6.231 DYNAMIC PROGRAMMING
LECTURE 23
LECTURE OUTLINE

e Simulation-based policy and value iteration meth-
ods

e)\-Least Squares Policy Evaluation method

e Temporal differences implementation

e Policy evaluation by approximate value iteration
e TD())

POLICY AND VALUE ITERATION BY SIMULATION

e There are many proposals, but we will focus on
methods for which there is solid theory:

(a) Policy evaluation methods, to be used in
exact or approximate policy iteration.

— Here the policy is fixed.
— As aspecial case we obtain the rollout method.

— The cost of the policy may be calculated
In several different forms: (1) For all states
(lookup table representation) or (2) Through
an approximation architecture (compact rep-
resentation) or (3) Through on-line simula-
tion as needed (rollout algorithm).

(b) Value iteration w/ function approximation.

— Abigrestrictionisto find a suitable Euclidean
norm for which 7' is a contraction.

— Such anorm can be found in the case where
there is only one policy (I' =T),).

— (@-Learning is a form of on-line simulation-
based value iteration method, but the only
available theory applies to the lookup table
representation case.

SIMULATION-BASED POLICY EVALUATION

e The policy is fixed and one or more long simu-
lation trajectories are generated.

e The weight vector r of an approximation ar-
chitecture J(i,r) is adjusted using some kind of
“least squares scheme” (off-line, or on-line as the
simulation trajectories are generated).

e Foron-line methods, a sequence {r;} of param-
eter vectors Is generated.

e There is solid theory only for linear approxi-
mation architectures (and under some technical
assumptions).

e Typical result: In the limit, as the number of
simulation-generated transitions goes to oo, the
sequence of generated parameter vectors con-
verges to alimit that solves a related least-squares
approximation problem.

e We will focus on so-called temporal difference
methods, A-least squares and TD()\), which may
be viewed as on-line simulation-based approxi-
mate value iteration methods for policy evaluation.

POLICY EVALUATION BY VALUE ITERATION |

e The remainder of this lecture is based on the pa-
per “Improved Temporal Difference Methods with
Function Approximation,” by Bertsekas, Borkar,
and Nedic at

http://www.mit.edu:8001//people/dimitrib/publ.html

e Let J be the cost function associated with a
stationary policy in the discounted context, so J
IS the unique solution of Bellman’s Eq., J(i) =
> o1 pii(9(i,5) + () = (TJ)(i). We assume
that the associated Markov chain has steady-state
probabilities p(z) which are all positive.

e If we use a linear approximation architecture
J(i,1) = gb(‘)’r the value iteration

Jiy1(d pr i, J) + adi(§)) = (TJ)()

IS approxmated as ®riy1 ~ T(Pry) in the sense

Ti41 = arg mme(z) (gb(z) r — pr (4,7) + ad(g) Tt))

71=1

where the w(z) are some positive weights.

POLICY EVALUATION BY VALUE ITERATION 1

e Note that, assuming ® has full rank, r;11 IS
uniquely obtained by projecting the value iterate
T(®r:) = P(g + a®ry) on the range space of the
matrix ¢, where the projection is with respect to
the norm || - | p given by ||z||p = v2'Dz,and D is
diagonal with the w(z) along the diagonal.

e The iteration converges if the mapping 7' is a
contraction with respect to the norm || - || p.

Key fact: This is so if the w(i) are equal to
the steady state probabilities p(i). The limit is the
unique r* satisfying

mn T 2
r* = argmin) w(i) <¢<z’>’r = pis(9Gi5) + aqs(j)’r*))

e Simulation-based implementation: Generate an
infinitely long trajectory (7o, %1, .. .) using a simula-
tor, and iteratively update » by

t

Tt41 = arg mrin Z ((b(im)”r‘—g(im, im+1)_a¢(’im+1)’7“t)2

m=0

This can be shown to converge to the same rx.

GEOMETRIC INTERPRETATION

w(yr) w(yr)

Vri+1

N

YrIt+1

0
eature Subspace S

0 Simulation error

eature Subspace S

Simulation-Based
Value lteration with Linear
Function Approximation

Value Iteration with Linear
Function Approximation

e The simulation-based implementation yields the
(non-simulation) value iterate with linear function
approximation [i.e., the projection of T'(®r;)] plus
stochastic simulation error.

¢ Key Convergence Proof Idea: The simu-
lation error converges to O as the simulation tra-
jectory becomes longer. Furthermore, the (non-
simulation) value iteration is a convergent linear
deterministic algorithm [since it involves a contrac-
tion mapping with respect to the weighted norm
defined by the steady-state probabilities p(7)].

