6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

- Principle of optimality
- DP example: Deterministic problem
- DP example: Stochastic problem
- The general algorithm
- State augmentation

BASIC PROBLEM

- System $x_{k+1} = f_k(x_k, u_k, w_k)$, k = 0, ..., N-1
- Control contraints $u_k \in U(x_k)$
- Probability distribution $P_k(\cdot | x_k, u_k)$ of w_k
- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k maps states x_k into controls $u_k = \mu_k(x_k)$ and is such that $\mu_k(x_k) \in U_k(x_k)$ for all x_k
- Expected cost of π starting at x_0 is

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

Optimal cost function

$$J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$$

• Optimal policy π^* is one that satisfies

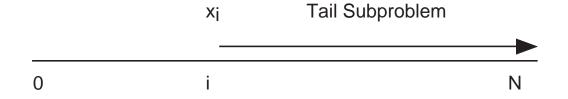
$$J_{\pi^*}(x_0) = J^*(x_0)$$

PRINCIPLE OF OPTIMALITY

- Let $\pi^* = \{\mu_0^*, \mu_1^*, \dots, \mu_{N-1}^*\}$ be an optimal policy
- Consider the "tail subproblem" whereby we are at x_i at time i and wish to minimize the "cost-to-go" from time i to time N

$$E\left\{g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

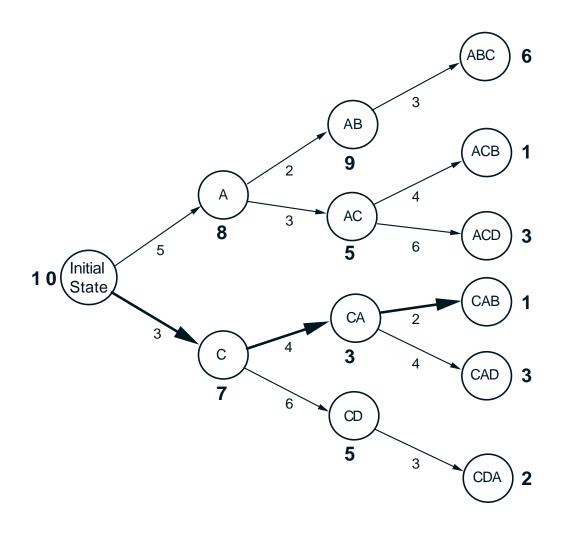
and the "tail policy" $\{\mu_i^*, \mu_{i+1}^*, \dots, \mu_{N-1}^*\}$



- Principle of optimality: The tail policy is optimal for the tail subproblem
- DP first solves all tail subroblems of final stage
- At the generic step, it solves all tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length

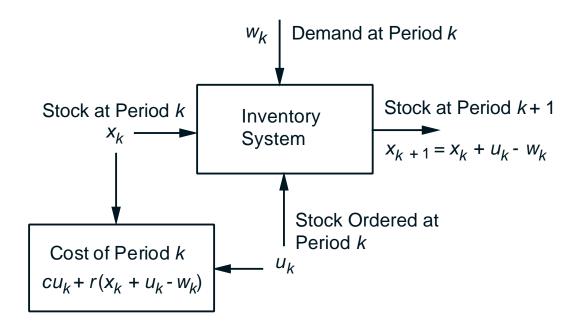
DETERMINISTIC SCHEDULING EXAMPLE

Find optimal sequence of operations A, B, C, D
 (A must precede B and C must precede D)



- Start from the last tail subproblem and go backwards
- At each state-time pair, we record the optimal cost-to-go and the optimal decision

STOCHASTIC INVENTORY EXAMPLE



Tail Subproblems of Length 1:

$$J_{N-1}(x_{N-1}) = \min_{u_{N-1} \ge 0} E_{w_{N-1}} \{ cu_{N-1} + r(x_{N-1} + u_{N-1} - w_{N-1}) \}$$

• Tail Subproblems of Length N-k:

$$J_k(x_k) = \min_{u_k \ge 0} E_{w_k} \left\{ cu_k + r(x_k + u_k - w_k) + J_{k+1}(x_k + u_k - w_k) \right\}$$

DP ALGORITHM

Start with

$$J_N(x_N) = g_N(x_N),$$

and go backwards using

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} E_{w_k} \{ g_k(x_k, u_k, w_k) + J_{k+1} (f_k(x_k, u_k, w_k)) \}, \quad k = 0, 1, \dots, N-1.$$

• Then $J_0(x_0)$, generated at the last step, is equal to the optimal cost $J^*(x_0)$. Also, the policy

$$\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$$

where $\mu_k^*(x_k)$ minimizes in the right side above for each x_k and k, is optimal.

