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ABSTRACT

We present the first deterministic theory of the
transient evolution of passive modelocking which gives
a closed form expression for the pulse on each transit
through the system. Included are studies of the buildup
from noise, the modelocking threshold, the steady state
operating point and the stability of the steady state.
Simple criteria are established which enable the design
of passively modelocked systems to generate pulses of
prespecified width and amplitude.

Experimental verification of the theory is carried
out on the TEA CO2 laser modelocked by an SF satur-
able absorber. The match of pulse shape and relative
amplitude is found to be excellent. The passive mode-
locking results are compared to forced modelocking
experiments conducted on the same laser system using a
Ge acousto-optic intracavity modulator.

An experimental and theoretical study of the short
pulse saturation properties of the SF absorber is also
conducted. The mechanism which induces modelocking is
shown to be the fast rotational bleaching of the ab-
sorbing transition.
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I. Introduction

Recent interest in the generation of short optical

pulses has been stimulated by the promise of communications

and radar applications, the possibility of laser induced

fusion, and fundamental phenomena of short pulse propagation

and scattering. Modelocking has proved a reliable means of

obtaining a train of short pulses from laser oscillators.

Pulses of sub-picosecond duration have been achieved.1 As

a consequence, modelocking has been an area of intense re-

search activity.

Modelocking is common to every variety of laser--

gaseous, liquid and solid state, homogeneous and inhomogen-

eous, continuous, Q-switched and gain switched. Experimental

techniques of modelocking lasers can be divided into three

major categories:

2-4
1. Spontaneous- or self-, in which the laser modelocks

in the absence of any intracavity perturbation.

2. Passive-,5-13 in which the introduction of a saturable

absorber or nonlinear refractive index material into the

laser cavity induces modelocking.

3. Active- or forced-,14-20 in which intracavity modulation

at the cavity mode spacing or multiples thereof, induces



modelocking.

More complete reference lists may be found in review arti-

cles. 2 1 - 2 3 Spontaneous modelocking is plagued by inconsis-

tency while active modelocking, though consistent, is burdened

by the electronics and device problems, and power level

constraints which accompany intracavity modulation. To date,

therefore, passive modelocking holds forth the greatest

promise of consistently producing bandwidth limited pulses

in the simplest manner and with the widest operating range.

Its promise and the vast literature notwithstanding,

many aspects of passive modelocking are not well understood.

In particular, prior to the recent work by Haus,24 25 most

26-29
theories have consisted of either computer studies or

qualitative analytic studies of pulse shaping without predic-

tion of a pulse shape.30-32 Haus developed a new formalism

which enabled him to obtain closed form expressions for the

steady state pulse produced by passive modelocking in the two

limiting cases where (1) the absorber relaxation time is

short compared to the pulse width, and (2) the absorber re-

laxation time is much longer than the pulsewidth.

Here we focus our attention on the transient evolution

of passive modelocking with a fast saturable absorber. The

transient problem is important not merely because it is of

interest to know how modelocking builds up to the steady state,



but because many modelocked systems, e.g. gain or Q switched

lasers, never reach a steady state and, hence, can only be

fully explained by a transient theory. Furthermore, we find

that an understanding of the transient problem yields deeper

insight into the steady state.

The ultimate objective of the present study is to create

a design handbook for passively modelocked systems. Toward

that objective we present:

1. A closed form deterministic theory of the transient

evolution of passive modelocking.

2. Experimental verification of the theory on the TEA CO2

laser using SF6 as a saturable absorber.

3. A study of the short pulse saturation of SF6.

The body of the thesis is divided into three chapters corre-

sponding to each of the above topics.

A major stumbling block to the development of simple

design criteria for passive modelocking has been the assertion

by previous authors that the buildup of modelocking is a sta-

tistical process.31 ,33 -3 6 Thus, a significant contribution

of the present study is to show that the conditions for which

consistent modelocking is observed experimentally are those

very conditions for which the buildup is, in fact, determin-

istic. The closed form theory then enables the quantitative

specification of design criteria for the generation of stable



pulses of prespecified shape, amplitude, and repetition time.

The chief contribution of the experimental work is the

matching of the shape and amplitude of pulses generated by

the TEA CO2 laser modelocked by an SF6  saturable absorber

to those predicted by theory over a range of system parameters.

A detailed study of short pulse SF6 saturation is also con-

ducted to demonstrate that the modelocking mechanism is the

saturation of the absorber within a cavity transit time rather

than the nonlinear dielectric coupling proposed by previous

authors.5,37,38

Both theory and experiment point the way to the improved

design of passively modelocked systems. The promised design

criteria and possible system configurations for the generation

of shorter, more reproducible pulses are presented in the

final chapter.



II. Theory

Previous authors have taken a statistical approach to

the study of the buildup of passive modelocking, stating

that the occurrence of modelocking relies on the selective

bleaching of the absorber by the highest intensity spike in

a cavity transit time. Justification of the statistical model

depends upon the nature of the field in the cavity at the

time at which the absorber saturation becomes significant.

The number of oscillating cavity modes determines the structure

of the field, i.e. the number of intensity fluctuations in a

cavity transit time. If many modes are present the field is

rapidly fluctuating and the statistical model, in which the

absorber selects the highest spike, applies. If, on the other

hand, only a few modes are present, the field is slowly varying

over a cavity transit so that the buildup of modelocking can-

not be due to the selective bleaching of the absorber by a

noise spike.

The number of oscillating modes present can be controlled

by the degree to which the saturated gain exceeds the loss. For

operation near threshold, the parabolic frequency dependence

of the gain profile near line center,and the saturation of

the gain medium as power builds up in the cavity,can ensure

that the field is comprised of only a few modes. Thus, the



well-known experimental observation that shot-to-shot con-

31,39,40
sistent modelocking requires near threshold operation

precludes the validity of the statistical model in most cases

of interest.

Indeed, we show here that the ideal case for the buildup

of passive modelocking is one in which the gain rises suf-

ficiently slowly and saturates sufficiently easily that lasing

is initially confined to the single mode (SM) nearest line

center. Modelocking results from the fact that at a definite

power level in the cavity the SM state to which the initial

noise evolves becomes unstable with respect to a sinusoidal

perturbation. An expression for the modelocking threshold,

defined as the point at which the SM acquires a sinusoidal

modulation,is found. The subsequent evolution of the system

from SM to steady state modelocked operation is determinis-

tic and is treated as a succession of quasi steady state so-

lutions to the modelocking equation.

For each set of system parameters--characterizing the

cavity, saturable absorber and gain medium--a unique stable

steady state solution is reached. A straightforward technique

for determining the evolution to and characteristics of the

steady state from the given system parameters,is presented.

Depending upon the system parameters the steady state can be

either SM operation, single pulse per transit operation or

multi-pulse per transit operation.



We begin the analysis with a derivation of the basic

modelocking equation and an enumeration of the steady state

solutions in sections 2.1 and 2.2. A separate section, 2.3,

is devoted to the modelocking threshold since it is pivotal

to the deterministic theory. The subsequent transient evolu-

tion of the system is treated in 2.4. The stability of the

various possible steady state solutions is analyzed in 2.5.

In section 2.6 the theory is extended to include more complex

laser and absorber media than first considered. Modifications

and constraints applied to the theory by strong absorber sa-

turation are determined in 2.7. The physical significance of

the antisymmetric pulse solution to the modelocking equation

is discussed in 2.8.



2.1 Assumptions and Basic Equation

The passively modelocked laser system consists of three

elements (see Figure l)--the laser cavity, the active gain

medium (amplifier) and the saturable absorber. The basic

24
equation describing the system was derived by Haus. The

notation and method of derivation employed here parallels

that of Haus, and is extended to justify the application of

the equation to the transient problem.

The field in the nth transit through the cavity can be

described by

jw t
E(t, n) = v(t, n) e o (2.1)

where t is the time local to a single round trip transit,

w is the frequency at line center of the laser medium and

v is the envelope on the field within a single transit. The

optical carrier exp jw t plays no role in the modelocking

analysis so that we need only concern ourselves with the evolu-

tion of the envelope v from one pass to the next. A waveform

v(t, n) starting at the reference plane (see Figure 1) on the

nth pass, is modified after making a round trip transit through

the cavity such that

-L -2L
C G A G

v(t, n + 1) = e e e e v(t, n) (2.2)



Laser Medium Saturable
Absorber

Reference Plane

Figure 1: Modelocked Oscillator

,d __
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where:

LC = cavity loss

G = amplifier gain

LA = absorber loss.

We assume that the net change of the waveform over a

single pass is small enough that the exponential in (2.2) can

be expanded to first order. Treating the integer n, which

counts the transits through the cavity, as a continuum vari-

able, we obtain the differential equation describing the

transient evolution of the waveform v(t, n)

3v(t, n) = [2G - (LC + 2 LA)] v(t, n). (2.3)
n

On first glance equation (2.3) is merely an expression

of growth or decay of the waveform v(t, n) due to the exis-

tence of net gain or loss in the cavity. The first term on

the right is the gain of the active medium. The second term

is the total loss--cavity plus absorber. However, the gain

dispersion and absorber nonlinearity provide shaping of the

waveform with each cavity transit. In solving (2.3) we must

account for the shaping as well as the growth or decay.

In order to give a more detailed description of the changes



of the waveform over each transit we characterize the com-

ponents of the modelocking system as follows:

1. The cavity loss is constant in time and the cavity modes

are uniformly spaced in frequency.

2. The gain medium is homogeneously broadened and its re-

laxation time is much longer than the cavity transit time,

i.e. the gain is constant over a single transit time.

3. The absorber is homogeneously broadened, has a relaxation

time which is much shorter than the cavity transit time

and is located against one of the cavity mirrors.

Both the amplifier and the absorber are described as two

level quantum systems. The difference in the relaxation times

of the two media, however, enables us to obtain simple ex-

pressions for their response to the field in the cavity. Be-

cause the laser medium relaxation time is much longer than the

cavity transit time, the laser population difference responds

only to the time average power within one transit. Thus, its

rate equation becomes4 1

1 dN(n) N L (n) - NLe(n) GL P(n)
NL (n) (2.4)

TR  dn TL hw AL
R T oi A



where TR is the round trip cavity transit time, NL(n)

is the difference in population density at the nth pass,

NLe(n) is the equilibrium density which varies with the

pumping rate, TL is the relaxation time, oL is the optical

cross section of the medium, AL is the beam cross section in

the medium and P(n) is the time average power in the field

given by

P(n) 1 R/ 2 v(t, n) 2 dt. (2.5)
TR -TR/ 2

If the change of power and pumping rate is slow compared

to the medium relaxation time TL, i.e.

dN T
1 dP 1 L R<< (26)

P dn N dn TL

then the population difference remains in equilibrium with the

time average power. The population difference at the nth

pass becomes

N e(n)

L LNL (n) = (2.7)P(n)

PL

where we have defined the laser medium saturation power



h AL
PL T

aLTL

Equation (2.7) dictates the saturation behavior of the

homogeneously broadened laser medium. The gain of the ampli-

fier at line center is given by

G (n)
G(wo, n) = aL LAL NL(n) = (2.8)

+ P(n)

P

where ZL is the length of the gain medium and G (n) is

the small signal gain. The lineshape of the medium is

Lorentzian:

G( or n)
G(w, n) = (2.9)

(W - )2

1 +
L2

where wL is the halfwidth of the lasing transition. The

imaginary component of the gain dispersion is ignored here

since it plays no role in modelocking with a fast absorber and

has been discussed elsewhere.
2 4' 4 2

We wish to determine the effect of the gain medium on the

waveform v. The waveform in the cavity has a discrete spec-

trum comprised of the axial modes, namely



v(n, t) = Z V (n) ejmA (2.10)
m

where Aw = 2 /TR is the mode spacing and Vm is the ampli-

tude of the mth mode. The total bandwidth of the waveform

is assumed small compared to w L so that the gain can be

expanded to second order in frequency.

