
6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

- Deterministic finite-state DP problems
- Backward shortest path algorithm
- Forward shortest path algorithm
- Shortest path examples
- Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

- States <==> Nodes
- Controls <==> Arcs
- Control sequences (open-loop) <==> paths from initial state to terminal states
- a_{ij}^k : Cost of transition from state $i \in S_k$ to state $j \in S_{k+1}$ at time k (view it as "length" of the arc)
- a_{it}^N : Terminal cost of state $i \in S_N$
- Cost of control sequence <==> Cost of the corresponding path (view it as "length" of the path)

BACKWARD AND FORWARD DP ALGORITHMS

DP algorithm:

$$J_N(i) = a_{it}^N, \quad i \in S_N,$$

$$J_k(i) = \min_{j \in S_{k+1}} [a_{ij}^k + J_{k+1}(j)], i \in S_k, k = 0, \dots, N-1.$$

The optimal cost is $J_0(s)$ and is equal to the length of the shortest path from s to t.

- Observation: An optimal path $s \to t$ is also an optimal path $t \to s$ in a "reverse" shortest path problem where the direction of each arc is reversed and its length is left unchanged.
- Forward DP algorithm (= backward DP algorithm for the reverse problem):

$$\tilde{J}_N(j) = a_{sj}^0, \quad j \in S_1,$$

$$\tilde{J}_k(j) = \min_{i \in S_{N-k}} \left[a_{ij}^{N-k} + \tilde{J}_{k+1}(i) \right], \ j \in S_{N-k+1}$$

The optimal cost is $\tilde{J}_0(t) = \min_{i \in S_N} \left[a_{it}^N + \tilde{J}_1(i) \right]$.

• View $\tilde{J}_k(j)$ as $optimal\ cost\text{-}to\text{-}arrive$ to state j from initial state s.

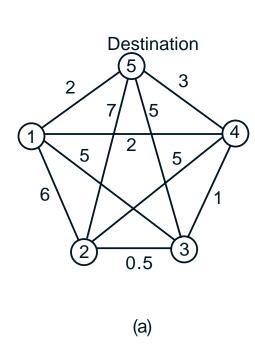
A NOTE ON FORWARD DP ALGORITHMS

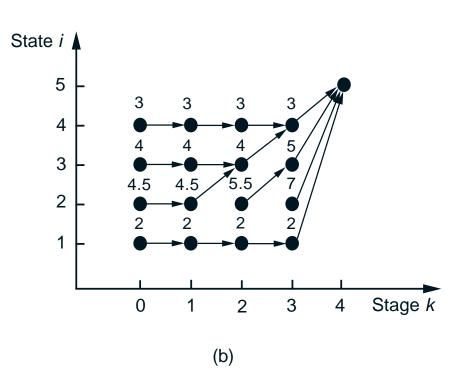
- There is no forward DP algorithm for stochastic problems.
- Mathematically, for stochastic problems, we cannot restrict ourselves to open-loop sequences, so the shortest path viewpoint fails.
- Conceptually, in the presence of uncertainty, the concept of "optimal-cost-to-arrive" at a state x_k does not make sense. The reason is that it may be impossible to guarantee (with prob. 1) that any given state can be reached.
- By contrast, even in stochastic problems, the concept of "optimal cost-to-go" from any state x_k makes clear sense.

GENERIC SHORTEST PATH PROBLEMS

- $\{1, 2, \dots, N, t\}$: nodes of a graph (t: the destination)
- a_{ij} : cost of moving from node i to node j
- Find a shortest (minimum cost) path from each node i to node t
- \bullet Assumption: All cycles have nonnegative length. Then an optimal path need not take more than N moves
- We formulate the problem as one where we require exactly N moves but allow degenerate moves from a node i to itself with cost $a_{ii} = 0$.

