
6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

• Approximate DP for large/intractable problems

• Approximate policy iteration

• Simulation-based policy iteration

• Actor-critic interpretation

• Learning how to play tetris: A case study

• Approximate value iteration with function ap-
proximation

APPROX. POLICY ITERATION - DISCOUNTED CASE

• Suppose that the policy evaluation is approxi-
mate, according to,

max
x

|Jk(x) − Jµk(x)| ≤ δ, k = 0, 1, . . .

and policy improvement is also approximate, ac-
cording to,

max
x

|(Tµk+1Jk)(x)−(TJk)(x)| ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Error Bound: The sequence {µk} generated
by the approximate policy iteration algorithm sat-
isfies

lim sup
k→∞

max
x∈S

(
Jµk(x) − J∗(x)

) ≤ ε + 2αδ

(1 − α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

APPROXIMATE POLICY ITERATION - SSP

• Suppose that the policy evaluation is approxi-
mate, according to,

max
i=1,...,n

|Jk(i) − Jµk(i)| ≤ δ, k = 0, 1, . . .

and policy improvement is also approximate, ac-
cording to,

max
i=1,...,n

|(Tµk+1Jk)(i)−(TJk)(i)| ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Assume that all policies generated by the method
are proper (they are guaranteed to be if δ = ε = 0,
but not in general).

• Error Bound: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

max
i=1,...,n

(
Jµk(i)−J∗(i)

) ≤ n(1 − ρ + n)(ε + 2δ)
(1 − ρ)2

where ρ = max i=1,...,n
µ: proper

P{xn �= t |x0 = i, µ}

SIMULATION-BASED POLICY EVALUATION

• Given µ, suppose we want to calculate Jµ by
simulation.

• Generate by simulation sample costs. Approx-
imation:

Jµ(i) ≈ 1
Mi

Mi∑

m=1

c(i, m)

c(i, m) : mth sample cost starting from state i

• Approximating each Jµ(i) is impractical for a
large state space. Instead, a “compact represen-
tation” J̃µ(i, r) may be used, where r is a tunable
parameter vector. We may calculate an optimal
value r∗ of r by a least squares fit

r∗ = arg min
r

n∑

i=1

Mi∑

m=1

∣∣c(i, m) − J̃µ(i, r)
∣∣2

• This idea is the starting point for more sophisti-
cated simulation-related methods, to be discussed
in the next lecture.

ACTOR-CRITIC INTERPRETATION

System

Controller
(Actor)

Policy Evaluation
(Critic)

J µk

µk+1(i) i

• The critic calculates approximately (e.g., using
some form of a least squares fit) Jµk by processing
state/sample cost pairs, which are generated by
the actor by simulation

• Given the approximate Jµk , the actor imple-
ments the improved policy Jµk+1 by

(Tµk+1Jk)(i) = (TJk)(i)

EXAMPLE: TETRIS I

• The state consists of the board position i, and
the shape of the current falling block (astronomi-
cally large number of states).

• It can be shown that all policies are proper!!

• Use a linear approximation architecture with
feature extraction

J̃(i, r) =
s∑

m=1

φm(i)rm,

where r = (r1, . . . , rs) is the parameter vector and
φm(i) is the value of mth feature associated w/ i.

EXAMPLE: TETRIS II

• Approximate policy iteration was implemented
with the following features:

− The height of each column of the wall

− The difference of heights of adjacent columns

− The maximum height over all wall columns

− The number of “holes” on the wall

− The number 1 (provides a constant offset)

• Playing data was collected for a fixed value of
the parameter vector r (and the corresponding
policy); the policy was approximately evaluated
by choosing r to match the playing data in some
least-squares sense.

• The method used for approximate policy eval-
uation was the λ-least squares policy evaluation
method , to be described in the next lecture.

• See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” in

http://www.mit.edu:8001//people/dimitrib/publ.html

VALUE ITERATION W/ FUNCTION APPROXIMATION

• Suppose we use a linear approximation archi-
tecture J̃(i, r) = φ(i)′r, or

J̃ = Φr

where r = (r1, . . . , rs) is a parameter vector, and
Φ is a full rank n × s feature matrix.

• Approximate value iteration method: Start
with initial guess r0; given rt, generate rt+1 by

rt+1 = arg min
r

∥∥Φr − T (Φrt)
∥∥

where ‖ · ‖ is some norm.

• Questions: Does rt converge to some r∗? How
close is Φr∗ to J∗?

• Convergence Result: If T is a contraction with
respect to a weighted Euclidean norm (‖J‖2 =
J ′DJ , where D is positive definite, symmetric),
then rt converges to (the unique) r∗ satisfying

r∗ = arg min
r

∥∥Φr − T (Φr∗)
∥∥

GEOMETRIC INTERPRETATION

• Consider the feature subspace

S = {Φr | r ∈ �s}
of all cost function approximations that are linear
combinations of the feature vectors. Let Π denote
projection on this subspace.

• The approximate value iteration is

rt+1 = ΠT (Φrt) = arg min
r

∥∥Φr − T (Φrt)
∥∥

and amounts to starting at the point Φrt of S ap-
plying T to it and then projecting on S.

• Proof Idea: Since T is a contraction with re-
spect to the norm of projection, and projection is
nonexpansive, ΠT (which maps S to S) is a con-
traction (with respect to the same norm).

Feature Subspace S

yr

yr’

w(yr’)

w(yr)

tw(yr’)

0

tw(yr)

PROOF

• Consider two vectors Φr and Φr′ in S. The (Eu-
clidean) projection is a nonexpansive mapping, so

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ ‖T (Φr) − T (Φr′)‖

Since T is a contraction mapping (with respect to
the norm of projection),

‖T (Φr) − T (Φr′)‖ ≤ β‖Φr − Φr′‖

where β ∈ (0, 1) is the contraction modulus, so

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ β‖Φr − Φr′‖

and it follows that ΠT is a contraction (with respect
to the same norm and with the same modulus).

• In general, it is not clear how to obtain a Eu-
clidean norm for which T is a contraction.

• Important fact: In the case where T = Tµ,
where µ is a stationary policy, T is a contraction for
the norm ‖J‖2 = J ′DJ , where D is diagonal with
the steady-state probabilities along the diagonal.

ERROR BOUND

• If T is a contraction with respect to a weighted
Euclidean norm ‖ · ‖ with modulus β, and r∗ is the
limit of rt, i.e.,

r∗ = arg min
r

∥∥Φr − T (Φr∗)
∥∥

then

‖Φr∗ − J∗‖ ≤ ‖ΠJ∗ − J∗‖
1 − β

where J∗ is the fixed point of T , and ΠJ∗ is the
projection of J∗ on the feature subspace S (with
respect to norm ‖ · ‖).
Proof: Using the triangle inequality,

‖Φr∗ − J∗‖ ≤ ‖Φr∗ − ΠJ∗‖ + ‖ΠJ∗ − J∗‖
= ‖ΠT (Φr∗) − ΠT (J∗)‖ + ‖ΠJ∗ − J∗‖
≤ β‖Φr∗ − J∗‖ + ‖ΠJ∗ − J∗‖ Q.E.D.

• Note that the error ‖Φr∗−J∗‖ is proportional to
‖ΠJ∗ − J∗‖, which can be viewed as the “power
of the approximation architecture” (measures how
well J∗ can be represented by the chosen fea-
tures).

