
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-037 August 20, 2009

Extending a MOOS-IvP Autonomy System
and Users Guide to the IvPBuild Toolbox
Michael R. Benjamin, Paul M. Newman, Henrik
Schmidt, and John J. Leonard

Extending a MOOS-IvP Autonomy System and

Users Guide to the IvPBuild Toolbox

Michael R. Benjamin1,2, Paul Newman3, Henrik Schmidt1, John J. Leonard1

1Department Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge MA

2Center for Advanced System Technologies, Code 2501
NUWC Division Newport, Newport RI

3Department of Engineering Science
University of Oxford, Oxford England

August 11th, 2009 - Release 4.0 beta (SVN Revision 2260)

Abstract

This document describes how to extend the suite of MOOS applications and IvP Helm
behaviors distributed with the MOOS-IvP software bundle from www.moos-ivp.org. It covers
(a) a straw-man repository with a place-holder MOOS application and IvP Behavior, with a
working CMake build structure, (b) a brief overview of the MOOS application class with an
example application, and (c) an overview of the IvP Behavior class with an example behavior,
and (d) the IvPBuild Toolbox for generation of objective functions within behaviors.

Approved for public release; Distribution is unlimited.

This work is the product of a multi-year collaboration between the Center for Advanced System
Technologies (CAST), Code 2501, of the Naval Undersea Warfare Center in Newport Rhode Island
and the Department of Mechanical Engineering and the Computer Science and Artificial Intelligence
Laboratory (CSAIL) at the Massachusetts Institute of Technology in Cambridge Massachusetts,
and the Oxford University Mobile Robotics Group.

Points of contact for collaborators:

Dr. Michael R. Benjamin
Center for Advanced System Technologies
NUWC Division Newport Rhode Island
Michael.R.Benjamin@navy.mil
mikerb@csail.mit.edu

Prof. John J. Leonard
Department of Mechanical Engineering
Computer Science and Artificial Intelligence Laboratory
Massachusetts Intitute of Technology
jleonard@csail.mit.edu

Prof. Henrik Schmidt
Department of Mechanical Engineering
Massachusetts Intitute of Technology
henrik@mit.edu

Dr. Paul Newman
Department of Engineering Science
University of Oxford
pnewman@robots.ox.ac.uk

Other collaborators have contributed greatly to the development and testing of software and ideas within,
notably - Joseph Curcio, Don Eickstedt, Andrew Patrikilakis, Toby Schneider, Arjuna Balasuriya, David
Battle, Christian Convey, Andrew Shafer, and Kevin Cockrell.

Sponsorship, and public release information:

This work is sponsored by Dr. Behzad Kamgar-Parsi and Dr. Don Wagner of the Office of Naval Research

(ONR), Code 311. Information on Navy public release approval for this document can be obtained from the

Technical Library at the Naval Undersea Warfare Center, Division Newport RI.

2

CONTENTS

Contents

1 Overview 6
1.1 Purpose and Scope of this Document . 6
1.2 Brief Background of MOOS-IvP . 6
1.3 Sponsors of MOOS-IvP . 6
1.4 The Software . 7

1.4.1 Building and Running the Software . 7
1.4.2 Operating Systems Supported by MOOS and IvP 8

1.5 Where to Get Further Information . 8
1.5.1 Websites and Email Lists . 8
1.5.2 Documentation . 9

2 Extending MOOS-IvP By Example 10
2.1 Brief Overview . 10
2.2 Obtaining and Building the Example Extensions Folder 10
2.3 Using the New MOOS Application . 11
2.4 Using the New IvP Helm Behavior . 11
2.5 Extending the Extensions . 12

3 A Very Brief Overview of MOOS 14
3.1 Inter-process communication with Publish/Subscribe 14
3.2 Message Content . 14
3.3 Mail Handling - Publish/Subscribe - in MOOS . 15

3.3.1 Publishing Data . 16
3.3.2 Registering for Notifications . 16
3.3.3 Reading Mail . 16

3.4 Overloaded Functions in MOOS Applications . 16
3.4.1 The Iterate() Method . 17
3.4.2 The OnNewMail() Method . 18
3.4.3 The OnStartup() Method . 18

3.5 MOOS Mission Configuration Files . 18
3.6 Launching Groups of MOOS Applications with Antler 19
3.7 Scoping and Poking the MOOSDB . 19
3.8 A Simple MOOS Application - pXRelay . 20

3.8.1 Finding and Launching the pXRelay Example 21
3.8.2 Scoping the pXRelay Example with uXMS . 21
3.8.3 Seeding the pXRelay Example with the uPokeDB Tool 22
3.8.4 The pXRelay Example MOOS Configuration File 23
3.8.5 Suggestions for Further Things to Try with this Example 25

3.9 MOOS Applications Available to the Public . 25
3.9.1 MOOS Modules from Oxford . 25
3.9.2 MOOS Modules from MIT and NUWC . 26

3

CONTENTS

4 Standard and Overloadable Properties of Helm Behaviors 28
4.1 Brief Overview . 28
4.2 Parameters Common to All IvP Behaviors . 29

4.2.1 A Summary of the Full Set of General Behavior Parameters 29
4.2.2 Altering Behavior Parameters Dynamically with the UPDATES Parameter . . . 31
4.2.3 Limiting Behavior Duration with the DURATION Parameter 32
4.2.4 The PERPETUAL Parameter . 33
4.2.5 Detection of Stale Variables with the NOSTARVE Parameter 33

4.3 Overloading the setParam() Function in New Behaviors 33
4.4 Behavior Functions Invoked by the Helm . 34

4.4.1 Helm-Invoked Immutable Functions . 34
4.4.2 Helm-Invoked Overloaded Functions . 36

4.5 Local Behavior Utility Functions . 36
4.5.1 Summary of Implementor-Invoked Utility Functions 36
4.5.2 The Information Buffer . 38
4.5.3 Requesting the Inclusion of a Variable in the Information Buffer 38
4.5.4 Accessing Variable Information from the Information Buffer 38

4.6 Overloading the onRunState() and onIdleState() Functions 39

5 An Implementation Example - the SimpleWaypoint Behavior 41
5.1 The SimpleWaypoint Behavior Class Definition . 41
5.2 The SimpleWaypoint Behavior Class Implementation 42

5.2.1 The SimpleWaypoint Behavior Constructor 42
5.2.2 The SimpleWaypoint Behavior setParam() Function 43
5.2.3 The SimpleWaypoint onIdleState() and postViewPoint() Functions 45
5.2.4 The SimpleWaypoint Behavior onRunState() Function 45
5.2.5 The SimpleWaypoint Behavior buildFunctionWithZAIC() Function 48
5.2.6 The SimpleWaypoint Behavior buildFunctionWithReflector() Function . . 51

5.3 Running an Example Mission with the SimpleWaypoint Behavior 52

6 Introduction to the IvPBuild Toolbox 55
6.1 Brief Overview . 55

6.1.1 Where to Get the IvPBuild Toolbox . 56
6.1.2 What is an Objective Function? . 56
6.1.3 What is Multi-objective Optimization? . 56
6.1.4 What is an IvP Function? . 57
6.1.5 Why the IvP Function Construct? A Brief Description of the Solver 57
6.1.6 Properties of the IvPDomain Class . 58

6.2 Tools Available in the IvPBuild Toolbox . 59
6.2.1 The ZAIC Tools for Functions with One Variable 59
6.2.2 The Reflector Tool for Functions with Multiple Variables 60
6.2.3 The Coupler Tool for Coupling Two Decoupled IvP Functions 61

4

CONTENTS

7 The ZAIC Tools for Building One-Variable IvP Functions 62
7.1 The ZAIC PEAK Tool . 62

7.1.1 Brief Overview . 62
7.1.2 The ZAIC PEAK Parameters and Function Form 62
7.1.3 The ZAIC PEAK Interface Implementation . 63
7.1.4 The Value-Wrap and Summit-Insist Parameters 65
7.1.5 Using the ZAIC PEAK Tool . 66
7.1.6 Support for Multi-Modal Functions with the ZAIC PEAK Tool 67

7.2 The ZAIC LEQ and ZAIC HEQ Tools . 69
7.2.1 Brief Overview . 69
7.2.2 The ZAIC LEQ Parameters and Function Form 70
7.2.3 The ZAIC LEQ Interface Implementation . 70
7.2.4 Using the ZAIC LEQ Tool . 71
7.2.5 The ZAIC HEQ Tool . 72
7.2.6 A Warning about the Maximum Utility Plateau 73

8 The Reflector Tool for Building N-Variable IvP Functions 74
8.1 Overview . 74
8.2 Implementing Underlying Functions within the AOF Class 75

8.2.1 The AOF Class Definition . 75
8.2.2 An Example Underlying Function Implemented as an AOF Subclass 75
8.2.3 Another AOF Example Class Implementation for Gaussian Functions 77

8.3 Basic Reflector Tool Usage Tool with Examples . 78
8.4 The Full Reflector Interface Implementation . 80

9 Optional Advanced Features of the Reflector Tool 84
9.1 Preliminaries . 84

9.1.1 The Reflector-Script . 84
9.1.2 Specifying a Piece Shape or IvP Domain Point in String Format 84
9.1.3 Specifying a Region of an IvP Domain in String Format 86

9.2 Optional Feature #1: Choosing the Piece Shape in Uniform Functions 87
9.2.1 Potential Advantages . 87
9.2.2 Specifying the Piece Shape Implicitly from a Piece Count Request 87
9.2.3 Specifying the Uniform Piece Shape Explicitly 89

9.3 Optional Feature #2: IvP Functions with Directed Refinement 90
9.4 Optional Feature #3: IvP Functions with Smart Refinement 93

9.4.1 Potential Advantages . 93
9.4.2 The Smart-Refinement Algorithm . 93
9.4.3 Invoking the Smart-Refine Algorithm in the Reflector 96

9.5 Optional Feature #4: IvP Functions with Auto-Peak Refinement 97
9.5.1 Potential Advantages . 97
9.5.2 The Auto-Peak Algorithm . 97
9.5.3 Invoking the Auto-Peak Algorithm in the Reflector 99

5

1 OVERVIEW

1 Overview

1.1 Purpose and Scope of this Document

The document describes how to extend the set of modules beyond those distributed in the MOOS-
IvP bundle from varwww.moos-ivp.org. It addresses the reader who is familiar with how to use
MOOS applications and the IvP helm, but is interested in building their own MOOS application
and/or IvP behavior. This document covers (a) a straw-man repository with a place-holder MOOS
application and IvP Behavior, with a working CMake build structure, (b) a brief overview of the
MOOS application class with an example application, and (c) an overview of the IvP Behavior
class with an example behavior, and (d) the IvPBuild toolbox for generation of objective functions
within behaviors.

This document is still in draft form and has known omissions. The reader is encour-
aged email the author(s) feedback at issues@moos-ivp.org, and to look for later versions on
www.moos-ivp.org.

1.2 Brief Background of MOOS-IvP

MOOS was written by Paul Newman in 2001 to support operations with autonomous marine
vehicles in the MIT Ocean Engineering and the MIT Sea Grant programs. At the time Newman
was a post-doc working with John Leonard and has since joined the faculty of the Mobile Robotics
Group at Oxford University. MOOS continues to be developed and maintained by Newman at
Oxford and the most current version can be found at his website. The MOOS software available in
the MOOS-IvP project includes a snapshot of the MOOS code distributed from Oxford. The IvP
Helm was developed in 2004 for autonomous control on unmanned marine surface craft, and later
underwater platforms. It was written by Mike Benjamin as a post-doc working with John Leonard,
and as a research scientist for the Naval Undersea Warfare Center in Newport Rhode Island. The
IvP Helm is a single MOOS process that uses multi-objective optimization to implement behavior
coordination.

Acronyms

MOOS stands for ”Mission Oriented Operating Suite” and its original use was for the Bluefin
Odyssey III vehicle owned by MIT. IvP stands for ”Interval Programming” which is a mathematical
programming model for multi-objective optimization. In the IvP model each objective function is a
piecewise linear construct where each piece is an interval in N-Space. The IvP model and algorithms
are included in the IvP Helm software as the method for representing and reconciling the output of
helm behaviors. The term interval programming was inspired by the mathematical programming
models of linear programming (LP) and integer programming (IP). The pseudo-acronym IvP was
chosen simply in this spirit and to avoid acronym clashing.

1.3 Sponsors of MOOS-IvP

Original development of MOOS and IvP were more or less infrastructure by-products of other
sponsored research in (mostly marine) robotics. Those sponsors were primarily The Office of Naval

6

1 OVERVIEW

Research (ONR), as well as the National Oceanic and Atmospheric Administration (NOAA). MOOS
and IvP are currently funded by Code 31 at ONR, Dr. Don Wagner and Dr. Behzad Kamgar-
Parsi. MOOS is additionally supported in the U.K. by EPSRC. Early development of IvP benefited
from the support of the In-house Laboratory Independent Research (ILIR) program at the Naval
Undersea Warfare Center in Newport RI. The ILIR program is funded by ONR.

1.4 The Software

The MOOS-IvP autonomy software is available at the following URL:

http://www.moos-ivp.org

Follow the links to Software. Instructions are provided for downloading the software from an SVN
server with anonymous read-only access.

1.4.1 Building and Running the Software

After checking out the tree from the SVN server as prescribed at this link, the top level directory
should have the following structure:

moos-ivp/

MOOS/

MOOS-2208/

README.txt

README-LINUX.txt

README-OS-X.txt

build-moos.sh

build-ivp.sh

ivp/

Note there is a MOOS directory and an IvP sub-directory. The MOOS directory is a symbolic link
to a particular MOOS revision checked out from the Oxford server. In the example above this is
Revision 2208 on the Oxford SVN server. This directory is left completely untouched other than
giving it the local name MOOS-2208. The use of a symbolic link is done to greatly simplify the
process of bringing in a new snapshot from the Oxford server.

The build instructions are maintained in the README files and are probably more up to date
than this document can hope to remain. In short building the software amounts to two steps -
building MOOS and building IvP. Building MOOS is done by executing the build-moos.sh script:

> cd moos-ivp

> ./build-moos.sh

Alternatively one can go directly into the MOOS directory and configure options with ccmake and
build with cmake. The script is included to facilitate configuration of options to suit local use.
Likewise the IvP directory can be built by executing the build-ivp.sh script. The MOOS tree must
be built before building IvP. Once both trees have been built, the user’s shell executable path must
be augmented to include the two directories containing the new executables:

7

1 OVERVIEW

moos-ivp/MOOS/MOOSBin

moos-ivp/bin

At this point the software should be ready to run and a good way to confirm this is to run the
example simulated mission in the missions directory:

> cd moos-ivp/ivp/missions/alpha/

> pAntler alpha.moos

Running the above should bring up a GUI with a simulated vehicle rendered. Clicking the DEPLOY

button should start the vehicle on its mission. If this is not the case, some help and email contact
links can be found at www.moos-ivp.org/support/.

1.4.2 Operating Systems Supported by MOOS and IvP

The MOOS software distributed by Oxford is well supported on Linux, Windows and Mac OS X.
The software distributed by MIT/NUWC includes additional MOOS utility applications and the
IvP Helm and related behaviors. These modules are support on Linux and Mac OS X. The software
compiles and runs on Windows but Windows support is limited.

1.5 Where to Get Further Information

1.5.1 Websites and Email Lists

There are two websites - the MOOS website maintained by Oxford University, and the MOOS-IvP
website maintained by MIT/NUWC. At the time of this writing they are at the following URLs:

http://www.robots.ox.ac.uk/~pnewman/TheMOOS/

http://www.moos-ivp.org

What is the difference in content between the two websites? As discussed previously, MOOS-IvP,
as a set of software, refers to the software maintained and distributed from Oxford plus additional
MOOS applications including the IvP Helm and library of behaviors. The software bundle released
at moos-ivp.org does include the MOOS software from Oxford - usually a particular released version.
For the absolute latest in the core MOOS software and documentation on Oxford MOOS modules,
the Oxford website is your source. For the latest on the core IvP Helm, behaviors, and MOOS
tools written by MIT/NUWC, the moos-ivp.org website is the source.

There are two mailing lists open to the public. The first list is for MOOS users, and the second
is for MOOS-IvP users. If the topic is related to one of the MOOS modules distributed from the
Oxford website, the proper email list is the ”moosusers” mailing list. You can join the ”moosusers”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosusers,

For topics related to the IvP Helm or modules distributed on the moos-ivp.org website that
are not part of the Oxford MOOS distribution (see the software page on moos-ivp.org for help in
drawing the distinction), the ”moosivp” mailing list is appropriate. You can join the ”moosivp”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosivp,

8

1 OVERVIEW

1.5.2 Documentation

Documentation on MOOS can be found on the Oxford University website:

http://www.robots.ox.ac.uk/~pnewman/MOOSDocumentation/index.htm

This includes documentation on the MOOS architecture, programming new MOOS applications
as well as documentation on several bread-and-butter applications such as pAntler, pLogger, uMS,
pMOOSBridge, iRemote, iMatlab, pScheduler and more. Documentation on the IvP Helm, behaviors
and autonomy related MOOS applications not from Oxford can be found on the www.moos-ivp.org
website under the Documentation link. Below is a summary of documents:

Documents Released or Pending Approval for Release

• An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software -
This is the primary document describing the IvP Helm regarding how it works, the motivation
for its design, how it is used and configured, and example configurations and results from
simulation. MIT CSAIL Technical Report TR-2009-28.

• MOOS-IvP Autonomy Tools Users Manual - A Users Manual for seven MOOS applications:
uHelmScope, pMarineViewer, uXMS, uTermCommand, uPokeDB, uProcessWatch, pEchoVar. These
applications are common supplementary tools for running an autonomy system in simulation
and on the water. MIT CSAIL Technical Report TR-2008-65.

• A Tour of MOOS-IvP Autonomy Software Modules - This document acts as a catalog of
existing modules (Both MOOS applications and IvP Behaviors). For each module, it relates
(a) where it can be downloaded, (b) what the module does, (c) who it was written by, (d)
rough estimate on size and complexity, and (e) what modules it may depend on for its build.
MIT CSAIL Technical Report TR-2009-006.

• Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox (this
document) - This document is a users manual for those wishing to write their own IvP Helm
behaviors and MOOS modules. It describes the IvPBehavior and CMOOSApp superclass. It
also describes the IvPBuild Toolbox containing a number of tools for building IvP Functions,
the primary output of behaviors. It provides an example template directory with example
IvP Helm behavior and an example MOOS application along with an example CMake build
structure for linking against the standard software MOOS-IvP software bundle.

Documents In-Progress

• Extended MOOS-IvP Autonomy Examples from Simulation and In-water Exercises - This
document describes a set of example scenarios and helm configurations and describes their
performance in simulation and in field exercises where possible.

• The IvP Solver - A Look at Interval Programming as a Mathematical Programming Model

- This document describes both the mathematical structure of IvP functions and problems
as well as the algorithms used for solving an IvP problem. Prior to this document being
available, one can consult [4].

9

2 EXTENDING MOOS-IVP BY EXAMPLE

2 Extending MOOS-IvP By Example

2.1 Brief Overview

This section describes an example repository distributed with the MOOS-IvP software bundle at
www.moos-ivp.org. This repository merely provides a template with an example MOOS applica-
tion, IvP Behavior, and example mission. More importantly perhaps is that the CMake build files
are provided. A cursory look at these files reveal the hooks to add a new behavior or application.
This is meant to provide one easy way to begin extending the MOOS-IvP software capabilities with
one’s own modules.

2.2 Obtaining and Building the Example Extensions Folder

The example extensions folder is available at the following URL:

http://www.moos-ivp.org/software/extensions.html

Instructions are provided for downloading the software from an SVN server with anonymous read-
only access. After checking out the tree from the SVN server as prescribed at this link, the top
level directory should have the following structure:

moos-ivp-extend/

bin/

docs/

missions/

src/

The build instructions are maintained in the README files and are probably more up to date
than this document. In short building the software amounts to two steps:

> cd moos-ivp-extend/src/

> cmake ./

> make

The build depends on the directory moos-ivp-extend being in the same directory as moos-ivp. If
this needs to be different on your system, the file CMakeLists.txt in the src/ directory can be
edited. The relevant lines are at the top of the file:

GET_FILENAME_COMPONENT(MOOS_BASE_DIR_A ../../moos-ivp/trunk/MOOS ABSOLUTE)

GET_FILENAME_COMPONENT(IVP_BASE_DIR_A ../../moos-ivp/trunk/ivp ABSOLUTE)

GET_FILENAME_COMPONENT(MOOS_BASE_DIR_B ../../moos-ivp/MOOS ABSOLUTE)

GET_FILENAME_COMPONENT(IVP_BASE_DIR_B ../../moos-ivp/ivp ABSOLUTE)

After building the software there should be a new MOOS application called pXRelayTest in the bin/

directory, and a new IvP Behavior in the directory src/lib behaviors-test/ directory. The new
behavior is in the form of a shared object, having the name libBHV SimpleWaypoint.so in Linux,
and libBHV SimpleWaypoint.dylib on the Mac OS X platform.

10

2 EXTENDING MOOS-IVP BY EXAMPLE

2.3 Using the New MOOS Application

To use the new MOOS application, the directory moos-ivp-extend/bin/ needs to be added to the
user’s shell path. This is typically done in the .cshrc or .bashrc file for tcsh and bash users
respectively. To confirm that things are ready to go, use the built-in shell command which:

> which pXRelayTest

which returns the directory where the executable resides if it is indeed in the shell’s path. Otherwise
it returns nothing. Don’t forget that an edited path doesn’t take effect until a new shell is launched
or unless the user types "source .cshrc", or "source .bashrc".

The pXRelayTest application is the same as the pXRelay application distributed with the MOOS-
IvP software bundle. It differs only in name for the sake of illustrating the process of building a new
application outside the moos-ivp tree. This example MOOS application is described in detail in
Section 3.8. In that section, an example mission file is described for running two pXRelay processes
to illustrate their function. A similar mission file is provided in:

moos-ivp-extend/missions/xrelay/xrelay.moos

that launches two processes, pXRelay and pXRelayTest as a way of confirming that you are running
a MOOS application from the extensions build alongside the build of the main moos-ivp repository.
Information on how to work through this example is provided in Sections 3.8.2 and 3.8.3.

2.4 Using the New IvP Helm Behavior

To use the new IvP Helm behavior built in the extensions folder, the helm needs to know about it.
The helm already contains a number of behaviors compiled in to the pHelmIvP executable, but the
objective of adding behaviors in the manner outlined here, is to avoid any recompiling of the helm
as new behaviors are added. Loosely speaking, there is a one-way dependency between repositories
- new behaviors are layered onto the set of behaviors shipped with the helm with no modifications
or re-build required of the basic moos-ivp software tree.

Newly built behaviors are compiled in to shared object files, *.so in Linux, and *.dylib in
Mac OS X. The helm references a path variable called IVP BEHAVIOR DIRS which contains a colon-
separated list of all directories containing dynamically loadable behaviors. This variable is a shell
environment variable and is typically set in the .cshrc or .bashrc file for tcsh and bash users
respectively. For example, the following line in the .cshrc file for tcsh users:

setenv IVP_BEHAVIOR_DIRS = ’/home/bob/moos-ivp-extend/src/lib_behaviors-test’

A mission file to test this is provided in:

moos-ivp-extend/missions/alder/alder.moos

The mission is launched with:

> cd moos-ivp-extend/missions/alder/

> pAntler alder.moos

11

2 EXTENDING MOOS-IVP BY EXAMPLE

The output produced in the helm terminal window should look like that shown in Listing 1 below,
and provides useful feedback on whether the dynamically loadable behavior was loaded properly.

Listing 1 - Example pHelmIvP terminal output when loading a dynamic behavior.

0 **

1 * *

2 * This is MOOS Client *

3 * c. P Newman 2001 *

4 * *

5 **

6

7 ---------------MOOS CONNECT-----------------------

8 contacting a MOOS server localhost:9000 - try 00001

9 Contact Made

10 Handshaking as "pHelmIvP"

11 Handshaking Complete

12 Invoking User OnConnect() callback...ok

13 --

14

15 The IvP Helm (pHelmIvP) is starting....

16 Loading behavior dynamic libraries....

17 Loading directory: /Users/mikerb/Research/moos-ivp-extend/src/lib_behaviors-test

18 About to load behavior library: BHV_SimpleWaypoint ... SUCCESS

19 Loading behavior dynamic libraries - FINISHED.

20 Number of behavior files: 1

21 Processing Behavior File: alder.bhv START

22 Successfully found file: alder.bhv

23 InitializeBehavior: found dynamic behavior BHV_SimpleWaypoint

24 InitializeBehavior: found dynamic behavior BHV_SimpleWaypoint

25 Processing Behavior File: alder.bhv END

26 mode description:

27 pHelmIvP is Running:

28 AppTick @ 4.0 Hz

29 CommsTick @ 4 Hz

The output prior to line 15 is standard MOOS output for an application connecting to the MOOSDB
server. The lines thereafter are specific to the pHelmIvP application. In lines 16-19, the helm
indicates that the directories specified in the IVP BEHAVIOR DIRS environment variable were found
and indicates all dynamic behaviors loaded from those directories, regardless of whether they are
used in this mission. Line 20 indicates the number of behavior files (.bhv files) comprising this
mission. For each behavior file, output similar to lines 21-26 are generated which reports on the
attempts to load individual behavior, noting for each whether they are a static behavior of a
dynamically loaded behavior.

