6.231 DYNAMIC PROGRAMMING
LECTURE 3
LECTURE OUTLINE

Deterministic finite-state DP problems
Backward shortest path algorithm
Forward shortest path algorithm
Shortest path examples

Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

Initial State

Stage 0

Stage 1

Stage 2

e States <==> Nodes

e Controls <==> Arcs

Terminal Arcs
with Cost Equal
to Terminal Cost

Artificial Terminal
Node

. Stage N -1

Stage N

e Control sequences (open-loop) <==> paths from
Initial state to terminal states

o afj: Cost of transition from state : € Sj, to state
j € Skyq1 attime k (view it as “length” of the arc)

e al}: Terminal cost of state i € Sy

e Cost of control sequence <==> Cost of the cor-
responding path (view it as “length” of the path)

BACKWARD AND FORWARD DP ALGORITHMS

e DP algorithm:
JN(i) - ag, 1 € SN,

Je(i) = min |a¥+Jk1(j)], i € Sk, k=0,...,N-L1.
JESk+1

The optimal costis Jy(s) and is equal to the length

of the shortest path from s to ¢.

e Observation: An optimal path s — ¢ Is also
an optimal path ¢t — s In a “reverse” shortest
path problem where the direction of each arc is
reversed and its length is left unchanged.

e Forward DP algorithm (= backward DP algo-
rithm for the reverse problem):

In(j) =a%;, je€ S,

577

Jk(j) = min [afﬁ"‘“ + Jer1(i)], J € Sn—p+1
1ESN_L
The optimal cost is Jo(t) = min;esy [al} + Ji(4)].

o View J.(j) as optimal cost-to-arrive to state j
from initial state s.

A NOTE ON FORWARD DP ALGORITHMS

e There is no forward DP algorithm for stochastic
problems.

e Mathematically, for stochastic problems, we can-
not restrict ourselves to open-loop sequences, so
the shortest path viewpoint fails.

e Conceptually, in the presence of uncertainty,
the concept of “optimal-cost-to-arrive” at a state
x. does not make sense. The reason is that it may
be impossible to guarantee (with prob. 1) that any
given state can be reached.

e By contrast, even in stochastic problems, the
concept of “optimal cost-to-go” from any state xy,
makes clear sense.

GENERIC SHORTEST PATH PROBLEMS

e {1,2,...,N,t}: nodes of a graph (¢. the desti-
nation)

e a;;: cost of moving from node 7 to node j

e Find a shortest (minimum cost) path from each
node ¢ to node ¢

e Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than NV
moves

e We formulate the problem as one where we
require exactly N moves but allow degenerate
moves from a node ; to itself with cost a;; = 0.

Ji (1) = optimal cost of getting fromitotin N —k moves

Jo(7): Cost of the optimal path from ¢ to ¢.
e DP algorithm:

Jk(z) :jzrlnlnN[aZJ_l_Jk—l-l(])]?]{7:07177N_27

with JN_l(i) =ait, 1 =1,2,...,N.

Destination

EXAMPLE

State i A
5 L
4 |
3}
2 |
1k
| | | | -
0 1 2 3 Stage k
(b)
., IV,
k=0,1,... N=2

STATE ESTIMATION / HIDDEN MARKOV MODELS

e Markov chain with transition probabilities p;;
e State transitions are hidden from view

e For each transition, we get an (independent)
observation

e 1r(z;4,7): Prob. the observation takes value 2
when the state transition is from ¢ to 5

e Trajectory estimation problem: Given the ob-
servation sequence Zy = {z1,22,...,2n}, What
is the “most likely” state transition sequence Xy =
{Zo,21,...,2n} [One that maximizes p(Xy | Zn)
over all Xy = {a:o,:vl, ce ,.CEN}].