 $J_k(i) = \text{optimal cost of getting from } i \text{ to } t \text{ in } N-k \text{ moves}$

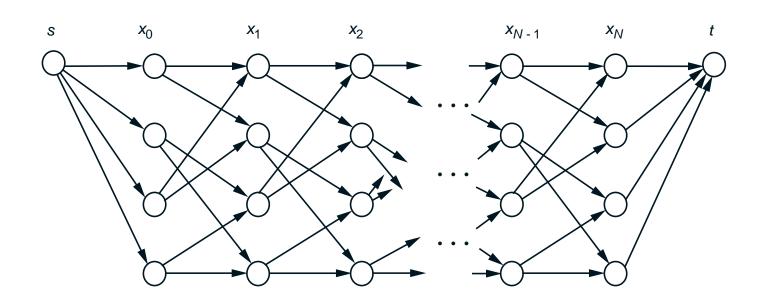

 $J_0(i)$: Cost of the optimal path from i to t.


DP algorithm:

$$J_k(i) = \min_{j=1,\dots,N} [a_{ij} + J_{k+1}(j)], \qquad k = 0, 1, \dots, N-2,$$

with
$$J_{N-1}(i) = a_{it}$$
, $i = 1, 2, ..., N$.

EXAMPLE



$$J_{N-1}(i) = a_{it}, \qquad i = 1, 2, \dots, N,$$

$$J_k(i) = \min_{j=1,\dots,N} [a_{ij} + J_{k+1}(j)], \qquad k = 0, 1, \dots, N-2.$$

STATE ESTIMATION / HIDDEN MARKOV MODELS

- Markov chain with transition probabilities p_{ij}
- State transitions are hidden from view
- For each transition, we get an (independent) observation
- r(z; i, j): Prob. the observation takes value z when the state transition is from i to j
- Trajectory estimation problem: Given the observation sequence $Z_N = \{z_1, z_2, \dots, z_N\}$, what is the "most likely" state transition sequence $\hat{X}_N = \{\hat{x}_0, \hat{x}_1, \dots, \hat{x}_N\}$ [one that maximizes $p(X_N \mid Z_N)$ over all $X_N = \{x_0, x_1, \dots, x_N\}$].

VITERBI ALGORITHM

We have

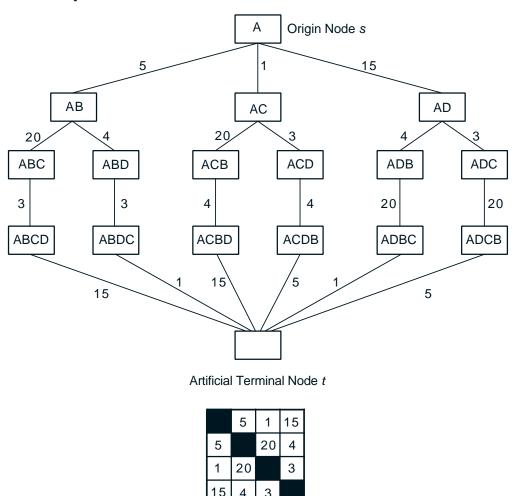
$$p(X_N \mid Z_N) = \frac{p(X_N, Z_N)}{p(Z_N)}$$

where $p(X_N, Z_N)$ and $p(Z_N)$ are the unconditional probabilities of occurrence of (X_N, Z_N) and Z_N

- Maximizing $p(X_N \,|\, Z_N)$ is equivalent with maximizing $\ln(p(X_N,Z_N))$
- We have

$$p(X_N, Z_N) = \pi_{x_0} \prod_{k=1}^N p_{x_{k-1}x_k} r(z_k; x_{k-1}, x_k)$$

so the problem is equivalent to


minimize
$$-\ln(\pi_{x_0}) - \sum_{k=1}^{N} \ln(p_{x_{k-1}x_k}r(z_k; x_{k-1}, x_k))$$

over all possible sequences $\{x_0, x_1, \dots, x_N\}$.

This is a shortest path problem

GENERAL SHORTEST PATH ALGORITHMS

- There are many nonDP shortest path algorithms. They can all be used to solve deterministic finite-state problems
- They may be preferable than DP if they avoid calculating the optimal cost-to-go of EVERY state
- This is essential for problems with HUGE state spaces. Such problems arise for example in combinatorial optimization

