6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

- Stopping problems
- Scheduling problems
- Other applications

PURE STOPPING PROBLEMS

- Two possible controls:
 - Stop (incur a one-time stopping cost, and move to cost-free and absorbing stop state)
 - Continue [using $x_{k+1} = f_k(x_k, w_k)$ and incurring the cost-per-stage]
- Each policy consists of a partition of the set of states x_k into two regions:
 - Stop region, where we stop
 - Continue region, where we continue

EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, ..., N-1 receives a random offer w_k

• May accept w_k and invest the money at fixed rate of interest r, or reject w_k and wait for w_{k+1} . Must accept the last offer w_{N-1}

• DP algorithm (x_k : current offer, T: stop state):

$$J_N(x_N) = \begin{cases} x_N & \text{if } x_N \neq T, \\ 0 & \text{if } x_N = T, \end{cases}$$

$$J_k(x_k) = \begin{cases} \max \left[(1+r)^{N-k} x_k, E \left\{ J_{k+1}(w_k) \right\} \right] & \text{if } x_k \neq T, \\ 0 & \text{if } x_k = T. \end{cases}$$

- Optimal policy;
 - accept the offer x_k if $x_k > \alpha_k$,

reject the offer x_k if $x_k < \alpha_k$,

where

$$\alpha_k = \frac{E\{J_{k+1}(w_k)\}}{(1+r)^{N-k}}.$$

FURTHER ANALYSIS

- Can show that $\alpha_k \ge \alpha_{k+1}$ for all k
- Proof: Let $V_k(x_k) = J_k(x_k)/(1+r)^{N-k}$ for $x_k \neq T$. Then the DP algorithm is $V_N(x_N) = x_N$ and

$$V_k(x_k) = \max\left[x_k, (1+r)^{-1} \mathop{E}_{w} \{V_{k+1}(w)\}\right].$$

We have $\alpha_k = E_w \{V_{k+1}(w)\}/(1+r)$, so it is enough to show that $V_k(x) \ge V_{k+1}(x)$ for all x and k. Start with $V_{N-1}(x) \ge V_N(x)$ and use the monotonicity property of DP.

• We can also show that $\alpha_k \to \overline{a}$ as $k \to -\infty$. Suggests that for an infinite horizon the optimal policy is stationary.

GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost $t(x_k)$ or choose a control $u_k \in U(x_k)$ and continue

$$J_N(x_N) = t(x_N),$$

$$J_{k}(x_{k}) = \min \left[t(x_{k}), \min_{u_{k} \in U(x_{k})} E\{g(x_{k}, u_{k}, w_{k}) + J_{k+1}(f(x_{k}, u_{k}, w_{k}))\}\right]$$

• Optimal to stop at time k for states x in the set

$$T_{k} = \left\{ x \mid t(x) \leq \min_{u \in U(x)} E\left\{g(x, u, w) + J_{k+1}\left(f(x, u, w)\right)\right\} \right\}$$

• Since $J_{N-1}(x) \leq J_{N}(x)$, we have $J_{k}(x) \leq J_{k+1}(x)$ for all k , so

$$T_0 \subset \cdots \subset T_k \subset T_{k+1} \subset \cdots \subset T_{N-1}.$$

• Interesting case is when all the T_k are equal (to T_{N-1} , the set where it is better to stop than to go one step and stop). Can be shown to be true if

 $f(x, u, w) \in T_{N-1},$ for all $x \in T_{N-1}, u \in U(x), w.$

SCHEDULING PROBLEMS

• Set of tasks to perform, the ordering is subject to optimal choice.

• Costs depend on the order

• There may be stochastic uncertainty, and precedence and resource availability constraints

- Some of the hardest combinatorial problems are of this type (e.g., traveling salesman, vehicle routing, etc.)
- Some special problems admit a simple quasianalytical solution method
 - Optimal policy has an "index form", i.e., each task has an easily calculable "index", and it is optimal to select the task that has the maximum value of index (multi-armed bandit problems - to be discussed later)
 - Some problems can be solved by an "interchange argument" (start with some schedule, interchange two adjacent tasks, and see what happens)

EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is answered correctly (given probability p_i), we receive reward R_i ; if not the quiz terminates. Choose order of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions in an optimally ordered list

$$L = (i_0, \dots, i_{k-1}, i, j, i_{k+2}, \dots, i_{N-1})$$

 $E \{ \text{reward of } L \} = E \{ \text{reward of } \{i_0, \dots, i_{k-1}\} \}$ $+ p_{i_0} \cdots p_{i_{k-1}} (p_i R_i + p_i p_j R_j)$ $+ p_{i_0} \cdots p_{i_{k-1}} p_i p_j E \{ \text{reward of } \{i_{k+2}, \dots, i_{N-1}\} \}$

Consider the list with i and j interchanged

$$L' = (i_0, \dots, i_{k-1}, j, i, i_{k+2}, \dots, i_{N-1})$$

Since *L* is optimal, $E\{\text{reward of }L\} \ge E\{\text{reward of }L'\},\$ so it follows that $p_iR_i + p_ip_jR_j \ge p_jR_j + p_jp_iR_i$ or

$$p_i R_i / (1 - p_i) \ge p_j R_j / (1 - p_j).$$

MINIMAX CONTROL

• Consider basic problem with the difference that the disturbance w_k instead of being random, it is just known to belong to a given set $W_k(x_k, u_k)$.

• Find policy π that minimizes the cost

$$J_{\pi}(x_0) = \max_{\substack{w_k \in W_k(x_k, \mu_k(x_k))\\k=0, 1, \dots, N-1}} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right]$$

• The DP algorithm takes the form

$$J_N(x_N) = g_N(x_N),$$

$$J_{k}(x_{k}) = \min_{u_{k} \in U(x_{k})} \max_{w_{k} \in W_{k}(x_{k}, u_{k})} \left[g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1} (f_{k}(x_{k}, u_{k}, w_{k})) \right]$$

(Exercise 1.5 in the text, solution posted on the www).

UNKNOWN-BUT-BOUNDED CONTROL

• For each k, keep the x_k of the controlled system

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_k)$$

inside a given set X_k , the *target set at time k*.

• This is a minimax control problem, where the cost at stage k is

$$g_k(x_k) = \begin{cases} 0 & \text{if } x_k \in X_k, \\ 1 & \text{if } x_k \notin X_k. \end{cases}$$

• We must reach at time k the set

$$\overline{X}_k = \left\{ x_k \, | \, J_k(x_k) = 0 \right\}$$

in order to be able to maintain the state within the subsequent target sets.

• Start with $\overline{X}_N = X_N$, and for $k = 0, 1, \dots, N-1$,

$$\overline{X}_k = \left\{ x_k \in X_k \mid \text{ there exists } u_k \in U_k(x_k) \text{ such that} \\ f_k(x_k, u_k, w_k) \in \overline{X}_{k+1}, \text{ for all } w_k \in W_k(x_k, u_k) \right\}$$