6W 60 26 0 ma (maw) 2
G(mAw, n) - G(w , n) 1 (m)(2.11)

S WL L L

where 6w0 is the shift of the discrete spectrum with respect

to the center of the lasing transition. Transforming into the

time domain, the frequency dependence becomes an operator on

v(n, t) by replacing (jmAw)n by (d/dt)n . Thus, the effect

of the gain can be expressed as

G(d/dt, n) v(t, n) = G(w , n) 1- 62 - 2j

I_ w L L 2 dt

+ 1 d v(t, n) (2.12)
WL dt 2

when operating on a waveform of envelope v(t, n). The only

effect of a nonzero 6w, is, as one might expect, to cause



a carrier frequency shift in the field. From the stand point

of the transient buildup, however, an interesting result arises

when two adjacent modes are equally spaced from line center,

i.e. 6w = Aw/2. This will be discussed in section 2.8.

Until then we shall assume 6w = 0, in which case

G(d/dt, n) v(t, n) = G(wo , n) 1 + 1 id2 v(t, n). (2.13)0 L L2 dt 2

The saturable absorber, having a fast relaxation time,

responds to the instantaneous power in the field. Its popu-

lation difference obeys the rate equation

dNA(t, n) NA(t, n) - NAe A Iv(t, n) 2

=h - - NA(t, n) (2.14)
dt TA h Ao A

where the subscript A denotes the absorber parameters analo-

gous to the laser parameters used in (2.4). For the purposes

of the present study we assume that the relaxation time is

short compared to the time dependence of the waveform, i.e.

1 dv << 1 (2.15)

v dt TL

so that the population difference remains in equilibrium with



the instantaneous power in the field v12 . The absorber can

now be described by

(2.16)L(t, n) =

1 + IV(t, n) 2

where we have defined the small signal absorber loss

Le - A A A ne

and the absorber saturation power

o A
PA

OATA

Making use of (2.13) and (2.16), equation (2.3) for the

transient evolution of the waveform v(t, n) becomes a non-

linear partial differential equation:

v(t, n) 1 + q n)

1 + Iv ( t , n) 2
(2.17)



We have defined the same quantities normalized to the cavity

loss as were used by Haus, namely the saturated gain

2G (o, n)
g(n) 2G( , n) (2.18)

Ac R

and the small signal absorber loss

2L
e

q - , (2.19)
Awc T R

and have made use of the fact that the constant cavity loss

per transit is expressible as

L C = Awc TR  (2.20)

where Awc  is the cavity mode halfwidth.

Furthermore, in contrast to the fast absorber equation

used by Haus, we have neglected the linewidth broadening due

to gain saturation by making the substitution

g 1 + q
2 L2



The approximation is justified by the fact that the analysis

is only valid in the regime where the gain is near threshold.

Thus, gain variation is negligible compared to the normalized

cavity loss, but is significant compared to 1 + q - g. Also,

many systems are bandwidth limited by a dispersive element

(e.g. etalon) inside the laser cavity, in which case the "dif-

fusion" operator expressing pulse broadening in time is gain

independent. Although the following analysis can be carried

out without making this approximation, the inclusion of power

broadening sacrifices simplicity for little additional insight

into the problem.

In the limit of weak absorber saturation we can expand

the absorber loss to first order in the instantaneous power

in the field, namely

qq fl - Iv(t, n) . (2.21)

1 + Iv(t, n) 2  PA
PA

Equation (2.17) now reduces to the modelocking equation de-

rived by Haus24

-v A T g + 1 1 2 + q - q v. (2.22)
n L2 t2  PA

L A
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In order to treat the transient evolution of the waveform

v(t, n) we must first find the steady state solutions to

(2.22) for which the waveform v experiences no change from

one transit through the cavity to the next.



30

2.2 The Steady State Modelocking Solutions

In the steady state v/3n = 0 and the modelocking

equation (2.22) becomes an ordinary differential equation:

d 1 - 1 + q - q v(tt) = 0.

2 dt2 1 PA
L A

(2.23)

Haus has shown that one stable solution to (2.23) is a solitary

pulse

V

v(t) =
t

cosh

where the pulse parameters vo and cp are determined by

the system parameters via the eigenvalue relations

2

v +q+q o 1 + q
2 PA 2 T2

pA L p

(2.25)

in conjunction with (2.9).

The secant hyperbolic steady state solution found by

Haus, however, is only one solution to equation (2.23). The

fact that it is a solitary pulse solution implies that it

(2.24)



corresponds to the case where the cavity transit time is

much longer than the pulsewidth, TR >> Cp, so that the

inherent periodicity of the system can be ignored. During

the buildup of modelocking the periodicity of the system must

be taken into account since the pulsewidth T is initially

comparable to TR. As a first step toward understanding the

transient buildup, we must find the periodic solutions to (2.23).

In general, equation (2.23) is the equation of motion of

a particle in the potential well

U(v) = - (1 + q - g) IV1 2 + C (2.26)

2P A

where C is a constant and v is in one-to-one correspon-

dence with the particle displacement. If the particle is

launched with zero velocity at the well height 0, corres-

ponding to a maximum displacement v , it oscillates between

the turning points defined by the roots of U(v). By definition

one of the turning points is at v = v . Thus, the solution

is periodic, with two possible time dependences which we label

symmetric (S) and antisymmetric (AS) (see Appendix A)

S: v(t) = v0 dn (t/'T, y) 0 < y < 1 (2.27a)

AS: v(t) = v0 cn (t/T , l/y) 1 < y < 2Z (2.27b)o ~p-- -



where dn and cn are Jacobian elliptic functions of t/T

42
and modulus y. y is defined by the two roots of the

potential

2 2

v0

where vl, the second root, can be real or imaginary. Equation

(2.28) relates the modulus y to the constant C as given by

Equation (8) of Appendix A. Substitution of (2.27) in (2.23)

gives the eigenvalue relations

1 qVo 1' 1 S (2.29a)

L2 Tp 2( + q) PA 2 AS (2.29b)

and

qlV012
1 + q - g (2 - y2 ) (2.30)

2P A

which determine the peak amplitude vo and "pulsewidth" T

within each period. The periodicity of the solution, which

we require to equal the cavity transit time TR, determines

the constant y via the relations



TR 12mK (y) S (2.31a)

T 4mK(1/y) AS (2.31b)

where K is the complete elliptic integral of the first kind,

and m is an integer which determines the number of solutions

fitted in a transit time. In the limit TR >> -p, equation

(2.31) dictates that y + 1 and equations (2.27)-(2.30)

become the secant hyperbolic solution and eigenvalue relations

found by Haus (2.34)-(2.25). The potential well and steady

state solutions for various values of y are shown in Figures

2 and 3.

In treating the transient evolution of the modelocking

solution we shall first concern ourselves with the S solu-

tion which exists in the range

0 < y < 1 (2.32)

where periodic steady state solutions of the form given in

(2.27a) exist. Equation (2.32) sets limits on the relative

magnitude of TR and Tp via (2.31a) such that

mr < - < 0. (2.33)

p
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The lower limit of (2.33) corresponds to the case where the

waveform v is SM with an infinitesimal sinusoidal ripple

m one half wavelengths of which are fitted in a round trip

transit. As noted earlier, the upper limit is the case where

v is m secant hyperbolic pulses per transit time. Re-

quiring the ratio TR/Tp to remain finite during the buildup

of modelocking restricts the solution to the regime (2.32).

The time average power in a single transit time is de-

termined by substituting the general solution (2.27a) in

equation (2.5). The integral of Iv12 over one period is

expressible in terms of E, the complete elliptic integral

of the second kind of argument y, so that (2.5) gives

21v I2  Tp = 0  P E(y) = IV 1 2  E(y) (2.34)

T 0 K(y)

Using (2.34) in (2.8) we can determine the saturated gain g

for a particular solution. The requirement that the value of

g be consistent with the eigenvalue relations (2.29a) and

(2.30) places constraints on the system parameters for which

modelocking solutions exist.

The parameters specified by the system are the round

trip transit time in the cavity TR, the small signal gain

go, the saturation power of the laser PL' the laser line-

width L', the small signal loading of the absorber q, and



the saturation power of the absorber PA* In order to

describe the regimes of successful modelocking we now deter-

mine the pulsewidth and power in one period of the general

solution as a function of the system parameters. The five

determining equations are listed in Table I.

Making use of (2.34) equations (2.9), (2.29a) and (2.30)

can now be used to solve for P and T in terms of the

known system parameters.

P 1 2(1 + q) PAE 1

PL 2 q PL K 2 - y

1 2(1 + q) PA E 1 8g (2.35)

2 q PL K 2 - y2 q PL K 2 - y

1 q= K P (2.36)

L 2 p 2 2 (1 + q) E PA

As indicated in (2.35), two solutions exist for the time

average power P. We shall show in section 2.5 that the

higher power solution is always unstable and, hence, non-

physical.



Table I

PARAMETER DETERMINING EQUATIONS

1. Eigenvalue Relations

q9v
0 1

2  
1+ q

2 PA 2L T 2

1 +q-g= 1 +q (2-y 2 )
2 2

L p

2. Gain Saturation

g (n) = (n)

+ P(n)
1 +

P(n) = IV 2 E(y)
K (y)

3. Periodicity

T1 R - 2K(y)

m T
p



Equation (2.35) also prescribes definite boundaries on

y for the existence of solutions. The fact that the power

must be real sets the requirement that

E 1 q PL 2go 1+2 + +

K 2 - y 2(l + q) PA 1 + q + q 1 + q

(2.37)

If (2.37) is not satisfied, modelocking solutions of the form

given in (2.27a) do not exist.

The possible steady state solutions for a fixed set of

system parameters q, PA/PL and wLTR , and variable go'

are illustrated in Figures 4-9. As an example, we have chosen

the following values for the fixed parameters:

q = 5

P
- 20

PL

WLTR = 150.LR

The small signal absorber loading is five times greater than



the cavity loss. The absorber is twenty times harder to

saturate than the laser. Approximately fifty cavity modes

lie within the laser linewidth.

The time average power curves given by (2.44) and the

corresponding inverse pulsewidth curves given by (2.36) are

shown in Figures 4 and 5 respectively. The apices of the

curves are defined by the value of y for which the equal

sign of (2.37) applies. By substitution in (2.35) we find

the power at the apex of each curve to be

Pa go 9o go
- + - 1 - 1 . (2.38)

PL 1 + q + q 1 + q

As go increases we see that the curves of allowed modelocking

solutions become confined to smaller values of y and larger

values of inverse pulsewidth and average power. Ultimately

condition (2.37) cannot be satisfied for any value of y and

the solutions vanish altogether when at y = 0

P P 
S L 1 + 1 (2.39)

go 4 P q PL

so that the maximum allowable time average power is
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P 1 l +q P L

PA 2 q PA

Equation (2.39) tells us that the loading q and saturation

power PA of the absorber must be sufficient to accommodate

the average power required to saturate the gain to its steady

state value specified by the eigenvalue relation (2.30) of

the modelocking solution. The significance of the line con-

necting the apices in the Figures will be discussed in 2.5.

