6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

- Stochastic shortest path problems
- Policy iteration
- Linear programming
- Discounted problems

STOCHASTIC SHORTEST PATH PROBLEMS

- Assume finite-state system: States $1, \ldots, n$ and special cost-free termination state t
 - Transition probabilities $p_{ij}(u)$
 - Control constraints $u \in U(i)$
 - Cost of policy $\pi = \{\mu_0, \mu_1, \ldots\}$ is

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k)) \middle| x_0 = i \right\}$$

- Optimal policy if $J_{\pi}(i) = J^*(i)$ for all *i*.
- Special notation: For stationary policies $\pi = \{\mu, \mu, \ldots\}$, we use $J_{\mu}(i)$ in place of $J_{\pi}(i)$.

• Assumption: There exists integer m such that for every policy and initial state, there is positive probability that the termination state will be reached after no more that m stages; for all π , we have

$$\rho_{\pi} = \max_{i=1,\dots,n} P\{x_m \neq t \,|\, x_0 = i, \pi\} < 1$$

MAIN RESULT

• Given any initial conditions $J_0(1), \ldots, J_0(n)$, the sequence $J_k(i)$ generated by the DP iteration

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

converges to the optimal cost $J^*(i)$ for each *i*.

• Bellman's equation has $J^*(i)$ as unique solution:

$$J^{*}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J^{*}(j) \right], \ \forall \ i$$

• A stationary policy μ is optimal if and only if for every state *i*, $\mu(i)$ attains the minimum in Bellman's equation.

• Key proof idea: The "tail" of the cost series,

$$\sum_{k=mK}^{\infty} E\left\{g(x_k, \mu_k(x_k))\right\}$$

vanishes as K increases to ∞ .

BELLMAN'S EQUATION FOR A SINGLE POLICY

• Consider a stationary policy μ

• $J_{\mu}(i)$, i = 1, ..., n, are the unique solution of the linear system of n equations

$$J_{\mu}(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i)) J_{\mu}(j), \ \forall i = 1, \dots, n$$

• Proof: This is just Bellman's equation for a modified/restricted problem where there is only one policy, the stationary policy μ , i.e., the control constraint set at state i is $\tilde{U}(i) = \{\mu(i)\}$

• The equation provides a way to compute $J_{\mu}(i)$, i = 1, ..., n, but the computation is substantial for large n [$O(n^3)$]

POLICY ITERATION

• It generates a sequence μ^1, μ^2, \ldots of stationary policies, starting with any stationary policy μ^0 .

• At the typical iteration, given μ^k , we perform a *policy evaluation step*, that computes the $J_{\mu^k}(i)$ as the solution of the (linear) system of equations

$$J(i) = g(i, \mu^k(i)) + \sum_{j=1}^n p_{ij}(\mu^k(i)) J(j), \quad i = 1, \dots, n,$$

in the *n* unknowns $J(1), \ldots, J(n)$. We then perform a *policy improvement step*, which computes a new policy μ^{k+1} as

$$\mu^{k+1}(i) = \arg\min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_{\mu^k}(j) \right], \forall i$$

- The algorithm stops when $J_{\mu^k}(i) = J_{\mu^{k+1}}(i)$ for all i

• Note the connection with the rollout algorithm, which is just a single policy iteration

JUSTIFICATION OF POLICY ITERATION

- We can show that $J_{\mu^{k+1}}(i) \leq J_{\mu^k}(i)$ for all i, k
- Fix k and consider the sequence generated by

$$J_{N+1}(i) = g(i, \mu^{k+1}(i)) + \sum_{j=1}^{n} p_{ij}(\mu^{k+1}(i)) J_N(j)$$

where $J_0(i) = J_{\mu^k}(i)$. We have
 $J_0(i) = g(i, \mu^k(i)) + \sum_{j=1}^{n} p_{ij}(\mu^k(i)) J_0(j)$
 $\ge g(i, \mu^{k+1}(i)) + \sum_{i=1}^{n} p_{ij}(\mu^{k+1}(i)) J_0(j) = J_1$

Using the monotonicity property of DP,

$$J_0(i) \ge J_1(i) \ge \dots \ge J_N(i) \ge J_{N+1}(i) \ge \dots, \quad \forall i$$

(i)

Since $J_N(i) \to J_{\mu^{k+1}}(i)$ as $N \to \infty$, we obtain $J_{\mu^k}(i) = J_0(i) \ge J_{\mu^{k+1}}(i)$ for all *i*. Also if $J_{\mu^k}(i) = J_{\mu^{k+1}}(i)$ for all *i*, J_{μ^k} solves Bellman's equation and is therefore equal to J^*

• A policy cannot be repeated, there are finitely many stationary policies, so the algorithm terminates with an optimal policy

LINEAR PROGRAMMING

• We claim that J^* is the "largest" J that satisfies the constraint

$$J(i) \le g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J(j), \qquad (1)$$

for all $i = 1, \ldots, n$ and $u \in U(i)$.

