
6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

• Simulation-based policy and value iteration meth-
ods

• λ-Least Squares Policy Evaluation method

• Temporal differences implementation

• Policy evaluation by approximate value iteration

• TD(λ)



POLICY AND VALUE ITERATION BY SIMULATION

• There are many proposals, but we will focus on
methods for which there is solid theory:

(a) Policy evaluation methods, to be used in
exact or approximate policy iteration.

− Here the policy is fixed.

− As a special case we obtain the rollout method.

− The cost of the policy may be calculated
in several different forms: (1) For all states
(lookup table representation) or (2) Through
an approximation architecture (compact rep-
resentation) or (3) Through on-line simula-
tion as needed (rollout algorithm).

(b) Value iteration w/ function approximation.

− A big restriction is to find a suitable Euclidean
norm for which T is a contraction.

− Such a norm can be found in the case where
there is only one policy (T = Tµ).

− Q-Learning is a form of on-line simulation-
based value iteration method, but the only
available theory applies to the lookup table
representation case.



SIMULATION-BASED POLICY EVALUATION

• The policy is fixed and one or more long simu-
lation trajectories are generated.

• The weight vector r of an approximation ar-
chitecture J̃(i, r) is adjusted using some kind of
“least squares scheme” (off-line, or on-line as the
simulation trajectories are generated).

• For on-line methods, a sequence {rt} of param-
eter vectors is generated.

• There is solid theory only for linear approxi-
mation architectures (and under some technical
assumptions).

• Typical result: In the limit, as the number of
simulation-generated transitions goes to ∞, the
sequence of generated parameter vectors con-
verges to a limit that solves a related least-squares
approximation problem.

• We will focus on so-called temporal difference
methods, λ-least squares and TD(λ), which may
be viewed as on-line simulation-based approxi-
mate value iteration methods for policy evaluation.



POLICY EVALUATION BY VALUE ITERATION I

• The remainder of this lecture is based on the pa-
per “Improved Temporal Difference Methods with
Function Approximation,” by Bertsekas, Borkar,
and Nedic at

http://www.mit.edu:8001//people/dimitrib/publ.html

• Let J be the cost function associated with a
stationary policy in the discounted context, so J
is the unique solution of Bellman’s Eq., J(i) =∑n

j=1 pij

(
g(i, j) + αJ(j)

) ≡ (TJ)(i). We assume
that the associated Markov chain has steady-state
probabilities p(i) which are all positive.

• If we use a linear approximation architecture
J̃(i, r) = φ(i)′r, the value iteration

Jt+1(i) =
n∑

j=1

pij

(
g(i, j) + αJt(j)

)
= (TJt)(i)

is approximated as Φrt+1 ≈ T (Φrt) in the sense

rt+1 = arg min
r

n∑
i=1

w(i)

(
φ(i)′r −

n∑
j=1

pij

(
g(i, j) + αφ(j)′rt

))2

where the w(i) are some positive weights.



POLICY EVALUATION BY VALUE ITERATION II

• Note that, assuming Φ has full rank, rt+1 is
uniquely obtained by projecting the value iterate
T (Φrt) = P (g + αΦrt) on the range space of the
matrix Φ, where the projection is with respect to
the norm ‖ · ‖D given by ‖z‖D =

√
z′Dz, and D is

diagonal with the w(i) along the diagonal.

• The iteration converges if the mapping T is a
contraction with respect to the norm ‖ · ‖D.
Key fact: This is so if the w(i) are equal to
the steady state probabilities p(i). The limit is the
unique r∗ satisfying

r∗ = arg min
r

n∑
i=1

w(i)

(
φ(i)′r −

n∑
j=1

pij

(
g(i, j) + αφ(j)′r∗

))2

• Simulation-based implementation: Generate an
infinitely long trajectory (i0, i1, . . .) using a simula-
tor, and iteratively update r by

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r−g(im, im+1)−αφ(im+1)′rt

)2

This can be shown to converge to the same r∗.



GEOMETRIC INTERPRETATION

Feature Subspace S

yrt

w(yrt)

0

yrt+1

Feature Subspace S

yrt

w(yrt)

0

yrt+1

Simulation error

Value Iteration with Linear
Function Approximation

Simulation-Based
Value Iteration with Linear
Function Approximation

• The simulation-based implementation yields the
(non-simulation) value iterate with linear function
approximation [i.e., the projection of T (Φrt)] plus
stochastic simulation error.

• Key Convergence Proof Idea: The simu-
lation error converges to 0 as the simulation tra-
jectory becomes longer. Furthermore, the (non-
simulation) value iteration is a convergent linear
deterministic algorithm [since it involves a contrac-
tion mapping with respect to the weighted norm
defined by the steady-state probabilities p(i)].