The steady state operating point for the system at a

given go is determined by searching for a value of the modu-

lus y for which the periodicity condition (2.31a) and the

pulsewidth condition (2.36) are simultaneously satisfied. The

periodicity curves are characterized by m, the multiplicity

of the solution in a transit time. Figure 6 shows the inter-

cepts on the m = 1 curve. As go is increased from 1 + q,

we see from Figure 5 that initially no modelocking solutions

are possible since they cannot fit in a transit time through

the cavity. In this regime SM operation is the only stable

solution. Modelocking initiates when the first intercept with

the m = 1 curve is found. As the gain is increased further

the operating point of the system moves along the m = 1 locus.

The actual solutions for increasing values of go are shown

in Figure 7. We see that the SM field evolves rapidly to

well separated pulses with increasing g .
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In fact, Figure 7 gives us a feeling for how the

transient buildup occurs--the SM field acquires a sinu-

soidal ripple at a power level defined as the modelocking

threshold, and builds up to a single pulse in a succession

of steady state solutions. The axis here, however, is small

signal excess gain and not n. The evolution of modelocking

for a given go as a function of n is treated in Sections

2.3 and 2.4.

By looking at the wider range of pulsewidths shown in

Figure 8,we see that as go continues to increase the inter-

cept of the m = 1 curve with the allowed pulsewidth curve

is lost. (Note that there is a regime in which two intercepts

may be possible. We shall show in Section 2.5 that only the

solution characterized by the lower value of Y is stable.)

At this point the system must make the transition to the

m = 2 locus,and the solution becomes two pulses per transit

time. The system hops from single pulse to double pulse

operation and so on up the ladder until go reaches the

value given by (2.39) and modelocking solutions cease to be

possible. The solutions at the various operating points in-

dicated in Figure 8 are illustrated in Figure 9.

We now turn our attention to the AS solution defined

in the range

1 < y < JZ (2.40)
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by (2.27b). The limits on the relative magnitude of TR

and T is given by (2.31b).

T
4mK 1 < o (2.41)

In the lower limit the solution is nearly sinusoidal with

m wavelengths fitted in a transit. The upper limit is the

case where v consists of 2m secant hyperbolic pulses of

alternating phase per transit. Requiring TR/T p to remain

finite restricts the solution to the range (2.40). Thus, a

given system cannot make the transition between the two so-

lutions (2.27a, b).

The time average power in the DM solution is given by

P = v 2 
Y2 E(1/y) + 1 - 2 . (2.42)

K(1/y) J

In the limit y + 1 the S and AS expressions for P

become identical. In the limit y + / the time average

power in the AS solution approaches one-half its peak

power as is characteristic of a sinusoidal waveform. Analo-

gous to the S case we use (2.42) in (2.29b) and (2.30) to

obtain constraints on the system parameters such that solu-



tions exist. The same relations (2.35), (2.36) and (2.37)

as obtained for the S solution can be applied to the AS

solution provided we make the substitution

E(y) [ E(l/y) + 1- (2.43)

K(y) L K(l/y)

The apparent singularity in (2.35) is treated by noting from

(2.30) that the relation 1 + q - g = 0 determines the time

average power in the limit y + v7.

The steady state solutions for the same fixed set of

system parameters q, PA/PL, and wLTR as illustrated in

the S case are shown for the AS case in Figure 10. The

threshold value of g0  is seen to be higher than in the S

case. Furthermore, the field prior to the modelocking thres-

hold is nearly sinusoidal, rather than constant, as in the S

case. In otherwords, the AS solution is initiated by the

beating of two adjacent cavity modes which are equidistant

from line center and, hence, have equal gain. Since this is

a special case, which can only be created by careful adjust-

ment of the cavity length,we shall reserve further discussion

of the AS solution until Section 2.8 and concentrate our

efforts on the S solution.
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Thus far we have treated only the steady state solutions

to (2.23). In order to determine how the system reaches the

steady state we must solve the full equation for v(t, n).

The solution is executed in two stages:

(1) The evolution of the system from the initial spontaneous

emission noise to the first modelocking S solution

corresponding to y = 0 and

(2) The subsequent evolution of the system to the final

steady state operating point.



2.3 The Modelocking Threshold

An understanding of the modelocking threshold is

essential for the determination of the conditions for which

the buildup of modelocking is statistical or deterministic.

Previous authors have assumed that the initial lasing field

is dominated by wideband spontaneous emission noise consisting

of many bandwidth limited spikes per transit time TR 33,34

Although it is true that the signal in the laser, as in any

oscillator, is initiated by noise, it is essential to note

that only the spectral components of the noise in the region

where gain exceeds loss are amplified, all others must decay.

Modelocking initiates after the power in the cavity has built

up to a point where the absorber saturation becomes signifi-

cant. By that time the initial noise has been amplified over

many transits through the gain medium, and the axial modes of

the cavity are "well formed".

The issue of statistical versus deterministic buildup

then boils down to the number of modes present in the cavity

at the modelocking threshold. We show here that the proper

design of a passively modelocked system for reliable opera-

tion should ensure that only a single mode (SM) field is

present in the cavity at the modelocking threshold.

The general case of the buildup of modelocking is sketched

in Figure 11. Lasing initiates when the small signal gain go
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first breaks above the small signal loss 1 + q. In other

words, the time at which the gain of the mode at line center

first exceeds the total loss--constant plus saturable--in the

cavity is defined as the origin n = 0. In the region near

the onset of lasing we assume that the saturation of the ab-

sorber is negligible. The initial buildup of the field is

described by

1 Dv(n, t) - (1 + q) + 1 + q 1 v(n, t). (2.44)

Ac T 2 n t2  J
CTR Ln

We can express the field in the nth transit by a superposi-

tion of the cavity modes, namely

v(n, t) = Z Vm exp [j m2Trt + i am(n) dn (2.45)
m [ TR

where m is an integer which labels the modes, Vm is the

amplitude and am is the gain coefficient characteristic of

the mth mode.

Substitution of (2.44) in (2.45) gives an expression for

the gain coefficient

27

1 a (n) = g(n) - (1 + q) 1 + q m 2T . (2.46)
Ac T L T

cR L R



Only modes close to line center (m = 0) experience growth.

The spectral width of the lasing field is determined by the

value of m for which a = 0. The mode nearest line cen-

ter (m = 0) experiences the most rapid growth due to the

band narrowing effect of the gain dispersion. The number of

modes present is further limited as power builds up in the

cavity by the saturation of the gain medium. Thus, operation

on the single mode (SM) nearest line center will dominate.

Let us first consider the case where the laser field is

assumed to be SM just prior to the onset of modelocking.

We wish to show that the buildup of modelocking for this case

is determinsitic. Subsequently we shall examine the condi-

tions for which the assumption of SM operation is valid in

actual modelocked laser systems.



2.3.1 The Ideal Threshold

As the gain rises the SM field described by v o (n)

grows to the point where the equations describing the sub-

sequent growth of the field must include the absorber satur-

ation. Hence, the equation governing growth becomes

dv
S= ao (n) v (n) (2.47)

dn

where a is given by

a (n) qlv (n) 1

o - g(n) - (+ q) + o (2.48)
AwcTR PA

Note that gain dispersion plays no role in determining a o,

the gain coefficient of the mode at line center. Since the

field is "time independent" within TR the saturated gain is

go(n)
g(n) = . (2.49)

Iv (n) 12
1 +

PL

The modelocking threshold is determined by the value of

vo(n) for which the first SM modelocking solution to (2.23)



is obtained. As shown by (2.33), the first solution is the

case where the SM waveform acquires a sinusoidal ripple,

with one half wavelength fitted in a round trip transit. Thus,

the modelocking threshold is defined by n = Z such that

R L T R q v () = (2.50)

T p(9) 2P (1 + q)
p A

and we have

o _ 20 1 + q (2.51)

PA q wL TR2

The SM field must build up to a value Ivo(Z)1 2 = Po()

before modelocking initiates. In contrast to the work of

previous authors who have noted the existence of a modelocking

threshold,2 9 ,3 6 we have obtained a precise definition of the

threshold which has a direct physical interpretation. The

modelocking threshold occurs at the point where the power in

the SM field is sufficient to saturate the absorber, such

that the two modes adjacent to line center can reach thres-

hold, causing a buckling of the SM field.

To prove that the transition from the SM to the first

modelocking solution is deterministic, we now show that a



sinusoidal perturbation on the SM experiences more rapid

growth than the SM. In other words, the system must mode-

lock rather than continue to run in a single mode.

Returning to equation (2.22), we assume a perturbed

solution of the form

v(n, t) =v(n) + 6v exp jm 2t + am (n) dn (2.52)
0 mo mmm 7 0 TR

where v (n) is the growing SM solution whose gain coef-

ficient a is given by (2.48). The perturbation has been

expanded in the cavity modes. Substituting (2.52) in (2.22),

we find that to first order am (n) is given by

m

1 am (n) = g(n) - (1 + q) + 3q- v (n) - l+q m 22

cR A L R

(2.53)

Since the perturbation is "orthogonal" to the single mode

field over a cavity transit time, the saturated gain does

not change to first order in the perturbation amplitude, and

is still specified by (2.49). From (2.48) we see that the

difference between the gain coefficient of the single mode
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field and that of the perturbation is

(a1 - a ) - 2q v 1 2  1 + q m - (2.54)
Aw T m 0 P TcR A L R

Maximum growth is experienced by the perturbation for which

m = i1. Setting a, = a then establishes the value of P

for which the perturbation growth first exceeds the SM growth.

Clearly the threshold value of P predicted by (2.54) is the

same as that given by (2.51). Thus, for P > P(Z) the sinu-

soidal perturbation grows faster than the SM. Consequently,

once the threshold P = P(k) is reached, the system must ease

into the SM modelocking solution.



2.3.1 Actual Transient Behavior Near Threshold

We have shown that the buildup of modelocking is

deterministic if the lasing field is confined to a single

mode at the modelocking threshold defined by equation (2.51).

Here we investigate the conditions for which SM operation

of the modelocking threshold is assured.

The salient features of the buildup process are illus-

trated in Figure 11. Two mechanisms combine to limit the

bandwidth of the cavity field as the small signal gain rises

above the small signal loss line--first, the parabolic fre-

quency dependence of gain near line center and second, the

saturation of the gain as power builds up in the field. Of

course, in the absence of a saturable absorber, the gain ul-

timately settles to the loss line and the laser runs single

mode. It is clear, therefore, that the dynamic behavior of

the modelocked system will ensure SM operation at the mode-

locking threshold in two cases: 1. the gain rises suffici-

ently slowly, or 2. the gain saturates sufficiently easily

that only a single axial mode sees net gain at the point

where the threshold power is reached. In general, the system

can rely on a combination of the two cases enumerated above.