When the example is fully launched, the pMarineViewer should appear with a simulated vehicle,
and two buttons at the lower right corner. The vehicle can be launched by clicking the “DEPLOY”
button. The dynamically loaded behavior is called BHV SimpleWaypoint and is described in detail
in Section 5.

2.5 Extending the Extensions

To add further MOOS application modules, the simplest way by this example is to create sibling
directories to the pXRelayTest, and add the corresponding entry to the CMakeLists.txt file in the
src/ directory. Further IvP behaviors can be added within the lib behaviors-test directory, or in a

12

2 EXTENDING MOOS-IVP BY EXAMPLE

separate lib * directory. In the former case, the CMakeLists.txt file in the behavior directory needs
to be augmented for the new behavior. In the latter case, an extra entry in the CMakeLists.txt file in
the src/ directory is required, as well as the addition of another directory in the IVP BEHAVIOR DIRS

variable as described above in Section 2.4.

13

3 A VERY BRIEF OVERVIEW OF MOOS

3 A Very Brief Overview of MOOS

MOOS is often described as autonomy “middleware” which can be argued is shorthand for the
glue that connects a collection of applications where the “real” work is going on. MOOS does
indeed connect a collection of applications, of which the IvP Helm is one. However, each appli-
cation inherits a generic MOOS interface whose implementation provides a powerful, easy-to-use
means of communicating with other applications and controlling the relative frequency at which
the application executes its primary set of functions. Due to its combination of ease-of-use, general
extendability and reliability, it has been used in the classroom by students with no prior experience,
as well on many extended field exercises with substantial robotic resources at stake. To frame the
later discussion of the IvP Helm, the basic issues regarding MOOS applications are introduced here.
For further information on MOOS, see [13].

3.1 Inter-process communication with Publish/Subscribe

MOOS has a star-like topology. Each application within a MOOS community (a MOOSApp) has
a connection to a single MOOS Database (called MOOSDB) that lies at the heart of the software
suite. All communication happens via this central server application. The network has the following
properties:

• No Peer to Peer communication.

• All communication between the client and server is instigated by the client, i.e., the MOOSDB
never makes a unsolicited attempt to contact a MOOSApp.

• Each client has a unique name.

• A given client need have no knowledge of what other clients exist.

• A client has no way of transmitting data to a given client - it can only be sent to the MOOSDB.

• The network can be distributed over any number of machines running any combination of
supported operating systems.

This centralized topology is obviously vulnerable to bottle-necking at the server regardless of
how well written the server is. However the advantages of such a design are perhaps greater than its
disadvantages. Firstly the network remains simple regardless of the number of participating clients.
The server has complete knowledge of all active connections and can take responsibility for the
allocation of communication resources. The clients operate independently with inter-connections.
This prevents rogue clients (badly written or hung) from directly interfering with other clients.

3.2 Message Content

The communications API in MOOS allows data to be transmitted between the MOOSDB and a
client. The meaning of that data is dependent on the role of the client. However the form of that
data is constrained by MOOS. Somewhat unusually MOOS only allows for data to be sent in string
or double form. Data is packed into messages (CMOOSMsg class) which contains other salient
information shown in Table 1.

14

3 A VERY BRIEF OVERVIEW OF MOOS

Variable Meaning

Name The name of the data
String Value Data in string format
Double Value Numeric double float data
Source Name of client that sent this data to the MOOSDB

Time Time at which the data was written
Data Type Type of data (STRING or DOUBLE)
Message Type Type of Message (usually NOTIFICATION)
Source Community The community to which the source process belongs

Table 1: The contents of MOOS message

The fact that data is commonly sent in string format is often seen as a strange and inefficient
aspect of MOOS. For example the string "Type=EST,Name=AUV,Pos=[3x1]3.4,6.3,-0.23” might de-
scribe the position estimate of a vehicle called “AUV” as a 3x1 column vector. Typically string data
in MOOS is a concatenation of comma separated ”name = value” pairs. It is true that using custom
binary data formats does decrease the number of bytes sent. However binary data is unreadable
to humans and requires structure declarations to decode it and header file dependencies are to be
avoided where possible. The communications efficiency argument is not as compelling as one may
initially think. The CPU cost invoked in sending a TCP/IP packet is largely independent of size up
to about one thousand bytes. So it is as costly to send two bytes as it is one thousand. In this light
there is basically no penalty in using strings. There is however a additional cost incurred in parsing
string data which is far in excess of that incurred when simply casting binary data. Irrespective
of this, experience has shown that the benefits of using strings far outweighs the difficulties. In
particular:

• Strings are human readable.

• All data becomes the same type.

• Logging files are human readable (they can be compressed for storage).

• Replaying a log file is simply a case of reading strings from a file and “throwing” them back
at the MOOSDB in time order.

• The contents and internal order of strings transmitted by an application can be changed
without the need to recompile consumers (subscribers to that data) - users simply would not
understand new data fields but they would not crash.

Of course, scalar data need not be transmitted in string format - for example the depth of a
sub-sea vehicle. In this case the data would be sent while setting the data type to "MOOS DOUBLE"

and writing the numeric value in the double data field of the message.

3.3 Mail Handling - Publish/Subscribe - in MOOS

Each MOOS application is a client having a connection to the MOOSDB. This connection is made
on the client side and the client manages a private thread that coordinates the communication with

15

3 A VERY BRIEF OVERVIEW OF MOOS

the MOOSDB. This thread completely hides the intricacies and timings of the communications
from the rest of the application and provides a small, well dened set of methods to handle data
transfer. By having this thread automatically available to each MOOS application, the application
can:

1. Publish data - issue a notification on named data.

2. Register for notifications on named data.

3. Collect notifications on named data - reading mail.

3.3.1 Publishing Data

Data is published as a pair - a variable and value - that constitute the heart of a MOOS message
describe in Table 1. The client invokes the Notify(VarName, VarValue) command where appropriate
in the client code. The above command is implemented both for string values and double values,
and the rest of the fields described in Table 1 are filled in automatically. Each notification results
in another entry in the client’s “outbox”, which is emptied the next time the MOOSDB accepts an
incoming call from the client.

3.3.2 Registering for Notifications

Assume that a list of names of data published has been provided by the author of a particular
MOOS application. For example, a application that interfaces to a GPS sensor may publish data
called GPS X and GPS Y. A different application may register its interest in this data by subscribing
or registering for it. An application can register for notifications using a single method Register

specifying both the name of the data and the maximum rate at which the client would like to
be informed that the data has been changed. The latter parameter is specified in terms of the
minimum possible time between notifications for a named variable. For example setting it to zero
would result in the client receiving each and every change notification issued on that variable.

3.3.3 Reading Mail

A client can enquire at any time whether it has received any new notifications from the MOOSDB

by invoking the Fetch method. The function fills in a list of notification messages with the fields
given in Table 1. Note that a single call to Fetch may result in being presented with several
notifications corresponding to the same named data. This implies that several changes were made
to the data since the last client-server conversation. However, the time difference between these
similar messages will never be less than that specified in the Register function described above.
In typical applications the Fetch command is called on the client’s behalf just prior to the Iterate

method, and the messages are handled in the user overloaded OnNewMail method. These methods
are described next.

3.4 Overloaded Functions in MOOS Applications

MOOS provides a base class called CMOOSApp which simplifies the writing of a new MOOS application
as a derived subclass. Beneath the hood of the CMOOSApp class is a loop which repetitively calls

16

3 A VERY BRIEF OVERVIEW OF MOOS

a function called Iterate() which by default does nothing. One of the jobs as a writer of a new
MOOS-enabled application is to flesh this function out with the code that makes the application
do what we want. Behind the scenes this uber-loop in CMOOSApp is also checking to see if new data
has been delivered to the application. If it has, another virtual function, OnNewMail(), is called if
this is the spot to write code to process the newly delivered data.

Figure 1: Key virtual functions of the MOOS application base class: The flow of execution once Run() has
been called on a class derived from CMOOSApp . The scrolls indicate where users of the functionality of CMOOSApp
will be writing new code that implements whatever it is that is wanted from the new applications.

The roles of the three virtual functions in Figure 1 are discussed below. The pHelmIvP application
does indeed inherit from CMOOSApp and overload these three functions. The base class contains
other virtual functions (OnConnectToServer() and OnDisconnectFromServer()) not discussed here
but discussed in [13].

3.4.1 The Iterate() Method

By overriding the CMOOSApp::Iterate() function in a new derived class, the author creates a function
from which the work that the application is tasked with doing can be orchestrated. In the pHelmIvP

application, this method will consider the next best vehicle decision, typically in the form of deciding
values for the vehicle heading, speed and depth. The rate at which Iterate() is called by the
SetAppFreq() method or by specifying the AppTick parameter in a mission file (see Section 3.5 for
more on configuring an application from a file). Note that the requested frequency specifies the
maximum frequency at which Iterate() will be called - it does not guarantee that it will be called
at the requested rate. For example if you write code in Iterate() that takes 1 second to complete
there is no way that this method can be called at more than 1Hz. If you want to call Iterate()
as fast as is possible simply request a frequency of zero - but you may want to reconsider why you
need such a greedy application.

17

3 A VERY BRIEF OVERVIEW OF MOOS

3.4.2 The OnNewMail() Method

Just before Iterate() is called, the CMOOSApp base class determines whether new mail is present,
i.e., whether some other process has posted data for which the client has previously registered,
as described above. If new mail is waiting, the varCMOOSApp base class calls the OnNewMail()

virtual function, typically overloaded by the application. The mail arrives in the form of a list of
CMOOSMsg objects (see Table 1). The programmer is free to iterate over this collection examining
who sent the data, what it pertains to, how old it is, whether or not it is string or numerical data
and to act on or process the data accordingly.

3.4.3 The OnStartup() Method

This function is called just before the application enters into its own forever-loop depicted in
Figure 1. This is the application that implements the application’s initialization code, and in
particular reads configuration parameters (including those that modify the default behaviour of
the CMOOSApp base class) from a file. The next section (3.5) addresses the issue of configuring a
MOOS application from a file.

3.5 MOOS Mission Configuration Files

Every MOOS process can read configuration parameters from a mission file which by convention
has a .moos extension. Traditionally MOOS processes share the same mission file to the maximum
extent possible. For example, it is customary for there to be one common mission file for all
MOOS processes running on a given machine. Every MOOS process has information contained in
a configuration block within a *.moos file. The block begins with the statement

ProcessConfig = ProcessName

where ProcessName is the unique name the application will use when connecting to the MOOSDB.
The configuration block is delimited by braces. Within the braces there is a collection of parameter
statements, one per line. Each statement is written as:

ParameterName = Value

where Value can be any string or numeric value. All applications deriving from CMOOSApp inherit
several important configuration options. The most important options for CMOOSApp derived applica-
tions are CommsTick and AppTick. The latter configures how often the communications thread talks
to the MOOSDB and the former how often (approximately) Iterate() will be called.

Parameters may also be defined at the “global” level, i.e., not in any particular process’ configu-
ration block. Three parameters that are mandatory and typically found at the top of all *.moos files
are: ServerHost naming the IP address associated with the MOOSDB server being launched with
this file, ServerPort naming the port number over which the MOOSDB server is communicating
with clients, and Community naming the community comprising the server and clients. An example
is shown in lines 1-3 in Listing 5-A.

18

3 A VERY BRIEF OVERVIEW OF MOOS

3.6 Launching Groups of MOOS Applications with Antler

Antler provides a simple and compact way to start a MOOS mission comprised of several MOOS
processes, a.k.a., a MOOS “community”. For example if the desired mission file is alpha.moos then
executing the following from a terminal shell:

> pAntler alpha.moos

will launch the required processes for the mission. It reads from its configuration block (which is de-
clared as ProcessConfig=ANTLER) a list of process names that will constitute the MOOS community.
Each process to be launched is specified with a line with the general syntax

Run = procname [@ LaunchConfiguration] [MOOSName]

where LaunchConfiguration is an optional comma-separated list of parameter=value pairs which col-
lectively control how the process procname (for example pHelmIvP, or pLogger or MOOSDB) is launched.
Exactly what parameters can be specified is outside the scope of this discussion. Antler looks
through its entire configuration block and launches one process for every line which begins with
the RUN= left-hand side. When all processes have been launched Antler waits for all of them to exit
and then quits itself.

There are many more aspects of Antler not discussed here but can be found in the Antler
documentation at the Oxford website (see Section 1.5). These include hooks for altering the console
appearance for each launched process, controlling the search path for specifying how executables
are located on the host file system, passing parameters to launched processes, running multiple
instances of a particular process, and using Antler to launch multiple distinct communities on a
network.

3.7 Scoping and Poking the MOOSDB

An important tool for writing and debugging MOOS applications (and IvP Helm behaviors) is
the ability for the user to interact with an active MOOS community and see the current values of
particular MOOS variables (scoping the DB) and to alter one or more variables with a desired value
(poking the DB). Below are listed tools for scoping and poking respectively. More information on
each can be found on the Oxford or MIT websites, or in in some instances, other parts of this
document.

Tools for scoping the MOOSDB:

• uMS - A GUI-based tool written in FLTK and maintained and distributed from the Oxford
website.

• uXMS - A terminal-based tool maintained and distributed from the MIT website

• uHelmScope - A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
Distributed from the MIT website.

• MOOSDB http - The newer releases of MOOS allow the MOOSDB to be configured to run an
http server on the current MOOSDB variable-value pairs, viewable through a web browser.

19

3 A VERY BRIEF OVERVIEW OF MOOS

Tools for poking the MOOSDB:

• uMS - The GUI-based tool for scoping, listed above, also provides a means for poking. Dis-
tributed from the Oxford website.

• uPokeDB - A light-weight command-line tool for poking one or more variable-value pairs,
with the option of scoping on the before and after values of the poked variable before exiting.
Distributed from the MIT website.

• pMarineViewer - A GUI-based tool primarily used for rendering the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. Distributed from the MIT website.

• uTermCommand - A terminal-based tool for poking the DB with pre-defined variable-value
pairs. The user can configure the tool to associate aliases (as short as a single character) to
quickly poke the DB. Distributed from the MIT website.

• iRemote - A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associate a pre-defined variable-value poke with any un-mapped key on
the keyboard. Distributed from the Oxford website.

The above list is almost certainly not a complete list for scoping and poking a MOOSDB, but it’s a
decent start.

3.8 A Simple MOOS Application - pXRelay

The bundle of applications distributed from www.moos-ivp.org contains a very simple MOOS ap-
plication called pXRelay. The pXRelay application registers for a single “input” MOOS variable and
publishes a single “output” MOOS variable. It makes a single publication on the output variable
for each mail message received on the input variable. The value published is simply a counter rep-
resenting the number of times the variable has been published. By running two (differently named)
versions of pXRelay with complementary input/output variables, the two processes will perpetuate
some basic publish/subscribe handshaking. This application is distributed primarily as a simple
example of a MOOS application that allows for some illustration of the following topics introduced
up to this point:

• Finding and launching with pAntler example code distributed with the MOOS-IvP software
bundle.

• An example mission configuration file.

• Scoping variables on a running MOOSDB with the uXMS tool.

• Poking the MOOSDB with variable-value pairs using the uPokeDB tool.

• Illustrating the OnStartUp(), OnNewMail(), and Iterate() overloaded functions of the CMOOSApp
base class.

Besides touching on these topics, the collection of files in the pXRelay source code sub-directory is
not a bad template from which to build your own modules.

20

3 A VERY BRIEF OVERVIEW OF MOOS

3.8.1 Finding and Launching the pXRelay Example

The pXRelay example mission should be in the same directory tree containing the source code. See
Section 1.4 on page 7. There is a single mission file, xrelay.moos:

moos-ivp/

MOOS/

ivp/

missions/

xrelay/

xrelay.moos <---- The MOOS file

To run this mission from a terminal window, simply change directories and launch:

> cd moos-ivp/ivp/missions/xrelay

> pAntler xrelay.moos

After pAntler has launched each process, there should be four open terminal windows, one for
each pXRelay process, one for uXMS, and one for the MOOSDB itself.

3.8.2 Scoping the pXRelay Example with uXMS

Among the four windows launched in the example, the window to watch is the uXMS window, which
should have output similar to the following (minus the line numbers):

Listing 2 - Example uXMS output after the pXRelay example is launched.

0 VarName (S)ource (T)ime (C)ommunity VarValue

1 ---------------- ---------- --------- ---------- ----------- (73)

2 APPLES n/a n/a n/a n/a

3 PEARS n/a n/a n/a n/a

4 APPLES_ITER_HZ pXRelay_APPLES 14.93 xrelay 24.93561

5 PEARS_ITER_HZ pXRelay_PEARS 14.94 xrelay 24.93683

6 APPLES_POST_HZ n/a n/a n/a n/a

7 PEARS_POST_HZ n/a n/a n/a n/a

Initially the only thing that is changing in this window is the integer at the end of line 1
representing the number of updates written to the terminal. Here uXMS is configured to scope on
the six variables shown in the VarName column. Column 2 shows which process last posted on the
variable, column 3 shows when the last posting occurred, column 4 shows the community name from
which the post originated, and column 5 shows the current value of the variable. The "n/a" entries
indicate that a process has yet to write to the given variable. For further info on the workings of
uXMS see [3], or type ’h’ to see the help menu.

There are two pXRelay processes running - one under the alias pXRelay APPLES publishing
the variable APPLES as its output variable, APPLES ITER HZ indicating the frequency in which the
Iterate() function is executed, and APPLES POST HZ indicating the frequency at which the output
variable is posted. There is likewise a pXRelay PEARS process and the corresponding output variables.

21

3 A VERY BRIEF OVERVIEW OF MOOS

3.8.3 Seeding the pXRelay Example with the uPokeDB Tool

Upon launching the pXRelay example, the only variables actively changing are the * ITER HZ vari-
ables (lines 4-5 in Listing 2) which confirm that the Iterate() loop in each process is indeed being
executed. The output for the other variables in Listing 2 reflect the fact that the two processes
have not yet begun handshaking. This can be kicked off by poking the APPLES (or PEARS) variable,
which is the input variable for pXRelay PEARS, by typing the following:

> cd moos-ivp/ivp/missions/xrelay

> uPokeDB xrelay.moos APPLES=1

The uPokeDB tool will publish to the MOOSDB the given variable-value pair APPLES=1. It also takes
as an argument the mission file, xrelay.moos, to read information on where the MOOSDB is running
in terms of machine name and port number. The output should look similar to the following:

Listing 3 - Example uPokeDB output after poking the MOOSDB with APPLES=1.

0 PRIOR to Poking the MOOSDB

1 VarName (S)ource (T)ime VarValue

2 ---------------- ---------- ---------- -------------

3 APPLES

4

5

6 AFTER Poking the MOOSDB

7 VarName (S)ource (T)ime VarValue

8 ---------------- ---------- ---------- -------------

9 APPLES uPokeDB 40.19 1.00000"

The output of uPokeDB first shows the value of the variable prior to the poke, and then the value
afterwards. Further information on the uPokeDB tool can be found in [3]. Once the MOOSDB has been
poked as above, the pXRelay PEARS application will receive this mail and, in return, will write to
its output variable PEARS, which in turn will be read by pXRelay APPLES and the two processes will
continue thereafter to write and read their input and output variables. This progression can be
observed in the uXMS terminal, which may look something like that shown in Listing 4:

Listing 4 - Example uXMS output after the pXRelay example is seeded.

0 VarName (S)ource (T)ime (C)ommunity VarValue

1 ---------------- ---------- -------- ---------- ----------- (221)

2 APPLES pXRelay_APPLES 44.78 xrelay 151

3 PEARS pXRelay_PEARS 44.74 xrelay 151

4 APPLES_ITER_HZ pXRelay_APPLES 44.7 xrelay 24.90495

5 PEARS_ITER_HZ pXRelay_PEARS 44.7 xrelay 24.90427

6 APPLES_POST_HZ pXRelay_APPLES 44.79 xrelay 8.36411

7 PEARS_POST_HZ pXRelay_PEARS 44.74 xrelay 8.36406

Upon each write to the MOOSDB the value of the variable is incremented by 1, and the integer
progression can be monitored in the last column on lines 2-3. The APPLES POST HZ and PEARS POST HZ

variables represent the frequency at which the process makes a post to the MOOSDB. This of course
is different than (but bounded above by) the frequency of the Iterate() loop since a post is made
within the Iterate() loop only if mail had been received prior to the outset of the loop. In a

22

3 A VERY BRIEF OVERVIEW OF MOOS

world with no latency, one might expect the “post” frequency to be exactly half of the “iterate”
frequency. We would expect the frequency reported on lines 6-7 to be no greater than 12.5, and in
this case values of about 8.4 are observed instead.

3.8.4 The pXRelay Example MOOS Configuration File

The mission file used for the pXRelay example, xrelay.moos is discussed here. This file is provided
as part of the MOOS-IvP software bundle under the “missions” directory as discussed above in
Section 3.8.1. It is discussed here in three parts in Listings 5-A through 5-C below.

The part of the xrelay.moos file provides three mandatory pieces of information needed by the
MOOSDB process for launching. The MOOSDB is a server and on line 1 is the IP address for the machine,
and line 2 indicates the port number where clients can expect to find the MOOSDB once it has been
launched. Since each MOOSDB and the set of connected clients form a MOOS “community”, the
community name is provided on line 3. Note the xrelay community name in the xrelay.moos file
and the community name in column 4 of the uXMS output in Listing 2 above.

Listing 5-A - The xrelay.moos mission file for the pXRelay example.

1 ServerHost = localhost

2 ServerPort = 9000

3 Community = xrelay

4

5 //--

6 // Antler configuration block

7 ProcessConfig = ANTLER

8 {

9 MSBetweenLaunches = 200

10

11 Run = MOOSDB @ NewConsole = true

12 Run = pXRelay @ NewConsole = true ~ pXRelay_PEARS

13 Run = pXRelay @ NewConsole = true ~ pXRelay_APPLES

14 Run = uXMS @ NewConsole = true

15 }

The configuration block in lines 7-15 of xrelay.moos is read by the pAntler for launching the
processes or clients of the MOOS community. Line 9 specifies how much time, in milliseconds,
between the launching of processes. Lines 11-14 name the four MOOS applications launched in this
example. On these lines, the component "NewConsole = true" determines whether a new console
window will be opened for each process. Try changing them to false - only the uXMS window really
needs to be open. The others merely provide a visual confirmation that a process has been launched.
The ”~ pXRelay_PEARS” component of lines 12 and 13 tell pAntler to launch these applications with
the given alias. This is required here since each MOOS client needs to have a unique name, and in
this example two instances of the pXRelay process are being launched.

In lines 17-39 in Listing 5-B below, the two pXRelay applications are configured. Note that the
argument to ProcessConfig on lines 20 and 32 is the alias for pXRelay specified in the Antler con-
figuration block on lines 12 and 13. Each pXRelay process is configured such that its incoming and
outgoing MOOS variables complement one another on lines 25-26 and 37-38. Note the AppTick pa-
rameter (see Section 3.4.1) is set to 25 in both configuration blocks, and compare with the observed
frequency of the Iterate() function reported in the variables APPLES ITER HZ and PEARS ITER HZ in
Listing 2. MOOS has done a pretty faithful job in this example of honoring the requested frequency
of the Iterate() loop in each application.

23

3 A VERY BRIEF OVERVIEW OF MOOS

Listing 5-B - The xrelay.moos mission file - configuring the pXRelay processes.

17 //--

18 // pXRelay config block

19

20 ProcessConfig = pXRelay_APPLES

21 {

22 AppTick = 25

23 CommsTick = 25

24

25 OUTGOING_VAR = APPLES

26 INCOMING_VAR = PEARS

27 }

28

29 //--

30 // pXRelay config block

31

32 ProcessConfig = pXRelay_PEARS

33 {

34 AppTick = 25

35 CommsTick = 25

36

37 INCOMING_VAR = APPLES

38 OUTGOING_VAR = PEARS

39 }

In the last portion of the xrelay.moos file, shown in Listing 5-C below, the uXMS process is
configured. In this example, uXMS is configured to scope on the six variables specified on lines 54-59
to give the output shown in Listings 2 and 4. By setting the PAUSED parameter on line 49 to false,
the output of uXMS is continuously and automatically updated - in this case four times per second
due to the rate of 4Hz specified in lines 46-47. The DISPLAY * parameters in lines 50-52 ensure that
the output in columns 2-4 of the uXMS output is expanded. See [3] for further ways to configure the
uXMS tool.