USING M -STEP VALUE ITERATION

• For M ≥ 1, consider the equation

J(i) = E

[
αMJ(iM ) +

M−1∑
k=0

αkg(ik, ik+1)
∣∣∣ i0 = i

]

• This is Bellman’s Eq. for a modified problem,
involving a Markov chain where each transition
corresponds to M transitions of the original, and
the cost is calculated using a discount factor αM

and a cost per stage equal to
∑M−1

k=0 αkg(ik, ik+1).

• This Bellman equation is also solved uniquely
by the same J that solves the ordinary (one-step)
Bellman equation J(i) = E

[
g(i, j) + αJ(j)

]
.

• The corresponding value iteration method is

Jt+1(i) = E

[
αMJt(iM ) +

M−1∑
k=0

αkg(ik, ik+1)
∣∣∣ i0 = i

]

and can be similarly approximated by simulation.



SIMULATION-BASED M -STEP VALUE ITERATION

• The corresponding simulation-based least-squares
implementation is

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − αMφ(im+M )′rt

−
M−1∑
k=0

αkg(im+k, im+k+1)

)2

• By introducing the temporal differences, defined
by

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt,

we can write this iteration as

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt

−
m+M−1∑

k=m

αk−mdt(ik, ik+1)

)2



USING RANDOM STEP VALUE ITERATION

• Consider a version of Bellman’s equation where
M is random and geometrically distributed with
parameter λ, i.e.,

Prob(M = m) = (1 − λ)λm−1, m = 1, 2, . . .

• This equation is obtained by multiplying both
sides of the M -step Bellman’s Eq. with (1−λ)λm−1,
for each m, and adding over m:

J(i) =

∞∑
m=1

(1−λ)λm−1E

[
αmJ(im) +

m−1∑
k=0

αkg(ik, ik+1) | i0 = i

]

• The corresponding value iteration method is

Jt+1(i) =
∞∑

m=1

(1 − λ)λm−1E

[
αmJt(im)

+
m−1∑
k=0

αkg(ik, ik+1) | i0 = i

]



TEMPORAL DIFFERENCES IMPLEMENTATION

• We can write the random step value iteration as

Jt+1(i) = Jt(i)+

∞∑
k=0

(αλ)kE
[
g(ik, ik+1)+αJt(ik+1)−Jt(ik) | i0 = i

]

• By using φ(i)′rt to approximate Jt, and by re-
placing g(ik, ik+1) + αJt(ik+1) − Jt(ik) with the
temporal differences (TD)

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt,

we obtain the simulation-based least-squares im-
plementation (called λ-least squares policy eval-
uation method)

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt

−
t∑

k=m

(αλ)k−mdt(ik, ik+1)

)2

• Role of the TD: They simplify the formulas.

• Convergence can be shown to an r∗ that solves
a corresponding least squares problem.



TD(LAMBDA)

• Another method for solving the policy evalu-
ation problem is TD(λ), which uses a parameter
λ ∈ [0, 1] and generates an infinitely long trajec-
tory (i0, i1, . . .) using a simulator. It iteratively up-
dates r by

rt+1 = rt + γt

(
t∑

m=0

(αλ)t−mφ(im)

)
dt(it, it+1)

where γt is a positive stepsize with γt → 0.

• It can be viewed as a gradient-like method for
minimizing the least-squares sum of the preced-
ing λ-least squares method described earlier (see
the Bertsekas, Borkar, and Nedic paper).

• For a given value of λ ∈ [0, 1], TD(λ) converges
to the same limit as the λ-least squares method
(under technical assumptions on the choice of γt).

• While TD(λ) uses a simpler formula, it tends to
be much slower than λ-Least Squares. In prac-
tice, it also requires tricky trial and error to settle
on good stepsize choices.



TD METHODS: PROPERTIES AND DIFFICULTIES

• As M increases, the M -step Bellman’s equation
becomes better suited for approximation, because
it embodies a longer horizon cost. Thus Φr∗ tends
to be closer to J when M is large.

• Similarly, Φr∗ tends to be closer to J as λ ≈ 1.

• On the other hand, when M or λ is large, the
simulation noise inherent in the updates is mag-
nified (more random cost terms are added), and
convergence can be very slow. TD(λ) is particu-
larly susceptible to noise, so λ ≈ 1 may be a bad
choice. This is less of a problem for the alternative
λ-least squares method.

• A serious problem arises when the Markov
chain is “slow-mixing,” i.e., it takes many transi-
tions for the simulation to reach important parts of
the state space. Then if the simulation trajectory
is terminated prematurely, the approximation ob-
tained over these parts will be poor. A remedy is
to use many long simulation trajectories starting
from a set of initial states that adequately covers
the state space.


