6.231 DYNAMIC PROGRAMMING

LECTURE 7

LECTURE OUTLINE

- Deterministic continuous-time optimal control
- Examples
- Connection with the calculus of variations
- The Hamilton-Jacobi-Bellman equation as a continuous-time limit of the DP algorithm
- The Hamilton-Jacobi-Bellman equation as a sufficient condition
- Examples

PROBLEM FORMULATION

- We have a continuous-time dynamic system

$$
\dot{x}(t)=f(x(t), u(t)), \quad 0 \leq t \leq T, \quad x(0): \text { given, }
$$

where
$-x(t) \in \Re^{n}$ is the state vector at time t
$-u(t) \in U \subset \Re^{m}$ is the control vector at time t, U is the control constraint set
$-T$ is the terminal time.

- Any admissible control trajectory $\{u(t) \mid t \in[0, T]\}$ (piecewise continuous function $\{u(t) \mid t \in[0, T]\}$ with $u(t) \in U$ for all $t \in[0, T]$), uniquely determines $\{x(t) \mid t \in[0, T]\}$.
- Find an admissible control trajectory $\{u(t) \mid t \in$ $[0, T]\}$ and corresponding state trajectory $\{x(t) \mid t \in$ $[0, T]\}$, that minimizes a cost function of the form

$$
h(x(T))+\int_{0}^{T} g(x(t), u(t)) d t
$$

- f, h, g are assumed continuously differentiable.

EXAMPLE I

- Motion control: A unit mass moves on a line under the influence of a force u.
- $x(t)=\left(x_{1}(t), x_{2}(t)\right)$: position and velocity of the mass at time t
- Problem: From a given $\left(x_{1}(0), x_{2}(0)\right)$, bring the mass "near" a given final position-velocity pair $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ at time T in the sense:

$$
\operatorname{minimize}\left|x_{1}(T)-\bar{x}_{1}\right|^{2}+\left|x_{2}(T)-\bar{x}_{2}\right|^{2}
$$

subject to the control constraint

$$
|u(t)| \leq 1, \quad \text { for all } t \in[0, T]
$$

- The problem fits the framework with

$$
\begin{gathered}
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=u(t), \\
h(x(T))=\left|x_{1}(T)-\bar{x}_{1}\right|^{2}+\left|x_{2}(T)-\bar{x}_{2}\right|^{2}, \\
g(x(t), u(t))=0, \quad \text { for all } t \in[0, T] .
\end{gathered}
$$

EXAMPLE II

- A producer with production rate $x(t)$ at time t may allocate a portion $u(t)$ of his/her production rate to reinvestment and $1-u(t)$ to production of a storable good. Thus $x(t)$ evolves according to

$$
\dot{x}(t)=\gamma u(t) x(t),
$$

where $\gamma>0$ is a given constant.

- The producer wants to maximize the total amount of product stored

$$
\int_{0}^{T}(1-u(t)) x(t) d t
$$

subject to

$$
0 \leq u(t) \leq 1, \quad \text { for all } t \in[0, T]
$$

- The initial production rate $x(0)$ is a given positive number.

EXAMPLE III (CALCULUS OF VARIATIONS)

- Find a curve from a given point to a given line that has minimum length.
- The problem is
minimize $\int_{0}^{T} \sqrt{1+(\dot{x}(t))^{2}} d t$
subject to $x(0)=\alpha$.
- Reformulation as an optimal control problem:

$$
\operatorname{minimize} \int_{0}^{T} \sqrt{1+(u(t))^{2}} d t
$$

subject to $\dot{x}(t)=u(t), x(0)=\alpha$.

HAMILTON-JACOBI-BELLMAN EQUATION I

- We discretize $[0, T]$ at times $0, \delta, 2 \delta, \ldots, N \delta$, where $\delta=T / N$, and we let

$$
x_{k}=x(k \delta), \quad u_{k}=u(k \delta), \quad k=0,1, \ldots, N
$$

- We also discretize the system and cost:

$$
x_{k+1}=x_{k}+f\left(x_{k}, u_{k}\right) \cdot \delta, \quad h\left(x_{N}\right)+\sum_{k=0}^{N-1} g\left(x_{k}, u_{k}\right) \cdot \delta .
$$

- We write the DP algorithm for the discretized problem

$$
\begin{gathered}
\tilde{J}^{*}(N \delta, x)=h(x), \\
\tilde{J}^{*}(k \delta, x)=\min _{u \in U}\left[g(x, u) \cdot \delta+\tilde{J}^{*}((k+1) \cdot \delta, x+f(x, u) \cdot \delta)\right] .
\end{gathered}
$$

- Assume \tilde{J}^{*} is differentiable and Taylor-expand:

$$
\begin{aligned}
\tilde{J}^{*}(k \delta, x)=\min _{u \in U} & {\left[g(x, u) \cdot \delta+\tilde{J}^{*}(k \delta, x)+\nabla_{t} \tilde{J}^{*}(k \delta, x) \cdot \delta\right.} \\
& \left.+\nabla_{x} \tilde{J}^{*}(k \delta, x)^{\prime} f(x, u) \cdot \delta+o(\delta)\right] .
\end{aligned}
$$