Listing 5-C - The xrelay.moos mission file for the pXRelay example - configuring uXMS.

41 //--

42 // uXMS config block

43

44 ProcessConfig = uXMS

45 {

46 AppTick = 4

47 CommsTick = 4

48

49 PAUSED = false

50 DISPLAY_SOURCE = true

51 DISPLAY_TIME = true

52 DISPLAY_COMMUNITY = true

53

54 VAR = APPLES

55 VAR = PEARS

56 VAR = APPLES_ITER_HZ

57 VAR = PEARS_ITER_HZ

58 VAR = APPLES_POST_HZ

59 VAR = PEARS_POST_HZ

60 }

24

3 A VERY BRIEF OVERVIEW OF MOOS

3.8.5 Suggestions for Further Things to Try with this Example

• Take a look at the OnStartUp() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how the handling of parameters in the xrelay.moos configuration file
are implemented, and the subscription for a MOOS variable.

• Take a look at the OnNewMail() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how incoming mail is parsed and handled.

• Take a look at the Iterate() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see an example of a MOOS process that acts upon incoming mail and
conditionally posts to the MOOSDB

• Try changing the AppTick parameter in one of the pXRelay configuration blocks in the xrelay.moos
file, re-start, and note the resulting change in the iteration and post frequencies in the uXMS

output.

• Try changing the CommsTick parameter in one of the pXRelay configuration blocks in the
xrelay.moos file to something much lower than the AppTick parameter, re-start, and note the
resulting change in the iteration and post frequencies in the uXMS output.

3.9 MOOS Applications Available to the Public

Below are very brief descriptions of MOOS applications in the public domain. This is by no means
a complete list. It does not include applications outside MIT, Oxford and NUWC, and it is not
even a complete list of applications from those organizations. For a more in-depth tour of MOOS
applications, see [5].

3.9.1 MOOS Modules from Oxford

• pAntler: A tool for launching a collection of MOOS processes given a mission file. See [13],
[12]. .

• pMOOSBridge: A tool that allows messages to pass between communities and allows for the
renaming of messages as they are shuffled between communities. See [13], [12].

• pLogger: A logger for recording the activities of a MOOS session. It can be configured to
record a fraction of, or all publications of any number of MOOS variables. See [5], [12].

• pScheduler: A simple tool for generating and responding to messages sent to the MOOSDB
by processes in a MOOS community. See [5], [12].

• uMS: A GUI-Based MOOS scope for monitoring one or more MOOSDBs. See [5], [12].

• uPlayback: An FLTK-based, cross platform GUI application that can load in log files and
replay them into a MOOS community as though the originators of the data were really running
and issuing notifications. See [5], [12].

25

3 A VERY BRIEF OVERVIEW OF MOOS

• iMatlab: An application that allows matlab to join a MOOS community - even if only for
listening in and rendering sensor data. It allows connection to the MOOSDB and access to
local serial ports. See [5], [12].

• iRemote: A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associate a pre-defined variable-value poke with any un-mapped key on
the keyboard. See [5], [12].

• uMVS: A multi-vehicle AUV simulator, capable of simulating any number of vehicles and
acoustic ranging between them and acoustic transponders. The vehicle simulation incor-
porates a full 6 D.O.F vehicle model replete with vehicle dynamics, center of buoyancy /
center of gravity geometry, and velocity dependent drag. The acoustic simulation is also
fairly smart. It simulates acoustic packets propagating as spherical shells through the water
column. See [5], [12].

3.9.2 MOOS Modules from MIT and NUWC

• pHelmIvP: The IvP Helm, and primary focus of this document.

• pNodeReporter: The pNodeReporter application garners vehicle navigation information such
as position, speed, heading, yaw and depth, along with high-level helm information such as
its operation mode, and publishes a summary variable, NODE REPORT LOCAL, which is consumed
by viewer applications such as pMarineViewer, and as input to other vehicles participating in
cooperative tasks.

• uHelmScope: A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
See [3], [7].

• uPokeDB: A light-weight command-line tool for poking one or more variable-value pairs, with
the option of scoping on the before and after values of the poked variable before exiting.
See [3], [7].

• pMarineViewer: A GUI-based tool primarily used for rending the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. See [3], [7].

• uXMS: A terminal based tool for live scoping on a MOOSDB process. See [3], [7]. .

• iMarineSim: A very simple single-vehicle simulator that updates vehicle state based on present
actuator values. Runs locally in the MOOS community associated with the simulated vehicle,
so, unlike uMVS, there is one iMarineSim process running per each vehicle.

• pEchoVar: A lightweight process that runs without user interaction for “echoing” specified
variable-value pairs posted with a follow-on post having different variable name.

• pMarinePID: An application providing simple PID control for vehicle speed-thrust, heading-
rudder, and depth-pitch.

26

3 A VERY BRIEF OVERVIEW OF MOOS

• uFunctionVis: A application for live rendering of objective functions produced by the IvP
Helm behaviors. See [7].

• uProcessWatch: An application for monitoring the presence (connection) of a set of MOOS
processes to a running MOOSDB. Status is summarized by a single published variable. See [3], [7].

• uTermCommand: A terminal-based tool for poking the DB with pre-defined variable-value pairs.
The user can configure the tool to associate aliases (as short as a single character) to quickly
poke the DB. See [3], [7].

• uTimerScript: A MOOS application that will poke the MOOSDB with pre-defined variable-
value pairs in a script that may repeat. Not unlike pScheduler, but it can do some additional
things such as jump forward or pause in the script based on MOOS notifications. It may also
schedule its events to occur at a random point in a fixed time interval.See [3], [7].

27

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

4 Standard and Overloadable Properties of Helm Behaviors

The objective of this section is to describe properties common to all IvP Helm behaviors, describe
how to overload standard functions for 3rd party behaviors, and to provide a detailed simple
example of a behavior.

4.1 Brief Overview

Behaviors are implemented as C++ classes with the helm having one or more instances at runtime,
each with a unique descriptor. The properties and implemented functions of a particular behavior
are partly derived from the IvPBehavior superclass, shown in Figure 2. The is-a relationship of a
derived class provides a form of code re-use as well as a common interface for constructing mission
files with behaviors.

Figure 2: Behavior inheritance: Behaviors are derived from the IvPBehavior superclass. The native behaviors
are the behaviors distributed with the helm. New behaviors also need to be subclass of the IvPBehavior class to work
with the helm. Certain virtual functions invoked by the helm may be optionally but typically overloaded in all new
behaviors. Other private functions may be invoked within a behavior function as a way of facilitating common tasks
involved in implementing a behavior.

The IvPBehavior class provides three virtual functions which are typically overloaded in a particular
behavior implementation:

• The setParam() function: parameter-value pairs are handled to configure a behavior’s unique
properties distinct from its superclass.

• The onRunState() function: the meat of a behavior implementation, performed when the
behavior has met its conditions for running, with the output being an objective function and
a possibly empty set of variable-value pairs for posting to the MOOSDB.

• The onIdleState() function: what the behavior does when it has not met its run conditions.
It may involve updating internal state history, generation of variable-value pairs for posting
to the MOOSDB, or absolutely nothing at all.

28

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

This section discusses the properties of the IvPBehavior superclass that an author of a third-
party behavior needs to be aware of in implementing new behaviors. It is also relevant material for
users of the native behaviors as it details general properties.

4.2 Parameters Common to All IvP Behaviors

A behavior has a standard set of parameters defined at the IvPBehavior level as well as unique
parameters defined at the subclass level. By configuring a behavior during mission planning, the
setting of parameters is the primary venue for affecting the overall autonomy behavior in a vehicle.
Parameters are set in the behavior file, but can also be dynamically altered once the mission has
commenced. A parameter is set with a single line of the form:

parameter = value

The left-hand side, the parameter component, is case insensitive, while the value component is
typically case sensitive. This was discussed in depth in [6] in the section “IvP Helm Autonomy”
In this section, the parameters defined at the superclass level and available to all behaviors are
exhaustively listed and discussed. Each behavior typically augments these parameters with new
ones unique to the behavior, and in the next section the issue of implementing new parameters by
overloading the setParam() function is addressed.

4.2.1 A Summary of the Full Set of General Behavior Parameters

The following parameters are defined for all behaviors at the superclass level. They are listed here
for reference - certain related aspects are discussed in further detail in other sections.

NAME: The name of the behavior - should be unique between all behaviors. Duplicates may be
confusing, but should not cause helm errors. Logging and output sent to the helm console during
operation will organize information by the behavior name.

PRIORITY: The priority weight of the produced objective function. The default value is 100. A
behavior may also be implemented to determine its own priority weight depending on information
about the world.

DURATION: The time in seconds that the behavior will remain running before declaring completion.
If no duration value is provided, the behavior will never time-out. The clock starts ticking once
the behavior satisfies its run conditions (becoming non-idle) the first time. Should the behavior

switch between running and idle states, the clock keeps ticking even during the idle periods. See
Section 4.2.3 for more detail.

DURATION STATUS: If the DURATION parameter is set, the remaining duration time, in seconds, can
be posted by naming a DURATION STATUS variable. This variable will be update/posted only when
the behavior is in the running state. See Section 4.2.3 for more detail.

29

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

DURATION RESET: This parameter takes a variable-pair such as MY RESET=true. If the DURATION

parameter is set, the duration clock is reset when the variable is posted to the MOOSDB with
the specified value. Each time such a post is noted, the duration clock is reset. See Section 4.2.3
for more detail.

POST MAPPING: This parameter takes a comma-separated pair such as WPT STAT, WAYPT STATUS

where the left-hand value is a variable normally posted by the behavior, and the right-hand
value is an alternative variable name to be used. There is no error-checking to ensure that the
left-hand value names a variable actually posted by the behavior. Transitive relationships are
not respected. For example, if the two remappings are declared, FOO,BAR, and BAR,CAR, FOO will
be posted as BAR, not CAR.

DURATION IDLE DECAY: If this parameter is false the duration clock is paused when the vehicle is
in the “idle” state. The default value is true. See Section 4.2.3 for more detail.

CONDITION: This parameter specifies a condition that must be met for the behavior to be active.
Conditions are checked for each behavior at the beginning of each control loop iteration. Condi-
tions are based on current MOOS variables, such as STATE = normal or ((K ≤ 4). More than one
condition may be provided, as a convenience, treated collectively as a single conjunctive condi-
tion. The helm automatically subscribes for any condition variables. See the section “Behavior
Run Conditions” in [6] for more detail.

RUNFLAG: This parameter specifies a variable and a value to be posted when the behavior has met all
its conditions for being in the running state. It is a equal-separated pair such as TRANSITING=true.
More then one flag may be provided. These can be used to satisfy or block the conditions of
other behaviors. See the section “Behavior Flags and Behavior Messages” in [6] for more detail.

IDLEFLAG: This parameter specifies a variable and a value to be posted when the behavior is in
the idle state. See the section “Behavior Run States” in [6] for more detail on run states. It is
an equal-separated pair such as WAITING=true. More then one flag may be provided. These can
be used to satisfy or block the conditions of other behaviors. See the section “Behavior Flags
and Behavior Messages” in [6] for more detail.

ACTIVEFlAG: This parameter specifies a variable and a value to be posted when the behavior is in
the active state. See the section “Behavior Run States” in [6] for more detail on run states. It is
an equal-separated pair such as TRANSITING=true. More then one flag may be provided. These
can be used to satisfy or block the conditions of other behaviors. See the section “Behavior
Flags and Behavior Messages” in [6] for more detail.

INACTIVEFlAG: This parameter specifies a variable and a value to be posted when the behavior
is not in the active state. See the section “Behavior Run States” in [6] for more detail on run
states. It is a equal-separated pair such as OUT OF RANGE=true. More then one flag may be
provided. These can be used to satisfy or block the conditions of other behaviors. See the
section “Behavior Flags and Behavior Messages” in [6] for more detail.

30

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

ENDFLAG: This parameter specifies a variable and a value to be posted when the behavior has set
the completed state variable to be true. The circumstances causing completion are unique to
the individual behavior. However, if the behavior has a DURATION specified, the completed flag
is set to true when the duration is exceeded. The value of this parameter is a equal-separated
pair such as ARRIVED HOME=true. Once the completed flag is set to true for a behavior, it remains
inactive thereafter, regardless of future events, barring a complete helm restart. See the section
“Behavior Flags and Behavior Messages” in [6] for more detail.

UPDATES: This parameter specifies a variable from which updates to behavior configuration pa-
rameters are read from after the behavior has been initially instantiated and configured at the
helm startup time. Any parameter and value pair that would have been legal at startup time
is legal at runtime. The syntax for this string is a #-separated list of parameter-value pairs:
"param=value # param=value # ... # param=value". This is one of the primary hooks to the
helm for mission control - the other being the behavior conditions described above. See Section
4.2.2 for more detail.

NOSTARVE: The NOSTARVE parameter allows a behavior to assert a maximum staleness for one or
more MOOS variables, i.e., the time since the variable was last updated. The syntax for this
parameter is a comma-separated pair "variable, ..., variable, value", where last component
in the list is the time value given in seconds. See Section 4.2.5 on page 33 for more detail.

PERPETUAL: Setting the perpetual parameter to true allows the behavior to continue to run even
after it has completed and posted its end flags. The parameter value is not case sensitive and
the only two legal values are true and false. See Section 4.2.4 for more detail.

4.2.2 Altering Behavior Parameters Dynamically with the UPDATES Parameter

The parameters of a behavior can be made to allow dynamic modifications - after the helm has been
launched and executing the initial mission in the behavior file. The modifications come in a single
MOOS variable specified by the parameter UPDATES. For example, consider the simple waypoint
behavior configuration below in Listing 6. The return point is the (0,0) point in local coordinates,
and return speed is 2.0 meters/second. When the conditions are met, this is what will be executed.

Listing 6 - An example behavior configuration using the UPDATES parameter.

0 Behavior = BHV_Waypoint

1 {

2 name = WAYPT_RETURN

3 priority = 100

4 speed = 2.0

5 radius = 8.0

6 points = 0,0

7 UPDATES = RETURN_UPDATES

8 condition = RETURN = true

9 condition = DEPLOY = true

10 }

If, during the course of events, a different return point or speed is desired, this behavior can be
altered dynamically by writing to the variable specified by the UPDATES parameter, in this case the
variable RETURN UPDATES (line 7 in Listing 6). The syntax for this variable is of the form:

31

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

parameter = value # parameter = value # ... # parameter = value

White space is ignored. The ’#’ character is treated as special for parsing the line into separate
parameter-value pairs. It cannot be part of a parameter component or value component. For
example, the return point and speed for this behavior could be altered by any other MOOS process
that writes to the MOOS variable:

RETURN_UPDATES = ‘‘points = (50,50) # speed = 1.5’’

Each parameter-value pair is passed to the same parameter setting routines used by the behavior
on initialization. The only difference is that an erroneous parameter-value pair will simply be
ignored as opposed to halting the helm as done on startup. If a faulty parameter-value pair is
encountered, a warning will be written to the variable BHV WARNING. For example:

BHV_WARNING = "Faulty update for behavior: WAYPT_RETURN. Bad parameter(s): speed."

Note that a check for parameter updates is made at the outset of helm iteration loop for a behavior
with the call checkUpdates(). Any updates received by the helm on the current iteration will be
applied prior to behavior execution and in effect for the current iteration.

4.2.3 Limiting Behavior Duration with the DURATION Parameter

The duration parameter specifies a time period in seconds before a behavior times out and perma-
nently enters the completed state. If left unspecified, there is no time limit to the behavior. By
default, the duration clock begins ticking as soon as the helm engages. The duration clock remains
ticking when or if the behavior subsequently enters the idle state. It even remains ticking if the
helm temporarily disengages. When a timeout occurs, end flags are posted. The behavior can be
configured to post the time remaining before a timeout with the duration status parameter. The
forms for each are:

duration = value (positive numerical)

duration_status = value (variable name)

Note that the duration status variable will only be published/updated when the behavior is in the
running state. The duration status is rounded to the nearest integer until less than ten seconds
remain, after which the time is posted out to two decimal places. The behavior can be configured
to have the duration clock pause when it is in the idle state with the following:

duration_idle_decay = false // The default is true

Configured in the above manner, a behavior’s duration clock will remain paused until it’s condtions
are met. The behavior may also be configured to allow for the duration clock to be reset upon the
writing of a MOOS variable with a particular value. For example:

duration_reset = BRAVO_TIMER_RESET=true

The behavior checks for and notes that the variable-value pair holds true and the duration clock is
then reset to the original duration value. The behavior also marks the time at which the variable-
value pair was noted to have held true. Thus there is no need to “un-set” the variable-value pair,
e.g., setting BRAVO TIMER RESET=false, to allow the duration clock to resume its count-down.

32

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

4.2.4 The PERPETUAL Parameter

When a behavior enters the completed state, it by default remains in that state with no chance to
change. When the perpetual parameter is set to true, a behavior that is declared to be complete
does not actually enter the complete state but performs all the other activity normally associated
with completion, such as the posting of end flags. See the section “Behavior Flags and Behavior
Messages” in [6] for more detail. The default value for perpetual is false. The form for this
parameter is:

perpetual = value

The value component is case insensitive, and the only legal values are either true or false. A
behavior using the duration parameter with perpetual set to true will post its end flags upon time
out, but will reset its clock and begin the count-down once more the next time its run conditions
are met, i.e., enters the running state. Typically when a behavior is used in this way, it also posts
an endflag that would put itself in the idle state, waiting for an external event.

4.2.5 Detection of Stale Variables with the NOSTARVE Parameter

A behavior utilizing a variable generated by a MOOS process outside the helm, may require the
variable to be sufficiently up-to-date. The staleness of a variable is the time since it was last written
to by any process. The NOSTARVE parameter allows the mission writer to set a staleness threshold.
The form for this parameters is:

nostarve = variable_1, ..., variable_n, duration

The value of this parameter is a comma-separated list such as "NAV X, NAV Y, 5.0". The variable
components name MOOS variables and the duration component, the last entry in the list, represents
the tolerated staleness in seconds. If staleness is detected, a behavior failure condition is triggered
which will trigger the helm to post all-stop values and relinquish to manual control.

4.3 Overloading the setParam() Function in New Behaviors

The setParam() function is a virtual function defined in the IvPBehavior class, with parameters
implemented in the superclass (Section 4.2) handled in the superclass version of this function:

bool IvPBehavior::setParam(string parameter, string value);

The setParam() function should return true if the parameter is recognized and the value is in an
acceptable form. In the rare case that a new behavior has no additional parameters, leaving this
function undefined in the subclass is appropriate. The example below in Listing 7 gives an example
for a fictional behavior BHV YourBehavior having a single parameter period.

Listing 7 - An example setParam() implementation for fictional BHV YourBehavior.

33

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

0 bool BHV_YourBehavior::setParam(string param, string value)

1 {

2 if(param == "period") {

3 double time_value = atof(value.c_str());

4 if((time_value < 0) || (!isNumber(value)))

5 return(false);

6 m_period = time_value;

7 return(true);

8 }

9 return(false);

10 }

Since the period parameter refers to a time period, a check is made on line 4 that the value
component indeed is a positive number. (The atof() function on line 6, which converts an ASCII
string to a floating point value, returns zero when passed a non-numerical string, therefore the
isNumber() function is also used to ensure the string represented by value represents a numerical
value.) A behavior implementation of this function without sufficient syntax or semantic checking
simply runs the risk that faulty parameters are not detected at the time of helm launch, or during
dynamic updates. Solid checking in this function will reduce debugging headaches down the road.

4.4 Behavior Functions Invoked by the Helm

The IvPBehavior superclass implements a number of functions invoked by the helm on each it-
eration. Two of these functions are overloadable as described previously - the onRunState() and
onIdleState() functions. The basic flow of calls to a behavior from the helm are shown in Figure 3.
These are discussed in more detail later in the section, but the idea is to execute certain behavior
functions based on the activity state, which may be one of the four states depicted. An idle behavior
is one that has not mets its conditions for running. A completed behavior is one that has reached
its objectives or exceeded its duration. A running behavior is one that has not yet completed, has
met its run conditions, but may still opt not to produce any output. An active behavior is one that
is running and is producing output in the form of an objective function.

The types of functions defined at the superclass level fall into one of the three categories below,
only the first two of which are shown in Figure 3:

• Helm-invoked immutable functions - functions invoked by the helm on each iteration that the
author of a new behavior may not re-implement.

• Helm-invoked overloadable functions - functions invoked by the helm that an author of a new
behavior typically re-implements of overloads.

• User-invoked functions - functions invoked within a behavior implementation.

The user-invoked functions are utilities for common operations typically invoked within the
implementation of the onRunState() and onIdleState() functions written by the behavior author.

4.4.1 Helm-Invoked Immutable Functions

These functions, implemented in the IvPBehavior superclass, are called by the helm but are not

defined as virtual functions which means that attempts to overload them in a new behavior imple-
mentation will be ignored. See Figure 3 regarding the sequence of these function calls.

34

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

Figure 3: Behavior function-calls by the helm: The helm invokes a sequence of functions on each behavior
on each iteration of the helm. The sequence of calls is dependent on what the behavior returns, and reflects the
behaviors activity state. Certain functions are immutable and can not be overloaded by a behavior author. Two
key functions, onRunState() and onIdleState() can be indeed overloaded as the usual hook for an author to
provide the implementation of a behavior. The postFlags function is also immutable, but the parameters (flags)
are provided in the helm configuration (*.bhv) file.

void checkUpdates(): This function is called first on each iteration to handle requested dynamic
changes in the behavior configuration. This needs to be the very first function applied to a
behavior on the helm iteration so any requested changes to the behavior parameters may be
applied on the present iteration. See Section 4.2.2 for more on dynamic behavior configuration
with the UPDATES parameter.

bool isComplete(): This function simply returns a Boolean indicating whether the behavior was
put into the complete state during a prior iteration.

bool isRunnable(): Determines if a behavior is in the running state or not. Within this function
call four things are checked: (a) if the duration is set, the duration time remaining is checked for
timeout, (b) variables that are monitored for staleness are checked against (Section 4.2.5). (c)
the run conditions must be met. (d) the behavior’s decision domain (IvP domain) is a proper
subset of the helm’s configured IvP domain. See the section “Behavior Run Conditions” in [6]
for more detail on run conditions.

35

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

void postFlags(string flag type): This function will post flags depending on whether the value
of flag type is set to "idleflags", "runflags", "activeflags", "inactiveflags", or "endflags".
Although this function is immutable, not overloadable by subclass implementations, its effect
is indeed mutable since the flags are specified in the mission configuration *.bhv file. See the
section “Behavior Flags and Behavior Messages” in [6] for more detail on flag types.

4.4.2 Helm-Invoked Overloaded Functions

These are functions called by the helm. They are defined as virtual functions so that a behavior
author may overload them. Typically the bulk of writing a new behavior resides in implementing
these three functions.

IvPFunction* onRunState(): The onRunState() function is called by the helm when deemed to be
in the running state (Figure 3). The bulk of the work in implementing a new behavior is in this
function implementation, and is the subject of Section 4.6.

void onIdleState(): This function is called by the helm when deemed to be in the idle state
(Figure 3). Many behaviors are implemented with this function left undefined, but it is a useful
hook to have in many cases.

bool setParam(string, string): This function is called by the helm when the behavior is first in-
stantiated with the set of parameter and parameter values provided in the behavior file. It is also
called by the helm within the checkUpdates() function to apply parameter updates dynamically.

4.5 Local Behavior Utility Functions

The bulk of the work done in implementing a new behavior is in the implemenation of the
onIdleState() and onRunState() functions. The utility functions described below are designed
to aid in that implementation and are generally “protected” functions, that is callable only from
within the code of another function in the behavior, such as the onRunState() and onIdleState()

functions, and not invoked by the helm.

4.5.1 Summary of Implementor-Invoked Utility Functions

The following is summary of utility functions implemented at the IvPBehavior superclass level.

void setComplete(): The notion of what it means for a behavior to be “complete” is largely an
issue specific to an individual behavior. When or if this state is reached, a call to setComplete()

can be made and end flags will be posted, and the behavior will be permanently put into the
completed state unless the perpetual parameter is set to true.

void addInfoVars(string var names): The helm will register for variables from the MOOSDB on a
need-only basis, and a behavior is obligated to inform the helm that certain variables are needed
on its behalf. A call to the addInfoVars() function can be made from anywhere with a behavior
implementation to declare needed variables. This can be one call per variable, or the string
argument can be a comma-separated list of variables. The most common point of invoking this
function is within a behavior’s constructor since needed variables are typically known at the
point of instantiation. More on this issue in Section 4.5.3.

