6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

- Stopping problems
- Scheduling problems
- Other applications

PURE STOPPING PROBLEMS

- Two possible controls:
- Stop (incur a one-time stopping cost, and move to cost-free and absorbing stop state)
- Continue [using $x_{k+1}=f_{k}\left(x_{k}, w_{k}\right)$ and incurring the cost-per-stage]
- Each policy consists of a partition of the set of states x_{k} into two regions:
- Stop region, where we stop
- Continue region, where we continue

EXAMPLE: ASSET SELLING

- A person has an asset, and at $k=0,1, \ldots, N-1$ receives a random offer w_{k}
- May accept w_{k} and invest the money at fixed rate of interest r, or reject w_{k} and wait for w_{k+1}. Must accept the last offer w_{N-1}
- DP algorithm (x_{k} : current offer, T : stop state):

$$
\begin{gathered}
J_{N}\left(x_{N}\right)= \begin{cases}x_{N} & \text { if } x_{N} \neq T, \\
0 & \text { if } x_{N}=T,\end{cases} \\
J_{k}\left(x_{k}\right)= \begin{cases}\max \left[(1+r)^{N-k} x_{k}, E\left\{J_{k+1}\left(w_{k}\right)\right\}\right] & \text { if } x_{k} \neq T, \\
0 & \text { if } x_{k}=T .\end{cases}
\end{gathered}
$$

- Optimal policy;
accept the offer $x_{k} \quad$ if $x_{k}>\alpha_{k}$,
reject the offer x_{k} if $x_{k}<\alpha_{k}$,
where

$$
\alpha_{k}=\frac{E\left\{J_{k+1}\left(w_{k}\right)\right\}}{(1+r)^{N-k}} .
$$

FURTHER ANALYSIS

- Can show that $\alpha_{k} \geq \alpha_{k+1}$ for all k
- Proof: Let $V_{k}\left(x_{k}\right)=J_{k}\left(x_{k}\right) /(1+r)^{N-k}$ for $x_{k} \neq$ T. Then the DP algorithm is $V_{N}\left(x_{N}\right)=x_{N}$ and

$$
V_{k}\left(x_{k}\right)=\max \left[x_{k},(1+r)^{-1} \underset{w}{E}\left\{V_{k+1}(w)\right\}\right] .
$$

We have $\alpha_{k}=E_{w}\left\{V_{k+1}(w)\right\} /(1+r)$, so it is enough to show that $V_{k}(x) \geq V_{k+1}(x)$ for all x and k. Start with $V_{N-1}(x) \geq V_{N}(x)$ and use the monotonicity property of DP.

- We can also show that $\alpha_{k} \rightarrow \bar{a}$ as $k \rightarrow-\infty$. Suggests that for an infinite horizon the optimal policy is stationary.

GENERAL STOPPING PROBLEMS

- At time k, we may stop at cost $t\left(x_{k}\right)$ or choose a control $u_{k} \in U\left(x_{k}\right)$ and continue

$$
J_{N}\left(x_{N}\right)=t\left(x_{N}\right)
$$

$$
\begin{gathered}
J_{k}\left(x_{k}\right)=\min \left[t\left(x_{k}\right), \min _{u_{k} \in U\left(x_{k}\right)} E\left\{g\left(x_{k}, u_{k}, w_{k}\right)\right.\right. \\
\left.\left.+J_{k+1}\left(f\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}\right]
\end{gathered}
$$

- Optimal to stop at time k for states x in the set
$T_{k}=\left\{x \mid t(x) \leq \min _{u \in U(x)} E\left\{g(x, u, w)+J_{k+1}(f(x, u, w))\right\}\right\}$
- Since $J_{N-1}(x) \leq J_{N}(x)$, we have $J_{k}(x) \leq$ $J_{k+1}(x)$ for all k, so

$$
T_{0} \subset \cdots \subset T_{k} \subset T_{k+1} \subset \cdots \subset T_{N-1}
$$

- Interesting case is when all the T_{k} are equal (to T_{N-1}, the set where it is better to stop than to go one step and stop). Can be shown to be true if
$f(x, u, w) \in T_{N-1}, \quad$ for all $x \in T_{N-1}, u \in U(x), w$.

