Problem 1 (15 points)

(a) Let ua (uB) be the stationary control applied when in town A (B). The control u € {Stay, Change}.
We can obtain the optimal stationary control by solving Bellman’s equation for each of the four possible
policies. Let u = (pa, un).
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Asa — 0, J! = j’{‘] = [:A is clearly optimal. Thus, the optimal policy is for the salesmen to stay in
B B

the town he starts in. As a — 1, we have:
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Since ¢ > ra > rp, p2 is optimal. That is, the salesman should move to A and remain there.

(b) Forc=3,74=2,rg=1,and a = .9:
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Thus, the optimal policy is to move into A and remain there.
Problem 2 (50 points)

a) (i) First, we need to define a state space for the problem. The obvious choice for a state variable is
our location. However, this does not encapsulate all of the necessary information. We also need to
include the value of c if it is known. Thus, let the state space consist of the following 2m + 2 states:
{S,51,...,Sm, 1,...In, D}, where S is associated with being at the starting point with no information,
Si; and [; are associated with being at S and I, respectively, and knowing that ¢ = ¢;, and D is the

termination state.

At state S, there are two possible controls: go directly to D (direct) or go to an intermediate point
(indirect). If control direct is selected, we go to state D with probability 1, and the cost is g(S, direct, D) = a.
If control indirect is selected, we go to state I; with probability p;, and the cost is (S, indirect, I;) = b.

At state S;, for ¢ € {1,...,m}, we have the same controls as at state S. Again, if control direct is
selected, we go to state D with probability 1, and the cost is g(S;,direct, D) = a. If, on the other hand,
control indirect is selected, we go to state I; with probability 1, and the cost is ¢g(S, indirect, I;) = b.

At state I;, for i € {1,...,m}, there are also two possible controls: go back to the start (start) or go
to the destination (dest). If control start is selected, we go to state S; with probability 1, and the cost
is g(I;, start,S;) = b. If control dest is selected, we go to state D with probability 1, and the cost is
g(I;, dest, D) = ¢;.

We have thus formulated the problem as a stochastic shortest path problem. Bellman’s equation for this
problem is

m
J*(S) = minfa,b+ > piJ*(I;)]
i=1

J*(S;) = min[a, b+ J*(I;)]
J*(IZ) = min[ci, b+ J*(Sl)]

We assume that b > 0. Then, Assumptions 5.1 and 5.2 hold since all improper policies have infinite cost.
As a result, if u*(I;) = start, then p*(S;) = direct. If p*(I;) # start, then we never reach state S; and so it
doesn’t matter what the control is in this case. Thus, J*(S;) = a, and p*(S;) = direct. From this, it is easy

to derive the optimal costs and controls for the other states:

dest, ifc;<b+a

J*(I;) = min[c;, b + a] p(Li) = { start, otherwise

J*(S) = min[a, b + Zpi min(ci, b+ a)]

i=1
1+(S) = direct, ifa<b+ ) ", pimin(c;,b+ a)
indirect, otherwise.
For the numerical case given, we see that a < b+ .~ | p; min(c;, b+a) since a = 2 and b+ ;- | p; min(c¢;, b+
a) = 2.5. Hence u(S) = direct. We need not consider the other states since they will never be reached.

(ii) In this case, every time we are at the starting location, our available information is the same. We
thus no longer need the states S; from part (i). Our state space for this part is then S, I1,..., I, D.
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At state S, the possible controls are {direct,indirect}. If control direct is selected, we go to state D
with probability 1, and the cost is ¢g(S, direct, D) = a. If control indirect is selected, we go to state I; with
probability p;, and the cost is ¢g(S, indirect, I;) = b [same as in part (ii)].

At state I;, for i € {1,...,m}, the possible controls are {start,dest}. If control start is selected, we go
to state S with probability 1, and the cost is g(I;, start, S) = b. If control dest is selected, we go to state D
with probability 1, and the cost is g(I;, dest, D) = ¢;.