Thus, constraints are placed on the rate of increase of the

small signal gain and the relative magnitudes of the satura-



tion powers of the gain and loss media. Note that although

the saturation power density is a fixed characteristic of

each medium, the relative saturation powers can be varied by

adjusting the relative beam diameters in the two media.

In order to describe the buildup regime accurately we

allow the gain to rise at a rate specified by the pumping of

the laser medium. We first consider the constraints on the

buildup rate alone, i.e. where gain saturation does not play

a significant role. The rise in the excess gain is assumed

to be linear in the regime of interest, namely

g - (1 + q)= 0 n (2.55)
,dn o

where the rate of increase at threshold (dgo/dn)o is de-

termined by the pumping mechanism. The buildup of power in

the mth mode is governed by

dP
m 2 a P . (2.56)
dn m mdn

Making use of (2.55) we obtain

P (n) = P (0) exp 2Ac TR  (n - nm 2

L dn o

- (1 + q) 2-m (n - n ) n > n . (2.57)

wL TR)



P (0) is the noise power in the mth mode at its threshold

given by

P (0) = P (0) 1 LTRJ (2.58)

and nm is the pass at which each mode reaches the lasing

threshold given by

n _ (1 + q) 2mn (2.59)
m (dgo/dn)o L R

The number of passes £ through the laser medium re-

quired for the power in the mode nearest line center to reach

the modelocking threshold is determined by inverting (2.57)

to obtain:

In ()I

2 = (2.60)

2 Aw TR dg)
c dn o

Substituting for the threshold power Po(£) from (2.51) we

can write



2A cT R (dgo/dn)o
n 2-2 (1 + q) PA

(WLTR) 2 q Po(0)j

The spectral width of the field at the modelocking

threshold defined by k can be determined by computing the

decrease in power with increasing distance from line center,

m. If we assume n < £, we can use (2.59) and (2.57) tom

obtain the expression

Pm(  ~ l- R 2m exp - 6Awc R(1 + q) KTR
P ( ) L T L LTR

(2.62)

whence we can define a modelocking threshold bandwidth

)1 2
2x mt

2 th
th I T

R

2

L

6AcTR (1 + q)cR

at which the power has decreased by a factor greater than

l/e. In the ideal case mth 1i, i.e. ,the laser bandwidth

at the modelocking threshold contains only one cavity mode.

The constraint on the initial rate of increase of the gain

for which mth = 1 is

(2.61)

(2.63)



1 dgT< 18 (1 + q) 2 J
AwcT R  dn jo T

In 2h (1 + q) A (2.64)

(W TR) q P(0)

As we would expect, the restriction on the rate of increase

of the gain is strongly dependent on the number of modes

within the laser linewidth, wLTR/7. The larger the number

of modes, the more slowly the gain must rise.

A plot of equation (2.64) is shown in Figure 12 for

typical values of q and PA/P(0). The maximum rate of gain

rise at threshold allowed for three different transient sys-

tems--TEA CO 2 , Nd:YAG and Nd:Glass--is presented in Table

II. By assuming a linear rise of the gain, we also obtain a

conservative estimate of the minimum allowable pump time

T min, the time it takes the small signal gain to reach

threshold (see Figure 11). The TEA CO 2 laser, having the

narrowest linewidth of the three media, can tolerate the

fastest gain risetime.

The pump times required of both the CO 2 and Nd:YAG

lasers shown in Table II are within the normal operating

bounds of these lasers. The time required for the small sig-

nal gain of the TEA CO 2 laser to reach maximum is typically

3 - 5 Ps. 4 4 The actual pumping time of the Nd:YAG laser is
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Table II

Nd:YAG Nd:Glass

10 -1 11 -1 13 -1
L 10 s 2 10 s 2 * 10 s

TR  20 ns 10 ns 10 ns

wLTR 200 2 103 2 105

AcTR .1 .1 .1

1 + q 10 10 10

dgo .1 10 - 5  10 - 1 3

dn Jo

min 4
T 2 s 100 s 10 s

P



on the order of hundreds of microseconds. 9

The pump time required for modelocking the Nd:Glass

laser, however, is clearly way out of line. The extremely

small rate of gain rise at threshold could be achieved by

having a fast initial rise which levels off near threshold--

in which case the allowed T could be much smaller than
P

the 104 s indicated in Table II. Even so, the rate

(dg /dn)o = 10 - 13 would be difficult to attain and more

difficult to reproduce from shot to shot. Thus, the wide

bandwidth of the Nd:Glass amplifier precludes consistent

modelocking. The statistical model3 4 of the buildup applies,

40
as is betrayed by fluctuations in the laser output. The

only way to obtain reliable modelocking, which utilizes the

largest possible fraction of the Nd:Glass linewidth, would

be to devise a means to vary the bandwidth during the buildup,

as shall be discussed in Chapter 3.

The finding that reproducible modelocking requires a

slow rate of increase of the gain at the lasing threshold, is

in agreement with the experimental observation that near

threshold operation is required. The near threshold constraint

can be relaxed if the gain medium saturates significantly

before the modelocking threshold is reached. In this case

we rely upon the settling of the saturated gain to the loss

line to filter out all but the mode nearest line center before
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modelocking initiates. The ideal case is one in which the

rate of rise of the gain and saturation power of the gain are

such that it has saturated to the loss line before the thres-

hold power P(k) is attained.



2.4 The Transient Evolution from Single Mode to Short Pulse

We have shown in the previous section that at a particu-

lar SM power level in the cavity the SM field must acquire

a sinusoidal modulation. Once the SM field has "buckled",

the absorber saturation ensures that the peak intensity of

the field will experience the most rapid growth from one

pass to the next. Thus, the waveform v(t, n) will continue

to grow and narrow until the excess gain in the system is de-

pleted, and the spectrum of the pulse runs up against the

bandwidth of the laser medium.

The initial buckling of the SM field was shown to

correspond to the "first" steady state modelocking solution

in the limit y + 0+ . We now treat the transient evolution

from the SM field to short pulse operation as a succession

of quasi-steady state solutions to equation (2.22).

In order to determine precisely how the waveform evolves

from the modelocking threshold to the steady state pulse, we

constrain the buildup to be adiabatic. Because it is central

to our treatment of the transient evolution and stability,

the word "adiabatic" requires precise definition. Our usage

is consistent with the discussion of adiabaticity presented

by Kulsrud4 5

"Consider the classic one-dimensional problem
of an oscillator whose spring constant is slowly varied
by some external means, such as a varying temperature,
which only affects the motion through its spring con-
stant. The counterpart of this problem was first con-



sidered by Einstein at the Solvay Congress of 1911
on the old quantum theory. Lorentz asked how the
amplitude of a simple pendulum would vary if its
period were slowly changed by shortening its string.
Would the number of quanta of its motion change?
Einstein immediately gave the answer that the action,
E/w, where E is its energy and w its frequency,
would remain constant and thus the number of quanta
would remain unchanged, if (l/w) (dw/dt) were small
enough."

The approach we take here is identical to Einstein's treatment

of the pendulum. In our case the time average power is the

slowly varying parameter which corresponds to the pendulum

frequency. Thus, our statement of adiabaticity becomes

(1/P) (dP/dn) << 1. We find a constant of motion of the system

(2.73) which enables us to specify a unique solution to the

modelocking equation for each value of time average power, in

the same manner that the fixed action of the pendulum allows

Einstein to specify the amplitude of the pendulum at each value

of frequency.

Furthermore, we can determine how the time average power

changes in our system by the use of energy conservation, just

as one would use the amount of energy added to the pendulum to

compute the change in w. Conservation of energy in the case

of modelocking requires setting the change in field energy in

one transit equal to the energy supplied by the system in one

transit, so that the total energy remains constant. The energy

balance equation

AWfield = - AWsystem (2.65)

can be obtained directly from (2.22) by multiplying both
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sides by v*(n, t) and integrating over one period or

transit time. Thus, (2.65) becomes

d f IvI 2 dt = 2A cTR{[g - (1 + q)] f 1v1 2 dt
dn

+ q v 4 dt 1 + q dv dt (2.66)
S- a(26 at)

PA L dt

where f denotes integration over one period -TR/2 < t <

TR/2 .

We assume that the power in the field experiences a

change over one transit time given by

P(n + 1) = [1 + 2a(n)] P(n) (2.67)

where a(n) is the growth rate of the field to be determined

from the energy balance equation. Thus, for two energy

states which are differentially close, the left hand side of

the energy balance equation becomes simply

AWfield d g Iv 2ldt = 2 TR a(n) P(n). (2.68)
dn



In order to evaluate the change in the system energy

we make use of the fact that the quasi-steady state solution

for each value of n is given by (2.27a), namely

Iv(n, t) 2 K[y(n)] P(n) dn , y(n) (2.69)
E[y(n)] TP (n) (2

where

1 q K[y(n)] P(n) (2.70)

wL2Tp 2 (n) 2(1 + q) E[y(n)1 PA

2K[y(n)] R (2.71)
T (n)

and

g(n) = g (n) (2.72)

+ P(n)
P

Note that we limit our attention to solutions of multiplicity

m = 1. The parameter y(n), which completely characterizes

the solution, is determined by solving (2.75)-(2.79) simul-

taneously to obtain



P(n) 1 = 8(1 + q) (2.73)

PA K[y(n)]E[y(n)] q LTR

The left hand side of (2.73) is, in fact, a constant of motion.

Substitution of (2.69) in the right hand side of (2.66) and

equating to (2.68) gives the desired expression for a(n)

1
a(n) = [g(n) - (1 - q)]

cTR

+ [2 - y2 (n)] qK[y(n)] P(n) (2.74)
2E[y(n)] PA

which is simply the effective time average net gain in the

nth transit including the laser medium dispersion and absorber

saturation.

The equations governing the transient buildup are now com-

plete. The waveform v(n, t) for each value of n is given

by (2.69) where the constant y(n), the pulsewidth in each period

T (n), and the saturated gain g(n) are determined by equations
P
(2.70)-(2.72). The evolution of the nth waveform to the

(n + 1)th waveform is dictated by equation (2.67), where con-

servation of energy constrains a(n) to be given by (2.74).

The initial condition of P(n) was shown in the previous

section to be
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P(Z) _ 2iT 1 + q (2.75)

PA q WL TR2

The final steady state defined by

v(t, n + 1) = v(t, n) (2.76)

requires that

a g - (1 + q) + qP E[y] [2 - y 2 ] = 0. (2.77)

Awc TR 2 PAK[y]

We recognize that (2.77) is the eigenvalue relation determined

earlier to describe the general steady state solution. Equa-

tions (2.76) and (2.70)-(2.72) now uniquely specify the final

steady state solution as was shown in section 2.2.

Typical plots of the buildup from the modelocking thres-

hold are shown in Figures 13 and 14 for different values of the

small signal gain g . In both cases the small signal gain

is assumed to rise instantaneously to a constant value above

the total loss line. In addition to the fixed parameters

assumed earlier in Figures 4-9 we have set the constant cavity

loss at 50% per pass (AWcTR = .5) for the sake of illus-

tration.

The slow time evolution of the small signal and saturated
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gain is shown in the upper section of both Figures. The

corresponding time average power and instantaneous power are

shown in the bottom section. The steady state values of

saturated gain, time average power, and peak power ultimately

reached, are indicated by the dotted markings on the right

hand side of the Figures. By comparing the waveforms in the

two figures we see that the pulses obtained are sensitive to

the excess gain.

