6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

- Infinite horizon problems
- Stochastic shortest path problems
- Bellman's equation
- Dynamic programming value iteration
- Examples

TYPES OF INFINITE HORIZON PROBLEMS

- Same as the basic problem, but:
 - The number of stages is infinite.
 - The system is stationary.
- Total cost problems: Minimize

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

- Stochastic shortest path problems ($\alpha = 1$)
- Discounted problems ($\alpha < 1$) with bounded cost per stage
- Discounted and undiscounted problems with unbounded cost per stage
- Average cost problems

$$\lim_{N \to \infty} \frac{1}{N} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}$$

PREVIEW OF INFINITE HORIZON RESULTS

- Key issue: The relation between the infinite and finite horizon optimal cost-to-go functions.
- Illustration: Let $\alpha = 1$ and $J_N(x)$ denote the optimal cost of the N-stage problem, generated after N DP iterations, starting from $J_0(x) \equiv 0$

$$J_{k+1}(x) = \min_{u \in U(x)} E_{w} \{g(x, u, w) + J_{k}(f(x, u, w))\}, \forall x$$

Typical results for total cost problems:

$$J^*(x) = \lim_{N \to \infty} J_N(x), \ \forall \ x$$

$$J^*(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + J^* \left(f(x, u, w) \right) \right\}, \forall x$$

(Bellman's Equation). If $\mu(x)$ minimizes in Bellman's Eq., the policy $\{\mu, \mu, \ldots\}$ is optimal.

 Bellman's Eq. always holds. The other results are true for SSP (and bounded/discounted; unusual exceptions for other problems).

STOCHASTIC SHORTEST PATH PROBLEMS

- Assume finite-state system: States $1, \ldots, n$ and special cost-free termination state t
 - Transition probabilities $p_{ij}(u)$
 - Control constraints $u \in U(i)$
 - Cost of policy $\pi = \{\mu_0, \mu_1, \ldots\}$ is

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k)) \middle| x_0 = i \right\}$$

- Optimal policy if $J_{\pi}(i) = J^*(i)$ for all i.
- Special notation: For stationary policies $\pi = \{\mu, \mu, \ldots\}$, we use $J_{\mu}(i)$ in place of $J_{\pi}(i)$.
- Assumption: There exists integer m such that for every policy and initial state, there is positive probability that the termination state will be reached after no more that m stages; for all π , we have

$$\rho_{\pi} = \max_{i=1,\dots,n} P\{x_m \neq t \mid x_0 = i, \pi\} < 1$$

FINITENESS OF POLICY COST-TO-GO FUNCTIONS

Let

$$\rho = \max_{\pi} \rho_{\pi}.$$

Note that ρ_{π} depends only on the first m components of the policy π , so that $\rho < 1$.

• For any π and any initial state i

$$P\{x_{2m} \neq t \mid x_0 = i, \pi\} = P\{x_{2m} \neq t \mid x_m \neq t, x_0 = i, \pi\}$$
$$\times P\{x_m \neq t \mid x_0 = i, \pi\} \leq \rho^2$$

and similarly

$$P\{x_{km} \neq t \mid x_0 = i, \pi\} \leq \rho^k, \qquad i = 1, \dots, n$$

• So $E\{$ Cost between times km and (k+1)m-1 $\}$

$$\leq m \rho^k \max_{\substack{i=1,\ldots,n\\u\in U(i)}} |g(i,u)|$$

and

$$|J_{\pi}(i)| \le \sum_{k=0}^{\infty} m \rho^k \max_{\substack{i=1,\dots,n\\u \in U(i)}} |g(i,u)| = \frac{m}{1-\rho} \max_{\substack{i=1,\dots,n\\u \in U(i)}} |g(i,u)|$$

MAIN RESULT

• Given any initial conditions $J_0(1), \ldots, J_0(n)$, the sequence $J_k(i)$ generated by the DP iteration

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

converges to the optimal cost $J^*(i)$ for each i.

• Bellman's equation has $J^*(i)$ as unique solution:

$$J^*(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J^*(j) \right], \ \forall \ i$$

- A stationary policy μ is optimal if and only if for every state i, $\mu(i)$ attains the minimum in Bellman's equation.
- Key proof idea: The "tail" of the cost series,

$$\sum_{k=mK}^{\infty} E\left\{g(x_k, \mu_k(x_k))\right\}$$

vanishes as K increases to ∞ .

