6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

- Approximate DP for large/intractable problems
- Approximate policy iteration
- Simulation-based policy iteration
- Actor-critic interpretation
- Learning how to play tetris: A case study
- Approximate value iteration with function approximation

APPROX. POLICY ITERATION - DISCOUNTED CASE

- Suppose that the policy evaluation is approximate, according to,

$$
\max _{x}\left|J_{k}(x)-J_{\mu^{k}}(x)\right| \leq \delta, \quad k=0,1, \ldots
$$

and policy improvement is also approximate, according to,
$\max _{x}\left|\left(T_{\mu^{k+1}} J_{k}\right)(x)-\left(T J_{k}\right)(x)\right| \leq \epsilon, \quad k=0,1, \ldots$
where δ and ϵ are some positive scalars.

- Error Bound: The sequence $\left\{\mu^{k}\right\}$ generated by the approximate policy iteration algorithm satisfies

$$
\limsup _{k \rightarrow \infty} \max _{x \in S}\left(J_{\mu^{k}}(x)-J^{*}(x)\right) \leq \frac{\epsilon+2 \alpha \delta}{(1-\alpha)^{2}}
$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu^{k}}$ oscillate within a neighborhood of J^{*}.

APPROXIMATE POLICY ITERATION - SSP

- Suppose that the policy evaluation is approximate, according to,

$$
\max _{i=1, \ldots, n}\left|J_{k}(i)-J_{\mu^{k}}(i)\right| \leq \delta, \quad k=0,1, \ldots
$$

and policy improvement is also approximate, according to,
$\max _{i=1, \ldots, n}\left|\left(T_{\mu^{k+1}} J_{k}\right)(i)-\left(T J_{k}\right)(i)\right| \leq \epsilon, \quad k=0,1, \ldots$
where δ and ϵ are some positive scalars.

- Assume that all policies generated by the method are proper (they are guaranteed to be if $\delta=\epsilon=0$, but not in general).
- Error Bound: The sequence $\left\{\mu^{k}\right\}$ generated by approximate policy iteration satisfies
$\limsup _{k \rightarrow \infty} \max _{i=1, \ldots, n}\left(J_{\mu^{k}}(i)-J^{*}(i)\right) \leq \frac{n(1-\rho+n)(\epsilon+2 \delta)}{(1-\rho)^{2}}$
where $\rho=\max _{\substack{i=1, \ldots, n \\ \mu: \text { proper }}} P\left\{x_{n} \neq t \mid x_{0}=i, \mu\right\}$

SIMULATION-BASED POLICY EVALUATION

- Given μ, suppose we want to calculate J_{μ} by simulation.
- Generate by simulation sample costs. Approximation:

$$
J_{\mu}(i) \approx \frac{1}{M_{i}} \sum_{m=1}^{M_{i}} c(i, m)
$$

$c(i, m)$: m th sample cost starting from state i

- Approximating each $J_{\mu}(i)$ is impractical for a large state space. Instead, a "compact representation" $\tilde{J}_{\mu}(i, r)$ may be used, where r is a tunable parameter vector. We may calculate an optimal value r^{*} of r by a least squares fit

$$
r^{*}=\arg \min _{r} \sum_{i=1}^{n} \sum_{m=1}^{M_{i}}\left|c(i, m)-\tilde{J}_{\mu}(i, r)\right|^{2}
$$

- This idea is the starting point for more sophisticated simulation-related methods, to be discussed in the next lecture.

ACTOR-CRITIC INTERPRETATION

- The critic calculates approximately (e.g., using some form of a least squares fit) $J_{\mu^{k}}$ by processing state/sample cost pairs, which are generated by the actor by simulation
- Given the approximate $J_{\mu^{k}}$, the actor implements the improved policy $J_{\mu^{k+1}}$ by

$$
\left(T_{\mu^{k+1}} J_{k}\right)(i)=\left(T J_{k}\right)(i)
$$

EXAMPLE: TETRIS I

- The state consists of the board position i, and the shape of the current falling block (astronomically large number of states).
- It can be shown that all policies are proper!!
- Use a linear approximation architecture with feature extraction

$$
\tilde{J}(i, r)=\sum_{m=1}^{s} \phi_{m}(i) r_{m}
$$

where $r=\left(r_{1}, \ldots, r_{s}\right)$ is the parameter vector and $\phi_{m}(i)$ is the value of m th feature associated \mathbf{w} / i.

