6.231 DYNAMIC PROGRAMMING
LECTURE 12
LECTURE OUTLINE

e DP for imperfect state info
e Sufficient statistics

e Conditional state distribution as a sufficient statis-
tic

e Finite-state systems

e Examples



REVIEW: PROBLEM WITH IMPERFECT STATE INFO

¢ Instead of knowing x;, we receive observations

20 = ho(xo,v0), 2r = hi(Tk, uk—1,vk), k>0

e /.: Information vector available at time k:

Io — 20, Ik — (zo,zl,...,zk,uo,ul,...,uk_l), kZ 1

e Optimization over policies 7 = { o, ft1,---, UN—1},
where u(I) € Uy, for all I, and k.

e Find a policy 7 that minimizes

Jr = ,E {gN(SUN) + Z_ gk (wk,/ik(fk),wk)}

k=0
subject to the equations
Titr1 = [ (@, ok (Ik), wg), k>0,

20 = h()(lU(),U()), Rk = hk (xkaluk—l(lk—l)avk)a k 2 1



DP ALGORITHM

e DP algorithm:

Jk(lk):: min { E {gk(xk,uk,zuk)
up €U Lag, wi, 2541
+ Je+1 (Ui, g1, ur) | Ik, Uk}}

fork=0,1,..., N —2,andfork =N — 1,

JN—l(IN—l) = min
un—1€UN—1

ITN—-1,WN—-1

[ E {QN (fN—1($N—1>'UJN—1>wN—1))

+gnv—1(xN_1,uUN—1,WN—1) | ]N—l,UN—l}

e The optimal cost J* Is given by

J* = fg{Jo(Zo)}.



SUFFICIENT STATISTICS

e Suppose that we can find a function Sy (/) such
that the right-hand side of the DP algorithm can
be written in terms of some function Hy as

min Hp (Sk(lr), ur).
i k (Sk(Ik), uk)
e Such afunction Sy is called a sufficient statistic.

e An optimal policy obtained by the preceding
minimization can be written as

i (k) = T (Sk(Ik)),

where i, IS an appropriate function.
e Example of a sufficient statistic: Si(Ix) = I

e Another important sufficient statistic

Sk(Ix) = Py

k5



DP ALGORITHM IN TERMS OF Px |1,

e ltturns outthat P, ,;_Is generated recursively
by a dynamic system (estimator) of the form

Pa:k+1\lk_|_1 — (I)k (P$k|fk7uk7 Zk—|—1)

for a suitable function &,

e DP algorithm can be written as

Ji(Py,|1,) = min { E  {gr(@r, up, wy)

up €U Lag, w241

—|-7k+1(q)k(ka\Ikv“’“Zk“)) | [’“’uk}}
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EXAMPLE: A SEARCH PROBLEM

e At each period, decide to search or not search
a site that may contain a treasure.

e |f we search and a treasure is present, we find
It with prob. ¢ and remove it from the site.

e Treasure’s worth: V. Cost of search: C

e States

. treasure present & treasure not present

e Each search can be viewed as an observation
of the state

e Denote

pr - prob. of treasure present at the start of time &

with pg given.

e pi. evolves at time k according to the equation

Pk41 = <

( Dk If not search,
0 If search and find treasure,
P (1=5) If search and no treasure.

\ Pr(1—=08)+1—pg



SEARCH PROBLEM (CONTINUED)

e DP algorithm

J1(pr) = max {O, —C + pp BV

+ (1 = prf) Tt < 2l = ) ) },

pe(1—08) +1—py

with jN(pN) = 0.

e Can be shown by induction that the functions
J . satisfy

— C
J =0 for all < —
k(pk) ’ Pk > 6‘/

e Furthermore, it is optimal to search at period &
If and only if
pBV > C

(expected reward from the next search > the cost
of the search)



FINITE-STATE SYSTEMS

e Suppose the system is a finite-state Markov
chain, with states 1, ..., n.

e Thenthe conditional probability distribution P,
IS a vector

k15

(P(:Uklelk;),...,P(:Uk:n’Ik))

e The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

e When the control and observation spaces are
also finite sets, it turns out that the cost-to-go func-
tions J; in the DP algorithm are piecewise linear
and concave (Exercise 5.7).

e This is conceptually important and also (mod-
erately) useful in practice.



INSTRUCTION EXAMPLE

e Teaching a student some item. Possible states
are L: Item learned, or L: Iltem not learned.

e Possible decisions: T: Terminate the instruc-
tion, or T: Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

e Thetesthastwo possible outcomes: R: Student
gives a correct answer, or R: Student gives an
Incorrect answer.

e Probabillistic structure

e Cost of instruction is I per period

e Cost of terminating instruction; O if student has
learned the item, and C > 0 if not.



INSTRUCTION EXAMPLE Il

e Let pi: prob. student has learned the item given
the test results so far

PE :P(xkllk) :P(Q’Jk :L|Zo,Z1,...,Zk).

e Using Bayes’ rule we can obtain

Pk+1 — (I)(pka Z]f—|—1)
{ 1—(1—t)(1_pk) |f Zht1 = R;

1=(1=t)(1-7)(1-pg)
0 If Zk+1 — E

e DP algorithm:

Ji(px) = min [(1 —pp)C, I+ E {7k+1 (‘I’(Pk,ZkH))} .

Zk+1

starting with

7N_1(pN_1) — min [(l—pN_l)C, I—I—(l—t)(l—pN_l)C} :



INSTRUCTION EXAMPLE Il

e \Write the DP algorithm as

Ji(pr) =min|(1 —pp)C, T + Ax(pr)],

where

A(pr) = P(zk41 = R | I) Jit1 (®(pr, R))
+ P(zip1 = R | I) Ji1 (2(pr, R))
e Can show by induction that Ax(p) are piecewise
linear, concave, monotonically decreasing, with
Ak-1(p) < Ar(p) < Ak41(p), forall p € [0, 1].
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