OUTLINE OF PROOF THAT $J_N o J^*$

• Assume for simplicity that $J_0(i) = 0$ for all i, and for any $K \ge 1$, write the cost of any policy π as

$$J_{\pi}(x_{0}) = \sum_{k=0}^{mK-1} E\left\{g\left(x_{k}, \mu_{k}(x_{k})\right)\right\} + \sum_{k=mK}^{\infty} E\left\{g\left(x_{k}, \mu_{k}(x_{k})\right)\right\}$$

$$\leq \sum_{k=0}^{mK-1} E\left\{g\left(x_{k}, \mu_{k}(x_{k})\right)\right\} + \sum_{k=K}^{\infty} \rho^{k} m \max_{i, u} |g(i, u)|$$

Take the minimum of both sides over π to obtain

$$J^*(x_0) \le J_{mK}(x_0) + \frac{\rho^K}{1 - \rho} m \max_{i, u} |g(i, u)|.$$

Similarly, we have

$$J_{mK}(x_0) - \frac{\rho^K}{1-\rho} m \max_{i,u} |g(i,u)| \le J^*(x_0).$$

It follows that $\lim_{K\to\infty} J_{mK}(x_0) = J^*(x_0)$.

• It can be seen that $J_{mK}(x_0)$ and $J_{mK+k}(x_0)$ converge to the same limit for $k=1,\ldots,m-1$, so $J_N(x_0) \to J^*(x_0)$

EXAMPLE I

Minimizing the E{Time to Termination}: Let

$$g(i, u) = 1, \qquad \forall i = 1, \dots, n, \ u \in U(i)$$

• Under our assumptions, the costs $J^*(i)$ uniquely solve Bellman's equation, which has the form

$$J^*(i) = \min_{u \in U(i)} \left[1 + \sum_{j=1}^n p_{ij}(u) J^*(j) \right], \quad i = 1, \dots, n$$

• In the special case where there is only one control at each state, $J^*(i)$ is the mean first passage time from i to t. These times, denoted m_i , are the unique solution of the equations

$$m_i = 1 + \sum_{j=1}^{n} p_{ij} m_j, \qquad i = 1, \dots, n.$$

EXAMPLE II

- A spider and a fly move along a straight line.
- The fly moves one unit to the left with probability p, one unit to the right with probability p, and stays where it is with probability 1-2p.
- The spider moves one unit towards the fly if its distance from the fly is more that one unit.
- If the spider is one unit away from the fly, it will either move one unit towards the fly or stay where it is.
- If the spider and the fly land in the same position, the spider captures the fly.
- The spider's objective is to capture the fly in minimum expected time.
- This is an SSP w/ state = the distance between spider and fly ($i=1,\ldots,n$ and t=0 the termination state).
- There is control choice only at state 1.

EXAMPLE II (CONTINUED)

ullet For M= move, and $\overline{M}=$ don't move

$$p_{11}(M)=2p,\quad p_{10}(M)=1-2p,$$

$$p_{12}(\overline{M})=p,\quad p_{11}(\overline{M})=1-2p,\quad p_{10}(\overline{M})=p,$$

$$p_{ii}=p,\quad p_{i(i-1)}=1-2p,\quad p_{i(i-2)}=p,\qquad i\geq 2,$$
 with all other transition probabilities being 0.

Bellman's equation:

$$\begin{split} J^*(i) &= 1 + pJ^*(i) + (1 - 2p)J^*(i - 1) + pJ^*(i - 2), \quad i \geq 2 \\ J^*(1) &= 1 + \min \left[2pJ^*(1), \ pJ^*(2) + (1 - 2p)J^*(1) \right] \\ \text{w/ } J^*(0) &= 0. \text{ Substituting } J^*(2) \text{ in Eq. for } J^*(1), \\ J^*(1) &= 1 + \min \left[2pJ^*(1), \ \frac{p}{1 - p} + \frac{(1 - 2p)J^*(1)}{1 - p} \right]. \end{split}$$

• Work from here to find that when one unit away from the fly it is optimal $not\ to\ move\ if\ and\ only\ if\ p\geq 1/3.$