VITERBI ALGORITHM

e We have

p(Xn | Zy) = P22

p(ZnN)

where p(Xn, Zn) and p(Zy) are the unconditional
probabilities of occurrence of (Xy, Zn) and Zy

e Maximizing p(Xx | Zn) is equivalent with max-
imizing In(p(Xn, Zn))

e \We have

N

p(XN, ZN) — Txq H pxk—lxkr(zk;xk’—l7xk)
k=1

so the problem is equivalent to

N

minimize — In(7wz,) — Z I (pay 1207 (285 Tho1, Tk))
k=1
over all possible sequences {zo,z1,...,zN}.

e This Is a shortest path problem

GENERAL SHORTEST PATH ALGORITHMS

e There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
finite-state problems

e They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

e This is essential for problems with HUGE state
spaces. Such problems arise for example in com-
binatorial optimization

A Origin Node s

5 1 15
AB AC AD
20 4 20 3 4 3
ABC ABD ACB ACD ADB ADC
3 3 4 4 20 20
ABCD ABDC ACBD ACDB ADBC ADCB
1 15 5 1
15 5
Artificial Terminal Node t
511115
5 20| 4
1120 3

15|14 |3

LABEL CORRECTING METHODS

e Given: Origin s, destination ¢, lengths a;; > 0.

e Idea is to progressively discover shorter paths
from the origin s to every other node ¢

e Notation:
— d; (label of 7): Length of the shortest path
found (initially ds = 0, d; = oo for ¢ # s)
— UPPER: The label d; of the destination

— OPEN list: Contains nodes that are currently
active in the sense that they are candidates
for further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node ¢
from OPEN and for each child 5 of ¢, do step 2.

Step 2 (Node Insertion Test): If d; + a;; <
min{d,;, UPPER}, set d; = d; 4+ a;; and set i to
be the parent of 5. In addition, If y # ¢, place 5 In
OPEN if it is not already in OPEN, while if 5 = ¢,
set UPPER to the new value d; + a;: of d;.

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1.

VISUALIZATION/EXPLANATION

e Given: Origin s, destination ¢, lengths a;; > 0.

e d; (label of 2): Length of the shortest path found
thus far (initially ds = 0, d; = oo for ¢ # s). The
label d; is implicitly associated with an s — 7 path.

e UPPER: The label d; of the destination

e OPEN list: Contains “active” nodes (initially
OPEN={s})

Is d; + aj < UPPER ?
(Does the path s --> i --> |

have a chance to be part
of a shorter s --> t path ?)
Set dj = di + aij |
INSERT YES
v IS dl + aij < dJ ?

OO O : /:QQ} (Isthe path s --> i --> |
~0

YES

|O better than the
OPEN current path s --> ?)

REMOVE

EXAMPLE

1 A Origin Node s

5 1 15
2| AB 7| AC
20 4 20 3
3| ABC 5| ABD ACB ACD
3 3 4 4
4 |ABCD 6 | ABDC ACBD 9| ACDB
1 15 5 1

15

Artificial Terminal Node t

10| AD
4 3
ADB ADC
20 20
ADBC ADCB

Iter. No.

© 00 J O O =~ W N+~ O

—
o

7,
8,
9,

© 00 N O O = W N

[
@)

1

2, 7,10

3,5, 7, 10

4,5, 7, 10
5,7, 10
6, 7, 10

10
10
10

10
Empty

Node Exiting OPEN | OPEN after Iteration

UPPER

43
43
13
13
13
13
13

e Note that some nodes never entered OPEN

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from

the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion.

Proof: (1) Each time a node ; enters OPEN,
its label is decreased and becomes equal to the
length of some path from s to j

(2) The number of possible distinct path lengths
IS finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s,j1,J2,---,Jk,t) be a shortest path and
let d* be the shortest distance. If UPPER > d*
at termination, UPPER will also be larger than the
length of all the paths (s, j1,...,7m),m=1,...,k,
throughout the algorithm. Hence, node j; will
never enter the OPEN list with d;, equal to the
shortest distance from s to 5. Similarly node j,_1
will never enter the OPEN list with d;, _, equal to
the shortest distance from s to j._;. Continue to
71 to get a contradiction.