36

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

double getBufferDoubleVal(string varname, bool& result): Query the info buffer for the latest
(double) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 4.5.2.

double getBufferStringVal(string varname, bool& result): Query the info buffer for the latest
(string) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 4.5.2.

double getBufferCurrTime(): Query the info buffer for the current buffer local time, equivalent
to the duration in seconds since the helm was launched. More on this in Section 4.5.2.

vector<double> getBufferDoubleVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type double) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 4.5.2.

vector<string> getBufferStringVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type string) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 4.5.2.

void postMessage(string varname, string value, string key): The helm can post messages (variable-
value pairs) to the MOOSDB at the end of the helm iteration. Behaviors can request such
postings via a call to the postMessage() function where the first argument is the variable name,
and the second is the variable value. The optional key parameter is used in conjunction with
the duplication filter and by default is the empty string. See the section “Automated Filtering
of Successive Duplicate Helm Publications” in [6] for more on the duplication filter.

void postMessage(string varname, double value, string key): Same as above except used when
the posted variable is of type double rather than string. The optional key parameter is used in
conjunction with the duplication filter and by default is the empty string. See the section “Au-
tomated Filtering of Successive Duplicate Helm Publications” in [6] for more on the duplication
filter.

void postBoolMessage(string varname, bool value, string key): Same as above, except used
when the posted variable is a bool rather than string. The optional key parameter is used
in conjunction with the duplication filter and by default is the empty string. See the sec-
tion “Automated Filtering of Successive Duplicate Helm Publications” in [6] for more on the
duplication filter.

void postIntMessage(string varname, double value, string key): Same as postMessage(string,
double) above except the numerical output is rounded to the nearest integer. This, combined
with the helm’s use of the duplication filter, can reduce the number of posts to the MOOSDB.
The optional key parameter is used in conjunction with the duplication filter and by default is the
empty string. See the section “Automated Filtering of Successive Duplicate Helm Publications”
in [6] for more on the duplication filter.

37

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

void postWMessage(string warning msg): Identical to the postMessage() function except the vari-
able name is automatically set to BHV WARNING. Provided as a matter of convenience to the caller
and for uniformity in monitoring warnings.

void postEMessage(string error msg): Similar to the postWMessage() function except the variable
name is BHV ERROR. This call is for more serious problems noted by the behavior. It also results
in an internal state ok bit being flipped which results in the helm posting all-stop values to the
actuators.

4.5.2 The Information Buffer

Behaviors do not have direct access to the MOOSDB - they don’t read mail, and they don’t post
changes directly, but rather through the helm as an intermediary. The information buffer, or
info buffer, is a data structure maintained by the helm to reflect a subset of the information in
the MOOSDB and made available to each behavior. This topic is hidden from a user configuring
existing behaviors and can be safely skipped, but is an important issue for a behavior author
implementing a new behavior. The info buffer is a data structure shared by all behaviors, each
behavior having an pointer to a single instance of the InfoBuffer class. This data structure is
maintained by the helm, primarily by reading mail from the MOOSDB and reflecting the change
onto the buffer on each helm iteration, before the helm requests input from each behavior. Each
behavior therefore has the exact same snapshot of a subset of the MOOSDB. A behavior author
needs to know two things - how to ensure that certain variables show up in the buffer, and how to
access that information from within the behavior. These two issues are discussed next.

4.5.3 Requesting the Inclusion of a Variable in the Information Buffer

A variable can be specifically requested for inclusion in the info buffer by invoking the following
function:

void IvPBehavior::addInfoVars(string varnames)

The string argument is either a single MOOS variable or a comma-separated list of variables.
Duplicate requests are simply ignored. Typically such calls are invoked in a behavior’s constructor,
but may be done dynamically at any point after the helm is running. The helm will simply
register with the MOOSDB for the requested variable at the end of the current iteration. Certain
variables are registered for automatically on behalf of the behavior. All variables referenced in
run conditions will be registered and accessible in the buffer. Variables named in the updates and
nostarve parameters will also be automatically registered.

4.5.4 Accessing Variable Information from the Information Buffer

A variable value can be queried from the buffer with one of the following two function calls,
depending on whether the variable is of type double or string.

string IvPBehavior::getBufferStringVal(string varname, bool& result)

double IvPBehavior::getBufferDoubleVal(string varname, bool& result)

38

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

The first string argument is the variable name, and the second argument is a reference to a Boolean
variable which, upon the function return, will indicate whether the queried variable was found in
the buffer. A timestamp indicating the last time the variable was changed in the buffer can be
obtained from the following function call:

double IvPBehavior::getBufferTimeVal(string varname);

The string argument is the variable name, and the return value is cumulative time in seconds since
the helm was launched. If the variable name is not found in the buffer, the return value is -1. The
“current” buffer time, equivalent to the cumulative time in seconds since the helm was launched,
can be retrieved with the following function call:

string IvPBehavior::getBufferCurrTime()

The buffer time is a local variable of the info buffer data structure. It is updated once at the be-
ginning of the helm Iterate() loop prior to processing all new updates to the buffer from the MOOS
mail stack. Thus the timestamp returned by the above call should be exactly the same for successive
calls by all behaviors within a helm iteration, and the timestamps returned by getBufferTimeVal()

and getBufferCurrTime() should be exactly the same if the variable was updated by new mail
received by the helm at the beginning of the current iteration.

The values returned by getBufferStringVal() and getBufferDoubleVal() represent the latest
value of the variable in the MOOSDB at the point in time when the helm began its iteration and
processed its mail stack. The value may have changed several times in the MOOSDB between
iterations, and this information may be of use to a behavior. This is particularly true when a
variable is being posted in pieces, or a sequence of delta changes to a data structure. In any event,
this information can be recovered with the following two function calls:

vector<string> IvPBehavior::getBufferStringVector(string varname, bool& result)

vector<double> IvPBehavior::getBufferDoubleVector(string varname, bool& result)

They return all values updated to the buffer for a given variable since the last iteration in a vector
of strings or doubles respectively. The latest change is located at the highest index of the vector.
An empty vector is returned if no changes were received at the outset of the current iteration.

4.6 Overloading the onRunState() and onIdleState() Functions

The onRunState() function is declared as a virtual function in the IvPBehavior superclass intended
to be overloaded by the behavior author to accomplish the primary work of the behavior. The
primary behavior output is the objective function. This is what drives the vehicle. The objective
function is an instance of the class IvPFunction, and a behavior generates an instance and returns
a pointer to the object in the following function:

IvPFunction* onRunState()

This function is called automatically by the helm on the current iteration if the behavior is deemed
to be in the running state, as depicted in Figure 3 on page 35. The invocation of onRunState()

does not necessarily mean an objective function is returned. The behavior may opt not to for

39

4 STANDARD AND OVERLOADABLE PROPERTIES OF HELM BEHAVIORS

whatever reason, in which case it returns a null pointer. However, if it does generate a function,
the behavior is said to be in the active state. The steps comprising the typical implementation of
the onRunState() implementation can be summarized as follows:

• Get information from the info buffer, and update any internal behavior state.

• Generate any messages to be posted to the MOOSDB.

• Produce an objective function if warranted.

• Return.

The same steps hold for the onIdleState() function except for producing an objective function.
The first two steps have been discussed in detail. Accessing the info buffer was described in
Sections 4.5.2 - 4.5.4. The functions for posting messages to the MOOSDB from within a behavior
were discussed in Section 4.5.1. Further issues regarding the posting of messages were covered
in the section ”Automated Filtering of Duplicate Helm Publications” in [6]. The remaining issue
to discuss is how objective functions are generated. This is covered in the IvPBuild Toolbox, in
Sections 6, 7, 8, and 9.

40

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

5 An Implementation Example - the SimpleWaypoint Behavior

In this section an example IvP behavior is presented. It is a simplified waypoint behavior version
of the waypoint behavior in the standard suite of behaviors distributed with the MOOS-IvP public
software bundle. The class name for this behavior is BHV SimpleWaypoint. This behavior is dis-
tributed in the “moos-ivp-extend” repository and should build out of the box. After going through
the class itself, later in this section example missions, also distributed with “moos-ivp-extend”, for
running the behavior are discussed.

5.1 The SimpleWaypoint Behavior Class Definition

The SimpleWaypoint behavior is configured with four parameters: a single waypoint given in terms
of local x and y coordinates, a transit speed in meters per second, and a radius in meters around
the destination point within which the vehicle will be declared to have arrived at its waypoint.
The behavior, at every iteration of the helm loop, notes the vehicle’s own position in x and y local
coordinates. The idea is shown in Figure 4.

Figure 4: The SimpleWaypoint behavior: The SimpleWaypoint behavior works with a single waypoint. The
location of the waypoint is stored in the local variable m nextpt and is set during behavior configuration. The
local variables m osx and m osy reflect the current vehicle (ownship) position updated at every helm iteration. The
m arrival radius determines how close the vehicle needs to be from the waypoint destination before declaring
completion.

The BHV SimpleWaypoint class definition is given below in Listing 8. Note that it is declared to be
a subclass of the IvPBehavior superclass on line 8. The three helm-invoked overloadable functions
are declared on lines 13-15. The constructor is defined to take an IvPDomain as an argument. The
helm will instantiate each behavior with the same helm-configured domain as an argument to a
behavior constructor.

Listing 8 - BHV SimpleWaypoint.h - the class definition for the “simple waypoint” behavior.

1 #ifndef BHV_SIMPLE_WAYPOINT_HEADER

2 #define BHV_SIMPLE_WAYPOINT_HEADER

3

4 #include <string>

5 #include "IvPBehavior.h"

6 #include "XYPoint.h"

7

8 class BHV_SimpleWaypoint : public IvPBehavior {

41

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

9 public:

10 BHV_SimpleWaypoint(IvPDomain);

11 ~BHV_SimpleWaypoint() {};

12

13 bool setParam(std::string, std::string);

14 void onIdleState();

15 IvPFunction* onRunState();

16

17 protected:

18 void postViewPoint(bool viewable=true);

19 IvPFunction* buildFunctionWithZAIC();

20 IvPFunction* buildFunctionWithReflector();

21

22 protected: // Configuration parameters

23 double m_arrival_radius;

24 XYPoint m_nextpt;

25 double m_desired_speed;

26 std::string m_ipf_type;

27

28 protected: // State variables

29 double m_osx;

30 double m_osy;

31 };

32

33 extern "C" {

34 IvPBehavior * createBehavior(std::string name, IvPDomain domain)

35 {return new BHV_SimpleWaypoint(domain);}

36 }

37 #endif

The two configuration parameters depicted in Figure 4, the waypoint and arrival radius, are declared
on lines 23-124. The two remaining configuration parameters, "speed" and "ipf type" are on the
following two lines. The former sets the ideal speed for waypoint transiting, and the latter indicates
the type of IvP function to be generated. Two different ways of generating an IvP function are
implemented in this behavior to demonstrate two different tools. The last part, lines 33-36 are the
hooks needed for each behavior class to implement the dynamic loading of behaviors into the helm.
These lines are therefore not present for behaviors compiled into the IvP helm. These lines are
very pertinent to the discussion of “extending” the helm.

5.2 The SimpleWaypoint Behavior Class Implementation

The class implementation is given in Listings 9-14 below.

5.2.1 The SimpleWaypoint Behavior Constructor

The first part contains the class constructor in lines 17-34. On line 18, a call to the base-class
constructor is made with the given domain. A default for the behavior name is also set on line 20.
On line 21, the behavior declares that the domain over which it will produce an IvP function is
comprised of both the course and speed variables. If the domain given to the behavior by the helm
in the constructor does not have either of these variables, a null IvP domain will result in line 21.
A null domain will make the behavior thereafter not capable of running, and is considered a fatal
error, prompting the helm to post all-stop output values. This is purposely drastic. Configuring the
behaviors in a vehicle mission where one of the behaviors is not runnable is worthy of stopping the
helm and addressing the problem. Since this condition is checked for on all behaviors on each helm

42

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

iteration, this problem would always reveal itself at launch time, never during a mission, regardless
of any dynamic behavior configurations during a mission.

On lines 25-27, default values for class member variables representing key behavior parameters
are set in the constructor. In lines 30-31, class member variables representing behavior state vari-
ables are initialized. The grouping of member variables into two sets, one that represent parameter
configurations and the other that otherwise represent behavior state maintained during operation,
is merely a convention that has provided clarity in practice.

Listing 9 - BHV SimpleWaypoint.cpp - The SimpleWaypoint Behavior Constructor.

1 #include <cstdlib>

2 #include <math.h>

3 #include "BHV_SimpleWaypoint.h"

4 #include "MBUtils.h"

5 #include "AngleUtils.h"

6 #include "BuildUtils.h"

7 #include "ZAIC_PEAK.h"

8 #include "OF_Coupler.h"

9 #include "OF_Reflector.h"

10 #include "AOF_SimpleWaypoint.h"

11

12 using namespace std;

13

14 //---

15 // Procedure: Constructor

16

17 BHV_SimpleWaypoint::BHV_SimpleWaypoint(IvPDomain gdomain) :

18 IvPBehavior(gdomain)

19 {

20 IvPBehavior::setParam("name", "simple_waypoint");

21 m_domain = subDomain(m_domain, "course,speed");

22

23 // All distances are in meters, all speed in meters per second

24 // Default values for configuration parameters

25 m_desired_speed = 0;

26 m_arrival_radius = 10;

27 m_ipf_type = "zaic";

28

29 // Default values for behavior state variables

30 m_osx = 0;

31 m_osy = 0;

32

33 addInfoVars("NAV_X, NAV_Y");

34 }

35

Finally, on line 33, the behavior declares two variables, NAV X and NAV Y, representing vehicle
ownship position. The IvP helm, containing this behavior, will need to register for these to variables
on the behavior’s behalf. This is the hook where the behavior tells the helm what it needs from
the MOOSDB. It is from these two variables that the behavior will populate its variables m osx and
m osy representing the current vehicle position.

5.2.2 The SimpleWaypoint Behavior setParam() Function

In Listing 10 below, a key overloadable behavior function is implemented, the setParam() function,
in lines 39-69. This function handles the configuration of the behavior for its five parameters,

43

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

"ptx", "pty", "speed", "radius", and "ipf type". An example configuration for this behavior is
given in Listing 15. Behavior parameters defined at the IvPBehavior superclass level, such as name,
condition, endflag, etc., are handled in the setParam() function of the superclass. The helm,
when it handles a behavior parameter from a *.bhv file, first attempts to handle the parameter at
the superclass level. If the IvPBehavior::setParam() function returns false, the helm passes the
parameter-value pair to the behavior’s locally implemented version of setParam().

Listing 10 - BHV SimpleWaypoint.cpp - The setParam() function.

36 //---

37 // Procedure: setParam - handle behavior configuration parameters

38

39 bool BHV_SimpleWaypoint::setParam(string param, string val)

40 {

41 // Convert the parameter to lower case for more general matching

42 param = tolower(param);

43

44 double double_val = atof(val.c_str());

45 if((param == "ptx") && (isNumber(val))) {

46 m_nextpt.set_vx(double_val);

47 return(true);

48 }

49 else if((param == "pty") && (isNumber(val))) {

50 m_nextpt.set_vy(double_val);

51 return(true);

52 }

53 else if((param == "speed") && (double_val > 0) && (isNumber(val))) {

54 m_desired_speed = double_val;

55 return(true);

56 }

57 else if((param == "radius") && (double_val > 0) && (isNumber(val))) {

58 m_arrival_radius = double_val;

59 return(true);

60 }

61 else if(param == "ipf_type") {

62 val = tolower(val);

63 if((val == "zaic") || (val == "reflector")) {

64 m_ipf_type = val;

65 return(true);

66 }

67 }

68 return(false);

69 }

70

A fair amount of error checking is done for parameter. For example, in setting the "speed"

parameter, the string value is checked to ensure that is both numerical and larger than zero. Solid
error checking implemented in this function is a very good idea that will save headaches down the
road. This function should only return true if it has been passed a proper parameter-value pair.
Another common practice is to perform a case insensitive parameter match, e.g., "pty" and "PTY"

are both allowable configurations. This is done by converting the string representing the parameter
to lower case in line 42. In this case, the tolower() function is defined in a local utility toolbox.

44

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

5.2.3 The SimpleWaypoint onIdleState() and postViewPoint() Functions

The onIdleState() function, lines 74-77, is only executed when the behavior is in the idle state, i.e.,
not in the running state. See Sections 4.4 and 4.6 for more on behavior states. In this behavior,
the only task executed in the onIdleState() function is to publish a waypoint marker in the form
of the MOOS variable VIEW POINT.

Listing 11 - BHV SimpleWaypoint.cpp - The onIdleState() and postViewPoint() functions.

71 //---

72 // Procedure: onIdleState

73

74 void BHV_SimpleWaypoint::onIdleState()

75 {

76 postViewPoint(false);

77 }

78

79 //---

80 // Procedure: postViewPoint

81

82 void BHV_SimpleWaypoint::postViewPoint(bool viewable)

83 {

84 m_nextpt.set_label(m_us_name + "’s next waypoint");

85 m_nextpt.set_type("waypoint");

86 m_nextpt.set_source(m_descriptor);

87

88 string point_spec;

89 if(viewable)

90 point_spec = m_nextpt.get_spec("active=true");

91 else

92 point_spec = m_nextpt.get_spec("active=false");

93 postMessage("VIEW_POINT", point_spec);

94 }

95

An example produced by this would be:

VIEW POINT = "active,false:label,alder’s next waypoint:type,waypoint:source,waypt return:0,0,0"

In this case, due to the "active,false" component, the posting of this variable would serve to
“erase” similar postings to this variable made in the onRunState() function described next. For
more on how VIEW POINT is consumed, see the documentation on the pMarineViewer application
in [3].

5.2.4 The SimpleWaypoint Behavior onRunState() Function

Implementation of the onRunState() function is where the primary unique operation of the behavior
is implemented. For the SimpleWaypoint behavior, the full function is in Listing 12 below. It is
implemented in four parts:

• Part 1: Get the vehicle position from the information buffer.

• Part 2: Determine if the waypoint has been reached and possibly enter complete mode.

• Part 3: Build a status message regarding the waypoint for third party viewers.

45

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

• Part 4: Build an IvP function with either the ZAIC or Reflector tool.

In the first part, lines 101-109, information from the information buffer is retrieved regarding the
vehicle’s own position. This is done with the getBufferDoubleVal() function described in Section
4.5.1. In this behavior the result of the query to the buffer is stored in the ok1 and ok2 variables and
subsequently checked and handled in lines 106-109. In this behavior, if essential information like
the vehicle’s own position is missing, a warning is posted (line 107) and the onRunState() function
returns without producing an objective function (line 108). In such a case the behavior would be
considered to be in the running state, but not the active state for the present iteration.

A fair point to raise regarding Part 1 is the possibility that the vehicle’s position information is
in the buffer but has become so old that it no longer reflects the vehicle’s true current position. In
other words, what if the navigation module on board the vehicle has somehow shut down? First, in
most situations with a vehicle implementing the backseat/front-seat driver architecture described
in [5] and [6], a heartbeat monitor for the navigation system is typically put in place at the larger
autonomy system level and an all-stop would be invoked overriding the helm. However, for the
sake of having some fail-safe redundancy within the helm to handle this situation, the NO STARVE

parameter could be used (Section 4.2.1) for this behavior, or any behavior since it is defined at the
IvPBehavior superclass level. An example of it’s usage is shown in Listing 15, setting a NO STARVE

threshold of 3 seconds for NAV X and NAV Y.

Listing 12 - BHV SimpleWaypoint.cpp - The onRunState() implementation.

96 //---

97 // Procedure: onRunState

98

99 IvPFunction *BHV_SimpleWaypoint::onRunState()

100 {

101 // Part 1: Get vehicle position from InfoBuffer and post a

102 // warning if problem is encountered

103 bool ok1, ok2;

104 m_osx = getBufferDoubleVal("NAV_X", ok1);

105 m_osy = getBufferDoubleVal("NAV_Y", ok2);

106 if(!ok1 || !ok2) {

107 postWMessage("No ownship X/Y info in info_buffer.");

108 return(0);

109 }

110

111 // Part 2: Determine if the vehicle has reached the destination

112 // point and if so, declare completion.

113 double dist = hypot((m_nextpt.x()-m_osx), (m_nextpt.y()-m_osy));

114 if(dist <= m_arrival_radius) {

115 setComplete();

116 postViewPoint(false);

117 return(0);

118 }

119

120 // Part 3: Post the waypoint as a string for consumption by

121 // a viewer application.

122 postViewPoint(true);

123

124 // Part 4: Build the IvP function with either the ZAIC tool

125 // or the Reflector tool.

126 IvPFunction *ipf = 0;

127 if(m_ipf_type == "zaic")

46

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

128 ipf = buildFunctionWithZAIC();

129 else

130 ipf = buildFunctionWithReflector();

131 if(ipf == 0)

132 postWMessage("Problem Creating the IvP Function");

133

134 return(ipf);

135 }

136

In Part 2 of the onRunState() function, in lines 111-118 of Listing 12, the determination of
waypoint arrival is made. This is just a simple comparison between the current distance of the
vehicle and the waypoint to the configured arrival radius in the parameter m arrival radius. If a
determination of arrival is made, the behavior calls the setComplete() function. This function is
defined at the behavior superclass level and was described in detail in Section 4.5.1. The invocation
of this function will put the behavior in the group of completed behaviors on the next helm iteration.
In the current iteration this behavior would be considered in the running state, but not the active

state since the onRunState() function returns (line 117) without generating an objective function.
See [6] for more on behavior run states.

In Part 3, the behavior generates a visual artifact for consumption by a viewer, for rendering
the waypoint the behavior is using as its destination. This point is shown in Figures 9 and 10 with
the label "Alder’s next waypoint". An example produced by this would be:

VIEW POINT = "label=alder’s next waypoint,type=waypoint source=transit,x=60,y=-40"

Compare this to the value for VIEW POINT generated in the onIdleState() function described in
Section 5.2.3. This variable-value pair is generated by the behavior for posting on each invocation
of the onRunState() even though the value posted does not generally change between iterations.
The posting of the variable-value pair is done with the postMessage() function, described in Section
4.5.1. The invocation of postMessage() will result in an actual post to the MOOSDB only if the
value of string posted changes. Successive duplicate postings are filtered out by the Duplication
Filter. The Duplication Filter is described in detail in [6]. The postMessage() function was
discussed in Section 4.5.1 on page 36.

In Part 4 of the onRunState() function, in lines 124-135 of Listing 12, an IvP function is generated
over a domain of heading and speed choices to reflect the goal of reaching a waypoint given a current
vehicle position. For the purposes of providing an example usage of the IvPBuild Toolbox, the
behavior is implemented to produced an IvP function using two different methods of the toolbox.
The SimpleWaypoint behavior can be configured with the "ipf type" parameter, as shown in Listing
10, to accept either the configuration of "zaic" or "reflector". In the example mission, mission
“Alder” described below in Section 5.3, the helm is configured in Listing 15 to use the ZAIC tool
on the outbound transit trip, and the Reflector tool on the return trip. The implementation of the
onRunState() function merely checks the type of IvP function desired and makes the appropriate
call to either the buildFunctionWithZAIC() function or the buildFunctionWithReflector() function.
These two functions are described next.

47

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

5.2.5 The SimpleWaypoint Behavior buildFunctionWithZAIC() Function

When the SimpleWaypoint behavior is configured to generate an IvP function with the ZAIC tool,
it invokes the function buildFunctionWithZAIC(), shown below in Listing 13. Of the three ZAIC
tools described in Section 7, the ZAIC PEAK is used in this behavior. It is used to generate two
one-variable IvP functions. The first function is defined over the speed decision variable in lines
142-151. The second function is defined over heading decision variable. The functions are shown
in Figure 5.

Listing 13 - BHV SimpleWaypoint.cpp - The buildFunctionWithZAIC() implementation.

137 //---

138 // Procedure: buildFunctionWithZAIC

139

140 IvPFunction *BHV_SimpleWaypoint::buildFunctionWithZAIC()

141 {

142 ZAIC_PEAK spd_zaic(m_domain, "speed");

143 spd_zaic.setSummit(m_desired_speed);

144 spd_zaic.setPeakWidth(0.5);

145 spd_zaic.setBaseWidth(1.0);

146 spd_zaic.setSummitDelta(0.8);

147 if(spd_zaic.stateOK() == false) {

148 string warnings = "Speed ZAIC problems " + spd_zaic.getWarnings();

149 postWMessage(warnings);

150 return(0);

151 }

152

153 double rel_ang_to_wpt = relAng(m_osx, m_osy, m_nextpt.x(), m_nextpt.y());

154 ZAIC_PEAK crs_zaic(m_domain, "course");

155 crs_zaic.setSummit(rel_ang_to_wpt);

156 crs_zaic.setPeakWidth(0);

157 crs_zaic.setBaseWidth(180.0);

158 crs_zaic.setSummitDelta(0);

159 crs_zaic.setValueWrap(true);

160 if(crs_zaic.stateOK() == false) {

161 string warnings = "Course ZAIC problems " + crs_zaic.getWarnings();

162 postWMessage(warnings);

163 return(0);

164 }

165

166 IvPFunction *spd_ipf = spd_zaic.extractIvPFunction();

167 IvPFunction *crs_ipf = crs_zaic.extractIvPFunction();

168

169 OF_Coupler coupler;

170 IvPFunction *ivp_function = coupler.couple(crs_ipf, spd_ipf, 50, 50);

171

172 return(ivp_function);

173 }

174

The first step in creating an IvPFunction with the ZAIC PEAK tool is to create an instance of the
ZAIC PEAK, on line 142, passing it the IvPDomain used by the behavior and set in the behavior
constructor in Listing 9. The ZAIC constructor is also passed the name of the one variable in the
IvPDomain for which to create the IvPFunction. The ZAIC PEAK parameters, set in lines 143-146, are
described in detail in Section 7.1.1. In lines 147-151, a check is made to determine whether the
ZAIC PEAK instance has been configured properly. The stateOK() function returns false if there

48

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

were any configuration problems, and the string returned by getWarnings() function on line 148
will provide insight into any configuration errors. The postWMessage() function on lines 149 and
162 will result in the helm posting to the MOOSDB the variable BHV WARNING with the contents of
string warnings. The postWMessage() function is discussed in Section 4.5.1 on page 37.

