(a)

(b)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2000 6.231
Midterm exam Tuesday 10/24/00, 7:30-9:30 pm

Problem 1. (25 points)

Consider the standard finite—horizon, discrete—time, linear quadratic problem, with perfect
state information, and finite time horizon N. However, we impose the following additional
constraint:

Ugp = UN—-1-

Put the problem into a form to which dynamic programming can be applied.

Prove that the optimal cost-to—go function is a quadratic function of the initial state.
Hint: The proof need not repeat any lengthy calculations like the ones in the text.

Problem 2. (25 points)

We are given a directed graph with nodes 1,...,n, and with a set A of directed arcs (4, 7).
Node 1 is an origin node, and node n is a destination node. Each arc (7, j) has a length
c;j. For each node 4, the lengths of the arcs (i, j) originating from 7 are given, except for
one special arc (4, ;) whose length is 1 with probability p, and 0 with probability 1 — p.
(The lenghts of different arcs are assumed independent.)

A vehicle starts at node 1 and wishes to travel through this graph until it reaches its
destination n. The vehicle is not allowed to visit the same node twice. The vehicle can
learn the status of an arc (i, j;) only by visiting node 7. The objective is to minimize the
expected sum of the lengths of the arcs traversed by the vehicle.

Express the problem as one with perfect state information (and finite state space), by
defining an appropriate state. Be precise in specifying the state, control, and the evolution
equation.

Write down the dynamic programming equation.



Problem 3. (50 points)

A shipping company starts (at time 0) with an empty container of integer size K. During
each period k (k = 0,1,..., N — 1) a potential customer shows up and offers to pay a
(positive integer) price pi to have an item of (positive integer) size s included in the
container. Assume that the offers (pg,sx) at different periods k are i.i.d., with known
probability distributions. Each time, the company can choose to either accept (if there is
available room in the container) or reject a customer. Its objective is to maximize expected
revenue.

Provide a complete dynamic programming formulation of the problem (state, evolution
equation, etc.) as well as a dynamic programming algorithm.

Show that there is an optimal policy with the following property: for any fixed state and
time, if an offer (pg, si) is accepted, then any offer (p}, sx) with a higher price (pj, > px)
and the same size s is also accepted.

Show that there is an optimal policy with the following property: for any fixed state and
time, if an offer (pg, si) is accepted, then any offer (py, sj;) with the same price p; and a
smaller size s}, < s, is also accepted.

Suppose now that the size of the items are not accurately known: when the company
accepts an item of declared size s, the actual size turns out to be si + wy, where the
wy, are unobserved independent normal random variable with mean zero and variance 2.
(In principle, this may result in items with negative sizes. But assuming that o2 is fairly
small, this is very unlikely and let us not be concerned with this possibility.) At time N all
items are measured and if the total size turns out to be more than K, the company needs
a second container and suffers a cost of C. Provide a dynamic programming formulation
(state, evolution equation, costs etc.) of the problem of maximizing expected revenue

minus expected costs.

Extra credit question, in case you have time to spare. Not required.

Let us go back to the perfect information problem in parts (a)-(c), and assume that offered
items always have size 1 (s = 1). We claim the following. If it is optimal to accept an
offer (px,sr) when the total size of past accepted offers is a, then it is also optimal to
accept the same offer when the total size of past accepted offers is less than a.

(i) Which property of the value functions would suffice to prove the claim?

(ii) Prove the property in (i).

(iii) Show, by means of an example, that the claimed property of optimal policies fails to
hold without the assumption s; = 1.
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1.

(a) Introduce an additional state vector y. State equations:

That1 = Arxr + Brug + wy, k<N-—1,

rN = An—1ZN—1+ BN_1Yn—1 + WN_1.

Yo =10, Y1 = uo, Y+l = Yk, k> 0.

Leave the standard quadratic cost per stage unchanged (2} Qrxyr + ujRiuy), except that
at stage N — 1, the cost per stage should be z'y_;Qn_12N-1 + YN_1BRN-1YN_1-

(b) This is still a linear system with costs per stage that are quadratic in the state variables
and the controls. Hence, the cost to go is quadratic in (z, o). Since yg = 0, the cost-to-go
at time zero is quadratic in x.

2.

(a) State of the system is a triple (i,S,c¢): Here i is the present node, S is a subset of
{1,...,n}, which indicates which nodes were visited in the past, and ¢ € {0, 1} indicates
the cost of the special arc (i, j;). The control u is some j that selects the next node to be
visited (unless i = n in which case we are the terminal state). The evolution equation is

(441, St1, C1) = (ug, Se U {ir}, wy),

where w; is a random variable that is 1 or 0 with probability p or 1 — p.