Of course, in many modelocked systems (e.g. gain or Q

switched lasers) an absolute steady state is never reached.

This does not limit the effectiveness of the analysis, pro-

vided the net growth a(n) P(n) over the cavity transit time

TR remains small, such that the buildup and decay of the wave-

form v can be approximated by a succession of quasi-steady

states. In fact, the analysis enables us to trace the com-

plete evolution of transient modelocking from start to finish.

Before proceeding it is essential that we clarify the

significance of the adiabatic gain coefficient (2.74). Equa-

tion (2.74) is an expression for the time average net gain

in the nth transit and, as such, dictates the change in time

average power from one pass to the next. The physical mech-

anism which causes change is the gain of the amplifying medium,

which first rises due to pumping,and then saturates as the

time average power builds up. The net laser gain over the



small signal loss is given by the first two terms of (2.74).

The net gain due to the combined absorber saturation and

laser dispersion is contained in the last term of the equation.

Note that the dispersion, represented by the y2  term, can

never counterbalance the absorber saturation, so that the net

effect of the two is always destabilizing. Consequently,

stabilization only occurs when the laser gain has saturated

to a point below the small signal loss line, such that the

terms of (2.74) sum to zero. It is also clear that the pulses

obtained never utilize the full laser bandwidth, but only that

fraction which is consistent with the power in the cavity.

A schematic picture of the transient evolution of mode-

locking is shown in Figure 15. We view the transient mode-

locked system as a series of black boxes representing the time

average net gain, a(n), over a transit. The field enters

the nth box in state n characterized by P(n), and emerges

in state n + 1. The state of the system is determined by

the field before it enters the box. The only change experi-

enced by the field in traversing the box is that its energy

increases [we assume a(n) > 0 for the sake of argument].

Between boxes, however, the field must satisfy the system

equation. It distributes its new found energy AWfield in

such a way that it acquires a new (n + 1) t h amplitude, width

and shape,which is compatible with the new (n + 1)th system
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state it has defined by extracting AWsystem"

We have devised a specific means of connecting the

quasi-steady state solutions to (2.22). Now we must examine

the extent to which the adiabatic evolution of Figure 15 is

an accurate description of transient modelocking. Two as-

sumptions have been made:

1. Changes in both the field and the system over a single

transit, which are due to or result in a change in the

saturated gain,can be time averaged over the transit.

2. Of all possible waveform configurations, that which

corresponds to the quasi-steady state solution at each

value of n grows the fastest or decays the slowest.

We justify the first assumption as follows. From the start

of our analysis the gain has been assumed constant over each

transit and saturates only with the time average power in the

field in each transit. Changes in the field are dictated by

the existence of net gain. In determining net gain, since

we are comparing the dispersion and saturable absorption,

which operate on and vary with the instantaneous field, to

the laser gain, which varies with the time average power in

one transit, it is reasonable that we consider only the time

average effects of the dispersion and absorption. Consequently,
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net gain over one transit is only defined here as a time

average quantity. Of course, in considering changes in the

field which do not involve a change in the laser gain, i.e.,

a reshaping of the field which keeps the time average power

invariant, we must treat the operation of the dispersion on

and the response of the absorption to the instantaneous field.

Justification of the second assumption requires that we

test the stability of the quasi-steady state solutions against

all possible perturbations on each pass. The stability analy-

sis is carried out in the next section. We show that the ac-

ceptance of the first assumption stated above implies the

validity of the second.



83

2.5 Stability of the Steady State

We have yet to address ourselves to the crucial question

of the stability of the steady state solutions which were

derived in section 2.2 and which form the basis of the trans-

ient analysis in section 2.4. Indeed, two distinct steady

state solutions for each set of system parameters were found

to be possible in section 2.2. The stability of the solutions

against small perturbations is investigated here.

A rigorous stability test requires proof that no

perturbation of the steady state experiences unbounded growth.

We assume

v(t) = vs(t) + 6v(t, n) (2.78)

where v s(t) is the steady state solution and 6v(t, n) is

a perturbation. In order to facilitate the stability analysis

we divide the perturbation into two components

v = 6v N + v (2.79)

defined such that

2 vs 6vN dt = 6P (2.80)

2 / v 6vO dt = 0 (2.81)s



where 6P is the perturbation of the time average power.

The above representation divides the perturbation into a

perturbation 6vN which is not orthogonal to the steady

state and a perturbation 6v0 which is orthogonal to the

steady state. Note that the orthogonality relations hold

only on the nth pass. In tracing the evolution of the per-

turbation, we must divide the perturbation into orthogonal

(OP) and nonorthogonal (NP) perturbations on each pass.

The NP causes a change in the time average power in

the system. Fundamental to our analysis is the concept of

adiabatic evolution. We assume that the power change due to

the NP causes a shift from the steady state solution to an

adjacent quasi-steady state solution. The OP perturbation

alone can only change the distribution of power in the steady

state waveform within one transit time without affecting the

time average power. Before treating the case of a general

perturbation, let us first examine separately the stability

of the purely NP and OP.
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2.5.1 Non-Orthogonal Perturbations

In keeping with the schematic picture of the transient

evolution presented in section 2.4,we can develop the physical

picture of the effect of the NP shown in Figure 16. The

system in the steady state is characterized by a zero gain

coefficient. The overlapping perturbation appears on the

kth pass. However, the perturbation is not "felt" until it

makes a complete transit through the system. After the first

pass the power in the field has changed by an amount

6P = 2 f v s 6vN dt (2.82)

due to the NP. The sign of 6P may be positive or negative,

i.e., the perturbation can either add to or subtract from the steady

state power. Furthermore, in the adiabatic limit we are free

to specify the shape of the perturbation,provided (1) it is

completely overlapped by the steady state, (2) it introduces

no drastic shape changes to the steady state,and (3) its

symmetry matches that of the steady state. The precise shape

chosen is discussed in the section on the OP to follow.

The important point to note from Figure 16 is that the

presence of the NP disturbs the system over the first pass,

such that the gain coefficient is no longer zero on the

second pass, a(k + 1) = a p 0. From the adiabatic analysisP
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of section 2.4 we know that the evolution of the time

average power is dictated by

P(n + 1) = [1 + 2a(n)] P(n). (2.83)

In the steady state the gain coefficient is zero so that

P(n + 1) = P(n) = P . If, however, we perturb the steady

state power

P P + 6P(n)

the evolution of the perturbation is governed by

6P(n + 1) = [1 + 2a ] 6P(n)P

da=-P-

ap dP s

From (2.84) the stability criterion for the NP can be

stated succinctly

< 0

p = 0
> 0p

I> 0

stable

stability boundary

(2.85)

(2.86)

unstable.

where

(2.84)
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In effect, we are testing the stability of the quasi-steady

state solutions to (2.22) which are adjacent to the true

steady state.

In order to determine the location of the stability

boundary we now evaluate a . The gain coefficient of (2.74)

is a function of both P and y. Consequently, we can write

(2.85) as

a da P = a + a dy P (2.87)
p dP s P yl dP Jsy P

The first term of (2.87) is due to the response of the system

to the power change in the field, the second term is due to

the shape change of the field. The derivative dy/dP can be

evaluated by using the constant of motion (2.73) which results

from the simultaneous satisfaction of the periodicity con-

straint (2.71) and the pulsewidth constraint (2.70), namely

P 1 m (2.88)

PA K(y) E(y) A

where

q LT
A L R (2.89)

8(1 + q)



and we have included the multiplicity m.

From the steady state gain coefficient

_ g - (1 + q) + q P K (2 - y 2 ) (2.90)
AwcT R  2 PA E

and (2.88) we now determine

a g P P

P = s + K (2 - Y2) q S

Aw T P S'2 PL E 2 PA

L

d- (2- y] P

+ KE dy E q s (2.91)

d (KE) 2 PA

dy

The derivatives in the last term can be evaluated, but we

leave them as is for the time being to facilitate the in-

terpretation of the equation.

The first term of (2.91) is the stabilizing effect of

gain saturation. The remaining terms result from the disper-

sion and the absorber saturation. Since KE and (K/E) (2 -

y 2 ) are monotonically increasing functions of y, both of

the last two terms are destabilizing. The condition for the
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stability boundary, a = 0, reduces to an equation in y

if we make use of (2.88) to substitute for Ps in terms of

KE. Rather than attack the full equation from the start,

however, it is helpful to solve it in two steps.

To begin with, we have noted that the last two terms of

(2.91) are destabilizing. Consequently, if we neglect the

last term in satisfying the condition a = 0, we will obtain

a necessary condition for the NP stability. In other words,

we will determine at least part of the regime over which the

solutions are unstable. In fact, the neglect of the last

term gives us an extremely simple relationship for this first

stability boundary which is directly related to the apices of

the curves in section (2.35).

We know from (2.91) that

go _ 2_ q K+- (2 - y ) q L = 0, (2.92)
P s E 2 PA

whence the steady state power level Pl at which the first

stability boundary occurs is readily determined to be

P1 go AE 1
P1 _ 1. (2.93)

PL q PL K 2 - y2



Solutions at power levels Ps > P1 are unstable against the

NP while those for which Ps < P1 may or may not be stable

depending upon the magnitude of the term in (2.91) which we

have neglected.

It is of interest to determine where the first stability

boundary occurs on our plots of P/PL versus y. From equa-

tion (2.35) we see that the power at the apices of the curves

is given by

sa _ 1 2(l + q) A E 1
= - - 1. (2.94)

PL 2 q PL K 2 - y2  j

Substituting (2.94) in (2.93) we find that the power at the

first stability boundary is related to that at the apex of a

specific curve by

P1_ g o  Psa + -i. (2.95)

PL 1 + q PL

Note further that P1 can be related directly to the small

signal gain and loss by making use of (2.38) to substitute

for Psa. At low power levels for which go 0  1 + q and

2Psa/P L << 1, the first stability boundary coincides with



the apex P1 = P . The first stability boundary dictated

by (2.95) is shown in Figures 4 and 5. The boundary is

indistinguishable from the locus of apices. It is immediately

apparent that the solution on the upper branch of the power

curves are all unstable.

We are now prepared to consider the solution to the com-

plete NP stability problem by finding the value of y at

which (2.91) changes sign. Evaluating the derivatives in (2.91)

and using (2.88) to substitute for Ps, we obtain the condition

for the stability boundary

90

[ 8m 2 (l + q) PA KE

L WL 2 TR 2PL

F 2 E 1

+ (2 - y2) 1 K- = 0. (2.96)

K 1 - y

Before proceeding with the solution to (2.96) one question

comes to mind. Why have we used the power dictated by the

periodicity constraint (2.88) to specify our steady state

rather than the power determined by the eigenvalue relations



(2.35)? In reply we refer to Figure 17. The continuous

lines are the loci of solutions dictated by the periodicity

condition. The dotted lines are the loci of solutions dic-

tated by the eigenvalue relation. Their intercepts define

the steady state solution as discussed in section 2.2. In

perturbing the steady state we have assumed from the start

that the NP has the same symmetry properties as the steady

state. In other words, the perturbation can not cause a timing

shift of the steady state. Consequently, the perturbation

does not change the periodicity of the solution. As indicated

by the arrows in Figure 17,the perturbation can only shift

the steady state along the locus of constant periodicity. In

determining stability, therefore, we test the stability of

the steady states defined by each point on the loci of constant

periodicity.