The second one-variable function, defined over course, is created with a second ZAIC PEAK in-
stance in lines 153-164. First, the angle between the current vehicle position and the waypoint
destination is calculated on line 153, with a call to the relAng() function, defined in one of the
MOOS-IvP utility libraries. The creation and configuration of the ZAIC PEAK instance proceeds
much in same way as for the first one. In this case, the valuewrap parameter is set to true on line
159 to indicate that the domain values should “wrap around”, that is, a course of 350 is 20 degrees
separated from a course of 10 degrees, not separated by 340 degrees. The valuewrap parameter is
discussed in Section 7.1.3 on page 65.

Figure 5: IvP functions produced by the ZAIC PEAK Tool: The two functions produced by the SimpleWay-
point behavior by use of the ZAIC PEAK tool would produce a function over speed with six pieces and a function over
heading with three pieces.

When these two functions are coupled using the Coupler tool, lines 169-170, an IvP function over
the coupled decision 2D space is created as shown in Figure 6 below. The Coupler tool is discussed
in Section 6.2.3 on page 61.

49

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

Figure 6: An IvP function coupled from two one-variable functions: This function is created by coupling the
pair of one-variable functions of Figure 5 using the OF Coupler tool. Decisions of increasing speed are represented by
points on the function radially farther from the center.

The two one-variable functions are combined with an equal weight of 50 on line 170. The choice
of relative weight has a distinct influence over the resulting function. In Figure 7 below, two IvP
functions similarly generated, but with alternative weights are shown. The Coupler, by default,
normalizes the combined function to the range of [0, 100]. This can be turned off, or normalized
with a different range as described in Section 6.2.3. The range of [0, 100] is a common range for
functions returned by an IvP behavior to the IvP Solver.

Figure 7: Two IvP functions coupled from the same two one-variable functions: These functions were
created by coupling the pair of one-variable functions of Figure 5 using the OF Coupler tool. They differ only in the
relative weight applied to each function. The one on the left had a weight of 75 to the speed function and a weight
of 25 to the course function. These weights are reversed on the right. The function on the right shows two off-peak
decision points with equal utility rating. Decisions of increasing speed are represented by points on the function
radially farther from the center.

In each IvP function in Figures 6 and 7, the location of the peak of the function is the same.
When this behavior is the only active behavior, the path taken by the vehicle will be the same
regardless of the weights chosen to combine the two one-variable functions with the Coupler. The

50

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

only thing that matters is the value of the summit parameters passed to the two ZAIC tools creating
the two one-variable functions. The off-peak characteristics of the function begin to matter when
the behavior is coordinated with functions from other behaviors. In the function on the right in
Figure 7, two off-peak decisions with equal utility values are shown. One point represents a decision
with the heading more toward the destination with a speed much higher than the desired speed,
and the other decision represents a heading less toward the destination but with speed near the
optimal speed. In the absence of mission metrics that clarify the relative utility of sub-optimal
transit paths versus sub-optimal speeds, the construction of the off-peak shape of the objective
function is typically a subjective decision of the behavior implementor.

5.2.6 The SimpleWaypoint Behavior buildFunctionWithReflector() Function

The Reflector tool can be used to generate objective functions that cannot otherwise be formed
as the product of the coupling of two independent functions. This gives the behavior implementor
more freedom to generate functions with off-peak characteristics more in-line with the goals of the
behavior. The Reflector tool is described in detail in Sections 8 and 9.

The use of the Reflector tool in the SimpleWaypoint behavior is given in Listing 14 below.
The Reflector generates an IvP function approximation of an underlying function, an instance of
the AOF SimpleWaypoint class. The underlying function and the IvP function are defined over the
same domain. This domain is passed to the underlying function in its constructor (line 183). The
underlying function is passed required parameters (lines 184-188) and initialized (line 189). If any
part of the initialization fails, a null IvP function is returned (line 180, 196).

Listing 14 - BHV SimpleWaypoint.cpp - The buildFunctionWithReflector() implementation.

175 //---

176 // Procedure: buildFunctionWithReflector

177

178 IvPFunction *BHV_SimpleWaypoint::buildFunctionWithReflector()

179 {

180 IvPFunction *ivp_function = 0;

181

182 bool ok = true;

183 AOF_SimpleWaypoint aof_wpt(m_domain);

184 ok = ok && aof_wpt.setParam("desired_speed", m_desired_speed);

185 ok = ok && aof_wpt.setParam("osx", m_osx);

186 ok = ok && aof_wpt.setParam("osy", m_osy);

187 ok = ok && aof_wpt.setParam("ptx", m_nextpt.x());

188 ok = ok && aof_wpt.setParam("pty", m_nextpt.y());

189 ok = ok && aof_wpt.initialize();

190 if(ok) {

191 OF_Reflector reflector(&aof_wpt);

192 reflector.create(1000);

193 ivp_function = reflector.extractIvPFunction();

194 }

195

196 return(ivp_function);

197 }

The Reflector tool does its work (lines 191-193) after it has been determined that a proper
instance of the underlying function, AOF SimpleWaypoint, has been created and initialized. The

51

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

Reflector tool has several options for creating a piecewise defined IvP function, described later in
Sections 8 and 9. The simplest method is to specify the number of pieces desired in the piecewise
function, in this case 1000 pieces were requested, on line 192. After creation, the IvP function is
extracted from the Reflector (line 193), and returned (line 196).

An example of the IvP function created with the Reflector is shown in Figure 8. The function
represents a preference for maneuvers that bring the vehicle toward the waypoint at a desired speed.
The values of off-peak areas are evaluated based on (a) the rate of closure, (b) the rate of detour,
and (c) the deviation from the desired speed. For this function generated by the Reflector, and
the particular underlying function, it is not possible to generate a function of equal form using the
ZAIC tools.

Figure 8: An IvP function created with the Reflector tool: The function represents a preference for maneuvers
that bring the vehicle toward the waypoint at a desired speed. The values of off-peak areas are evaluated based on
(a) the rate of closure, (b) the rate of detour, and (c) the deviation from the desired speed. Decisions of increasing
speed are represented by points on the function radially farther from the center.

5.3 Running an Example Mission with the SimpleWaypoint Behavior

An example mission file, alder.moos, and behavior file, alder.bhv, have been configured to demon-
strate the usage of the SimpleWaypoint behavior. The files may be found in the moos-ivp-extend

tree. Refer back to Section 2.2 for information on obtaining this tree from the web. The example
mission with the SimpleWaypoint behavior is called the Alder mission and is found by:

> cd moos-ivp-extend/missions/alder

> ls

> README alder.bhv alder.moos

The behavior file is given in Listing 15 below. The SimpleWaypoint behavior is used twice. It
is used to transit to a point and then to return to the starting point. The transiting use of the
behavior is configured in lines 7-20, and the returning use of the behavior in lines 23-35. See [6] for
further information regarding behavior files and their usage.

Listing 15 - The alder.bhv file - For running the Alder example mission.

52

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

1 //-------- FILE: alder.bhv -------------

2

3 initialize DEPLOY = false

5 initialize RETURN = false

6

7 //--

8 Behavior = BHV_SimpleWaypoint

9 {

10 name = transit_to_point

11 pwt = 100

12 condition = RETURN = false

13 condition = DEPLOY = true

14 endflag = RETURN = true

15

16 speed = 2.0 // meters per second

17 radius = 8.0

18 ptx = 60

19 pty = -40

20 ipf_type = zaic

21 }

22

23 //--

24 Behavior = BHV_SimpleWaypoint

25 {

26 name = waypt_return

27 pwt = 100

28 condition = RETURN = true

29 condition = DEPLOY = true

30

31 speed = 2.0

32 radius = 8.0

33 ptx = 0

34 pty = 0

35 ipf_type = reflector

36 }

Both behaviors are idle upon startup. Presumably the transit behavior is activated first by setting
DEPLOY=true, and the second instance of the behavior is activated when the transit behavior com-
pletes and sets its endflag. The alder.moos file is not discussed here, but may be examined in the
tree.

The example mission may be started by:

> cd moos-ivp-extend/missions/alder

> pAntler alder.moos

The pMarineViewer window should launch, and look similar to image in Figure 9. After clicking on
the DEPLOY button in the lower right corner, the transiting instance of the SimpleWaypoint behavior
becomes active and the vehicle begins to form a track to the waypoint as shown. Clicking on the
DEPLOY button initiates a MOOS poke on the MOOSDB connected to both the pMarineViewer, and
pHelmIvP application. This mission setup is quite similar to the Alpha mission discussed in [6].

53

5 AN IMPLEMENTATION EXAMPLE - THE SIMPLEWAYPOINT BEHAVIOR

Figure 9: The SimpleWaypoint behavior in action: After the user clicks on the DEPLOY button, the condition
for the transiting SimpleWaypoint behavior is satisfied (line 13 in Listing 15).

Figure 10: The SimpleWaypoint behavior in action: After the vehicle has reached the waypoint prescribed
in the transiting instance of the SimpleWaypoint behavior, the second instance of the SimpleWaypoint behavior,
returning to the start point, becomes active.

54

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

6 Introduction to the IvPBuild Toolbox

The IvPBuild Toolbox is a set of C++ classes and algorithms for building IvP functions. The
primary objective is to provide tools to the implementors of new helm behaviors that are fast and
easy to use. In the behavior implementation example in Listing 11 on page 45, the creation of an
IvP function required only about a dozen lines of code using two different methods available in the
IvPBuild Toolbox.

6.1 Brief Overview

An instance of the class IvPFunction is the primary output of a behavior on each helm iteration,
and is comprised of anywhere from a handful to thousands of “pieces” that approximate the utility
function of the behavior. An example IvP function approximating a utility function is shown below
in Figure 11.

Figure 11: An IvP function approximating an underlying function: The fview tool is used to render an IvP
function with 289 pieces to approximate a given function, shown below the IvP function.

The toolbox contains tools for making simple one-variable objective functions (the “ZAIC” tools)
as well as functions over N variables (the “Reflector” tools). The primary contribution of the user
(behavior implementor) is to provide the underlying utility function provided to the toolbox. The
IvP function approximation is generated automatically given user parameter preferences.

55

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

6.1.1 Where to Get the IvPBuild Toolbox

The IvPBuild Toolbox is part of the standard moos-ivp bundle distributed from www.moos-ivp.org.
See Section 1.4. In the software tree it is entirely contained in the module lib ivpbuild.

6.1.2 What is an Objective Function?

An objective function is a function like any other, a mapping from a domain to a range. In the
case where the domain variables correspond to decisions or choices, and the range corresponds to
the utility with respect to a particular user objective, the function is often called an “objective”
function, or “utility” function.

6.1.3 What is Multi-objective Optimization?

The term multi-objective optimization refers to a situation where there are multiple objective
functions defined over the same domain, i.e., decision space, and the ideal goal is to find a point in
the decision space that optimizes all functions simultaneously. Rarely is such a mutually agreeable
decision available and typically the functions can be said to be “competing”. Techniques vary widely
on how to handle this. A simple technique would be to rank order the functions and optimize the
most important first, and so on. Another technique involves setting a competence threshold for
each and choosing from decisions that satisfy a minimum competence for each function. For an
in-depth treatment see [9], [10], [11], [15], [16], [17], [18], [19].

Many techniques for optimization are predicated on there being a user involved in the decision
process who can interactively alter parameters of the problem until an agreeable resolution emerges.
In these cases the notion of Pareto optimality, [14], often plays a central role. A Pareto optimal
solution is one that cannot be improved in regard to one objective unless it comes at the expense of
another objective. Typical user-interactive multi-objective optimization techniques involve letting
the user explore the Pareto frontier, i.e., those solutions that are all Pareto optimal differing only
on the user’s value function or relative preference in importance of objectives.

In repeatedly applying multi-objective optimization to the output of behaviors in an on-board
autonomous decision making system, there is no user involved by definition. There is no exploration
of the Pareto frontier since that exploration requires a user. Instead, part of the autonomy process
involves also setting the value function, i.e., the relative importance of objectives. In the IvP helm,
this value function is reflected by priority weights assigned to each function, and the multi-objective
optimization problem is reduced to a single objective optimization problem, given k functions and
wi being the weight of the ith function:

The properties of IvP multi-objective optimization and solution algorithms are discussed in the
section “The IvP Solver and Behavior Priority Weights” in [6].

56

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

6.1.4 What is an IvP Function?

An IvP function is a piecewise linearly defined function where each piece has an upper and lower
boundary (or interval) on the decision space and linear function defined over the piece. An IvP
function is defined over a domain that itself has an upper and lower boundary for each decision
variable. Furthermore, the domain is comprised of equally spaced discrete points, and therefore
each piece is defined over a finite set of points in the domain. An IvP function is typically an
approximation of the user’s underlying utility function. The fidelity of this approximation can be
controlled by the user of the toolbox by deciding how many pieces are used in the approximation.
Since the size or extents of each piece may vary within a function, the toolbox methods may also
create functions that user smaller pieces where the underlying function is less amenable to local
linear approximations.

An IvP function as an instance of the IvPFunction class defined as part of the lib ivpcore

module included in the basic software bundle distributed from www.moos-ivp.org.

6.1.5 Why the IvP Function Construct? A Brief Description of the Solver

The IvP function construct was chosen because it balances three aspects needed for use in the
extendable behavior-based autonomy philosophy.

• Flexibility: a piecewise defined function approximation can be formed from any underlying
function and thus the behavior author is not compelled to produce objective functions of
a restricted form, such as convex or continuous functions. The behavior author is free to
innovate. The behavior author typically has insight into the degree of fidelity needed to
faithfully reflect the underlying utility function.

• Speed: the IvP function constructs, once produced, can be exploited by solution algorithms
to give very fast solutions with a guarantee of global optimality modulo the error introduced
in function approximation.

• Accuracy: a piecewise defined function can be highly accurate for a few reasons, (a) by
controlling the piece size and distribution the approximation can be made to be as accurate
as needed. (b) by being free to approximate any underlying function form, a piecewise
function may better reflect a behavior’s utility. (c) by allowing for guaranteed globally optimal
solutions in the resulting optimization problem, errors of this type are eliminated.

The IvP Solver uses a branch-and-bound method to search through the combination space of
pieces, one from each of k contributing function. Since each point in the decision space is contained
in exactly one piece in each function, the optimal decision corresponds to a k-tuple of pieces. Thus
finding the optimal k-tuple guarantees that the optimal point in the decision space has been found.
A leaf node in the tree is simply the “intersection” of pieces from contributing functions. Likewise
the intersection of interior functions at a leaf node is simply the sum of the linear functions of
each contributing piece. Both the intersection of rectilinear pieces and the sum of linear functions
be rapidly and simply computed. For a detailed description of the IvP solver solution algorithms,
see [4].

57

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

6.1.6 Properties of the IvPDomain Class

The domain of an IvP function is an instance of the class IvPDomain. It is the same between all
functions produced by all behaviors. The domain has a finite set of labeled variables with a lower
and upper bound for each variable, and an integer number of evenly spaced points between the
bounds. The domain is also referred to as the decision space. The 2D base of the cube in Figure 11
represents the domain. A point in the domain is contained in exactly one piece of an IvP function.
The domain is built by the helm at the time of launch, and a copy is handed to each behavior in
its constructor to ensure uniformity between behaviors. Listing 16 shows an example domain with
three variables as it would be specified within the MOOS configuration block for the pHelmIvP
process.

Listing 16 - An IvP domain with three variables, as specified in pHelmIvP configuration.

0 Domain = course:0:359:360

1 Domain = speed:0:3:16

2 Domain = depth:0:500:101

Each line augments the initially null domain with a new variable. The first of four arguments is the
variable name, e.g., course. The second and third arguments indicate the lower and upper bound of
the variable. They are integers here, but could be floating point values. The last of four arguments
is the number of points in the domain for that variable. This domain would have (360 ∗ 16 ∗ 101)
581,760 distinct possible decisions.

The behavior author, using the IvPBuild Toolbox, only needs to create a black-box function
routine able to evaluate any point in the IvP domain with respect to the objectives of that behavior.
To use the toolbox, this routine needs to reside within an implementation of a class that subclasses
the AOF class described in Section 8.2. Although behaviors share a common domain, they can be
defined over a different subset of variables as long as the common variables match in extents. For
example, a behavior in a helm configured with the domain above could be defined over the following
sub-domain:

Domain = depth:0:500:101

It could not be defined over:

Domain = depth:0:100:101

To facilitate the proper creation of sub-domains, the following function is provided in the build
toolbox (in BuildUtils.h in lib ivpbuild):

IvPDomain subDomain(IvPDomain original_domain, string variable_names);

The first argument is the original domain. The string argument is a comma separated list of variable
names to be included in the sub-domain. If a variable is named in the argument that doesn’t exist
in the original domain, an empty domain is returned. This is detected by checking the size of the
domain with a call to domain.size(), which returns the number of domain variables. A proper
sub-domain of the domain shown in Listing 16, with only the depth variable, could be created with
the following function call:

58

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

#include "BuildUtils.h"

...

domain = subDomain(original_domain, "depth");

It is common for a behavior to declare its sub-domain in its constructor, even if it is expected to
be the same as the total helm domain. See for example line 21 in Listing 9 on page 43. A call to
subDomain() has no effect if it names all of the original variables. By declaring a sub-domain in
the behavior’s constructor, problems can be avoided later if the overall helm domain is expanded.
If the function call above erroneously creates a null domain for the behavior, the helm detects this
automatically in the isRunnable() function call described in Section 4.4. This will cause an error
message to be posted to the BHV ERROR variable and result in the helm posting all-stop values to its
actuators.

6.2 Tools Available in the IvPBuild Toolbox

The IvPBuild Toolbox contains a few different sets of tools. (a) The ZAIC tool is used for creating
IvP functions with only one decision variable. (b) The basic Reflector tool is used for creating IvP
functions over N coupled variables. (c) The advanced Reflector tools are an extension of the basic
Reflector tools that allow for piecewise defined functions with non-uniform pieces. (d) The Coupler
tool allows a pair of decoupled IvP functions to be converted to a single coupled IvP function. (e)
The encoding/decoding tools allow IvP functions to be converted to a string representation and
vice versa.

6.2.1 The ZAIC Tools for Functions with One Variable

The ZAIC tools are used for functions defined over a single decision variable. An example is shown
in Figure 12 where a fictional behavior may want to keep the vehicle in the so-called “deep sound
channel” or “SOFOR (SOund Fixing and Ranging) channel”. This is a horizontal layer in the ocean
around which the speed of sound is at a minimum and where sound, especially at low frequencies,
may travel for thousands of meters with little loss of signal (See [1], [2]).

Figure 12: An objective function with a single decision variable: This function assigns a maximum utility
to depths in a range of roughly 100 ± 20 meters. A linear decrease in utility is associated with depths outside this
interval up to another additional 20 meters.

59

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

A piecewise defined IvP function can be constructed to represent this function using five pieces.
Assuming the “depth” decision space is 0 to 200 meters at one meter increments, the intervals would
be: [0, 59], [60, 79], [80, 120], [121, 140], [141, 200]. The linear function for each piece also needs to be
set. This is not terribly difficult, but it is tedious and prone to human error. Instead, the ZAIC PEAK

utility is a tool in the ZAIC toolbox used for automating the production of IvP piecewise functions
of the form shown in Figure 12. It is described in Section 7.

6.2.2 The Reflector Tool for Functions with Multiple Variables

The Reflector tool is used for creating IvP functions over n decision variables where n > 2. The
Reflector was used to generate the IvP function rendered in Figure 11 on page 55. The tools do work
for n = 1 but one variable functions are typically handled with the ZAIC tools described above.
The Reflector produces an IvP function approximation of a given underlying function, where the
underlying function is provided to the Reflector in the form of an instance of a class containing the
underlying function implementation, and a specification of the IvP domain. The basic use of the
Reflector is described in detail in Section 8, but the basic usage boils down to the following:

• Create an instance of the underlying function to be approximated.

• Create an instance of the Reflector, passing it the underlying function.

• Invoke the Reflector with a requested number of pieces.

• Retrieve the new IvP function from the Reflector.

The basic usage of the Reflector involves only the choosing the number of pieces used in the IvP
function representation. By choosing only the number, pieces of uniform size will be used in the
function. This suffices for most applications, but there are ways to produce a function that is both
more accurate and uses less pieces by exploring advanced options and algorithms of the Reflector.
These include:

• The Directed Refinement Reflector option.

• The Smart Refinement Reflector option.

• The AutoPeak Refinement Reflector option.

The details of these advanced options are discussed in Section 9. Each of the advanced tools
are used after an initial basic uniform function has been generated. The directed refinement option
allows the user to specify subsets of the domain and use pieces of different sizes for that region only.
The smart refinement option asks the Reflector to estimate the fit of each piece as it is generated
in terms of accuracy in approximating the underlying function and performs further refinement on
those pieces that need it the most. The autopeak refinement option repeatedly refines the single
piece containing the maxima of the underlying function until that point is contained in a piece
containing only that point.

60

6 INTRODUCTION TO THE IVPBUILD TOOLBOX

6.2.3 The Coupler Tool for Coupling Two Decoupled IvP Functions

Two IvP functions defined over different variables can be combined to form a single IvP function
defined over the union of the two sets of variables. The basic usage of the Coupler can be summarized
as follows:

• Create the two independent IvP functions.

• Create an instance of the OF Coupler class.

• Pass the two functions to the Coupler.

• Retrieve the new IvP function from the Coupler.

This tool was used in the example SimpleWaypoint behavior of Section 5 in Listing 12 two
couple two one-variable IvP functions. When a Coupler is passed the two IvP function pointers,
it takes over ownership of the functions, i.e., it deletes the two one-variable functions when the
Coupler object is deleted. When a coupled IvP function is extracted from the Coupler, ownship of
the IvP function is passed to the caller, i.e., the caller is responsible for deleting the IvP function.

61

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

7 The ZAIC Tools for Building One-Variable IvP Functions

The ZAIC tools are part of the IvP Build Toolbox for facilitating the building of IvP functions over
a single domain variable. There are three tools - ZAIC PEAK, ZAIC HEQ, ZAIC LEQ. To use the tools, in
short, one creates a instance of the corresponding class, sets some parameters, and then extracts an
IvP function. The tools described in Section 8 for n-variable functions can also be used for building
one-variable functions but are perhaps overkill for certain classes of common one-variable functions
that motivated the ZAIC tools. The term ZAIC is not an acronym, but merely a play on the word
mosaic.

7.1 The ZAIC PEAK Tool

7.1.1 Brief Overview

The ZAIC PEAK tool is designed with the objective function shown in Figure 13 in mind. There is a
identifiable preferred single decision choice (the summit) with maximum utility, and then a gradual
drop in utility as the variable value varies from the preferred choice.

Figure 13: The ZAIC PEAK tool: defines an IvP function over one variable defined by the six parameters shown
here. In the case rendered here, the tool would create an IvP function with six pieces. The function rendered was
created with summit=180, peakwidth=85, basewidth=70, maxutil=150, minutil=25, summitdelta=40.

The form in which the utility drops is dependent on the settings of the six parameters shown in
the figure. The summit, peakwidth, and basewidth values are given in units native to the decision
variable, while the summitdelta, minutil, and maxutil values are given in terms of units of utility.

7.1.2 The ZAIC PEAK Parameters and Function Form

The ZAIC PEAK tool accepts six parameters in defining f(x). The summit parameter is the point of
maximum utility. The minutil parameter is the minimum value of f(x), with a default value of zero.

