6.231 DYNAMIC PROGRAMMING
LECTURE 19
LECTURE OUTLINE

e Average cost per stage problems

e Connection with stochastic shortest path prob-
lems

e Bellman’s equation
e Value iteration

e Policy iteration

AVERAGE COST PER STAGE PROBLEM

e Stationary system with finite number of states
and controls

e Minimize over policies m = {uo, p1, ...}

Jr(®o) = lim i3 1) {Zg(xkaﬂk(xk)awk)}

N—oo [NV W
k=0,1,... k=0

e Important characteristics (not shared by other
types of infinite horizon problems)

— For any fixed K, the cost incurred up to time
K does not matter (only the state that we are
at time K matters)

— If all states “communicate” the optimal cost
IS iIndependent of the initial state [if we can
go from ¢ to 5 In finite expected time, we must
have J*(i) < J*(j)]. So J*(¢z) = A= for all :.

— Because “communication” issues are so im-

portant, the methodology relies heavily on
Markov chain theory.

CONNECTION WITH SSP

e Assumption: State n Is such that for some inte-
ger m > 0, and for all initial states and all policies,
n IS visited with positive probability at least once
within the first m stages.

e Divide the sequence of generated states into
cycles marked by successive Visits to n.

e Each of the cycles can be viewed as a state
trajectory of a corresponding stochastic shortest
path problem with n as the termination state.

Special
State n

Artificial Termination State

e Letthe cost at i of the SSP be g(i,u) — A*
e We will show that

Av. Cost Probl. = A Min Cost Cycle Probl. = SSP Probl.

CONNECTION WITH SSP (CONTINUED)

e Consider a minimum cycle cost problem: Find

a stationary policy p that minimizes the expected
cost per transition within a cycle

where for a fixed p,

Crn(p) : E{cost from n up to the first return to n}
Npn(p) - E{time from n up to the first return to n}
e Intuitively, optimal cycle cost = *, so

Crn () = Nun () A* 20,

with equality if 1 Is optimal.

e Thus, the optimal 1 must minimize over p the
expression Cyn () — Nun(u)A*, which is the ex-

pected cost of 1 starting from n in the SSP with
stage costs g(7, u) — A*.

BELLMAN'S EQUATION

e Let h*(i) the optimal cost of this SSP prob-
lem when starting at the nontermination states : =
1,...,n. Then, h*(1),..., h*(n)solve uniquely the
corresponding Bellman’s equation

n—1
h*(i) = gll}l(l) gliu) = A+ Y pij(w)h*(5)| , Vi
u (/]:1

e If u* Is an optimal stationary policy for the SSP
problem, we have

e Combining these equations, we have

A*+h*(i) = lgl(}?) gli,u) + Y pij(wh*(j)| , Vi
u (/]:1

e If u*(2) attains the min for each ¢, * is optimal.

MORE ON THE CONNECTION WITH SSP

e Interpretation of h* (i) as a relative or differential
cost: It is the minimum of

FEA{cost to reach n from i for the first time}
— FE{cost if the stage cost were * and not g(¢,u)}

e We don’t know A*, so we can’t solve the aver-
age cost problem as an SSP problem. But similar
value and policy iteration algorithms are possible.

e Example: A manufacturer at each time:

— Receives an order with prob. p and no order
with prob. 1 — p.
— May process all unfilled orders at cost K >

0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
total expected cost per stage.

EXAMPLE (CONTINUED)

e State = number of unfilled orders. State O is the
special state for the SSP formulation.

e Bellman’s equation: Forstates: =0,1,...,n—1

A* + h*(i) = min |[K + (1 — p)h*(0) + ph*(1),
ci + (1 — p)h*(i) + ph*(i + 1)},

and for state n

A+ h*(n) =K+ (1 —p)h*(0) + ph*(1)

e Optimal policy: Process ¢ unfilled orders if

K+(1—p)h*(0)+ph*(1) < ci+(1—p)h*(i)+ph*(i+1).

e Intuitively, h*(¢) is monotonically nondecreas-
iIng with 7 (interpret ~*(z) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy IS optimal. process the orders if their num-
ber exceeds some threshold integer m*.

VALUE ITERATION

e Natural value iteration method: Generate op-
timal k-stage costs by DP algorithm starting with
any Jop:

Jr+1(7) = 1611(}1(1) g(i,u) + Zpij(u)Jk(j) , Vi

e Result: limy_. o Jix(2)/k = A* for all <.

e Proof outline: Let J; be so generated from the
initial condition J; = h*. Then, by induction,

Ji(1) = kXt 4 h*(7), Vi, V k.
On the other hand,

Tk (i) — J; (i) < max \JO —h*(5)|, Vi

71=1,.

since Ji(z) and J;(7) are optimal costs for two -
stage problems that differ only in the terminal cost
functions, which are Jy and h*.

RELATIVE VALUE ITERATION

e The value iteration method just described has
two drawbacks:

— Since typically some components of J; di-
verge to oo or —oo, calculating limy . Jix(7) /k
IS numerically cumbersome.

— The method will not compute a correspond-
Ing differential cost vector h*.

e \We can bypass both difficulties by subtracting a
constant from all components of the vector J;, so
that the difference, call it hx, remains bounded.

e Relative value iteration algorithm:Pick any state
s, and Iiterate according to

his1(i) = ug%) g(i,u) + Y pij(u)he(j)
j=1

- min g(s,u) + > psj(whi(j) |, Vi
u S 921

e Then we can show h, — h* (under an extra
assumption).

POLICY ITERATION

e At the typical iteration, we have a stationary p*.

e Policy evaluation: Compute * and h* (%) of u*,
using the n + 1 equations h*(n) = 0 and

N BE(5) = g0, 1 (0)) + 3 pis (14 () R4 (), ¥

e Policy improvement: Find for all ¢

,LLk+1(i) — arg gl(}r(l) g(i, ’LL) + Zpij (U)hk(])
uelU (3 =1

o If \k+1 = Ak and hk+1(7) = hk(2) for all 4, stop;
otherwise, repeat with p5+1 replacing k.

e Result: For each k, we either have \¢+1 <)k
or

Mokl = e REHL(G) < BE(Q), i=1,...,n.

The algorithm terminates with an optimal policy.