SCHEDULING PROBLEMS

- Set of tasks to perform, the ordering is subject to optimal choice.
- Costs depend on the order
- There may be stochastic uncertainty, and precedence and resource availability constraints
- Some of the hardest combinatorial problems are of this type (e.g., traveling salesman, vehicle routing, etc.)
- Some special problems admit a simple quasianalytical solution method
- Optimal policy has an "index form", i.e., each task has an easily calculable "index", and it is optimal to select the task that has the maximum value of index (multi-armed bandit problems - to be discussed later)
- Some problems can be solved by an "interchange argument"(start with some schedule, interchange two adjacent tasks, and see what happens)

EXAMPLE: THE QUIZ PROBLEM

- Given a list of N questions. If question i is answered correctly (given probability p_{i}), we receive reward R_{i}; if not the quiz terminates. Choose order of questions to maximize expected reward.
- Let i and j be the k th and $(k+1)$ st questions in an optimally ordered list

$$
\begin{aligned}
& L=\left(i_{0}, \ldots, i_{k-1}, i, j, i_{k+2}, \ldots, i_{N-1}\right) \\
& E\{\text { reward of } L\}=E\left\{\text { reward of }\left\{i_{0}, \ldots, i_{k-1}\right\}\right\} \\
& +p_{i_{0}} \cdots p_{i_{k-1}}\left(p_{i} R_{i}+p_{i} p_{j} R_{j}\right) \\
& +p_{i_{0}} \cdots p_{i_{k-1}} p_{i} p_{j} E\left\{\text { reward of }\left\{i_{k+2}, \ldots, i_{N-1}\right\}\right\}
\end{aligned}
$$

Consider the list with i and j interchanged

$$
L^{\prime}=\left(i_{0}, \ldots, i_{k-1}, j, i, i_{k+2}, \ldots, i_{N-1}\right)
$$

Since L is optimal, $E\{$ reward of $L\} \geq E\left\{\right.$ reward of $\left.L^{\prime}\right\}$, so it follows that $p_{i} R_{i}+p_{i} p_{j} R_{j} \geq p_{j} R_{j}+p_{j} p_{i} R_{i}$ or

$$
p_{i} R_{i} /\left(1-p_{i}\right) \geq p_{j} R_{j} /\left(1-p_{j}\right)
$$

MINIMAX CONTROL

- Consider basic problem with the difference that the disturbance w_{k} instead of being random, it is just known to belong to a given set $W_{k}\left(x_{k}, u_{k}\right)$.
- Find policy π that minimizes the cost

$$
\begin{aligned}
J_{\pi}\left(x_{0}\right)=\max _{\substack{w_{k} \in W_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right)\right) \\
k=0,1, \ldots, N-1}} & {\left[g_{N}\left(x_{N}\right)\right.} \\
& \left.+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right]
\end{aligned}
$$

- The DP algorithm takes the form

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
J_{k}\left(x_{k}\right)=\min _{u_{k} \in U\left(x_{k}\right)} \max _{w_{k} \in W_{k}\left(x_{k}, u_{k}\right)}\left[g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right. \\
\left.+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right]
\end{gathered}
$$

(Exercise 1.5 in the text, solution posted on the www).

UNKNOWN-BUT-BOUNDED CONTROL

- For each k, keep the x_{k} of the controlled system

$$
x_{k+1}=f_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)
$$

inside a given set X_{k}, the target set at time k.

- This is a minimax control problem, where the cost at stage k is

$$
g_{k}\left(x_{k}\right)= \begin{cases}0 & \text { if } x_{k} \in X_{k} \\ 1 & \text { if } x_{k} \notin X_{k}\end{cases}
$$

- We must reach at time k the set

$$
\bar{X}_{k}=\left\{x_{k} \mid J_{k}\left(x_{k}\right)=0\right\}
$$

in order to be able to maintain the state within the subsequent target sets.

- Start with $\bar{X}_{N}=X_{N}$, and for $k=0,1, \ldots, N-1$,
$\bar{X}_{k}=\left\{x_{k} \in X_{k} \mid\right.$ there exists $u_{k} \in U_{k}\left(x_{k}\right)$ such that

$f_{k}\left(x_{k}, u_{k}, w_{k}\right) \in \bar{X}_{k+1}$, for all $\left.w_{k} \in W_{k}\left(x_{k}, u_{k}\right)\right\}$