EXAMPLE: TETRIS II

- Approximate policy iteration was implemented with the following features:
- The height of each column of the wall
- The difference of heights of adjacent columns
- The maximum height over all wall columns
- The number of "holes" on the wall
- The number 1 (provides a constant offset)
- Playing data was collected for a fixed value of the parameter vector r (and the corresponding policy); the policy was approximately evaluated by choosing r to match the playing data in some least-squares sense.
- The method used for approximate policy evaluation was the λ-least squares policy evaluation method, to be described in the next lecture.
- See: Bertsekas and loffe, "Temporal DifferencesBased Policy Iteration and Applications in NeuroDynamic Programming," in

VALUE ITERATION W/ FUNCTION APPROXIMATION

- Suppose we use a linear approximation architecture $\tilde{J}(i, r)=\phi(i)^{\prime} r$, or

$$
\tilde{J}=\Phi r
$$

where $r=\left(r_{1}, \ldots, r_{s}\right)$ is a parameter vector, and Φ is a full rank $n \times s$ feature matrix.

- Approximate value iteration method: Start with initial guess r_{0}; given r_{t}, generate r_{t+1} by

$$
r_{t+1}=\arg \min _{r}\left\|\Phi r-T\left(\Phi r_{t}\right)\right\|
$$

where $\|\cdot\|$ is some norm.

- Questions: Does r_{t} converge to some r^{*} ? How close is Φr^{*} to J^{*} ?
- Convergence Result: If T is a contraction with respect to a weighted Euclidean norm ($\|J\|^{2}=$ $J^{\prime} D J$, where D is positive definite, symmetric), then r_{t} converges to (the unique) r^{*} satisfying

$$
r^{*}=\arg \min _{r}\left\|\Phi r-T\left(\Phi r^{*}\right)\right\|
$$

GEOMETRIC INTERPRETATION

- Consider the feature subspace

$$
S=\left\{\Phi r \mid r \in \Re^{s}\right\}
$$

of all cost function approximations that are linear combinations of the feature vectors. Let Π denote projection on this subspace.

- The approximate value iteration is

$$
r_{t+1}=\Pi T\left(\Phi r_{t}\right)=\arg \min _{r}\left\|\Phi r-T\left(\Phi r_{t}\right)\right\|
$$

and amounts to starting at the point Φr_{t} of S applying T to it and then projecting on S.

- Proof Idea: Since T is a contraction with respect to the norm of projection, and projection is nonexpansive, ΠT (which maps S to S) is a contraction (with respect to the same norm).

PROOF

- Consider two vectors Φr and Φr^{\prime} in S. The (Euclidean) projection is a nonexpansive mapping, so

$$
\left\|\Pi T(\Phi r)-\Pi T\left(\Phi r^{\prime}\right)\right\| \leq\left\|T(\Phi r)-T\left(\Phi r^{\prime}\right)\right\|
$$

Since T is a contraction mapping (with respect to the norm of projection),

$$
\left\|T(\Phi r)-T\left(\Phi r^{\prime}\right)\right\| \leq \beta\left\|\Phi r-\Phi r^{\prime}\right\|
$$

where $\beta \in(0,1)$ is the contraction modulus, so

$$
\left\|\Pi T(\Phi r)-\Pi T\left(\Phi r^{\prime}\right)\right\| \leq \beta\left\|\Phi r-\Phi r^{\prime}\right\|
$$

and it follows that ΠT is a contraction (with respect to the same norm and with the same modulus).

- In general, it is not clear how to obtain a Euclidean norm for which T is a contraction.
- Important fact: In the case where $T=T_{\mu}$, where μ is a stationary policy, T is a contraction for the norm $\|J\|^{2}=J^{\prime} D J$, where D is diagonal with the steady-state probabilities along the diagonal.

ERROR BOUND

- If T is a contraction with respect to a weighted Euclidean norm $\|\cdot\|$ with modulus β, and r^{*} is the limit of r_{t}, i.e.,

$$
r^{*}=\arg \min _{r}\left\|\Phi r-T\left(\Phi r^{*}\right)\right\|
$$

then

$$
\left\|\Phi r^{*}-J^{*}\right\| \leq \frac{\left\|\Pi J^{*}-J^{*}\right\|}{1-\beta}
$$

where J^{*} is the fixed point of T, and ΠJ^{*} is the projection of J^{*} on the feature subspace S (with respect to norm $\|\cdot\|)$.
Proof: Using the triangle inequality,

$$
\begin{aligned}
\left\|\Phi r^{*}-J^{*}\right\| & \leq\left\|\Phi r^{*}-\Pi J^{*}\right\|+\left\|\Pi J^{*}-J^{*}\right\| \\
& =\left\|\Pi T\left(\Phi r^{*}\right)-\Pi T\left(J^{*}\right)\right\|+\left\|\Pi J^{*}-J^{*}\right\| \\
& \leq \beta\left\|\Phi r^{*}-J^{*}\right\|+\left\|\Pi J^{*}-J^{*}\right\| \quad \text { Q.E.D. }
\end{aligned}
$$

- Note that the error $\left\|\Phi r^{*}-J^{*}\right\|$ is proportional to $\left\|\Pi J^{*}-J^{*}\right\|$, which can be viewed as the "power of the approximation architecture" (measures how well J^{*} can be represented by the chosen features).

