6.231 DYNAMIC PROGRAMMING
LECTURE 2
LECTURE OUTLINE

Principle of optimality

DP example: Deterministic problem
DP example: Stochastic problem
The general algorithm

State augmentation



BASIC PROBLEM

° Systema:kH :fk(xk,uk,wk),k:O,...,N—l
e Control contraints uy € U (xx)
e Probability distribution Py (- | g, ug) oOf wy

e Policies m = {uo,...,un—1}, where u; maps
states zj into controls uy = ug(zg) and is such
that px(xr) € Ug(xy) for all xg

e EXpected cost of 7 starting at xg IS

Jrx(w0) = E {QN(fI?N) + z_: gk(wkaﬂk(fck)awk)}

k=0

e Optimal cost function

J* (xo) — min J, (xo)

e Optimal policy 7* Is one that satisfies

Jr=(x0) = J*(x0)



PRINCIPLE OF OPTIMALITY

o Letm = {ui,ui,...,uy_1} be an optimal pol-
icy

e Consider the “tail subproblem” whereby we are
at x; attime ¢ and wish to minimize the “cost-to-go”
from time ¢ to time N

1 {QN@N) + Z_ 9k (wk,uk(l’k),wk)}
k=1

and the “tail policy” {u}, el 1, .-  pWy_1}

Xj Tail Subproblem

e Principle of optimality: The tail policy is optimal
for the tail subproblem

e DP first solves all tail subroblems of final stage

e Atthe generic step, it solves all tail subproblems
of a given time length, using the solution of the talil
subproblems of shorter time length



DETERMINISTIC SCHEDULING EXAMPLE

e Find optimal sequence of operations A, B, C, D
(A must precede B and C must precede D)

Initial
State

10

e Start from the last tail subproblem and go back-
wards

e At each state-time pair, we record the optimal
cost-to-go and the optimal decision



STOCHASTIC INVENTORY EXAMPLE

Wi l Demand at Period k

Stock at Period k Inventory Stock at Period k+ 1
X, ———p] —»
K System X +1= X + Ug - Wy

l T Stock Ordered at

Cost of Period k u Period k
lg—— Yk
CUy + I (X + U - W)

e Tail Subproblems of Length 1:

Jn_1(xN-1) = uzimféowf {cun—1
-1 —1

+r(xN_1+UunN—1 — wN—l)}

e Tail Subproblems of Length NV — k:

Ji(rr) = min F {cuk + r(xg + up — wi)

UL 20 Wi

+ Jpt1 (2 + up — wy) }



DP ALGORITHM

e Start with

In(zN) = gn(TN),

and go backwards using

J = '
k(Tk) ng{l]ifgxk)ﬂ{gk(wk, Uk, W)

+ Jk+1(fk(33k,Uk,wk))}, k= 07 17 JE 7N — 1.

e Then Jy(x0), generated at the last step, is equal
to the optimal cost J*(x¢). Also, the policy

= {u, .. N1}

where i} (x) minimizes in the right side above for
each z; and k, is optimal.

e Justification: Proof by induction that Jy(xy) is
equal to J; (z1), defined as the optimal cost of the
tail subproblem that starts at time k at state z;.

e Note that ALL the tail subproblems are solved in
addition to the original problem, and the intensive
computational requirements.



PROOF OF THE INDUCTION STEP

o lLet mp = {,uk,,ukJrl, e ,,LLN_l} denote a tall
policy from time k& onward

e Assume that Jii1(zk+1) = J; 1 (xk41). Then

Ji (k) = min E {gk (fﬂk,ﬂk(ka),wk)

1=k+1

N—1
+gn(zN) + Z 9gi (xiaﬂi(wi)awi) }

=min F {gk (@ ik (1), wie )

Kk wy
N—1
+ min ) gn(zN) + Z gi(xi’”i(xi)’w"')
T+l | Wkl WN -1 i=k+1

=min E {ge (zr, e (@r), wi) + T5py (Fr (20 mr (@), we ) ) }

K wg

— min F {gk (xk,uk(xk),wk) + Jr41 (fk (xmﬂk(fﬁk)vwk))}

Kk wg

—  min E {gk(ﬂ?k,%,wk) + Jr+1 (fk(xk,uk’wk))}
up €Uk (z) wy

= Ji(zr)



LINEAR-QUADRATIC ANALYTICAL EXAMPLE
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Temperature Xg
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Temperature
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Temperature X,
—

e System

rr+1 = (1 — a)xk + aug,

k=01,

where a is given scalar from the interval (0, 1).

e Cost

r(ze —T)% + ud + uf

where r IS given positive scalar.
e DP Algorithm:

J1(x1) = min

JQ(CEQ) — 7“(332 — T)2

Uil

{u% +r((1 - a)z1 + auy — T)z}

Jo(xp) = min [u% + J1 ((1 —a)zo + auo)]

uo



STATE AUGMENTATION

e When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state.

e Example: Time lags

Lk4+1 =— fk(xkv Ll—1, UL, wk)

e Introduce additional state variable vy, = z5._1.
New system takes the form

Lk+1 _ fk(xkvykaukvwk)
Yk+1 T

View 7, = (g, yr) as the new state.

e DP algorithm for the reformulated problem:

Je(Tk, Tpg—1) = min E {gk(xk,uk,wk)
ur €U () wg

+ Jk—l—l (fk(xkaxk—laukawk)vmk)}