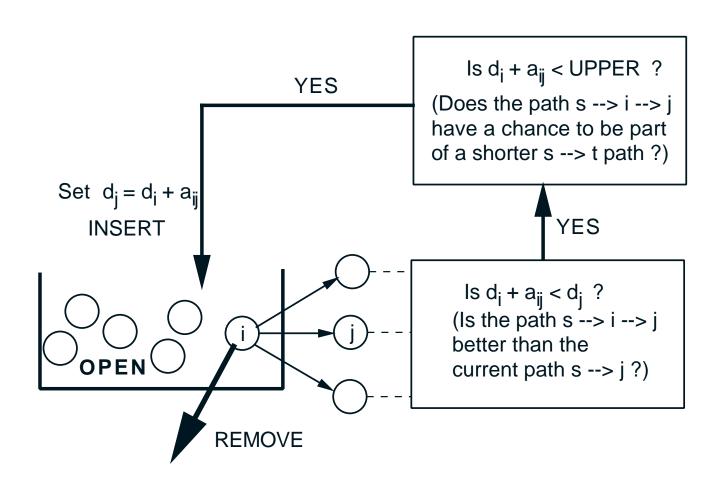
LABEL CORRECTING METHODS

- Given: Origin s, destination t, lengths $a_{ij} \geq 0$.
- Idea is to progressively discover shorter paths from the origin s to every other node i

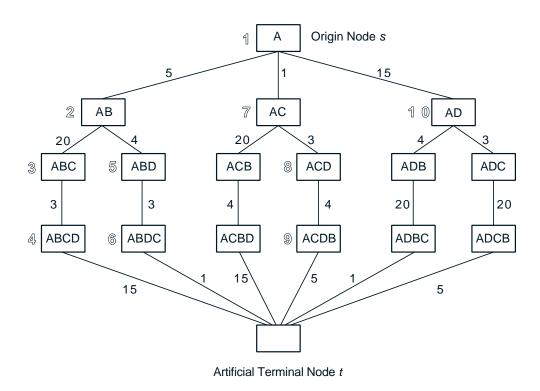
• Notation:

- d_i (label of i): Length of the shortest path found (initially $d_s = 0$, $d_i = \infty$ for $i \neq s$)
- UPPER: The label d_t of the destination
- OPEN list: Contains nodes that are currently active in the sense that they are candidates for further examination (initially OPEN= $\{s\}$)

Label Correcting Algorithm


Step 1 (Node Removal): Remove a node i from OPEN and for each child j of i, do step 2.

Step 2 (Node Insertion Test): If $d_i + a_{ij} < \min\{d_j, \mathsf{UPPER}\}$, set $d_j = d_i + a_{ij}$ and set i to be the parent of j. In addition, if $j \neq t$, place j in OPEN if it is not already in OPEN, while if j = t, set UPPER to the new value $d_i + a_{it}$ of d_t .


Step 3 (Termination Test): If OPEN is empty, terminate; else go to step 1.

VISUALIZATION/EXPLANATION

- Given: Origin s, destination t, lengths $a_{ij} \geq 0$.
- d_i (label of i): Length of the shortest path found thus far (initially $d_s = 0$, $d_i = \infty$ for $i \neq s$). The label d_i is implicitly associated with an $s \to i$ path.
- UPPER: The label d_t of the destination
- OPEN list: Contains "active" nodes (initially OPEN= $\{s\}$)

EXAMPLE

OPEN after Iteration Iter. No. Node Exiting OPEN **UPPER** ∞ ∞ 2, 7,10 ∞ 3, 5, 7, 10 ∞ 4, 5, 7, 10 5, 7, 10 6, 7, 10 7, 10 8, 10 9, 10 Empty

Note that some nodes never entered OPEN

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from the origin to the destination, the label correcting algorithm terminates with UPPER equal to the shortest distance from the origin to the destination.

- **Proof:** (1) Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j
- (2) The number of possible distinct path lengths is finite, so the number of times a node can enter OPEN is finite, and the algorithm terminates
- (3) Let $(s, j_1, j_2, \ldots, j_k, t)$ be a shortest path and let d^* be the shortest distance. If UPPER $> d^*$ at termination, UPPER will also be larger than the length of all the paths (s, j_1, \ldots, j_m) , $m = 1, \ldots, k$, throughout the algorithm. Hence, node j_k will never enter the OPEN list with d_{j_k} equal to the shortest distance from s to j_k . Similarly node j_{k-1} will never enter the OPEN list with $d_{j_{k-1}}$ equal to the shortest distance from s to j_{k-1} . Continue to j_1 to get a contradiction.