62

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

The maxutil is the maximum value of f(x), with a default value of 100. The utility of the function
drops off linearly in two stages. In the first stage the utility drops linearly off from the maxutil

to maxutil-summitdelta, and in the second stage it drops off linearly from maxutil-summitdelta to
minutil. The function has the form:

f(x) =

f1(x) (summit− peakwidth) ≤ x ≤ summit,

f2(x) (summit− peakwidth− basewidth) ≤ x < (summit− peakwidth),

f3(x) summit < x ≤ (summit+ peakwidth),

f4(x) (summit+ peakwidth) < x ≤ (summit+ peakwidth+ basewidth),

minutil otherwise.

where

f1(x) = (maxutil− summitdelta) + (summitdelta ∗ ((x− (summit − peakwidth))/peakwidth))

f2(x) = minutil + ((maxutil − minutil − summitdelta) ∗ ((x− (summit− peakwidth − basewidth))/basewidth))

f3(x) = (maxutil− summitdelta) + (summitdelta ∗ (((summit + peakwidth)− x)/peakwidth))

f4(x) = minutil + ((maxutil − minutil − summitdelta) ∗ (((summit + peakwidth + basewidth)− x)/basewidth))

To correlate the above five cases above with the six pieces in Figure 13, f1(x) is piece #3, f2(x) is
piece #2, f3(x) is piece #4, f4(x) is piece #5, minutil for pieces #1 and #6. The two stage linear
drop-off in utility is there to allow the shape of the function to approximate convex or concave
functions as shown in Figure 14.

Figure 14: The ZAIC PEAK tool: A convex uni-modal function (left) and a non-convex uni-modal function (right).

7.1.3 The ZAIC PEAK Interface Implementation

The following functions define the interface to the ZAIC PEAK tool. In constructing and setting
parameters, the instance maintains a Boolean flag indicating if any fatal configuration errors were

63

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

detected. In such cases, a warning string is generated for optional retrieval, and the error renders
the instance effectively useless, never yielding an IvP function when requested.

Many of the below functions take an optional index parameter. This is used for creating
functions with multiple modes or peaks as described in Section 7.1.6. The default value is zero, or
the zeroth index, when only one mode or peak is being implemented. If the given index references
a non-existing component, this is considered a fatal configuration error. Example usage is provided
in Listing 17 on page 66.

bool setSummit(double val, int index=0): Sets the summit value of the component at the given
index. If no index parameter is provided, the index is zero. If the summit value is outside
the range of the domain, it is clipped to the appropriated end. For example if the domain
were [0, 359] as the example in Figure 13, and the requested summit value were 550, the summit
parameter would be set to 359. This is therefore not regarded as a fatal configuration error, but a
warning would be generated anyway. This returns false only if index referencing a non-existent
component is provided.

bool setPeakWidth(double val, int index=0): Sets the peakwidth value of the component at the
given index. If no index parameter is provided, the index is zero.

bool setBaseWidth(double val, int index=0): Sets the basewidth value of the component at the
given index. If no index parameter is provided, the index is zero.

bool setSummitDelta(double val, int index=0): Sets the summitdelta value of the component at
the given index. If no index parameter is provided, the index is zero. A fatal error is declared
and false is returned if the index is out of range, or if the value is less than zero. Otherwise true

is returned. If the sumitdelta value is greater than the range determined by maxutil - minutil,
this is not interpreted as a fatal error, but the summitdelta is clipped to the range.

bool setMinMaxUtil(double min, double, max, int index=0): Sets the minutil and maxutil values
of the component at the given index. If no index parameter is provided, the index is zero. A
fatal error is declared and false is returned if the index is out of range, or if the min value is
greater than or equal to the max value. Otherwise true is returned. If the existing summitdelta

value is greater than the range determined by maxutil - minutil, this is not interpreted as a
fatal error, but the summitdelta is clipped to the range.

bool setParams(double summit, double peakwidth, double basewidth, double summitdelta,

double minutil, double maxutil, int index=0): Sets the six configuration parameters summit,
peakwidth, basewidth, summitdelta, minutil and maxutil all at once. If the summitdelta value is
greater than the range determined by maxutil - minutil, this is not interpreted as a fatal error,
but the summitdelta is clipped to the range.

void setSummitInsist(bool val): Sets the summitinsist flag to the given value. The default is
true. See Section 7.1.4 for more on this parameter.

64

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

void setValueWrap(bool val): Sets the valuewrap flag to the given value. The default is false.
See Section 7.1.4 for more on this parameter.

int addComponent(): Allocates a new component and returns the index of the new component.
Since the first component exists upon ZAIC creation, the first call to this function will return 1,
and will result in the ZAIC PEAK instance having two components at index 0 and 1. The default
values for the new component are summit=0, peakwidth=0, bwid=0, sdelta=50, minutil=0,
maxutil=100.

IvPFunction* extractIvPFunction(bool maxval=true): This function generates a new IvP function
based on the prevailing parameter settings at the time of invocation. If a fatal error was detected
in prior parameter setting attempts, this function will simply return the NULL pointer. When
the IvP function is extracted from the ZAIC, an IvPFunction instance is created from the heap
that needs to be later deleted. The ZAIC tool does not delete this. It is the responsibility of the
caller. Typically this tool is used within a behavior, and the behavior passes the IvP function
to the helm and the helm deletes all IvP functions.

string getWarnings(): When or if fatal (or non-fatal) problems are encountered in setting the
parameters, the tool appends a message to a local warning string. This string can be retrieved
by this function. A non-empty string does not necessarily mean a fatal configuration error was
encountered. Instead, the stateOK() function below should be consulted.

bool stateOK(): This function returns true if no fatal errors were encountered during configuration
attempts, otherwise it returns false. If an error has been encountered, this state cannot be
reversed. The instance has been rendered effectively useless. To gain insight into the nature of
the error, the getWarnings() function above can be consulted.

7.1.4 The Value-Wrap and Summit-Insist Parameters

Two additional Boolean parameters may be set for an instance of ZAIC PEAK. They are the valuewrap

and summitinsist parameters set with the following functions with the defaults shown:

zaic.setValueWrap(false); // Default value is false

zaic.setSummitInsist(true); // Default value is true

When the valuewrap parameter is true, the utility associated with the domain variable value
“wraps” around. For example, if the domain variable is the vehicle heading, which may have
the domain [0, 359], a value of 10 degrees is evaluated as being only 20 degrees different from 350,
rather than being different by 330 degrees. The two functions depicted in Figure 15 differ only in
the setting of the valuewrap parameter.

The value of the summitinsist parameter can affect the generated objective function in the
following two scenarios. In the first case, consider the domain to be the possible headings with
360 discrete choices [0, 359], and the peakwidth and basewidth are both zero. If the summit were
then set to 90.25, one way to interpret this is that all 360 discrete heading choices have a utility
of zero, since none are equal exactly to 90.25. This is the interpretation when summitinsist is

65

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

Figure 15: The valuewrap parameter in the ZAIC PEAK tool: A function generated with valuewrap=false on
the left, and function generated with valuewrap=true and otherwise identical parameters on the right.

false. When set to true, the same set of parameters would generate an objective function that
ranked the heading of 90 degrees with maximum utility and all other heading choices with the
minimum utility (an IvP function with 3 pieces, i.e., intervals). In the second case, consider the
domain to be possible speeds with 31 discrete choices [0, 3.0], with the summit set to 4.0 with a
peakwidth and basewidth of 0.25. The ZAIC PEAK tool would generate an objective function ranking
all speeds equally with the minimum utility when summitinsist is set to false. When set to true,
the ZAIC PEAK tool would generate an objective function ranking the highest speed in the domain
(3.0) with maximum utility (maxutil), and all other speeds with minimum utility (minutil). The
default setting is summitinsist=true since this seems the more reasonable thing to do in most such
cases.

7.1.5 Using the ZAIC PEAK Tool

Usage of the ZAIC PEAK tool boils down to the following four steps.

• Step 1: Create the IvP domain, or retrieve it if otherwise already created.

• Step 2: Create the ZAIC Peak instance with a domain and domain variable.

• Step 3: Set the ZAIC Peak parameters.

• Step 4: Extract the IvP function.

A code example of the four steps is provided in Listing 17 below. This code example describes a
function that builds and returns an IvP function using the ZAIC LEQ tool. It is not too different
from the activity inside a typical implementation of onRunState in an IvP behavior.

Listing 17 - Example usage of the ZAIC Peak tool corresponding to Figure 13.

0 IvPFunction *buildIvPFunction()

1 {

2 // Step 1 - Create the IvPDomain, the function’s domain

66

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

3 IvPDomain domain;

4 domain.addVar("depth", 0, 600, 601);

5

6 // Step 2 - Create the ZAIC_PEAK with the domain and variable name

7 ZAIC_PEAK zaic_peak(domain, "depth");

8

9 // Step 3 - Configure the ZAIC_LEQ parameters

10 zaic_peak.setSummit(150);

11 zaic_peak.setMinMaxUtil(20, 120);

12 zaic_peak.setBaseWidth(60);

13

14 // Step 4 - Extract the IvP function

15 IvPFunction *ivp_function = 0;

16 if(zaic_leq.stateOK())

17 ivp_function = zaic_peak.extractIvPFunction();

18 else

19 cout << zaic_peak.getWarnings();

20 return(ivp_function)

The lines comprising step 4 (lines 15-20) are conservative in that they first check to see if no fatal
configuration errors were encountered, and writes the warnings to the terminal if found. It does
not even attempt to extract an IvP function if an error was encountered. These five lines could
have been replaced by one line:

return(zaic_peak.extractIvPFunction());

This is simpler, but the warning information is potentially useful. When the ZAIC PEAK tool is used
within an IvP behavior, the warnings can be posted to the MOOSDB in the variable BHV WARNING

which is monitored by other tools.

7.1.6 Support for Multi-Modal Functions with the ZAIC PEAK Tool

The ZAIC PEAK tool will allow additional components to be added to provide a multi-modal effect. A
component refers to the set of six parameters summit, peakwidth, basewidth, summitdelta, minutil,
maxutil. Adding a second component creates a multi-modal function as shown in Figure 16.

Component 1

MinUtil−1MinUtil−0

Component 0

Summit−0

Peak−0

Base−0

Peak−1

Base−1

Summit−1
MaxUtil−0

MaxUtil−1

Figure 16: Multiple modes with the ZAIC PEAK tool: additional components can be added to create a multi-
modal objective function. Each component is comprised of the six parameters summit, peakwidth, basewidth,
summitdelta, minutil, and maxutil.

67

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

Listing 18 shows how this is done. In lines 2-3, the ZAIC PEAK instance is created and the
parameters are set for the first component. A second component is allocated in line 5 with the call
to addComponent() which returns the index of the newly created component. This index is passed
as the last argument to the function call on line 6 to clarify that the parameters are to be applied
to the second component (at index 1).

Listing 18 - Using the ZAIC PEAK tool to build and return a multi-mode IvP Function.

0 IvPFunction *buildIvPFunction(IvPDomain domain, string varname)

1 {

2 ZAIC_PEAK zaic(domain, varname);

3 zaic.setParams(300, 80, 100, 15, 0, 100); // No index given - assumed to be zero.

4

5 int index = zaic.addComponent();

6 zaic.setParams(600, 130, 35, 30, 0, 147, index); // Last parameter is component index

7

8 zaic.setValueWrap(false); // Not component specific - no index given

9 zaic.setSummitInsist(true); // Not component specific - no index given

10 bool take_the_max = true

11 IvPFunction *ipf = zaic.extractIvPFunction(take_the_max);

12 return(ipf);

13 }

When the IvP function is extracted from the ZAIC PEAK, in line 9, the composition of the multiple
components can be interpreted in one of two ways - by taking the maximum or the sum of the two
components. In the former, the combined utility is the maximum of the values given by the
individual components. In the latter the combined utility is the sum of the individual components.
The extractIvPFunction(bool) function on line 11 will return a composition based on taking the
max if passed true, and will take the sum otherwise. The default (if no value is passed) is true.
The difference between the two extractions is shown in Figure 17 for the two components shown in
Figure 16.

4

2 3

4

5
7

6

8

11

2 3 7

6

5

Figure 17: Options for combining components: On the left is the result of combining the two components
in Figure 16 by using the max value from the two components. On the right is the result of combining the two
components by using the sum of the values from the two components.

All component parameter-setting functions defined for the ZAIC PEAK class take an optional fi-
nal argument indicating the intended component index. If the argument is not provided, it is

68

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

assumed to be zero, the index of the one component created automatically when the ZAIC PEAK in-
stance is created. The default values of a newly added component are are summit=0, peakwidth=0,
basewidth=0, summitdelta=50, minutil=0, maxutil=100. The valuewrap and summitinsist pa-
rameters are not component-specific parameters, and therefore are only called once on a particular
ZAIC PEAK instance, and do not have an optional index parameter.

7.2 The ZAIC LEQ and ZAIC HEQ Tools

7.2.1 Brief Overview

The ZAIC LEQ tool is used for generating IvP functions where there is a constant, maximum utility
associated with a decision variable whose value is kept less than or equal to (LEQ) a given value. For
example if a UUV component is known to work reliably up to a certain depth, or if a vehicle’s speed
is to be kept below a certain value to prevent interference with another sensor or communications
equipment. The ZAIC LEQ tool allows for expressing a linear drop-off in utility between two values.
For example, if the fictional UUV component is rated to a depth of 200 meters, the utility function
may have a maximum utility for depths up to 150 meters and minimum utility at 210 meters as in
the example in Figure 18.

Figure 18: The ZAIC LEQ tool: facilitates building simple 2-3 piece piecewise defined utility functions over a single
decision variable whose value is to be kept less than or equal to a given value. It accepts four parameters, the summit,
minutil, maxutil, basewidth. In the figure summit= 150, minutil= 20, maxutil= 120, basewidth= 60.

Likewise, the ZAIC HEQ tool is used for generating objective functions where there is a constant,
maximum utility associated with a decision variable whose value is kept greater than or equal to
(HEQ) a given value. These two tools have a similar interface. Most of what is described below for
one tool applies to the other. The differences are distinguished in Section 7.2.5. The IvP functions
generated by these ZAIC tools have a small footprint, having either two or three pieces.

69

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

7.2.2 The ZAIC LEQ Parameters and Function Form

The ZAIC LEQ tool accepts four parameters in defining f(x). The summit parameter is the point
where maximum utility begins to drop off. The minutil parameter is the minimum value of f(x),
with a default value of zero. The maxutil is the maximum value of f(x), with a default value of
100. The function has the form:

f(x) =

{

maxutil x ≤ summit,

minutil otherwise.

The basewidth parameter can be used to soften the drop in utility as shown in Figure 18. When
basewidth has the default value of zero, the general form is as above. When basewidth is configured
with a positive value, the general form is:

f(x) =

8

>

<

>

:

maxutil x ≤ summit,

minutil + ((maxutil - minutil) * ((x - summit) / basewidth)) summit < x ≤ summit + basewidth,

minutil otherwise.

For the example in Figure 18, the function is given below.

f(x) =

120 x ≤ 150,

20 + ((120− 20) ∗ ((210− x)/(210− 150))) 150 < x ≤ 210,

20 otherwise.

The three above cases corresponds to the three pieces generated for the IvP function shown in
Figure 18.

7.2.3 The ZAIC LEQ Interface Implementation

The following functions define the interface to the ZAIC LEQ tool. In constructing and setting
parameters, the instance maintains a Boolean flag indicating if any fatal configuration errors were
detected. In such cases, a warning string is generated for optional retrieval, and the error renders
the instance effectively useless, never yielding an IvP function when requested. Example usage is
provided in Listing 19.

ZAIC LEQ(IvPDomain domain, string varname): The constructor takes two arguments, an IvP do-
main and a variable name contained in the domain. The named variable needs to be just one

of the variables used in the IvP domain; not necessarily the only one. If the named variable is
not part of the IvP domain, this is regarded as a fatal error.

bool setSummit(double summit): Sets the summit value. If the summit value is outside the range
of the domain, it is clipped to the appropriated end. For example if the domain were [0, 600]
as the example in Figure 18, and the requested summit value were 650, the summit parameter

70

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

would be set to 600. This is therefore not regarded as a fatal configuration error, but a warning
would be generated anyway. This function always returns true.

bool setMinMaxUtil(double min, double max): Sets the values for minutil and maxutil. If the
minutil is greater or equal to maxutil, this is regarded as a fatal configuration error, a warning
is generated, and the function returns false.

bool setBaseWidth(double basewidth): Sets the basewidth parameter value. The given value must
be greater than or equal to zero. Otherwise this is regarded as a fatal configuration error, a
warning is generated, and the function returns false.

IvPFunction *extractIvPFunction(): This function generates a new IvP function based on the
prevailing parameter settings at the time of invocation. If a fatal error was detected in prior
parameter setting attempts, this function will simply return the NULL pointer. When the IvP
function is extracted from the ZAIC, an IvPFunction instance is created from the heap that
needs to be later deleted. The ZAIC tool does not delete this. It is the responsibility of the
caller. Typically this tool is used within a behavior, and the behavior passes the IvP function
to the helm and the helm deletes all IvP functions.

string getWarnings(): When or if fatal (or non-fatal) problems are encountered in setting the
parameters, the tool appends a message to a local warning string. This string can be retrieved
by this function. A non-empty string does not necessarily mean a fatal configuration error was
encountered. Instead, the stateOK() function below should be consulted.

bool stateOK(): This function returns true if no fatal errors were encountered during configuration
attempts, otherwise it returns false. If an error has been encountered, this state cannot be
reversed. The instance has been rendered effectively useless. To gain insight into the nature of
the error, the getWarnings() function above can be consulted.

7.2.4 Using the ZAIC LEQ Tool

Usage of the ZAIC LEQ tool boils down to the following four steps.

• Step 1: Create the IvP domain, or retrieve it if otherwise already created.

• Step 2: Create the ZAIC LEQ instance with a domain and domain variable.

• Step 3: Set the ZAIC LEQ parameters.

• Step 4: Extract the IvP function.

A code example of the four steps is provided in Listing 19 below. This code example describes a
function that builds and returns an IvP function using the ZAIC LEQ tool. It is not too different
from the activity inside a typical implementation of onRunState in an IvP behavior.

Listing 19 - Example usage of the ZAIC LEQ tool corresponding to Figure 18.

71

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

0 IvPFunction *buildIvPFunction()

1 {

2 // Step 1 - Create the IvPDomain, the function’s domain

3 IvPDomain domain;

4 domain.addVar("depth", 0, 600, 601);

5

6 // Step 2 - Create the ZAIC_LEQ with the domain and variable name

7 ZAIC_LEQ zaic_leq(domain, "depth");

8

9 // Step 3 - Configure the ZAIC_LEQ parameters

10 zaic_leq.setSummit(150);

11 zaic_leq.setMinMaxUtil(20, 120);

12 zaic_leq.setBaseWidth(60);

13

14 // Step 4 - Extract the IvP function

15 IvPFunction *ivp_function = 0;

16 if(zaic_leq.stateOK())

17 ivp_function = zaic_leq.extractIvPFunction();

18 else

19 cout << zaic_leq.getWarnings();

20 return(ivp_function)

The lines comprising step 4 (lines 15-20) are conservative in that they first check to see if no fatal
configuration errors were encountered, and writes the warnings to the terminal if found. It does
not even attempt to extract an IvP function if an error was encountered. These five lines could
have been replaced by one line:

return(zaic_leq.extractIvPFunction());

This is simpler, but the warning information is potentially useful. When the ZAIC LEQ tool is used
within an IvP behavior, the warnings can be posted to the MOOSDB in the variable BHV WARNING

which is monitored by other tools.

7.2.5 The ZAIC HEQ Tool

Like the ZAIC LEQ tool, the ZAIC HEQ too is used for generating objective functions where there is
a constant, maximum utility associated with a decision variable whose value is kept greater than

or equal to a given value. The parameters described in Section 7.2.2 and interface implementation
described in Section 7.2.3 for the ZAIC LEQ tool are identical for the ZAIC HEQ tool. The parameters
are interpreted differently however. The same parameters used in Figure 18 are used in the ZAIC HEQ

tool to give the function shown in Figure 19.

72

7 THE ZAIC TOOLS FOR BUILDING ONE-VARIABLE IVP FUNCTIONS

Figure 19: The ZAIC HEQ tool: facilitates building simple 2-3 piece piecewise defined utility functions over a single
decision variable whose value is to be kept greater than or equal to a given value. It accepts four parameters, the
summit, minutil, maxutil, basewidth. In the figure summit= 150, minutil= 20, maxutil= 120, basewidth= 60.

7.2.6 A Warning about the Maximum Utility Plateau

It is worth noting a potential pitfall regarding the maximum utility plateau generated by both the
ZAIC LEQ and ZAIC HEQ tools. By having equal utility for all domain values in the plateau range,
no one domain value is preferred. If this is the only IvP objective function involved in the decision
process for the particular domain variable, it is not clear what value will be chosen by the IvP
solver. Even more troublesome is that the chosen value may change between iterations giving the
appearance that the decision engine is thrashing. In this case the solver is simply faithfully and
strictly interpreting the problem it was given. In short, these objective functions are designed to
work in conjunction with others that express preferences in a non-plateau manner.

73

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

8 The Reflector Tool for Building N-Variable IvP Functions

8.1 Overview

The IvPBuild Toolbox contains the Reflector tool for building IvP functions over n ≥ 2 decision
variables. Although the tools work with n = 1 variables, the ZAIC tools are typically used instead.
The Reflector tool operates on a particular division of labor. The user of the Reflector provides
a black-box function implementation able to provide a utility value for any queried input. The
possible queries are limited to the domain or decision space of the function expressed with an
IvPDomain instance. This black-box routine in essence is the underlying objective function to be
approximated by the generated IvP function (Figure 20).

Figure 20: The Reflector Tool: An IvP function approximates an underlying function f(x, y) using a piecewise
linear structure with 698 pieces. The piece distribution need not be uniform allowing greater resolution over parts of
the domain where the function is detected to be less locally linear.

The goal is to generate an acceptable IvP function approximation by querying the underlying
function for as a small subset of the total function domain as possible. The CPU time taken to
evaluate the underlying function can easily be the most expensive part of building the IvP function
for a given behavior. Implementing the underlying function efficiently and in a way that accurately
reflects the intent of the behavior can be the most challenging part of building a behavior. The
Reflector tool can be used with a very simple interface that builds an IvP function given a pointer
to the underlying function and the number of pieces to use in the IvP function. Such IvP functions
will be constructed with pieces of uniform size. This is discussed in Section 8.3. The Reflector

can be configured with more advanced parameters to build an IvP function with non-uniformly
distributed pieces as depicted in Figure 20. These methods are used to build functions that more
accurately approximate their underlying functions and use less pieces. The advanced Reflector

parameters are discussed in Section 9.

74

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

8.2 Implementing Underlying Functions within the AOF Class

The primary job of a behavior author is to provide a method capable of evaluating any candidate
decision in the decision space. Evaluating each decision can be prohibitively time consuming and
a piecewise linear approximation with an IvP function is typically built by invoking the evaluation
function for only a small subset of the domain. The build toolbox depends on access to the
evaluation routine in a generic way, as a pointer to an instance of the class AOF, the “actual objective
function”.

8.2.1 The AOF Class Definition

The AOF class itself is abstract, and the AOF pointer actually points to an implemented subclass
with a few key virtual functions overloaded. The AOF class definition (slightly simplified) is given
in Listing 20.

Listing 20 - The AOF class definition.

0 #include "IvPBox.h"

1 #include "IvPDomain.h"

2 class AOF{

3 public:

4 AOF(IvPDomain domain) {m_domain=domain;};

5 virtual ~AOF() {};

6

7 virtual double evalPoint(vector<double>);

9 virtual bool setParam(string, double) {return(false);};

10 virtual bool setParam(string, string) {return(false);};

11 virtual bool initialize() {return(true);};

12

13 double extract(string, const vector<double>&) const;

14

15 protected:

16 IvPDomain m_domain;

17 };

18 #endif

This is essentially a template for a function, defined over the domain given in the constructor. The
mapping from the domain to a range is implemented in the evalPoint() function which takes a
vector of numerical values representing a candidate decision in the IvP domain decision space. The
setParam() and initialize() virtual functions provide a generic way for subclasses to set their
parameters.

8.2.2 An Example Underlying Function Implemented as an AOF Subclass

As an example consider the simple linear function f(x, y) = m · x + n · y + b, implemented by the
class AOF Linear shown in Listing 21 and 22 below. The class contains three member variables,
lines 11-13 in Listing 21 for representing the coefficient and scalar parameters.

Listing 21 - AOF Linear.h - The class definition for the AOF Linear class.

0 #include "AOF.h"

1 class AOF_Linear: public AOF {

2 public:

3 AOF_Linear(IvPDomain domain) : AOF(domain)

4 {m_coeff = 0; n_coeff=0; b_scalar=0;};

75

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

5 ~AOF_Linear() {};

6

7 double evalPoint(vector<double>);

8 bool setParam(const string& param, double val);

9

10 private:

11 double m_coeff;

12 double n_coeff;

13 double b_scalar;

14 };

The class implementation is shown in Listing 22. The constructor takes an instance of IvPDomain
as an argument and passes it to the AOF superclass for handling (line 1). The m and n coefficients
are set in the setParam() function and will return true if either the mcoeff, ncoeff, or bscalar

parameters are passed, and false otherwise.