- Justification: Proof by induction that $J_k(x_k)$ is equal to $J_k^*(x_k)$, defined as the optimal cost of the tail subproblem that starts at time k at state x_k .
- Note that ALL the tail subproblems are solved in addition to the original problem, and the intensive computational requirements.

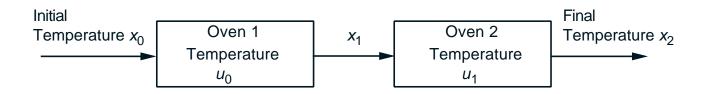
PROOF OF THE INDUCTION STEP

- Let $\pi_k = \left\{ \mu_k, \mu_{k+1}, \dots, \mu_{N-1} \right\}$ denote a tail policy from time k onward
- Assume that $J_{k+1}(x_{k+1}) = J_{k+1}^*(x_{k+1})$. Then

$$\begin{split} J_k^*(x_k) &= \min_{(\mu_k, \pi_{k+1})} \sum_{w_k, \dots, w_{N-1}} \left\{ g_k \Big(x_k, \mu_k(x_k), w_k \Big) \right. \\ &+ g_N(x_N) + \sum_{i=k+1}^{N-1} g_i \Big(x_i, \mu_i(x_i), w_i \Big) \right\} \\ &= \min_{\mu_k} \sum_{w_k} \left\{ g_k \Big(x_k, \mu_k(x_k), w_k \Big) \right. \\ &+ \min_{\pi_{k+1}} \left[\sum_{w_{k+1}, \dots, w_{N-1}} \left\{ g_N(x_N) + \sum_{i=k+1}^{N-1} g_i \Big(x_i, \mu_i(x_i), w_i \Big) \right\} \right] \\ &= \min_{\mu_k} \sum_{w_k} \left\{ g_k \Big(x_k, \mu_k(x_k), w_k \Big) + J_{k+1}^* \Big(f_k \Big(x_k, \mu_k(x_k), w_k \Big) \Big) \right\} \\ &= \min_{\mu_k} \sum_{w_k} \left\{ g_k \Big(x_k, \mu_k(x_k), w_k \Big) + J_{k+1} \Big(f_k \Big(x_k, \mu_k(x_k), w_k \Big) \Big) \right\} \\ &= \min_{u_k \in U_k(x_k)} \sum_{w_k} \left\{ g_k \Big(x_k, \mu_k(x_k), w_k \Big) + J_{k+1} \Big(f_k \Big(x_k, \mu_k(x_k), w_k \Big) \Big) \right\} \end{split}$$

 $=J_k(x_k)$

LINEAR-QUADRATIC ANALYTICAL EXAMPLE



System

$$x_{k+1} = (1-a)x_k + au_k, \qquad k = 0, 1,$$

where a is given scalar from the interval (0,1).

Cost

$$r(x_2-T)^2+u_0^2+u_1^2$$

where r is given positive scalar.

• DP Algorithm:

$$J_2(x_2) = r(x_2 - T)^2$$

$$J_1(x_1) = \min_{u_1} \left[u_1^2 + r((1 - a)x_1 + au_1 - T)^2 \right]$$

$$J_0(x_0) = \min_{u_0} \left[u_0^2 + J_1((1 - a)x_0 + au_0) \right]$$

STATE AUGMENTATION

- When assumptions of the basic problem are violated (e.g., disturbances are correlated, cost is nonadditive, etc) reformulate/augment the state.
- Example: Time lags

$$x_{k+1} = f_k(x_k, x_{k-1}, u_k, w_k)$$

• Introduce additional state variable $y_k = x_{k-1}$. New system takes the form

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} f_k(x_k, y_k, u_k, w_k) \\ x_k \end{pmatrix}$$

View $\tilde{x}_k = (x_k, y_k)$ as the new state.

• DP algorithm for the reformulated problem:

$$J_k(x_k, x_{k-1}) = \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1} \left(f_k(x_k, x_{k-1}, u_k, w_k), x_k \right) \right\}$$