6.231 DYNAMIC PROGRAMMING
LECTURE 22
LECTURE OUTLINE

e Approximate DP for large/intractable problems
e Approximate policy iteration

e Simulation-based policy iteration

e Actor-critic interpretation

e Learning how to play tetris: A case study

e Approximate value iteration with function ap-
proximation



APPROX. POLICY ITERATION - DISCOUNTED CASE

e Suppose that the policy evaluation is approxi-
mate, according to,

max\Jk(x)—Jk(:E)\<5, k:O,l,...

M —_—

and policy improvement is also approximate, ac-
cording to,

mgx\(TMkHJ/{)(:C)—(TJk)(ZU)’ < ¢, k=20,1,...

where 6 and ¢ are some positive scalars.

e Error Bound: The sequence {u*} generated
by the approximate policy iteration algorithm sat-
Isfies

€ + 20

— (1 —a)?

lizrisolip I;lggi(JMk (z) — J*(x))

e Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J = oscillate within a neighborhood of .J*.



APPROXIMATE POLICY ITERATION - SSP

e Suppose that the policy evaluation is approxi-
mate, according to,

‘max |Jg(i) — J x(2)] <9, k=0,1,...

and policy improvement is also approximate, ac-
cording to,

max |
1=1,..., n

(Tuk+1Jk)(i)—(T{]k)(i)’ < €, k=0,1,...

where 6 and ¢ are some positive scalars.

e Assume that all policies generated by the method
are proper (they are guaranteedtobe if 6 = ¢ = 0,
but not in general).

e Error Bound: The sequence {u*} generated
by approximate policy iteration satisfies

n(1— p+n)(e+ 26)

limsup max (JMk (i)—J*(1)) <

L—osoo =1,...,n

(1 —p)?

where p = maxi=1,..n P{xn #t|x0 =1, 1}
L: proper



SIMULATION-BASED POLICY EVALUATION

e Given p, suppose we want to calculate J,, by
simulation.

e Generate by simulation sample costs. Approx-

Imation:
M;

Ty~ 5 3 clism)

m=1

c(i,m) : mth sample cost starting from state ¢

e Approximating each J,(¢) is impractical for a
large state space. Instead, a “compact represen-
tation” J,,(i,7) may be used, where 7 is a tunable
parameter vector. We may calculate an optimal
value r* of r by a least squares fit

n M;
r* = argminz Z ‘c(i,m) - jﬂ(ivr)‘z

1=1 m=1

e This idea is the starting point for more sophisti-
cated simulation-related methods, to be discussed
In the next lecture.



ACTOR-CRITIC INTERPRETATION
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e The critic calculates approximately (e.g., using
some form of a least squaresfit) J ,» by processing
state/sample cost pairs, which are generated by
the actor by simulation

e Civen the approximate J x, the actor imple-
ments the improved policy J, x+1 by

(Tyk1 i) (1) = (T'Jx)(7)



EXAMPLE: TETRIS |

e The state consists of the board position 7, and
the shape of the current falling block (astronomi-
cally large number of states).

e It can be shown that all policies are proper!!

e Use a linear approximation architecture with
feature extraction

J(@i,r) =Y dwm(i)rm,

where r = (r1, ..., rs) is the parameter vector and
®m () 1S the value of mth feature associated w/ .



EXAMPLE: TETRIS I

e Approximate policy iteration was implemented
with the following features:

— The height of each column of the wall
— The difference of heights of adjacent columns
— The maximum height over all wall columns
— The number of “holes” on the wall
— The number 1 (provides a constant offset)
e Playing data was collected for a fixed value of
the parameter vector r (and the corresponding
policy); the policy was approximately evaluated

by choosing r to match the playing data in some
least-squares sense.

e The method used for approximate policy eval-
uation was the \-least squares policy evaluation
method, to be described in the next lecture.

e See: Bertsekas and loffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” in

http://www.mit.edu:8001//people/dimitrib/publ.html



VALUE ITERATION W/ FUNCTION APPROXIMATION

e Suppose we use a linear approximation archi-
tecture J(i,r) = ¢(i)'r, or

J = ®r
where r = (r1,...,7s) IS @ parameter vector, and

® I1s a full rank n x s feature matrix.

e Approximate value iteration method: Start
with initial guess ro; given r;, generate r; 1 by

rii1 = arg minHCIDT — T(CIDfrt)H

where || - || is some norm.

e Questions: Does r; converge to some r*? How
close is &r* to J*?

e Convergence Result: If T'is a contraction with
respect to a weighted Euclidean norm (||J||? =
J'DJ, where D is positive definite, symmetric),
then r, converges to (the unique) r* satisfying

r* = arg min||®r — T'(Pr*)



GEOMETRIC INTERPRETATION

e Consider the feature subspace
S ={dr|r € Rs}

of all cost function approximations that are linear
combinations of the feature vectors. Let II denote
projection on this subspace.

e The approximate value iteration is

riv1 = T (Pry) = arg minHCI)r — T((I)Tt)H

and amounts to starting at the point &, of .S ap-
plying T' to it and then projecting on S.

e Proof Idea: Since 7' Is a contraction with re-
spect to the norm of projection, and projection is
nonexpansive, IIT (which maps S to S) is a con-
traction (with respect to the same norm).
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PROOF

e Consider two vectors &r and ¢r’ in S. The (Eu-
clidean) projection is a nonexpansive mapping, so

T (D7) = HT(@r)|| < [|T(®r) = T(Pr)]

Since T' is a contraction mapping (with respect to
the norm of projection),

T (®r) = T(®r')|| < B]|@r — Or|

where § € (0,1) is the contraction modulus, so

T (@r) — IIT (D7) || < G| Pr — 7|

and it follows that II'7" is a contraction (with respect
to the same norm and with the same modulus).

e In general, it is not clear how to obtain a Eu-
clidean norm for which 7' I1s a contraction.

e Important fact: In the case where T' = T},
where 1 IS a stationary policy, T’ is a contraction for
the norm ||J||2 = J’DJ, where D is diagonal with
the steady-state probabilities along the diagonal.



ERROR BOUND

e If T"is a contraction with respect to a weighted
Euclidean norm || - || with modulus 3, and r* is the
limit of r¢, I.e.,

r* = arg min||®r — T'(dr*)

then
[TTJ* — J*|

1-p
where J* is the fixed point of 7', and IIJ* Is the
projection of J* on the feature subspace S (with

respect to norm || - []).
Proof: Using the triangle inequality,

@ — o) < |

|Pr* — T < [[@r* = TLJ*|| + [[TLJ* — J*|

= [IT(®r*) — T (J*)|| + [[TLJ* — J~|]

< B||®r* — J*|| + [|[IIJ* — J*|| Q.E.D.
e Note that the error ||®r* — J*|| is proportional to
|ITJ* — J*||, which can be viewed as the “power
of the approximation architecture” (measures how

well J* can be represented by the chosen fea-
tures).




