reward V^i if we find the treasure, and a future reward-to-go $J_{k+1}(p_{k+1}, p_{k+1}).$ kk-

$$
\bar{J}_k(p_k^1, p_k^2) = \max\{0, \n-C + p_k^1 \beta^1 (V^1 + \bar{J}_{k+1}(0, p_k^2)) + (1 - p_k^1 \beta^1) \bar{J}_{k+1}(\frac{p_k^1 (1 - \beta^1)}{p_k^1 (1 - \beta^1) + 1 - p_k^1}, p_k^2), \n-C + p_k^2 \beta^2 (V^2 + \bar{J}_{k+1}(p_k^1, 0)) + (1 - p_k^2 \beta^2) \bar{J}_{k+1}(p_k^1, \frac{p_k^2 (1 - \beta^2)}{p_k^2 (1 - \beta^2) + 1 - p_k^2})\}
$$

(a) Let κ_1 be the optimal stage at which to stop searching site I (assuming treasure I has not yet been found), given p_0^- and assuming site 1 is the only site. Let κ_2^- be the optimal stage at which to stop searching site 2 (assuming treasure 2 has not yet been found), given $p_{\bar{0}}$ and assuming site 2 is the only site. For $i = 1, 2,$ we have from part (a) that κ_i is the smallest κ such that $p_k^i \leq \frac{C}{\beta^i V^i}$.

The optimal maximum number of searches (for both sites) is $\kappa_1 + \kappa_2$. We no longer search at stage k if $k > k_1^* + k_2^*$. So if $N > k_1^* + k_2^*$, we have $J_k(p_k^*, p_k^*) = 0$ for $k_1^* + k_2^* < k \le N$, meaning $J_0(p_0, p_0)$ is the same for all $N > \kappa_1 + \kappa_2$.

Because $N > k_1 + k_2$, we have enough total number of searches that the search requirements of one site do not force us to stop searching the other site before its optimal maximum number of searches has been reached. Therefore, the optimal policy is to search site 1 k_1^* times or until treasure 1 is found and search site $2 \kappa_2$ times or until treasure 2 is found. The order of the searches does not matter