An analytic solution for y from (2.96) is not possible.

However, the root yo of the equation is easily computed

numerically. Steady state solutions found at values of y

less than the root yo are stable, while those at values of

y greater than yo are unstable. The stability boundaries

are shown on the plots of inverse pulsewidth and time average

power in Figures 18-20 for the system parameters of section

2.2. The boundaries are prescribed by evaluating the inverse

pulsewidth and power at yo by equations (2.35) and (2.36).



,v.1

i-

02=7.0

p1
... I m," ,

1 10-5 i - E2

Figure 17: Perturbation of the Steady State Operating Point

I0



Unstable
.5

1 O- I 0
'

Figure 18: Stability Boundaries on Plot of Time Average Power



1.0

.8

I

Figure 19: Stability Boundaries on Plot of Inverse Pulsewidth

I 0- 10-1o t0-Is 10"20



i-t2

Figure 20: Detailed View of Stabili ty Boundaries

i
(L)L'T

I 10-5



Since each value of the multiplicity m has a different

locus of constant periodicity each value of m defines its

own stability boundary. For a given mulitplicity m, solu-

tions found to the left of the boundary line labelled by m

shown in Figures 18-20 are stable, while those found to the

right are unstable. Note in Figure 20 that, in the case where

two possible steady state operating points are found for

m = 1, g0 = 6.5, the stability boundary passes between the

two points! Thus, only the steady state corresponding to the

smaller value of y is stable. It appears, therefore, that

for a given set of parameters a cw system must always set-

tle on a unique steady state.

One qualifying remark must be made regarding our treat-

ment of the stability of the multiple pulse solutions. We

have treated the pulses within each transit as being inde-

pendent of one another, whereas our requirement that the gain

respond only to the time average power within a compete trans-

it implies that they are coupled. If we adhere to our model

of the gain response, then the multiple pulse solutions are

clearly unstable to perturbations which add to one pulse and

subtract from another within one transit, such that the gain

remains invariant. If, on the other hand, we were to allow

the gain to respond on a time scale comparable to or faster

than TR/m, such that stable m pulse solutions could be



found as prescribed above, then pulses of multiplicity m - 1

would become unstable since the relaxation of the gain medium

would allow net gain between pulses.

Thus, the precise description of a system in which both

stable single pulse and stable multiple-pulse solutions are

possible would require that we enlarge upon our simple two

level, single relaxation time model of the laser medium to

include at least two relaxation times. In fact, dye lasers,

on which both stable single and stable multiple pulse opera-

tion has been observed,73 are characterized by many relaxa-

tion times which can be both faster and slower than the cavity

transit time.

Our treatment of stability against the NP perturbation

is now complete. To ensure stability we require ap < 0,

and we have mapped out regimes in parameter space where the

inequality holds. Taken by itself, however, the requirement

that the system be stable against the NP perturbation is a

necessary but not a sufficient condition for stability. We

have treated only a specific type of perturbation. In order

to generalize the analysis to include all possible perturba-

tions, we now turn our attention to the OP.
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2.5.2 Orthogonal Perturbations

We assume at this point that the steady state operating

point is in a regime where it is stable against the NP, i.e.,

a < 0, and ask ourselves whether it is possible for the OP

to cause instability. Since the OP is defined by

6P = 2 f v 6v0 dt = 0s

there is no change in the gain due to the perturbation. In

the absence of gain saturation the modelocked system in the

steady state does not "feel" the perturbation, its time average

net gain remains zero. On the other hand, the OP feels the

system. The shaping and growth or decay of the OP is dic-

tated by the steady state it perturbs.

The evolution of the OP 6v O  of the modelocking steady

state is governed by the perturbed equation

1 6v (2 + T 2 + 6 dn2  6v0 (2.97)
B Dn L P at 2  p

where

4m 2 (l + q) AWcTR K2 (y)

BL2 -R
LTR
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The right hand side of the equation has the form of a

Schrddinger equation whose wavefunctions { i(t), q(t, X)}

comprise a complete orthonormal set, where i = 1, 2, ...

is a discrete index and X is continuous.

The perturbation 6vv can be expanded in terms of the

wavefunctions

6vO(n, t) = Z ai(n) pi(t) + f dX a(n, X) p(t, X). (2.98)

Thus, the growth or decay of each component of the OP on

one pass is dictated by the sign of the eigenvalues {Xr, X}

associated with each wavefunction X. In treating the evolu-

tion of the perturbation over several passes, however, we

must be careful. Since the wavefunctions i are not neces-

sarily orthogonal to the steady state waveform v s and the

coefficients a. experience different growth or decay rates

depending upon the eigenvalues, the perturbation which is

orthogonal on the nth pass is no longer orthogonal on pass

n + 1. In other words, the perturbation which is initially

orthogonal provides coupling to the NP over successive

passes through the system. On each pass the total perturba-

tion can be split into an OP plus an NP

6voO(n, t) + 6vO(n + i, t) + 6vC(n + 1i, t) (2.99)
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where the superscript c denotes the fact that the NP is

due to coupling.

By resorting to the schematic picture developed in sec-

tion 2.4 we can depict the evolution of the OP over several

passes as shown in Figure 21. Introduced at transit k, the

OP has no initial effect on the time average power. By

k + 1, however, some of its energy has been coupled into an

NP. The effect of the NP is only felt after another transit.

On each pass the OP is that which remains after the NP has

been subtracted out.

The change in the time average power due to the coupling

from the OP is

6P= f 
6 vc v dt = Z a.(n + 1) j dt pi(t) v (t, n)

+ f dX a(n + 1, X) I dt (t, X) vs(t, n) (2.100)

where the new coefficients at (n + 1) are determined by

BX
a (n + 1) = ai(n) e (2.101)

1

BXa(n + ) = a(n,
a(n + 1, X) = a(n, X) e

Depending upon the relative signs and magnitudes of the various
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terms, the change in the time average power due to coupling

can be positive, negative or zero. Whether or not the system

is stable in the regime a < 0 as defined in the previous

section depends on the stability of the OP remaining after

the coupling to the NP has been subtracted.

Thus far we have outlined a general approach to the

stability of the OP. Let us now focus our attention on the

specific problem at hand.

The bound state eigenfunctions and eigenvalues of the

operator on the right hand side of (2.97) are

= 3y cnx dnx, X = 3 (2.102)

2[(1 + y 2 )E - (1 - y 2 )K] o

Sy 2  3y 3  snx dnx, X1 = 3(1 - y2 ) (2.103)

2 2[(2y - 1)E + (1 - y2 )KI

= 3y4  snx cnx, 2 = 0 (2.104)
2 2[(2 - y 2 )E - 2(1 - y2 )K]

where x = t/T . The eigenvalues of the continuum states

are all negative, i.e. X < 0. The overlap of the bound state

wavefunctions of the perturbed equation with the steady state
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can be computed to be

No ) . -1
SO V dx = Vo K(y) sin y + 1 - 1  (2.105)

fdx = s v dx = 0 (2.106)

where N (y) is the normalization of o given in (2.102).

Thus, only one of the discrete wavefunctions overlaps with

the steady state.

Two points regarding the stability of the OP are im-

24
mediately apparent. First, as found by Haus, the solution

is astable ( 2 = 0) with respect to the timing perturbation

2' so-called because it is the derivative of the steady 
state.

Second, the solution is unstable with respect to perturbations

of the form e1. As given by (2.103) the growth of the per-

turbation pl over each pass is

XiB
al(n + 1) = a l (n) e 1 (2.107)

where

12m2 (1 + q) Ac T
X B = cR 2 (y) (1 - y 2 ) (2.108)
1 L 2 R2
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Since 1 - y2 approaches zero faster than K2 (Y) approaches

infinity it is clear that A B is zero in the limit y + 1

where 1 becomes indistinguishable from p2 . To give a

feeling for how rapidly X1B approaches zero we know that at

--2 --2
(1 - y 2 ) = 10 - 2 the product (1 - y 2 )K 2 (y) = 3.7 x 10 - 2 . For

a sizeable linewidth transit time product, wLTR, therefore,

the instability of the l1 component is very weak even for

poorly defined pulses.

The behavior of the go(t) and continuum components

p(t, A) of the OP is not as readily determined. Indeed,

the go component appears to be unstable for all values of

y. Our only hope for proving stability is that the coupling

to the NP is sufficient to offset the growth of the o

component on each pass. We recall at this point that we have

not yet completely specified the form of the NP. Since the

stability of the NP is solely dependent upon stability a-

gainst changes in the time average power,we are free to choose

the shape of the NP due to coupling, 6vc, provided the

relationship

6P = / 6vc v dt (2.109)c s

is satisfied. The obvious choice to make to simplify the

analysis is
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6v = b (n) o (t) (2.110)

where

6P (n)
b (n) =

o f v dt

so that coupling occurs only from the lowest wavefunction,

o, of the perturbed well. Note that in setting the NP to

be of the form of # (t) = N cnx dnx we satisfy the three
o o

constraints required of the NP in the analysis of the pre-

vious section: That it (1) be completely overlapped by the

steady state, (2) introduce no drastic shape changes to the

steady state and (3) have the same symmetry as the steady

state.

After one transit the OP can then be written as

[BAX b (n)
6v (t, n + 1) = a (n) e O (t)

ao (n)

BA
+ al(n) e 1l(t) + a2(n) c 2 (t)

+ dX eBX a(n, X) p(t, X). (2.112)
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The stability of the 1 and 2 components has already

been discussed. Since the continuum states are all decaying

(X < 0), the stability of the remaining terms reduces to

the criterion that the o component be stable:

BX b
0 < e -- < 1. (2.113)

a
o

The proof that (2.113) holds is straightforward. From

our requirement that the total OP be orthogonal to the steady

state we find that the coefficients of the lowest bound state

and the continuum states are related by the conditions

Pass n: a o (n) f dt 0 (t) v s(t, n) + f dX a(n, X)

f dt (t, X) v s ( t, n) = 0 (2.114)

Pass n + 1: a (n) LeBo
L

b (n) 1  dt (t) v (t, n)
a 0 (n) I

+ / dX e a(n, X) dt p(t, X) v s (t, n) = 0

In other words, the lowest bound state 0 (t) and the con-
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tinuum states (t, X) must counterbalance each other to

ensure zero overlap with the steady state vs at each pass

through the system. The contribution of the continuum states

to the overlap ultimately must decay from one pass to the

next due to the fact that their eigenvalues are negative.

Consequently, the o contribution to the overlap ultimately

must decay in order to maintain the orthogonality of the per-

turbation (2.112). We use the word "ultimately" because the

evolution of the continuum states, being governed by a con-

tinuous sum or integral of decaying expontentials, can ex-

perience initial growth, but must decay in the long run. On

the pass at which the sum of the continuum states begins to

decay the OP stability condition (2.113) is satisfied.
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2.5.3 The General Perturbation

In review of the stability analyses of the NP and

OP, we see that we have expanded the general perturbation

in the wavefunctions of the perturbed equation excluding

gain saturation (2.97)

6v(t, n) = a (n) o(t) + a O(n) ~ (t) + al(n) fl(t)

+ a2 (n) 2(t) + / dX a(n, X) p(t, X)

vN (t, n) 6vO (t, n). (2.115)

By doing so we assume a specific form of the NP. The evolu-

tion of the NP obeys the perturbed equation which includes

gain saturation and to which qo is clearly not a wavefunc-

tion. Strictly speaking, therefore, the gain saturation term

must introduce coupling from the NP to the OP. However,

our assumption that changes which involve gain variation can

be treated by averaging over a transit time enables us to

argue that the purely NP merely causes a shift from the

steady state to an adjacent quasi-steady state,whose stability

is in question. Since we consider only the response of the

system to the change in time average power, 6P, caused by
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the NP, the precise shape of the NP is not important and

the coupling from the NP to the OP can be neglected.