Bellman’s equation for this stochastic shortest path problem is
J*(S) = minfa,b+ > piJ*(1;)]
i=1
J*(I;) = min[c;, b+ J*(5)].

The optimal policy can be described by

. . m . * .
+(S) = filre?ct, ifa < b.+ Yooy pid*(I;)
indirect, otherwise,

(1) = dest, if ¢; < b+ J*(S)
FED = start,  otherwise.

We will solve the problem for the numerical case by “guessing” an optimal policy and then showing that
the resulting cost .J,, satisfies J = T'J. Since J* is the unique solution to this equation, our policy is optimal.

So let’s guess the initial policy to be
w*(S) = direct w*(I) = dest w*(I2) = start.
Then
J(S):(I:2 J(Il):clzo J(Iz):b+J*(S):1+2:

From Bellman’s equation, we have
J(S) =min(2,1+0.5(3+0)) =2

J(I1) =min(0,14+2)) =0
J(I) = min(5,1 4 2)) = 3.
Thus, our policy is optimal.
b) The state space for this problem is the same as for part a(ii): {S,I1,...,Im,D}.

At state S, the possible controls are {direct,indirect}. If control direct is selected, we go to state D
with probability 1, and the cost is g(S, direct, D) = a. If control indirect is selected, we go to state I; with
probability p;, and the cost is g(S,indirect, I;) = b [same as in part a,(i) and (ii)].

At state I;, for i € {1,...,m}, we have an additional option of waiting. So the possible controls
are {start,dest,wait}. If control start is selected, we go to state S with probability 1, and the cost
is g(I;, start,S) = b. If control dest is selected, we go to state D with probability 1, and the cost is
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g(I;i,dest, D) = ¢;. If control wait is selected, we go to state I; with probability p;, and the cost is
g(I;,wait, I;) = d.

Bellman’s equation is

J*(S) = minfa, b+ ZpiJ*(Ii)]

i=1
J#(Ii) = minfes, b+ J*(S),d+ > pjJ* (I;)]-
j=1
We can describe the optimal policy as follows:

“(S) = direct, ifa<b+ >, piJ*(I;)
s " ] indirect, otherwise.

If direct was selected, we do not need to consider the other states (other than D) since they will never be
reached. If indirect was selected, then defining & = min(2b, d), we see that

dest, ifc; <k+ >, J*(I))
p*(I;) = < start, if ¢; >k + Z:ll J*(I;) and 2b < d
wait, ifc¢; >k+ Z:ll J*(I;) and 2b > d.

Problem 3 (35 points)

Let the state be the current set of wins.

(@
J+(0) = minfe: +piJ*(0) + (L= p) J*(0)}
T(0) = min{e; + p;J*(i.d) + (1= ;) 7*(0)}

J*(i,7) = cx —pem + (1 — py)JJ*(0) k#i,j

(b) Let J represent the cost-to-go for the stationary policy ijk. Then J satisfies the following set of equations:

J(0) = ¢i +piJ (i) + (1 — pi) J(0)
J(i) = ¢j +p;jJ(i,7) + (1 — p;)J(0)
J(i,j) = cr — prm + (1 — pi) J(0)

Solving the above equations for J(0), the expected cost of policy ijk, we have:

J(0) = Ci + piCj + piDjCk — PiPjPEk™M
DiP;jPk




A+ h*(0) = miin{ci + pih* (i) + (1 — pi)h*(0) }
A+ he(0) = min{e; +pgh*(i,) + (1= p)h*(0)}

A+ h*(i,7) = ¢, + pr.(—m + h*(0)) + (1 — pp)h*(0)  k#4,j

(d) Let A represent the average cost-per-stage for the stationary policy ijk. Then \ satisfies the following set
of equations:

A+ h(0) = ¢; + pih(i) + (1 — pi)h(0)
A+ h(i) = ¢cj + pih(i,j) + (1 — p;)h(0)

A+ h(i,j) = cx + pe(—m + h(0)) + (1 — pp)h(0)  k#1,j