Listing 22 - AOF Linear.cpp - The class implementation for the AOF Linear class.

0 //--

1 bool AOF_Linear::setParam(string param, double val)

2 {

3 if(param == "mcoeff")

4 m_coeff = val;

5 else if(param == "ncoeff")

6 n_coeff = val;

7 else if(param == "bscalar")

8 b_scalar = val;

9 else

10 return(false);

11 return(true);

12 };

13

14 //--

15 double AOF_Linear::evalPoint(vector<double> point)

16 {

17 double x_val = extract(‘‘x’’, point);

18 double y_val = extract(‘‘y’’, point);

19

20 return((m_coeff * x_val) + (n_coeff * y_val) + b_scalar);

21 }

The evalPoint() function in lines 15-21 is where the actual implementation of f(x, y) = m ·x+
n · y + b is implemented (on line 20). The argument to this function is a vector of values holding
the values for the x and y variables. The ordering of these values i.e., which of the two variables,
x or y, is contained in the first value of the vector, is sorted out in the two calls to the extract()

function in lines 17-18. This sorting out is possible because the ordering is determined by the
IvPDomain member variable defined at the AOF superclass level, and provided in the constructor.
The AOF Linear class, used as an example here, is included in the code distribution in lib ivpbuild.
It may serve as a template in building a new AOF YourAOF class. It is also can be used to verify that
the build tools will work in the extreme case of creating a piecewise function with only one piece.
And in the case of AOF Linear the piecewise “approximation” is exact.

76

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

8.2.3 Another AOF Example Class Implementation for Gaussian Functions

A second function type, implementing Gaussian functions, is implemented as the AOF Gaussian class
in the IvP Toolbox in the lib ivpbuild module. This function is a bit more interesting in that
a piecewise linear approximation needs multiple pieces to generate a fairly good approximation
(understanding that “fairly good” is subjective). It is also interesting in that, depending on the
configuration, there may be large portions of the function that are indeed locally linear and in need
of relatively few pieces to generate a decent approximation. This function will be used extensively
in later examples of usage and performance of the Reflector tool. The Gaussian function form is
given by:

f(x, y) = Ae−(
(x−x0)2+(y−y0)2

2σ2) (1)

The function is defined over the two variables, x and y, and has four parameters. Examples
for two groups of parameter settings are shown in Figure 21 on page 78, and in Figure 22 on page
80. The coefficient A is the amplitude, x0 and y0 are the center, and σ represents the spread of
the blob. This function is implemented by the class AOF Gaussian shown in Listings 23 and 24.
Note that it is a subclass of the AOF class and overrides the critical function evalPoint(). It also
implements the setParam() function for setting the four parameters in (1).

Listing 23 AOF Gaussian.h - The class definition for the AOF Gaussian class.

0 class AOF_Gaussian: public AOF {

1 public:

2 AOF_Gaussian(IvPDomain domain) : AOF(domain)

3 {m_xcent=0; m_ycent=0; m_sigma=1; m_range=100;};

4 ~AOF_Gaussian() {};

5

6 double evalPoint(vector<double> point);

7 bool setParam(string param, double value);

8

9 private:

10 double m_xcent;

11 double m_ycent;

12 double m_sigma;

13 double m_range;

14 };

Listing 24 AOF Gaussian.cpp - The class implementation for the AOF Gaussian class.

0 //--

1 // Procedure: setParam

2

3 bool AOF_Gaussian::setParam(string param, double value)

4 {

5 if(param == "xcent") m_xcent = value;

6 else if(param == "ycent") m_ycent = value;

7 else if(param == "sigma") m_sigma = value;

8 else if(param == "range") m_range = value;

9 else

10 return(false);

11 return(true);

12 }

77

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

13

14 //--

15 // Procedure: evalPoint

16

17 double AOF_Gaussian::evalPoint(vector<double> point)

18 {

19 double xval = extract("x", point);

20 double yval = extract("y", point);

21 double dist = hypot((xval - m_x9ent), (yval - m_ycent));

22 double pct = pow(M_E, -((dist*0ist)/(2*(m_sigma * m_sigma))));

23

24 return(pct * m_range);

25 }

An example is shown in Figure 21 below. The domain for both the x and y variables is [−250, 250]
containing 501 x 501 = 251,001 points.

ycent = 0
sigma = 150
range = 100

250

x
y

250

0

100

−250

xcent = 0

−250

Figure 21: A Gaussian function: A rendering of the function f(x, y) = Ae
−(

(x−x0)2+(y−y0)2

2σ2)
where A = range =

100, σ = sigma = 150, x0 = xcent = 0, y0 = ycent = 0. The domain for x and y ranges from −250 to 250.

8.3 Basic Reflector Tool Usage Tool with Examples

Using the Reflector tool boils down to the four steps below. The third step may be non-existent
if the user is building simple uniform functions.

• Step 1: Create the underlying function, AOF instance, and set its parameters.

• Step 2: Create the Reflector instance passing it a pointer to the AOF instance.

• Step 3: Set parameters for the Reflector if necessary or desired.

• Step 4: Direct the Reflector to build the IvP function and then extract it.

78

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

A code example of the four steps is provided in Listing 25 below. This code example describes a
function that builds and returns an IvP function using the Reflector tool. It is not too different
from the activity inside a typical implementation of onRunState in an IvP behavior.

Listing 25 - An example use of the Reflector to create a uniform IvP function.

0 IvPFunction *buildIvPFunction(IvPDomain ivp_domain)

1 {

2 // Step 1 - Create the AOF instance and set parameters

3 AOF_Gaussian aof(ivp_domain);

4 aof.setParam("xcent", 50);

5 aof.setParam("ycent", -150);

6 aof.setParam("sigma", 32.4);

7 aof.setParam("range", 150);

8

9 // Step 2 - Create the Reflector instance given the AOF

10 OF_Reflector reflector(&aof);

11

12 // Step 3 - Parameterize the Reflector (None in this case)

13

14 // Step 4 - Build and Extract the IvP Function

15 int amt_created = reflector.create(1000);

16 IvPFunction *ipf = reflector.extractIvPFunction();

17

18 cout << ‘‘Pieces in the new IvPFunction: ‘‘ << amt_created << endl;

19 return(ipf);

20 }

The underlying function is created on lines 3-7 creating the Gaussian function with parameters
shown in Figure 22. The Reflector is created on line 10 with a pointer to the new Gaussian
underlying function. In lines 15-16, the Reflector creates and returns the IvP function. In this
simple style of usage, no parameters are set on the Reflector after it is created. The result will
be an IvP function with uniform piece shape, where the total number of pieces are requested on
line 15. (Note that 1000 pieces are requested, but not all requested piece counts are feasible or
practical. See Section 9.2.2 for more on this). The requested number of uniform pieces affects three
practical metrics of the resulting the IvP function. The error in its representation of the underlying
function, the time to create the IvP function, and the number of pieces in the IvP function. The
goal is to minimize each, but they are in competition with each other.

Figure 23 depicts four IvP function approximations of the same underlying function, and Table
2 illustrates the relationship between the three metrics of (a) piece count, (b) create time, and
(c) accuracy in representing the underlying function. The user determines the most appropriate
compromise between these metrics for the application at hand. In general, a gain on one metric
is traded off against a sacrifice on other metrics. With the additional tools described in Section 9,
it is often possible to make improvements in all three metrics simultaneously. One way to look at
this is that there is a fourth metric, ease-of-use, that can instead be dialed back to achieve gains
in all of the first three metrics. In Listing 25, the absence of Step 3, where insightful parameters
could have been provided to the Reflector to produce non-uniform functions, could be viewed as
optimizing the ease-of-use metric.

79

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

ycent = −150
sigma = 32.4
range = 150

x

−250 −250

250
250

y

0

xcent = 50

150

Figure 22: A Gaussian function: A rendering of the function f(x, y) = Ae
−(

(x−x0)2+(y−y0)2

2σ2)
where A = range =

150, σ = sigma = 32.4, x0 = xcent = 50, y0 = ycent = −150. The domain for x and y ranges from −250 to 250.

Case Edge Pieces Layout Worst Avg Time

Size Error Error msecs

1 3 27889 (167x167) 0.0761 0.0014 656.4
2 5 1000 (100x100) 0.3019 0.0048 160.0
3 7 5184 (72x72) 0.6720 0.0104 83.3
4 10 2500 (50x50) 1.4589 0.0232 39.9
5 15 1156 (34x34) 3.4532 0.0551 18.9
6 20 625 (25x25) 5.5855 0.1014 10.4
7 25 400 (20x20) 7.79764 0.1585 6.5
8 30 289 (17x17) 12.0347 0.2303 4.7
9 40 169 (13x13) 24.2977 0.3919 2.8
10 50 100 (10x10) 18.2113 0.5917 1.6
11 75 49 (7x7) 42.0652 1.2143 0.9
12 100 25 (5x5) 30.3938 2.0285 0.5

Table 2: IvP function configurations and metrics: The relationship between piece size, accuracy and construc-
tion time is shown for varying uniform piece size. Four of the row entries are rendered in Figure 23.

8.4 The Full Reflector Interface Implementation

The following functions define the interface to the Reflector tool. In constructing and setting
parameters, the instance maintains a Boolean flag indicating if any fatal configuration errors were
detected. In such cases, a warning string is generated for optional retrieval, and the error renders
the instance effectively useless, never yielding an IvP function when requested. Example usage is
provided in Listing 25 on page 79.

80

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

(a) 7056 (101x101) pieces (b) 1024 (34x34) pieces

(c) 289 (17x17) pieces (d) 100 (11x11) pieces

Figure 23: Four IvP functions approximating the same underlying function: Each IvP function uses a
different number of uniform pieces.

OF Reflector(AOF*): The constructor takes a single argument, a pointer to the underlying function
to be approximated by the Reflector. The AOF instance contains an instance of the IvPDomain
which will also be the IvPDomain of any IvP functions created with the Reflector.

int create(int pieces=-1): This function generates a new IvP function based on the prevailing
parameter settings at the time of invocation. Many of the parameters affecting the form of the
function are settable separately in the setParam() function, including the parameter specifying
the number of pieces. If the optional pieces argument is provided in this function call, and if the
value of the argument is ≥ 1, this overrides any piece count request set otherwise. This function
will create an IvP function that the user can then obtain via the function extractIvPFunction()

described below. The integer value returned is the number of pieces in the newly created IvP
function. A value of zero indicates something has gone wrong.

IvPFunction *extractIvPFunction(): This function returns a new IvP function built during a prior
invocation of the create() function described above. If an error was encountered in either the
parameter setting attempts, or in the invocation of the create() function, this function will
simply return the NULL pointer. When the IvP function is extracted from the Reflector, an

81

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

IvPFunction instance is created from the heap that needs to be later deleted. The Reflector tool
does not delete this. It is the responsibility of the caller. Typically this tool is used within a
behavior, and the behavior passes the IvP function to the helm and the helm deletes all IvP
functions.

string getWarnings(): When or if problems are encountered in setting the parameters, the Reflec-
tor appends a message to a local warning string. This string can be retrieved by this function.

bool stateOK(): This function returns true if no errors were encountered during configuration
attempts, otherwise it returns false. If an error has been encountered, this state cannot be
reversed. The instance has been rendered effectively useless. To gain insight into the nature of
the error, the getWarnings() function above can be consulted.

bool setParam(string param, string value): This function is used for setting parameters on many
optional tools more advanced than specifying the number of pieces to be used in a simple uniform
function. An overview is provided here, with more detailed deferred to later sections that cover
the advanced tools.

• uniform amount: The amount of pieces to use in the creation of a simple uniform function.
Alternatively can be supplied in the call to create() as described above.

• uniform piece: A string description of the size and shape of a piece used during the creation
of a pure uniform function. Details described in Section 9.1.2.

• strict range: When set to true, the range of the linear interior function is guaranteed to
stay within the range of any sampled points of the underlying function, even if a better
overall fit could be obtained otherwise. The default is true.

• refine region: A string description of a region of the IvP domain within which further
directed refinement is requested. See Section 9.1.3.

• refine piece: A string description of the size and shape of uniform pieces to be used within
a region of directed refinement. See Section 9.3.

• refine point: A string description of a point within the IvP domain to direct further
refinement. See Section 9.3.

• smart amount: The number of pieces to use in the smart refinement algorithm, beyond the
number of pieces used in an initial simple uniform function. See Section 9.4.

• smart percent: The number of pieces to use in the smart refinement algorithm specified as
a percentage of the number of pieces used in an initial simple uniform function. See Section
9.4

• smart thresh: A threshold given in terms of worst noted error between the IvP function
and the underlying function, below which the smart refinement algorithm will cease further
refinement. See Section 9.4.

• auto peak: Set to either true or false indicating whether the auto-peak algorithm should
be applied. See Section 9.5.

• auto peak max pcs: The maximum amount of new pieces added to an IvP function during
the auto-peak heuristic. See Section 9.5.

82

8 THE REFLECTOR TOOL FOR BUILDING N-VARIABLE IVP FUNCTIONS

bool setParam(string param, double value): The parameters that may be set via this function
may also be set via the setParam() function above where the value parameter is a string. This
alternate method is implemented solely as a convenience to the caller.

• uniform amount: See above.

• smart amount: See above.

• smart percent: See above.

• smart thresh: See above.

• auto peak max pcs: See above.

83

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

9 Optional Advanced Features of the Reflector Tool

9.1 Preliminaries

The previous section discussed how to build IvP functions with the OF Reflector tool in the IvP
Build Toolbox by simply specifying a desired number of pieces in the resulting piecewise defined
function. This section discusses a few further methods for building functions that give the user
more control of the build process and typically better overall results in terms of fewer pieces, less
time to build, and greater accuracy in the piecewise approximation of the underlying function.

9.1.1 The Reflector-Script

The basic invocation of the Reflector create() function may take a single argument requesting the
number of pieces to be used in the piecewise function. An example is line 15 in Listing 25 on page
79. In reality the invocation of create() is comprised of a script of distinct build heuristics of which
the creation of uniform sized pieces is just the first of four parts. The latter three parts are optional
and require further user configuration before being included for execution in the script. The four
parts are:

• Uniform function creation

• Directed refinement

• Smart refinement

• Auto-Peak refinement

These four heuristics are discussed in the next four sections. Uniform function creation is
revisited since finer control can be used (with typically better results) if the choice of piece size and
shape is not left to the heuristic that converts the requested total number of pieces into an actual
uniform piece shape.

9.1.2 Specifying a Piece Shape or IvP Domain Point in String Format

Aspects of the Reflector tool require the specification of the shape of a piece used in a piecewise
defined IvP function. The specification is comprised of the length of the piece for each of the n
dimensions, i.e., decision variables. There are two ways to describe the lengths. Recall that the
IvP domain for a variable is given by a low and high value, and the number of points. For example
the variable x could range from 0 to 30 with 31 points, and y could range from −50 to 50 with
21 points. The first way to describe the length of a piece is by specifying the number of discrete
points:

"discrete @ x:5,y:5"

A uniform function built over this domain with the above requested piece shape would have 35
pieces in a manner rendered in Figure 24.

84

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Figure 24: A uniform IvP function: An IvP domain is rendered over the two variables x, with 31 elements, and y
with 21 elements. Requesting a set of uniform pieces with five elements on each edge results in the piece distribution
shown. The circled point represents the 23rd index into the x domain and the 13th index into the y domain. This
point can be referenced by the string "discrete @ x:22,y:12". It may also be referenced by the string "native @

x:22,y:10".

Note the distribution of pieces is not completely uniform. Smaller pieces are used at the upper
ranges of the domain. A second method of specifying the same piece shape is to use the native
lengths of the domain:

"native @ x:5,y:25"

This piece also has a length of five units along the x dimension and five units along the y dimension,
resulting in the same distribution shown in Figure 24. When a “native” value doesn’t exactly map
onto one of the points in the domain, it is rounded to the nearest domain point. For example,
"native @ x:5,y:22.6" specifies a piece with five units on the y dimension, "native @ x:5,y:22.4"

specifies a piece with four units on the y dimension. And when a native value is given exactly
between two domain points, the value is rounded up, so "native @ x:5,y:22.5" specifies a piece
with five units on the y dimension.

A single point in the IvP domain can be similarly referenced. When the string "discrete @

x:5,y:5" is used to represent a piece shape, the numerical values represent the length of the piece.
When the same string is used to represent a point in the IvP domain, the numerical values represent
the index into the domain. For example, the circled point in Figure 24 can be be referenced by the
string "discrete @ x:22,y:12". It may also be referenced by the string "native @ x:22,y:10". When a
native values does not map exactly to a domain value, the nearest domain point is used.

85

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

9.1.3 Specifying a Region of an IvP Domain in String Format

Aspects of the Reflector tool require the specification of a region of the IvP domain. The specifica-
tion is comprised of an upper and lower bound for each of the n dimensions, i.e., decision variables.
Recall that the IvP domain for a variable is given by a low and high value, and the number of
points. For example the variable x could range from 0 to 30 with 31 points, and y could range from
−50 to 50 with 21 points. A region can be specified as follows:

"native @ x:10:24,y:-25:20"

or equivalently,

"discrete @ x:10:24,y:5:14"

This region is rendered in Figure 25. If the extents specified in the string exceed the boundaries
of the IvP domain, the requested region is clipped to be exactly the boundary value. For example,
the string "native @ x:10:24, y:-25:50" and "native @ x:10:24, y:-25:50000" would specify the
same region given the example in Figure 25.

Figure 25: A non-uniform IvP function: An IvP domain is rendered over the two variables, x, with 31 elements,
and y, with 21 elements. A region of IvP domain is identified for further application of the Reflector. The region
is specified by the string "discrete @ x:10:24, y:5:14" or "native @ x:10:24, y:-25:20". In this case smaller
uniform pieces are applied within the region.

When a native value is specified that does not map to a domain value, this case is handled
differently for regions than it was when specifying a piece shape. In a region specification the
native value is treated as a strict boundary value. Therefore the string "native @ x:9.01:24.99,

y:-29.99:24.99" would specify the exact same region as the example above and in Figure 25.

86

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

9.2 Optional Feature #1: Choosing the Piece Shape in Uniform Functions

9.2.1 Potential Advantages

By simply specifying the desired number of pieces, the Reflector heuristically sets the piece size
and aspect ratio of an initial uniform function. This has the advantage of being very simple and
independent of the underlying function. (See line 15 in Listing 25 on page 79.) However, like most
heuristics, there may be cases where the result may not be best for a particular situation. If the
user has some insight into the underlying function and the IvP domain, the user may not wish to
leave this decision to the heuristic, but instead specify the piece shape explicitly. Below, the piece
count-to-piece shape heuristic is described as well as how to override the heuristic with an explicit
shape request.

9.2.2 Specifying the Piece Shape Implicitly from a Piece Count Request

When the Reflector creates a uniform IvP function based on a requested piece count, a heuristic
is invoked to generate a single piece to be used in the uniform function based on both the piece
count and the IvP domain. This piece is not unlike the 5 x 5 piece in Figure 24 on page 85, except
that a 5 x 5 piece is not explicitly requested, but rather the total pieces in that figure, 35, would
be requested. Knowing a little about this heuristic can help determine when its worth the effort
to instead explicitly define the shape of the uniform piece. The total requested pieces is an upper
limit, and often not exactly achieved. For example, the same 35 pieces in Figure 24 would be
created upon piece-count requests of 35, 36, 37, 38, and 39 pieces. The heuristic attempts to keep
the aspect ratio of the uniform piece close to 1.0, but will deviate to allow a uniform piece that will
result in a total number of pieces closer to the requested amount. The heuristic is given Listing 26
below, and some examples are shown in Table 3.

Listing 26 - The heuristic for generating a uniform piece based on piece-count and domain.

0 IvPBox buildUniformPiece(IvPDomain domain, int max_amount)

1 {

2 int dim = domain.getDim();

3 vector<int> pcs_on_edge(dim,1);

4 vector<bool> pcs_maxed(dim,false);

5 vector<int> pts_on_edge(dim,0);

6

7 // Store the number of points on an edge for quick reference

8 for(i=0; i<dim; i++)

9 pts_on_edge[i] = domain.getVarPoints();

0

1 // Augment the number pieces on edges until done

12 bool done = false;

13 while(!done) {

14 // Algorithm done if augmentations for all dimensions are maxed out.

15 done = true;

16 for(i=0; i<dim; i++)

17 done = done && pcs_maxed[i]

18

19 // Find the dimension most worthy of further augmentation

20 if(!done) {

21 int augment_dim;

22 double biggest = 0;

23 for(d=0; d<dim; d++) {

24 if(!pcs_maxed[d]) {

25 double ratio = (pts_on_edge[d] / pcs_on_edge[d]);

87

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

26 if(ratio > biggest) {

27 biggest = ratio;

28 augment_dim = d;

29 }

30 }

31 }

32

33 // Augment the pieces_on_edge for the chosen dimension

34 pcs_on_edge[augment_dim]++;

35

36 // Calculate hypothetical number of boxes given new augmentation.

37 double hypothetical_total = 1;

38 for(d=0; d<dim; d++)

39 hypothetical_total *= pcs_on_edge[d];

40

41 // If max_amount exceeded, undo the augment, and max-out the dimension

42 if(hypothetical_total > max_count) {

43 pcs_maxed[ix] = true;

44 pcs_on_edge[augment_dim]--;

45 }

46

47 // Cant have more pieces on an edge than points on an edge

48 if(pcs_on_edge[augment_dim] >= pts_on_edge[augment_dim])

49 pcs_maxed[augment_dim] = true;

50 }

51 }

52

53 // Now build the uniform piece based on pts_on_edge and pcs_on_edge

54 IvPBox uniform_piece(dim);

55 for(d=0; d<dim; d++) {

56 double edge_size = ceil(pts_on_edge[d] / pcs_on_edge[d]);

57 uniform_piece.setPTS(d, 0, edge_size-1);

58 }

59 return(uniform_piece);

60 }

The heuristic progresses by growing the number of “pieces on an edge”, pcs on edge, on each
dimension. The algorithm proceeds to grow the pcs on edge for each dimension until it cannot
grow further. For example, in Figure 24 there are seven pieces on the x edge and five pieces on
the y edge. The algorithm is initiated with a single piece on each edge, i.e., dimension, (line 3
in Listing 26). A Boolean is associated with each dimension indicating whether growth in that
dimension has been maxed out. This vector is initiated on line 4. A dimension becomes maxed out
if additional growth in that dimension means the requested piece count is exceeded (checked for in
lines 36-45), or if the number of pieces on an edge is equal to the number of points on and edge of
the IvP domain (checked for in lines 47-49). At each chance to grow the size of the uniform piece
the most appropriate dimension is identified for growth (lines 21-31) by choosing the dimension
with the largest ration of points on the edge to pieces on the edge (line 25).

Some examples of the heuristic are shown in Table 3. The domain shown in table has 1000
discrete choices for both the x and y variables. Given that the domain itself has an aspect ratio
of one, not surprisingly, the generated uniform pieces also have roughly an aspect ratio of 1.0, and
the number of pieces on each edge of the domain are also nearly equivalent.

88

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Requested Aspect Shape Actual Pieces On the Pieces On the
Pieces Ratio of Piece Pieces ’x’ Domain Edge ’y’ Domain Edge

63 0.78 112x143 63 9 7
64 1.0 125x125 64 8 8
500 1.0 46x46 484 22 22
512 0.96 44x46 506 23 22
1000 0.97 32x33 992 32 31
1024 1.0 32x32 1024 32 32
1025 1.0 32x32 1024 32 32
4000 1.0 16x16 3969 63 63

IvPDomain: x:200:299:1000, y:0:999:1000

Table 3: Example 2D results of the uniform-piece heuristic: Uniform piece characteristics resulting from a
heuristic applied to a requested total number of pieces and a given IvP domain with two variables.

Consider how the heuristic performs instead on the 3D domain shown in Table 4. The number
of choices for the z variable is a tenth of that for the x and y variables. The results provided
by the heuristic may or may not be the right overall, depending on the underlying function and
application. In particular consider that when requesting 100 or 200 pieces, the z component of the
resulting uniform piece is the entire z domain, i.e., there is only one piece on the z domain edge.

Requested Shape Actual Pieces On the Pieces On the Pieces On the
Pieces of Piece Pieces ’x’ Domain Edge ’y’ Domain Edge ’z’ Domain Edge

100 100x100x100 100 10 10 1
200 72x72x100 196 14 14 1
1000 44x46x50 968 22 22 2
7500 23x24x25 7392 44 42 4

IvPDomain: x:200:299:1000, y:0:999:1000, z:0:99:100

Table 4: Example 3D results of the uniform-piece heuristic: Uniform piece characteristics resulting from a
heuristic applied to a requested total number of pieces and a given IvP domain with three variables.

This heuristic has served fairly well in practice, but in cases where the user has insight into a
better choice for the size and shape of the uniform piece, this can be overridden as discussed next.