HAMILTON-JACOBI-BELLMAN EQUATION II

- Let $J^{*}(t, x)$ be the optimal cost-to-go of the continuous problem. Assuming the limit is valid
$\lim _{k \rightarrow \infty, \delta \rightarrow 0, k \delta=t} \tilde{J}^{*}(k \delta, x)=J^{*}(t, x), \quad$ for all t, x,
we obtain for all t, x,
$0=\min _{u \in U}\left[g(x, u)+\nabla_{t} J^{*}(t, x)+\nabla_{x} J^{*}(t, x)^{\prime} f(x, u)\right]$
with the boundary condition $J^{*}(T, x)=h(x)$.
- This is the Hamilton-Jacobi-Bellman (HJB) equation - a partial differential equation, which is satisfied for all time-state pairs (t, x) by the cost-to-go function $J^{*}(t, x)$ (assuming J^{*} is differentiable and the preceding informal limiting procedure is valid). - It is hard to tell a priori if $J^{*}(t, x)$ is differentiable.
- So we use the HJB Eq. as a verification tool; if we can solve it for a differentiable $J^{*}(t, x)$, then:
- J^{*} is the optimal-cost-to-go function
- The control $\mu^{*}(t, x)$ that minimizes in the RHS for each (t, x) defines an optimal control

VERIFICATION/SUFFICIENCY THEOREM

- Suppose $V(t, x)$ is a solution to the HJB equation; that is, V is continuously differentiable in t and x, and is such that for all t, x,

$$
\begin{gathered}
0=\min _{u \in U}\left[g(x, u)+\nabla_{t} V(t, x)+\nabla_{x} V(t, x)^{\prime} f(x, u)\right], \\
V(T, x)=h(x), \quad \text { for all } x .
\end{gathered}
$$

- Suppose also that $\mu^{*}(t, x)$ attains the minimum above for all t and x.
- Let $\left\{x^{*}(t) \mid t \in[0, T]\right\}$ and $u^{*}(t)=\mu^{*}\left(t, x^{*}(t)\right)$, $t \in[0, T]$, be the corresponding state and control trajectories.
- Then

$$
V(t, x)=J^{*}(t, x), \quad \text { for all } t, x,
$$

and $\left\{u^{*}(t) \mid t \in[0, T]\right\}$ is optimal.

PROOF

Let $\{(\hat{u}(t), \hat{x}(t)) \mid t \in[0, T]\}$ be any admissible controlstate trajectory. We have for all $t \in[0, T]$
$0 \leq g(\hat{x}(t), \hat{u}(t))+\nabla_{t} V(t, \hat{x}(t))+\nabla_{x} V(t, \hat{x}(t))^{\prime} f(\hat{x}(t), \hat{u}(t))$.
Using the system equation $\dot{\hat{x}}(t)=f(\hat{x}(t), \hat{u}(t))$, the RHS of the above is equal to

$$
g(\hat{x}(t), \hat{u}(t))+\frac{d}{d t}(V(t, \hat{x}(t)))
$$

Integrating this expression over $t \in[0, T]$,
$0 \leq \int_{0}^{T} g(\hat{x}(t), \hat{u}(t)) d t+V(T, \hat{x}(T))-V(0, \hat{x}(0))$.
Using $V(T, x)=h(x)$ and $\hat{x}(0)=x(0)$, we have

$$
V(0, x(0)) \leq h(\hat{x}(T))+\int_{0}^{T} g(\hat{x}(t), \hat{u}(t)) d t .
$$

If we use $u^{*}(t)$ and $x^{*}(t)$ in place of $\hat{u}(t)$ and $\hat{x}(t)$, the inequalities becomes equalities, and

$$
V(0, x(0))=h\left(x^{*}(T)\right)+\int_{0}^{T} g\left(x^{*}(t), u^{*}(t)\right) d t .
$$

EXAMPLE OF THE HJB EQUATION

Consider the scalar system $\dot{x}(t)=u(t)$, with $|u(t)| \leq$ 1 and cost $(1 / 2)(x(T))^{2}$. The HJB equation is
$0=\min _{|u| \leq 1}\left[\nabla_{t} V(t, x)+\nabla_{x} V(t, x) u\right], \quad$ for all t, x,
with the terminal condition $V(T, x)=(1 / 2) x^{2}$.
Evident candidate for optimality: $\mu^{*}(t, x)=$ $-\operatorname{sgn}(x)$. Corresponding cost-to-go

$$
J^{*}(t, x)=\frac{1}{2}(\max \{0,|x|-(T-t)\})^{2}
$$

- We verify that J^{*} solves the HJB Eq., and that $u=-\operatorname{sgn}(x)$ attains the min in the RHS. Indeed,

$$
\begin{gathered}
\nabla_{t} J^{*}(t, x)=\max \{0,|x|-(T-t)\} \\
\nabla_{x} J^{*}(t, x)=\operatorname{sgn}(x) \cdot \max \{0,|x|-(T-t)\} .
\end{gathered}
$$

Substituting, the HJB Eq. becomes

$$
0=\min _{|u| \leq 1}[1+\operatorname{sgn}(x) \cdot u] \max \{0,|x|-(T-t)\}
$$

LINEAR QUADRATIC PROBLEM

Consider the n-dimensional linear system

$$
\dot{x}(t)=A x(t)+B u(t),
$$

and the quadratic cost

$$
x(T)^{\prime} Q_{T} x(T)+\int_{0}^{T}\left(x(t)^{\prime} Q x(t)+u(t)^{\prime} R u(t)\right) d t
$$

The HJB equation is

$$
0=\min _{u \in \Re}\left[x^{\prime} Q x+u^{\prime} R u+\nabla_{t} V(t, x)+\nabla_{x} V(t, x)^{\prime}(A x+B u)\right],
$$

with the terminal condition $V(T, x)=x^{\prime} Q_{T} x$. We try a solution of the form

$$
V(t, x)=x^{\prime} K(t) x, \quad K(t): n \times n \text { symmetric },
$$

and show that $V(t, x)$ solves the HJB equation if
$\dot{K}(t)=-K(t) A-A^{\prime} K(t)+K(t) B R^{-1} B^{\prime} K(t)-Q$
with the terminal condition $K(T)=Q_{T}$.