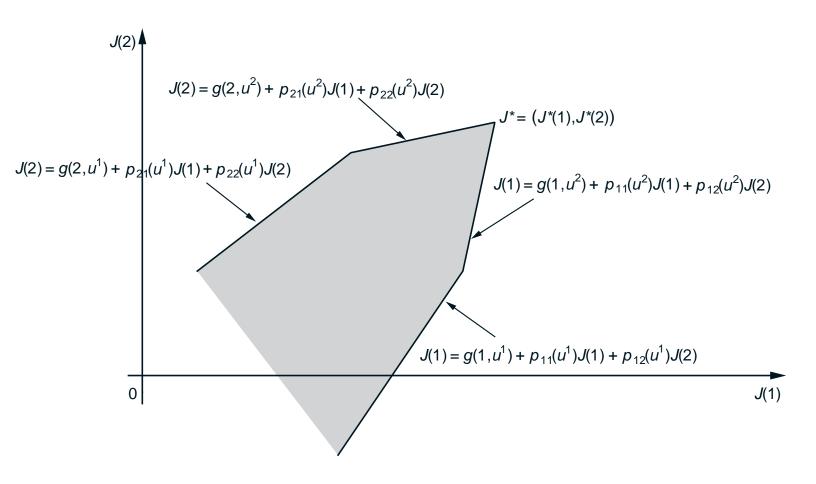
• Proof: If we use value iteration to generate a sequence of vectors $J_k = (J_k(1), \ldots, J_k(n))$ starting with a J_0 such that

$$J_0(i) \le \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^n p_{ij}(u) J_0(j) \right], \quad \forall i$$

Then, $J_k(i) \leq J_{k+1}(i)$ for all k and i (monotonicity of DP) and $J_k \to J^*$, so that $J_0(i) \leq J^*(i)$ for all i.

• So $J^* = (J^*(1), \dots, J^*(n))$ is the solution of the linear program of maximizing $\sum_{i=1}^n J(i)$ subject to the constraint (1).

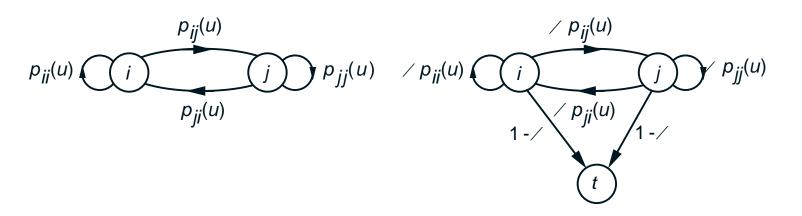
LINEAR PROGRAMMING (CONTINUED)



• Drawback: For large *n* the dimension of this program is very large. Furthermore, the number of constraints is equal to the number of state-control pairs.

DISCOUNTED PROBLEMS

- Assume a discount factor $\alpha < 1$.
- Conversion to an SSP problem.



• Value iteration converges to J^* for all initial J_0 :

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \forall i$$

• J^* is the unique solution of Bellman's equation:

$$J^*(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^n p_{ij}(u) J^*(j) \right], \ \forall \ i$$

DISCOUNTED PROBLEMS (CONTINUED)

 Policy iteration converges finitely to an optimal, and linear programming works.

• Example: Asset selling over an infinite horizon. If accepted, the offer x_k of period k, is invested at a rate of interest r.

• By depreciating the sale amount to period 0 dollars, we view $(1 + r)^{-k}x_k$ as the reward for selling the asset in period k at a price x_k , where r > 0 is the rate of interest. So the discount factor is $\alpha = 1/(1 + r)$.

• J^* is the unique solution of Bellman's equation

$$J^*(x) = \max\left[x, \frac{E\{J^*(w)\}}{1+r}\right]$$

• An optimal policy is to sell if and only if the current offer x_k is greater than or equal to $\bar{\alpha}$, where

$$\bar{\alpha} = \frac{E\{J^*(w)\}}{1+r}$$