USING M-STEP VALUE ITERATION

e For M > 1, consider the equation

M—1
J(Z) = F OzMJ(iM) -+ Z akg(ik,ik+1) 10 = Z:|
k=0

e This is Bellman's Eg. for a modified problem,
Involving a Markov chain where each transition
corresponds to M transitions of the original, and
the cost is calculated using a discount factor o™
and a cost per stage equal to 224:61 akg(ig, ixrl).

e This Bellman equation is also solved uniguely
by the same J that solves the ordinary (one-step)
Bellman equation J (i) = E|g(i,j) + aJ(j)].

e The corresponding value iteration method is

M—1
Jiy1(i) = E [aM J(in) + Y okg(in, ingr) ‘ io = z}
k=0

and can be similarly approximated by simulation.

SIMULATION-BASED M-STEP VALUE ITERATION

e The corresponding simulation-based least-squares
Implementation is

¢
ri11 = arg mgn Z (gb(im)/r — QM¢(im+M)/rt

m=0

M—1 2
— > aFglimyn, Z'm+k+1)>

k=0

e By introducing the temporal differences, defined
by

dt (ke Tkt1) = 9k, Go1) + @@(ip1)'me — d(in) 11,
we can write this iteration as
t

m=0

m+M—1

2
— Z Oék_mdt (ik, ik+1>>

k=m

USING RANDOM STEP VALUE ITERATION

e Consider a version of Bellman’s equation where
M is random and geometrically distributed with
parameter A, I.e.,

Prob(M =m) = (1 — A)Am—1, m=1,2,...

e This equation is obtained by multiplying both
sides of the M -step Bellman’s Eq. with (1—-X)A™m—1,
for each m, and adding over m:

o0 m—1
J(i) = Z(l—A)Am_lE {amJ(im) + Z aFg(in, igs1)|io =i
m=1

k=0
e The corresponding value iteration method is

am . J; (Zm)

Jiy1(i) =) (L= A)Am—1E

m—1
+ Y akg(ig,iggr) [io =1
k=0

TEMPORAL DIFFERENCES IMPLEMENTATION

e \We can write the random step value iteration as

Jep1 (D) = Je(@)+ Y (@NFE [glin, 1) +ade(inen) = Je(in) | io = i]
k=0

e By using ¢(i)'r: to approximate J;, and by re-
pIaCing g(ikyik—i—l) -+ &Jt(ik+1) — Jt(lk) with the
temporal differences (TD)

di (i, ik+1) = 9(ik, tk+1) + ad(ipr1)' T — O(ig) T4,

we obtain the simulation-based least-squares im-
plementation (called \-least squares policy eval-
uation method)

rt+1 = arg mrin Z <¢(75m)’7° — qb(im)”rt
m=0

- Z(a)\)’fmdt(ik,ik+1)>

k=m

¢ Role of the TD: They simplify the formulas.

e Convergence can be shown to an r* that solves
a corresponding least squares problem.

TD(LAMBDA)

e Another method for solving the policy evalu-
ation problem is TD(\), which uses a parameter
A € |0,1] and generates an infinitely long trajec-
tory (¢o,%1,...) Using a simulator. It iteratively up-
dates r by

t

ri+1 = Tt + Ve (Z (&A)tmqﬁ(im)) di (e, 1¢+1)

m=0

where ~; IS a positive stepsize with v, — 0.

e It can be viewed as a gradient-like method for
minimizing the least-squares sum of the preced-
INng A-least squares method described earlier (see
the Bertsekas, Borkar, and Nedic paper).

e For a given value of A € [0, 1], TD()) converges
to the same limit as the \-least squares method
(under technical assumptions on the choice of ;).

e While TD()\) uses a simpler formula, it tends to
be much slower than A\-Least Squares. In prac-
tice, it also requires tricky trial and error to settle
on good stepsize choices.

TD METHODS: PROPERTIES AND DIFFICULTIES

e As M increases, the M -step Bellman’s equation
becomes better suited for approximation, because
it embodies alonger horizon cost. Thus ®r* tends
to be closer to J when M is large.

e Similarly, &r* tends to be closerto J as \ =~ 1.

e On the other hand, when M or X is large, the
simulation noise inherent in the updates is mag-
nified (more random cost terms are added), and
convergence can be very slow. TD()\) is particu-
larly susceptible to noise, so A ~ 1 may be a bad
choice. This is less of a problem for the alternative
A-least squares method.

e A serious problem arises when the Markov
chain is “slow-mixing,’ I.e., it takes many transi-
tions for the simulation to reach important parts of
the state space. Then if the simulation trajectory
IS terminated prematurely, the approximation ob-
tained over these parts will be poor. A remedy is
to use many long simulation trajectories starting
from a set of initial states that adequately covers
the state space.