Alternatively, we can take the state to be just (i,.5); this is the state before we learn the
status of the special arc.

(b)
J(i,8.¢) = min {ey; +pJ (G, S Ui} 1) + (1= p)J (.S Ui}, 0) },

J(n,S,c) =0.

With the alternative choice of the state, the DP equations are

J(i,S) =pmin {1 +J (i, SU {i}),n;m{cij +J(,SU {i})}}

JIF7i

+(1-p) min{J(jia SuU {i}),gﬁijxg{cijJ(j, SuU {z})}},

J(n,S)=0.



3.

(a) The state is (x, pk, Sk), where zj is the sum of the sizes of previously accepted offers.
Let up = 1 if (pg,sx) is accepted, zero otherwise. The evolution equation is zpiq =
Tk + UkSk, (Pk+1,Sk+1) = W41, Where wy41 is a random offer.

Ji(z,p, s) = min {E[Jk+1($7pk+17 Sk+1)]s 0+ ElJes1(x + 8, Prt1, Sk+1)]}7 k < N.

The expectations are with respect to the distribution of (pgy1, Sx+1. The second possibility
is available only if z + s < K. (An easy way of handling this is to define J(z,p, s) = —oc
if x > K.) Also, Jy(z) =0 for any =z < K.

Alternatively, we can use a value function Ji(z) which is the optimal expected revenue
before we see the offer (py, sx). The DP equation becomes Jy (z) = 0 and

Je(z) = E[min{Je41(2), pr + Jpt1 (2 + sx)}] -

This is a little easier to work with.

(b) An offer is accepted if py > Jiy1(xk) — Jey1(xk + sg). If this is the case and pj, > pg,
then pj. > Jit1(xk) — Jit1(xk + si), and the offer (p), si) should be acceptted.

(c) We claim that the value function is monotonic (nonincreasing): if x <y, then Ji(x) >
Ji(y). We can see this intuitively: if the state is reduced from y to z, we can do (starting
from z) everything that we could do before (starting from y) and achieve the same revenue.
Mathematically, this is proved by induction. Monotonicity is true for Jy. Assume that
Ji+1(x) is nonincreasing in . Then, Jx11(z) and py + Jx41(x + s) are also nonincreasing
functions of z. The minimum of two nonincreasing functions is nonincreasing. Taking
the expectation amounts to forming a weighted average of nonincreasing functions, which
shows that Ji(z) is also nonincreasing.

Using this monotonicity, and assuming that s} < s, we see that Jyy1(zk+5s)) > Jet1(xp+
sk). If (pk,sk) is accepted, then pg + Jyy1(z + sg) > Jr+1(x), which implies that py +
Jet1(x + s5) > Jey1(x), and (pg, s3,) can also be accepted.

(d) Here, we have imperfect information, and the total size of past accepted offers is
unknown. However, this total size is Zf:_ol ur(sk +wg ), which is a normal random variable

. k—1 . k—1 . e
with mean Y.~ ugsy and variance Y, ugo?. Therefore, a sufficient statistic is the mean
and the variance. We can therefore use a two-dimensional state (my, vx) which evolves as
follows:

mo =0, M1 = Mg + UgSk,
_ _ 2
vg = 0, Vg1 = Vg + URo”.

The rewards per stage are again pgug, and there is also a terminal cost g(mpy,vy) equal
to the probability that a normal random variable with mean my and variance vy exceeds
K.



(e)
(i) What we need is the following property: for every p, and a, z, with z < a, p+ Jxr1(a+
1) > Ji41(a), then p+ Jiy1(x + 1) > Jgy1(x). This will be satisfied as long as we require

Jk+1(a) — Jk+1(a — 1) Z Jk+1(a + 1) — Jk+1(a).

The value function is of interest only at integer points. The above property requires that the
“slope” (change from one integer point to the next) of the function .Ji4; be nonincreasing.
This is a discrete counterpart of concavity.

(ii) The proof is by induction. Clearly Jy has the desired property. Assuming that Jxi1
has the property, it is not hard to check that J also has it. (Rather than doing this
algebraically, draw a picture to see it; the assumption s = 1, or more generally that there
is only one possible size, is crucial.)

(iii) Suppose that there is a lot of time left and many items will arrive, some with (p, s) =
(1,1) and some with (p, s) = (10, 2). If the state is K —1, an item of the form (p, s) = (1,1)
should be accepted, since there is no better alternative. But if the state is K — 2, the item
(p,s) = (1,1) should be rejected to leave open the possibility of accepting a much more
profitable item of the form (p, s) = (10, 2).