Thus, the only coupling treated is from the OP to the

NP as discussed in section 2.5.2. We conclude that all

components of the OP except $1 and $2 are always sta-

bilized by coupling to the NP. The 1 and $.2 components

are degenerate and astable in the limit of well separated

pulses. The condition for NP stability, a < 0, is not

only necessary but is sufficient to prove stability against

all perturbations.
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2.5.4 Comparison of Our Results to Those of Haus

The results of our analysis of the steady state mode-

locking solutions and their stability differ from those of

Haus. 24 The difference stems from our explicit inclusion

of the periodicity constraint of the system and our use of

the adiabatic gain coefficient in determining stability.

Although the steady state solution curves we obtain

appear similar to Haus's curves, we should note that the

abscissa in our case is 1 - y2 , while that used by Haus

is the parameter qK/(l + q) (not to be confused with the

complete elliptic integral of the first kind), where he defines

1 L
K = LTR

4 P

Buried in K is the fact that Haus has assumed a secant hy-

perbolic pulse shape and accounts for the periodicity in

determining the power in the pulse. By explicitly including

the effect of the periodicity in determining the pulse shape

as well as the pulse power, we have obtained a more accurate

description of the steady state. Furthermore, our approach

enables the separate consideration of the parameters PA/PL

and LTR in determining the steady state operating point.

As noted in the previous section, the assumption of
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adiabatic evolution, which underlies our stability analysis,

obviates the infinite coupled mode analysis posed by Haus

by allowing us to ignore coupling from the NP to the OP.

The stability analysis then reduces to determining whether

the adiabatic gain coefficient becomes positive or negative,

or remains zero when perturbed from its steady state value

of zero. We automatically account for the shape change of

the perturbed solution by using the constant of motion (2.88).
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2.5.5 Stability of the Quasi-Steady State

The stability problem takes on a slightly different

complexion when we discuss the quasi-steady states of a

transient system. The quasi-steady state is inherently

unstable against the NP, so it is necessary for us to be

more precise in defining what we mean by a "stability"

analysis. What we wish to determine is the validity of the

analysis. In other words, does the evolution of the field

proceed as a succession of quasi-steady state pulses, or

can instabilities which cause a break-up of the pulse solu-

tions grow faster than the solution itself?

Since we accept the instability against the NP, the

stabilizing influence of gain saturation is not essential to

our argument. The quasi-steady state is evolving according

to the dictates of the time average net gain a. We have

already treated the question of stability by expanding the

perturbation in the eigenfunctions of (2.97). The fastest

growing component, and, in fact, the only growing component

in the limit y - 1, is o(t). But o(t) corresponds

to a sharpening or broadening of the solution which occurs

in making the transition from one quasi-staady state to the

next. No break-up of the pulse solution is possible. Thus,

the adiabatic assumption is justified.

The fact that gain saturation need not play an important
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role in transient systems is the fundamental reason why

transient passively modelocked systems are easier to find

than cw passively modelocked systems. In the cw system

a comparitively "soft" gain medium is necessary to ensure the

stability of the steady state over many transits. In fact,

the condition PA/PL >> 1 must be satisfied to find steady

state solutions. Since the gain only lasts for a finite time

in the transient system, long term stability is not an issue.

The saturation power of the laser medium need not be small.

Stability becomes a question of relative growth--what wave-

form grows the fastest and how much does it grow while the

gain lasts? We have shown that the fastest growing waveform

during the buildup is that of the quasi-steady state of a

perturbation which sharpens it. Growth can occur until the

assumption that we operate in a regime where the absorber is

weakly saturated breaks down. The topic of strong absorber

saturation is taken up in section 2.7.
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2.6 Generalization of the Modelocking Media

The constraints applied to the amplifying and absorbing

media in section 2.1 are restrictive. In particular, we

limited our analysis to a two level gain medium whose relaxa-

tion time was slow compared to the cavity transit time and a

two level absorbing medium whose relaxation time was fast

compared to the field variation within one transit. In

general, the amplifying and absorber media are multiple level

systems which may have many characteristic relaxation times

and saturation powers. Here we show how the analysis can be

extended to describe these more complex systems.

The most obvious extension of the theory is to cases

where the various relaxation times of the two media can be

lumped into two categories--those which are slow compared to

TR and those which are fast compared to the time variation

of v(t). In this case each medium can be characterized by

a fast and a slow saturation power. The response of the gain

medium becomes

d v(t n) 1 n)
St, -- , n v(t, n) = g(n) 1 - ' + v(t, n)

dt P LF L2 at 2

(2.116)

where
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g(n) = 0 (n)

1 +

PLS

while that of the absorber becomes

q(t, n) v(t, n) = q(n) 1 - Iv(t, n) 1 v(t, n) (2.117)
PAF

where

q(n) =

+ P(n)

PAS

and the subscripts F and S refer to fast and slow.

The case where the laser medium has a fast relaxation

24
time has been discussed by Haus. The decrease in the

gain in response to the instantaneous field works against

pulse formation we must require that

q(n) > g(n) (2.118)

PAF PLF

for modelocking to be possible. In other words, the fast

response of the absorber must overpower the fast response of

the laser medium.
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The slow response of the absorber has interesting

consequences in transient systems. If the absorber loading

decreases with increasing time average power in the laser

the pulses do not necessarily narrow as shown in Figures 14

and 15 and may, in fact, broaden. Thus, the bleaching of the

absorber on a slow time scale provides a simple explanation

for the observation in Nd:glass systems that the shortest

pulses are at the beginning of the modelocked train.46

In order to ensure pulse shortening during the buildup

the criterion

PAS > PLS (2.119)

must be met, so that the absorber loading does not decrease

appreciably in comparison to the saturated gain.

The treatment of media which have relaxation times which

are less than the cavity transit time, but comparable to or

greater than the time variation of v(t) has been carried

out elsewhere and will not be considered here. The case in

which both the gain medium and absorber fall in this category

has been treated in detail by Haus.25 The case where only

the absorber relaxation time is varied is analyzed by

Hagelstein and Ausschnitt.42 Thus, the theory has been

shown to be applicable to the whole range of absorbing and
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amplifying media which can be described phenomenologically

by relaxation times and saturation powers.
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2.7 Strong Saturation of the Absorber

The modelocking equation derived by Haus and used in

the previous sections to describe the transient evolution

of passive modelocking is limited to the case of weak absor-

ber saturation where the expansion (2.21) is valid. We now

address ourselves to the general case where the absorber can

be strongly saturated and the full expression for the absorber

response must be used in (2.17). The regime in which short

pulse solutions to the new equation exist is limited. It is

clear that in the case where the power is sufficient to bleach

the absorber fully pulse solutions to the modelocking equation

are not possible, and the laser will run single mode.

The steady state modelocking equation for the case of

strong absorber saturation becomes

+ - 1 + q v(t) = 0 (2.120)

S 1+ IV(t)12 L 2 t2

PA

which is the equation of motion of a particle in the poten-

tial well

U(v) = - q PA n 1 + I12 + (g - 1) v12 - C.
A
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Expanding the logarithmic term we obtain

U(v) - qIv 2 + .1 - q + ... + (g - 1) vl2 - C.
2PA 3PA2

(2.121)

We recognize that to second order in the expansion we obtain

the potential for the case of weak saturation (2.26). Since

the logarithm is monotonically decreasing we see that the

"well" is formed by the fact that the positive excess gain

term (g - 1)Iv12 offsets the initial decrease of the nega-

tive first order loss term q v2 . Ultimately, however, as

v 12/PA increases, the third order term of the logarithm,

q lv 6/3PA , dominates and the potential decreases. The point

at which the third order term becomes dominant determines the

existence of solitary pulse solutions. Since modelocking

solutions are confined to the region of the "well" we need

only carry out the expansion of the absorber loss to third

order as shown in (2.121). Higher order absorber loss terms

contribute to the potential only in the region of large

JvI 2 /PA outside the well and hence, are not of interest.

Thus, we are able to confine our attention to the

equation

127-
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F qlv q2 _1+q1 + q - g - + v 4  1 v = 0 (2.122)

A PA L Tp

in our discussion of strong absorber saturation. As in the

case of weak absorber saturation the solitary pulse solution

to (2.122) corresponds to the case of C = 0 in (2.121).

The solitary pulse solution is given by

V

v(t) = 0 (2.123)

1 - 2) cosh 2( + 2

p

By direct substitution of (2.123) in (2.122) the pulse para-

meters v , T and B are determined by the eigenvalue

relations

1 + q - g 1 + q (2.124)
2 2

L p

q v 2 
_ 2(1 + q) (02 + 1) (2.125)

2 2
PA L T P

q lvo) 3(1 + q)B 2  
(2.126)

2 L 2 2

A L p
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Solving for the peak amplitude and the parameter B we

obtain

vo 1 1
IV 12= P .A 1 1 g 1 (2.127)

4 3 q

B = 3 q i- 1 - 16 (1 + q - g)

16 (1 + q - g) L 3

(2.128)

To discuss the solution we identify three conditions of

interest defined by

1. 1 <<

2. 1 < 3q (2.129)
16(l + q - g)

3. 1

For condition 1. the time average power is such that

B - 0 and the solution is seen to reduce to the secant

hyperbolic pulse found in the case of weak absorber satura-

tion. In the power regime where condition 2. holds

assumes a finite value and (2.122) shows that the pulse
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broadens at the peak while its tails remain unaffected. As

condition 3. in approached 3 -+ 1 and the solitary pulse

solution ceases to exist. However, condition 3. does not

preclude the existence of periodic solutions or, for that

matter, the single mode solution. The condition for which

even periodic pulse solutions are not possible is obtained

from the general solution to the strong saturation case dis-

cussed below.

In general, the constant C is nonzero and the solution

to (2.122) is periodic with two possible time dependences

(see Appendix A):

1 y 2 sn 2 (t/T , y)
S: v(t) = v 0 < $ < y < 1

1 - 2 sn2 (t/T , y)

(2.130a)

cn (t/T , 1/y)
AS: v(t) = v 1 < y

1- (B/y) 2 sn ( t/T , l/y)

0 < B < y.