9.2.3 Specifying the Uniform Piece Shape Explicitly

The piece shape used in a uniform IvP function can be set explicitly using the uniform piece

parameter in the Reflector setParam() function first mentioned in Section 8.4 on page 82. For
example, the uniform piece shown in Figure 26 can be requested as follows:

reflector.setParam("uniform_piece", "discrete @ x:6,y:4");

int amt = reflector.create();

Compared to generating a uniform function by a simple piece-count request, the above two lines
would replace the single line with the create() invocation, as in line 15 in Listing 25 on page 79.

89

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Figure 26: An IvP function made from an explicit piece shape request: An IvP domain is rendered over the
two variables x, with 31 elements, and y with 21 elements. Requesting a uniform piece of size 6x4 would result in
the rendered configuration. This piece can be specified with "discrete @ x:6,y:4" or "native @ x:6,y:20". This
piece shape would not be resulting piece shape had the user simply requested 36 pieces given this domain.

In summary, when the Reflector create() function is called, the reflector-script begins and
needs to know the size and shape of the piece used for uniform function creation. It may get
this information by either explicitly configuring the piece shape, or implicitly by requesting a total
number of pieces (as an argument to the create() function). If both requests are inadvertently
invoked, the latter type of request is ignored and the explicit piece shape configuration is honored.
If neither specification of piece shape is provided, a function with a single piece will be created (but
perhaps further refined in later parts of the reflector-script). Use of the explicit piece shape request
may be the preferred method for example if a domain includes a variable for vehicle heading and
a uniform function is desired with pieces split on every three degrees, regardless of whether the
domain contains 180, 360, or 720 choices for heading.

9.3 Optional Feature #2: IvP Functions with Directed Refinement

The directed-refinement feature of the Reflector is potentially useful when (a) the underlying func-
tion has distinct sub-regions that are harder to accurately represent with a piecewise linear approx-
imation, and (b) when the user has insight into the location of those sub-regions. Use of the tool
involves specifying both the region to direct further refinement, and the size of the piece to use
in the refinement region. This is done using the uniform piece, refine region, and refine piece

parameters in the Reflector setParam() function first mentioned in Section 8.4 on page 82. For
example, the IvP function shown in Figure 25 would be generated with the following lines:

90

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Listing 27 - An example configuration of the Reflector tool using directed refinement.

reflector.setParam("uniform_piece", "discrete @ x:5,y:5");

reflector.setParam("refine_region", "native @ x:10:24,y:-25:20");

reflector.setParam("refine_piece", "discrete @ x:2,y:2");

reflector.create();

When the create() function is invoked in the last line above, the reflector-script will involve
two of the components of the reflector-script mentioned in Section 9.1.1. The first line configures
the initial uniform function phase, and the middle two lines configure the directed refinement phase
by declaring a sub-region (second line) and a uniform piece to be applied to that sub-region (third
line). Multiple directed refinements can be configured and queued for inclusion in the reflector-
script by adding further refine region - refine piece pairs prior to the invocation of the create()

function. They must be added in pairs however since the refine piece is always associated with
the last specified refine region.

For an illustrative case we return to the Gaussian function rendered in Figure 23 on page 81:

f(x, y) = Ae−(
(x−x0)2+(y−y0)2

2σ2), (2)

where A = 150, x0 = 50, y0 = −150 and σ = 32.4. This function apparently has a sub-region of
the domain where the function is very nonlinear and otherwise quite linear outside the sub-region.
The use of directed-refinement begins by building an initial uniform function as shown in Figure
27, conceding for now that the approximation will be poor in the sub-region around the peak.

Figure 27: An initial IvP function approximation: The Reflector first creates an initial simple uniform function
with fairly large pieces, conceding for the time being poor performance in approximating the underlying function in
areas near the peak of the underlying function.

91

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

The initial uniform function was created by requesting 50 pieces, and a function with 49 pieces was
subsequently generated. The sub-region shown in Figure 28 was identified for directed refinement,
with much smaller pieces used in the sub-region.

Figure 28: An IvP function generated with directed-refinement: After an initial uniform function has been
generated, the Reflector refines the function on the prescribed sub-domain of the function with much smaller pieces.

The results in Table 5 below were generated by configuring the reflector-script to include
directed-refinement on the underlying Gaussian function shown in Figure 28, in a manner simi-
lar to the four lines in Listing 27 on page 91. Each row in the table below differs only in the size
of the refine piece shown in the second column.

Case Refine Total Worst Average Time
Edge Size Pieces Error Error millisecs

A 4 2607 0.7760 0.0104 38.9
B 5 1687 0.7760 0.0123 25.6
C 6 1162 0.7760 0.0149 17.8
D 7 847 0.7760 0.0178 13.0
E 8 682 0.9093 0.0214 10.2
F 9 535 1.1895 0.0254 8.2
G 10 447 1.4589 0.0302 6.7
H 11 367 1.8263 0.0351 5.7
I 12 295 2.2470 0.0409 4.7
J 13 262 2.6527 0.0472 4.1
K 14 231 3.0321 0.0540 3.6
L 15 202 3.5886 0.0615 3.2

Table 5: Results of directed-refinement: Characteristics of 12 different IvP functions approximating the under-
lying function shown in Figure 27 and 28. Each function is built by starting with an initial uniform function and
then performing directed refinement over the region −50 ≤ x ≤ 150 by −250 ≤ y ≤ −50. The refinement piece size
shown in the second column is the parameter that results in the 12 different functions.

92

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

For the observed errors reported in columns 4 and 5, the domain was sampled for each resulting
IvP function at 50,000 random points for comparison between the value provided by the IvP
function against the underlying function. The average time to create the IvP function, noted in
the last column, was taken by averaging 100 creations since the precision of the timer used was 100
milliseconds. The data shown here are meant to show the relationship between parameters, not
necessarily an indication of how fast things run on “typical” platforms. That being said, this data
is from a Dell laptop containing a Pentium chip with about 2.0 GHz processor, with a codebase
compiled without typical gcc optimization options.

The trends in the table are as one would expect. As the number of pieces is decreased, the
average error and worst error increase, and the time to create the IvP function is decreased. The
question is whether this technique offers the ability to improve in all three metrics, piece-count,
function accuracy, and creation time, simultaneously compared to using a simple uniform function
without directed refinement. The answer is yes. Evidence can be seen of this by comparing Table
5 with Table 2 on page 80. We look for cases in Table 5 that dominate cases in Table 2. A case
that dominates another is stronger or equal in all three performance metrics simultaneously. Case
(a) dominates case (4). Case (b) dominates cases (5),(4). Case (c) dominates cases (6),(5). Case
(d) dominates cases (6),(5). Case (e) dominates cases (7),(6).

9.4 Optional Feature #3: IvP Functions with Smart Refinement

9.4.1 Potential Advantages

The smart-refinement algorithm works by further refining an existing IvP function based on an
(automated) estimate of which pieces need refinement the most. There are two key ideas in this
algorithm. First, no insight into the underlying function form is required by the user, unlike the
directed-refinement tool. Second, the prioritization of pieces is based on the apparent fit between
a piece’s linear function and the underlying function, for the sub-domain of that piece. This
determination of fit can be measured by performing very little extra computations beyond the
already required calculations performed during linear regression for each piece during the uniform
and directed-refinement phases. In short, there is typically very little reason not to invoke this tool
to some degree.

9.4.2 The Smart-Refinement Algorithm

The smart-refinement algorithm utilizes information collected during the creation of pieces earlier in
the reflector-script, during the initial uniform function phase which is always invoked, and directed-
refinement phase which is optionally invoked. During these phases, pieces are formed and linear
regression is performed to determine the linear function associated with each piece.

To perform linear regression for a new piece, the underlying function over k variables is sampled
at n = 2k + 1 points (the corners and the middle point) to produce f(~x1) . . . f(~xn), and these n
values are used to determine the linear function for that piece:

f ′(~x) = c1x1 + . . . + ckxk + b. (3)

93

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

The same n points are again evaluated using the newly determined linear function (3) instead,
producing another set of n values f ′(~x1) . . . f ′(~xn). The regression score is determined by:

regression score = sqrt
n

∑

i=1

(f ′(~xi)− f(~xi))
2 (4)

The regression score is then inserted into a priority queue along with a reference to the piece that
generated the score. The idea is shown in Figure 29. This algorithm for implementing a priority
queue can be found in [8]. The priority queue implemented in the IvPBuild Toolbox is modified
slightly to be a fixed-length queue. Insertion and retrieval time is O(n log(n)).

Figure 29: Priority queue keyed with regression scores: The Reflector uses a balanced priority queue based
on a regression score to determine which pieces could benefit the most from further refinement.

The Reflector instance maintains this priority queue only if smart-refinement is activated. The
pieces made during the initial uniform function and directed-refinement parts of the reflector-script
are stored in the priority queue. The smart-refinement proceeds by repeatedly popping the top
priority piece from the queue for further refinement. By further refinement of a piece, we mean
splitting a piece and replacing the piece with the two new pieces after performing regression on the
two new pieces. The piece is split along the dimension with the largest edge. These two new pieces
are then also inserted in the priority queue for possible further refinement.

An example of the smart-refinement algorithm applied to the same Gaussian function shown in
Figure 28 on page 92 is shown below in Figure 30.

94

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Figure 30: An IvP function generated with smart-refinement: Results of smart-refinement on an initial
uniform function with 25 pieces and an additional 200 pieces during the smart-refinement phase. The function has
a total of 225 pieces and is significantly more accurate and faster to create than a pure uniform function with 625
pieces. Further examples are shown in Table 6.

The results in Table 6 show the results of applying the smart-refinement algorithm to the
function in Figure 22. Each row in the table shows the results from creating first a pure uniform
function, and then a further refined function using an additional 75% more pieces with smart-
refinement. The left-hand side of the table is the same as Table 2, duplicated here for ease of
comparison. Compare for example the smart-refine function with 175 pieces in Case 10 against the
pure uniform function with 400 pieces in Case 7. The former not only has less pieces, but is more
accurate and took less time to create. It dominates the pure uniform function, i.e., is simultaneously
better in all measures of performance. This is similar to the way directed-refinement dominates
pure uniform functions, but in the case of smart-refinement, no insight into the underlying function
form was required!

Case Edge Pieces Worst Avg Time Pieces Worst Avg Time
Size Error Error msec Error Error msec

4 10 2500 1.4589 0.0232 39.9 3445 0.8512 0.0139 70.1
5 15 1156 3.4532 0.0551 18.9 2023 1.3241 0.0224 47.3
6 20 625 5.5855 0.1014 10.4 1093 1.9834 0.0297 27.6
7 25 400 7.79764 0.1585 6.5 700 2.5924 0.0362 18.1
8 30 289 12.0347 0.2303 4.7 505 2.3905 0.0480 11.3
9 40 169 24.2977 0.3919 2.8 295 12.6192 0.0885 7.5
10 50 100 18.2113 0.5917 1.6 175 3.4166 0.1194 4.3
11 75 49 42.0652 1.2143 0.9 85 7.9236 0.3100 2.3
12 100 25 30.3938 2.0285 0.5 43 12.3887 0.5188 1.2

Table 6: In each case an initial uniform function was created with the number of pieces indicated in column 3. The
qualities of the function in terms of accuracy and time are shown in columns 4-6. Each function was then augmented
with 75% additional pieces using the smart-refinement algorithm with the resulting qualities shown in columns 7-10.

95

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

The smart-refine algorithm is limited by the degree to which the regression score given by (4) is
accurate for each piece entered into the queue. Note for example, Case 9 in Table 6, where the worst
error detected for the smart-refine function is anomalous and significantly higher than that noted
in functions with far fewer pieces. The error of 12.6192 occurred in some piece that apparently
did not report a high regression score when (4) was applied. This is likely due to an unfortunate
case where the points sampled for use in generating the linear function all fit the resulting linear
function very well, but the non-sampled points did not fit well. The idea is shown in Figure 31.

Figure 31: Regression scoring gone awry: Assessing the regression score given in (4) can be misleading in cases
where the derived linear function fits each sampled point very well but otherwise poorly fits the underlying function.

9.4.3 Invoking the Smart-Refine Algorithm in the Reflector

The smart-refine tool can be included in the refine-script in a few different ways. The first is to
simply indicate how many pieces to use during the smart-refine process. The number of pieces
is addition to any pieces that may already be present after the initial uniform function has bee
created and after any directed-refinement has been performed.

reflector.setParam(smart_amount", 400);

Alternatively the number of pieces to be used in smart-refine can be given in terms of the percentage
of additional pieces beyond what has already been created at the time of invocation of the smart-
refine part of the refine-script. The argument is a non-negative integer value:

reflector.setParam("smart_percent", 35);

There is a third parameter smart thresh that can affect how many pieces are used in the smart-
refine phase. The value passed with this parameter is a regression score such that if the current
top element of the priority queue has a score below this threshold, smart-refinement will terminate
early, before the target piece amount specified by smart amount or smart percent has been reached:

reflector.setParam("smart_thresh", 0.05);

96

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

Regression scores represent the raw discrepancy between the underlying function and the linear
approximation (3), and in general do not reflect any normalization. For example, depending on the
function, the value of 0.05 above could be a relatively large value resulting in an early termination
of refinement, or a relatively small threshold that cannot be met without thousands of additional
pieces. The user of this parameter needs to have some knowledge of the range of the underlying
function.

Finally, the simplest way of invoking the smart-refinement tool is by specifying the number of
pieces as the second argument in the create() function call, and the smart threshold as the third
argument:

reflector.create(1000, 400, 0.5);

The above will result in an initial uniform function with 1000 pieces and an additional 400 pieces
used for smart-refinement. The full additional 400 pieces will be generated only if the threshold is
not reached along the way. The above is equivalent to:

reflector.setParam("uniform_amount", 1000)

reflector.setParam("smart_amount", 400)

reflector.setParam("smart_thresh", 0.5)

reflector.create();

Accepting these three common parameters as arguments to the create() function call is simply for
convenience. If provided, they override the setting from prior calls to setParam().

9.5 Optional Feature #4: IvP Functions with Auto-Peak Refinement

9.5.1 Potential Advantages

The auto-peak algorithm is the last optional algorithm in the reflector-script. The objective is also
to build a more accurate IvP function representing the underlying function. The metric of accuracy
referenced up to this point has been the average error and worst error observed from a number
of random sample points. For example Table 6 on page 95 reported error in this way. Another
metric of accuracy is the degree to which the maximum peak of the function, represented by a
point in the discrete IvP domain, agree between the underlying function and the IvP function.
For example, if the peak of the underlying function is "heading=133, speed=3.2" and the peak of
the IvP function is "heading=129, speed=3.0" the IvP function could still be rated well in terms
of error metrics from sampling the entire domain. However, the peak of the function is probably
the most important part of the underlying function to represent precisely. When the IvP function
happens to be the only function or dominating function influencing the vehicle at that moment, the
peak of the function is the output of the solver. The auto-peak refinement focuses on this aspect
of the function, without user insight into where the actual peak occurs in the underlying function.

9.5.2 The Auto-Peak Algorithm

The auto-peak algorithm proceeds by repeatedly refining the single piece in the IvP function that
is believed to contain the maximum peak until that one piece contains only a single point in the
IvP domain. It takes advantage of the fact that for a given piece in an IvP function, its maximum

97

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

value, over the piece interval and linear interior function, can be rapidly calculated. The basic
algorithm steps are as follows:

Listing 28 - An overview of the auto-peak algorithm.

Step 1. Determine max-value for each piece in the IvP function and populate the priority queue.

Step 2 If the top piece in the priority queue contains only one IvP domain point, go to 9.

Step 3 If the number of pieces added during auto-peak has reached an upper limit, go to 9.

Step 4. Pop the top piece in the priority queue for further refinement.

Step 5. Split the piece along the longest edge.

Step 6. Build the new linear function for both pieces, noting max values.

Step 7. Add both new pieces back to the IvP function and to the queue with their max-values.

Step 8. Go to Step 2.

Step 9. Done.

The first step in the algorithm is to build a priority queue similar to the priority queue used
in the smart-refinement algorithm. In this case, the score associate with each piece in the queue
is the maximum value for the given piece, as depicted in Figure 32 below. The maximum value
is calculated quickly and directly from the coefficients of the linear function associated with the
piece. When the auto-peak algorithm is initiated, it works with the IvP function generated thus
far during the prior phases of the reflector-script. The priority queue is built by evaluating the
max-value for all pieces in this function.

Figure 32: Priority queue keyed with maximum utility scores: The Reflector uses a balanced priority queue
based on a max utility score to determine which pieces could benefit the most from further refinement. Each node in
the tree keeps a pointer to the piece that generated the maximum utility key.

The algorithm terminates when either the top piece in the priority queue contains only a single
IvP domain point, or when auto-peak refinement has generated a total of new pieces that exceeds
a specified optional limit. This is checked in steps 2-3 in Listing 28. When a piece is selected for
further refinement, it is split along the longest edge creating two pieces (one new piece) regardless
of the number of edges or dimensions. Linear regression is performed on the two pieces and they
are added back to the IvP function and the priority queue. Typically, but not necessarily, the piece
with the maximum value in the priority queue is a result of the most recent refinement.

98

9 OPTIONAL ADVANCED FEATURES OF THE REFLECTOR TOOL

9.5.3 Invoking the Auto-Peak Algorithm in the Reflector

Use of the auto-peak tool is done using the auto peak and auto peak max pcs parameters in the
Reflector setParam() function first mentioned in Section 8.4 on page 82. The auto peak parameter
simply turns the tool on or off, with "true" or "false". The auto peak max pcs parameter sets an
upper limit on the number of new pieces introduced to an IvP function during the auto-peak phase.
The following shows an example usage:

reflector.setParam("auto_peak", "true")

reflector.setParam("auto_peak_max_pcs", 100)

reflector.create(1000);

The upper limit on pieces is typically not needed, and the default value is no limit. The
algorithm tends to reach termination quickly because the piece with the maximum point tends to
always be at the top of the priority queue, and in cases where the top ranked piece does not contain
the maximum point, this is resolved quickly as the piece is split. Nevertheless, this upper limit
is available for the conservative user. It is worth noting that, for underlying functions where the
maximum value is part of a large plateau, the auto-peak tool is likely to have little benefit.

99

REFERENCES

References

[1] http://www.pmel.noaa.gov/vents/acoustics/tutorial/11-sofar.html.

[2] http://en.wikipedia.org/wiki/SOFAR channel.

[3] Michael R. Benjamin. MOOS-IvP Autonomy Tools Users Manual. Technical Report MIT-CSAIL-TR-2008-065,
MIT Computer Science and Artificial Intelligence Lab, November 2008.

[4] Michael R. Benjamin and Joe Curcio. COLREGS-Based Navigation in Unmanned Marine Vehicles. In AUV-
2004, Sebasco Harbor, Maine, June 2004.

[5] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. A Tour of MOOS-IvP Au-
tonomy Software Modules. Technical Report MIT-CSAIL-TR-2009-006, MIT Computer Science and Artificial
Intelligence Lab, January 2009.

[6] Michael R. Benjamin, Paul M. Newman, Henrik Schmidt, and John J. Leonard. An Overview of MOOS-IvP and
a Brief Users Guide to the IvP Helm Autonomy Software. Technical Report MIT-CSAIL-TR-2009-028, MIT
Computer Science and Artificial Intelligence Lab, April 2009.

[7] Mike Benjamin, Henrik Schmidt, and John J. Leonard. http://www.moos-ivp.org.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, September 2001.

[9] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.

[10] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and Value Tradeoffs.
Cambridge University Press, New York, NY, 1993.

[11] Kaisa M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, MA, 1999.

[12] Paul Newman. http://www.robots.ox.ac.uk/~pnewman/TheMOOS/.

[13] Paul M. Newman. MOOS - A Mission Oriented Operating Suite. Technical Report OE2003-07, MIT Department
of Ocean Engineering, 2003.

[14] Vilfredo Pareto. Cours d’Economie Politique. Libraire Droz, Genève (the first edition in 1896), 1964.

[15] Paolo Pirjanian. Multiple Objective Action Selection and Behavior Fusion. PhD thesis, Aalborg University, 1998.

[16] Paolo Pirjanian and Henrik I. Christensen. Behavior Coordination using Multiple-Objective Decision Making.
In SPIE Conference on Intelligent Systems and Advanced Manufacturing, Pittsburgh, Pennsylvania, October
1997.

[17] Jukka Riekki. Reactive Task Execution of a Mobile Robot. PhD thesis, Oulu University, 1999.

[18] Julio K. Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1997.

[19] Julio K. Rosenblatt and Charles E. Thorpe. Combining Multiple Goals in a Behavior-Based Architecture. In
International Conference on Integrated Robots and Systems (IROS), 1995.

100

Index

AOF Class, 75
Class Definition, 75
Example Implementation, 75, 77
Gaussian Functions, 79
General Properties, 75

AutoPeak Refinement, 60, 84, 97
Advantages and Disadvantages, 97
Brief Summary, 60
Detailed Usage, 97

Directed Refinement, 60, 84, 90
Brief Summary, 60
Detailed Usage, 90

Duplication Filter, 47

IvP Behavior Functions
Helm-Invoked Functions, 34
Helm-Invoked Immutable Functions, 34
Helm-Invoked Overloadable Functions, 36
Implementor-Invoked Functions, 36
The addInfoVars() Function, 36, 38
The checkUpdates() Function, 34
The getBuffer*() Functions, 37, 38, 46
The getBufferCurrTime() Function, 37
The isComplete() Function, 35
The isRunnable() Function, 35
The onIdleState() Function, 28, 36, 39, 45
The onRunState() Function, 28, 36, 39, 45
The post*Message() Functions, 37, 38, 47
The postFlags() Function, 35
The setComplete() Function, 36, 47
The setParam() Function, 28, 33, 36, 43

IvP Behavior Parameters, 29
activeflag, 30
condition, 30
duration idle decay, 30
duration reset, 29
duration status, 29
duration, 29, 32
endflag, 31
idleflag, 30
name, 29
nostarve, 31, 33, 46

perpetual, 31, 33
post mapping, 30
priority, 29
runflag, 30
updates, 31

IvP Behaviors
Dynamic Configuration, 31
Run States, 47
The Information Buffer, 38

IvP Domain, 58
Native vs. Discrete References, 84
Regions by Strings, 86
Specifying a Single Point, 85
String Format, 84
subDomain Function, 58

IvP Function, 57
IvP Solver, 57
IvPBuild Toolbox, 55

AutoPeak Refinement, 60, 97
Coupler, 61
Directed Refinement, 60, 90
Overview, 55
Reflector, 60
Reflector Script, 84
Smart Refinement, 60, 93
Source Code, 56
The Coupler Tool, 49
The ZAIC Tool, 59
Uniform Functions, 87

Key MOOS Variables
VIEW POINT, 45, 47

Linear Regression, 93

MOOS, 14
Acronymn, 6
Architecture, 14
Background, 6
Community, 14, 18, 19, 21, 23
Documentation, 9
Messages, 14
Operating Systems, 8

101

INDEX

Publish and Subscribe, 14
Source Code, 7
Sponsors, 6

MOOS Messages, 14
MOOSDB

Community, 18
ServerHost, 18
ServerPort, 18

Multi-Objective Optimization, 56
Decision Space, 58
Pareto Optimal Solutions, 56
Priority Weights, 56
Value Function, 56

Objective Functions, 56

Pareto Optimal Solutions, 56
Priority Queue, 94

Reflector, 60
Advanced Features, 84
AutoPeak Refinement, 60, 97
Basic Usage, 78
Directed Refinement, 60, 90
Interface Specification, 80
Linear Regression, 93
Overview, 74
Smart Refinement, 60, 93

Reflector Script, 84
Regression Score, 93

ServerHost, see MOOSDB, ServerHost
ServerPort, see MOOSDB, ServerPort
Smart Refinement, 60, 84, 93

Advantages and Disadvantages, 93
Algorithm, 93
Brief Summary, 60
Example, 94
Limitations, 96
Linear Regression, 93
Priority Queue, 94
Regression Score, 93
User Guide, 96

Source Code
Building, 7
Obtaining, 7

Running, 21

Underlying Functions, 75
AOF Class, 75

Uniform Functions
Advantages and Disadvantages, 87
By Choosing the Piece Count, 87
By Choosing the Piece Shape, 89
Choosing the Piece Shape, 87

Value Functions, 56

ZAIC Tools, 62
General Properties, 62
Maximum Utility Plateau, 73

ZAIC HEQ Tool, 69, 72
ZAIC LEQ Tool, 69

Example Usage, 71
Interface, 70

ZAIC PEAK Tool, 62
basewidth parameter, 64
maxutil parameter, 64
minutil parameter, 64
peakwidth parameter, 64
summitdelta parameter, 64
summitinsist parameter, 64–66
summit parameter, 64
valuewrap parameter, 65
Example Usage, 48, 66
Extracting an IvPFunction, 49, 65
Interface, 62, 63
Multi-Modal Functions, 67
The basewidth parameter, 48
The peakwidth parameter, 48
The summitdelta parameter, 48
The summit parameter, 48

102

