6.231 DYNAMIC PROGRAMMING
LECTURE 17
LECTURE OUTLINE

Infinite horizon problems

Stochastic shortest path problems
Bellman’s equation

Dynamic programming — value iteration

Examples



TYPES OF INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.
— The system is stationary.

e Total cost problems: Minimize

Jx(xo) = lim E {Z ozkg(mk,uk(xk),wk)}

N — o0 W
k=0,1,... k=0

— Stochastic shortest path problems (o = 1)

— Discounted problems (a < 1) with bounded
cost per stage

— Discounted and undiscounted problems with
unbounded cost per stage

e Average cost problems

N—1
: 1
]\}EHOON 'u)E]; {Zg(xkauk(xk)awk)}

k=0,1,... k=0



PREVIEW OF INFINITE HORIZON RESULTS

e Keyissue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

e lllustration: Let « = 1 and Jy(x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from Jy(xz) =0

Jk_|_1(33) — ug%]l]éc)g {g(az,u,w) + Jk (f(:l:,u,w))} ) vV

e Typical results for total cost problems:

J*(x) = lim Jy(z), Vx

N — o0

J*(z) = rr;]i](n)E{g@,u,w)+J*(f(sc,u,w>>},Va:
uc!U(xr) w

(Bellman’s Equation). If u(x) minimizes in Bell-

man’s Eq., the policy {u, i, ...} is optimal.

e Bellman’'s Eqg. always holds. The other results
are true for SSP (and bounded/discounted; un-
usual exceptions for other problems).



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system:. States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;; (u)
— Control constraints u € U(1)
— Cost of policy 7 = {uo, pt1,-..} 1S

— Optimal policy if J(¢) = J*(7) for all <.
— Special notation: For stationary policies m =
{p, u, ...}, weuse J,(2) in place of J ().

e Assumption: There exists integer m such that
for every policy and initial state, there is posi-
tive probability that the termination state will be
reached after no more that m stages; for all =, we
have

pr = max Plz, #t|lro=1i,7} <1

1=1,....,n



FINITENESS OF POLICY COST-TO-GO FUNCTIONS

o Let
P = max Pr.

Note that p, depends only on the first m compo-
nents of the policy 7, so that p < 1.

e For any 7w and any initial state ¢

P{xom #t|xo =1,7} = P{xom #t|xm #t, x0o = 1,7}
X P{xm #t|xo =1i,7} < p°

and similarly

P{xgm #t|xo =1,7} < pk, i=1,....n

e S0 F{Cost between times km and (k+ 1)m — 1}

< mp? max |g(i,u)]

1=1,...,

and

‘Jw(i)’ < ZmplC _max ’g(z,u)‘ = % _max ’g(z,u)’
k=0 wel (i) P weU (i)



MAIN RESULT

e Given any initial conditions Jy(1), ..., Jo(n), the
sequence J (i) generated by the DP iteration

Jry1(i) = 1611[}1(1) g(i,u) + Zpij(u)Jk(j) , Vi
j=1

converges to the optimal cost J*(i) for each ;.

e Bellman’s equation has J*(¢) as unique solution:

J*(i) = ug}}%) gli,u) + Y pi(u)J*(j)| , Vi
j=1

e A stationary policy p is optimal if and only if
for every state ¢, u(7) attains the minimum in Bell-
man’s equation.

e Key proof idea: The “tail” of the cost series,

i E{g(xk, pr(xr)) }

k=mK

vanishes as K increases to oo.



OUTLINE OF PROOF THAT Jy — J*

e Assume for simplicity that Jy(z) = 0 for all 7, and
forany K > 1, write the cost of any policy m as

mK—1 oo

T (20) = Z E{g(zk, p(zi)) } + Z E{g(zk, pr(zr))

k=mK
mK-—1

< ) E{g(xk,umk))hZpkmngzxw(i,un
k=K

k=0

Take the minimum of both sides over 7 to obtain

K

J*(x0) < Jmr (o) + %pmmax\g(i,u)\.

Similarly, we have

K

T (w0) = 1= mmax lg(i, w)] < J* (o),

It follows that limg .o Jimk (z0) = J*(20).

e It can be seen that J,,x(zo) and J,,x+x(xo)
converge to the same limitfork =1,...,m—1, so

JN(ZC()) — J* (SEQ)



EXAMPLE |

e Minimizing the £{Time to Termination}: Let

g(t,u) =1, Vi=1,...,n, ueU(i)

e Under our assumptions, the costs J*(7) uniquely
solve Bellman’s equation, which has the form

J*(i) = ml}l?) 1—|—E pij(w)J*(9)|, t=1,...,n
ucU (2
7=1

¢ In the special case where there is only one con-
trol at each state, J*(7) is the mean first passage
time from ¢ to t. These times, denoted m;, are the
unique solution of the equations

n
mizl—l—g Pijm;, 1=1,...,n.
g=1



EXAMPLE I

e A spider and a fly move along a straight line.

e The fly moves one unit to the left with probability
p, one unit to the right with probability p, and stays
where it is with probability 1 — 2p.

e The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

e If the spider is one unit away from the fly, it will
either move one unit towards the fly or stay where
it is.

e Ifthe spider and the fly land in the same position,
the spider captures the fly.

e The spider’'s objective is to capture the fly in
minimum expected time.

e Thisis an SSP w/ state = the distance between
spiderand fly (: = 1,...,n and ¢t = 0 the termina-
tion state).

e There is control choice only at state 1.



EXAMPLE II (CONTINUED)

e For M = move, and M = don’t move

p11<M> — 2p7 plO(M) =1- 2p7

plQ(M):p7 pll(M):1_2p7 plO(M):p7
Pii =P,  Diti—1) = 1=2p,  Dpi(i—2) = D, 1> 2,

with all other transition probabilities being 0.

e Bellman’s equation:

J*(1) = 14+pJ*(0)+(1—2p) J*(i—1)+pJ*(i—2), > 2
J*(1) = 1+min |2pJ*(1), pJ*(2) + (1 — 2p)J*(1)]

w/ J*(0) = 0. Substituting J*(2) in Eq. for J*(1),

P (1 —2p)J=*(1)

e Work from here to find that when one unit away
from the fly it is optimal not to mowve if and only if
p>1/3.