(2.130b)

As in the weak saturation case we shall concentrate our

attention on the regime 0 < y < 1. The constants y and B



126

are related to C by the roots of the potential function

U(v). Since the potential is cubic in v 2 there are three

roots v 2 < v 2 < v+2 which we define as shown in Figure 22.
- - o - +

In the region of interest the roots are pure real. The solu-

tion oscillates in the well between v_2 and v In terms

of the roots, y and B are given by

Y2 = - + (2.131)
2 V 2 2

2B2 o y2. (2.132)v+

Substitution of (2.130a) in (2.122) gives the eigenvalue

relations

l+q-g (1 + q) G (2.133)
2 2 YB3

L p

qv 0 12  (1 + q) G (2.134)
2 2 BY

2P A  W L T P

qV0o_ 1  3(1 + q) 2 (1 - 82) (2.135)

PA 2 2 T 2 (y 2
- f2 )
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Figure 22: Potential Well of Strong Saturation Equation
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where G and G y are defined in Appendix A. In the

limit 3 + 0 the equations reduce to those of the weak

saturation case. In the limit y + 1 the equations reduce

to those of the strong saturation solitary pulse solution.

The requirement that the periodicity of the solution

equal the transit time TR sets the same constraint as in

the weak saturation limit, namely

2m K(y) - (2.136)
T
p

Furthermore, the time average power in a single transit is

determined by substituting (2.130a) in (2.5). The power is

expressible in terms of Jacobi's Zeta-function. 4 3

= v - 1 - Z(P, Y) (2.137)

-i

where r = sin-1 (/y).

Although the algebra is more complex, the steady state

operating point of the system for a given set of system para-

meters can be found in the same manner as for the weak satura-

tion case. We have one additional unknown, , to determine

and one additional eigenvalue equation (2.135). The actual

computation of the operating point will not be carried out
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here since the results differ from the weak saturation case

only in that the pulses obtained flatten at the top when their

peak power becomes a significant fraction of the absorber

saturation power (IV 12 < PA ) .

One further consequence of the strong saturation analysis

is that the power range for which modelocking solutions can be

obtained is restricted. The criterion for perturbation growth

on the SM field (2.62) becomes

(am ) 2q v + q m 2 > 0. (2.138)
-- Vo 2 0 2Ac TR PA PA L

The value of the threshold power Pm (Z) is then given by

Pm( 1 2(1 + q) (27m) 21 1- . (2.139)
PA 2 q WL 2TR2

The smaller value of P1 is the threshold at which the SM

field goes unstable. The higher value of P1  is the point

at which the SM field becomes stable again due to the ul-

timate dominance of the v 1 6/PA 2  term in the potential. We

conclude, therefore, that for the purposes of modelocking the
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absorber is fully bleached when P = P1 - PA and the system

reverts to stable SM operation. The condition (2.47) de-

termined earlier for the existence of modelocking solutions

is usually more restrictive except in cases of small absorber

loading. For typical modelocking parameters, namely q >> 1

and PA >> PL, (2.47) requires P < PA/2.

Note further that each set of values of P determinesm

the range for the existence of the solution of multiplicity

m per transit time. Thus, the maximum number of pulses per

period allowed for a given modelocked system is determined by

mq (smaller integer) (2.140)
l+q 2ir

for which P = P /2. A power regime PA/2 < P < P exists
A A 'I A

for which both single mode operation and modelocked operation

are unstable. We expect the laser output in this regime to

be characterized by irregular spiking.

The main conclusion to be drawn from the strong saturation

analysis is that it plays little or no role in steady state

modelocked systems. The constraints placed on the operating

conditions by the inclusion of the strong saturation effect

are usually less restrictive than the stability and existence

criteria already established for modelocking solutions. In

other words, stable steady state modelocking solutions are
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mostly found in regimes where the weak saturation approximation

(2.21) is valid.

As noted in section 2.5.4, however, the existence and

stability criteria for steady state solutions do not apply

to the quasi-steady state. The quasi-steady state solutions

of a transient system are, by definition, unstable. Thus, the

effects of strong saturation, which are not readily observable

in cw systems, should be seen in transient systems.
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2.8 The Antisymmetric Pulse

In section 2.2 we obtained two steady state solutions

to the modelocking equation. However, in our subsequent

treatment of the transient evolution we ignored the anti-

symmetric (AS) pulse solution (2.27b). We return here to

consider its significance in greater detail.

The existence of the AS solution is a consequence of

the discrete mode spectrum of the cavity field or, in other

words, the periodicity of the laser cavity. In the limit

of a continuous spectrum both periodic solutions (2.27a) and

(2.27b) approach the solitary secant hyperbolic pulse. The

fixed periodicity of the cavity, however, lifts the degeneracy

of the two solutions. Since the AS pulse train consists

of pulses of alternating phase, an even number of pulses must

be fitted into the transit time, whereas all multiples of the

S pulse solution are allowed.

The contrast between the S and AS solutions becomes

particularly evident in the analysis of the transient buildup.

As noted in section 2.2 it is clear that the AS solution

cannot buildup from a single mode field in the cavity. Thus,

its threshold condition must differ from that of the S so-

lution. This is reasonable since the discrete nature of the

field spectrum is most strongly felt near threshold.
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The discrete mode spectrum allows, in fact, two possible

initial conditions for the buildup. In the case where one

cavity mode is closer to line center than all the others the

cavity field must evolve to SM operation prior to modelocking.

However, in the special case where two cavity modes are equi-

distant from the laser line center the field must evolve to

double mode (DM) operation. The field prior to modelocking

becomes

v(t, n) = v (n) cos 2T t (2.141)

the sinusoidal beating of the two cavity modes nearest line

center.

The AS modelocking threshold is determined by the value

of v (n) for which the cavity field makes the transition from

the sinusoidal beat to the first AS modelocking solution of

(2.23), at which point the waveform in the cavity becomes

v(t, n) = vo(k) cn (t/ T , 1//7) . (2.142)

As in the S case we can solve for vo(k) by making use of

the eigenvalue relations and periodicity condition (2.29b) -

(2.40b), i.e.
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R - WLTR q v() = 4K(1/Z). (2.143)
T p() PA(1 + q)

The time average power in the DM field must be

PDM _ 8K 2 (l//)(1 + q) (2.144)

PA LTR q

before modelocking initiates.

The subsequent evolution of the AS solution from the

modelocking threshold to well separated pulses can be treated

in a manner directly analogous to the S solution. The adia-

batic gain coefficient becomes

- g - (i + q) + q (2 - y2) aAS K(i/y) P
AwTR 2 2  E(l/y) + K(1/y) (1 - 2)j PA

(2.145)

and the associated quasi-steady state solutions are determined

by (2.27b), (2.29b)-(2.40b).

Because the system's choice of the S or AS solution
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is dependent upon the initial conditions and the solutions

only become degenerate in the limit TR/Tp + , the solu-

tions are mutually exclusive in a given physical system.

In other words, a modelocking system designed such that the

initial cavity field is SM will always generate pulses of

the form (2.27a), while the system designed such that the

initial field is DM will generate pulses of the form (2.27b).

Note further that the design of the former is much less criti-

cally dependent on the mode positioning under the gain profile

than the latter. Indeed, stable AS pulse modelocking should

be difficult to achieve. By the same token stable S pulse

modelocking requires adjustment of the cavity length such

that one mode is near line center.
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III. Experiment

As verification of the theory presented in Chapter II

we report here the first matching of the pulses generated

by a transient modelocked laser to those predicted by the

closed form transient theory. The system employing a TEA

CO2 laser modelocked by an SF6 saturable absorber was

chosen for the experiment because it generates nanosecond

pulses which are readily observable on a fast oscilloscope.

For the sake of comparison, forced modelocking experiments

were also performed using a Ge acousto-optic intracavity

modulator.

The setup for the modelocking experiments is described

in section 3.1. Characterization of the system parameters

is carried out in section 3.2. Section 3.3 presents the

results of the matching of the experimental passively mode-

locked pulses. In section 3.4 the forced modelocking exper-

iments and their comparison to passive modelocking are

discussed.
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3.1 Experimental Setup

The modelocked system is depicted in Figure 23. The

major components--cavity, amplifier, absorber/modulator and

detector--are described below.

The cavity consists of a 4.5 m radius 80% reflecting

Ge mirror and a 80k/mm flat grating blazed for 10.6 p to

limit the laser operation to a single CO2 transition. The

total cavity length is 3.52 m. The cavity is "folded" by

means of two totally reflecting Ge mirrors located near its

center. Apertures placed at both ends of the cavity are ad-

justed to ensure operation on the fundamental transverse mode.

The CO2 amplifier is a pin-resistor discharge tube.

The overall length consists of two tubes sealed together by

copper sheeting external to the tube. Sharpened needles in-

serted every 0.5 cm in line along the length of each tube

make up the cathode. The anode is composed of the metal leads

of 1 kQ carbon film resistors inserted at positions diame-

trically opposed to the needles. Separation between the

cathode and anode is 2.5 cm.

The amplifying medium is a 2:1:6 mix of CO2 :N2:He

gas. The gases are mixed in a tank before flowing them through

the discharge tube. The flow rate of each gas is measured

using a Matheson flow meter. The pressure is measured at the

exhaust port with a Matheson absolute pressure gauge. In the
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experiments conducted the pressure was varied between 200

and 600 torr.

The SF6 cell consists of two circular NaCl windows

50 mm in diameter encased in a cylindrical aluminum holder.

A 1 mm metal spacer around the circumference of the cell

separates the windows. Ports through the Aluminum case and

spacer provide access to the gas line and pump. The windows

are sealed to the case by epoxy.

The modulator used for the forced modelocking experiments

is an antireflection coated single-crystal Ge acousto-optic

modulator. A LiNbO3  piezoelectric transducer bonded to the

[111] surface provides coupling between the applied RF and

the acoustic wave. The LiNbO3  has a broad resonance near

20 MHz, and the Ge crystal has narrow ( l10 KHz) acoustic

resonances 210 KHz apart in the vicinity of 20 MHz.

The modulator was driven as illustrated in Figure 24.

In order to minimize heating of the modulator a pulsed RF

source is created by mixing the continuous output of a GR

Bridge Oscillator with the pulse from a GR 1340 Pulse Gener-

ator. The RF pulse is then amplified by an HP 230B Power

Amplifier to a peak power of approximately 4 W before being

applied to the modulator transducer. Operation on an acoustic

resonance of the crystal is ensured by monitoring the reflected

power from the crystal. A minimum in reflected power seen on
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the oscilloscope indicates the line center of the resonance.

For modelocking experiments, the RF is applied to the modu-

lator at least one millisecond prior to the firing of the

laser discharge, in order to guarantee modulation during the

laser pulse.

Both nitrogen cooled Au:Ge and helium cooled Cu:Ge

detectors were used to measure the output of the laser. The

Au:Ge detector combined with a 7904 Tektronix oscilloscope

has a rise time < 2 ns. The Cu:Ge detector 7904 oscil-

loscope combination has a risetime < 1 ns. Convex mirrors

focused the laser radiation onto the detector crystals. The

detector sensitivity was calibrated with the chopped output

of a cw CO2 laser against a Scientech 3602 energy meter.

Calibrated Ca F2 attenuators were positioned between the

laser and the detector to ensure operation in a linear regime

of the detector.

The faster Cu:Ge detector was used to measure the in-

dividual modelocked pulses. In measuring the overall TEA

pulse, however, the slower Au:Ge detector was used.



142

3.2 Determination of the System Parameters

The complex energy level structure of both CO2 and

SF 6 makes the modelocked system difficult to characterize.

In particular, the assumption of two level media which runs

throughout most of the theoretical analysis of Chapter II is

an oversimplification. Saturation phenomena in CO2 and SF6

are characterized by a host of saturation powers and relaxa-

tion times. A precise matching of the transient theory to

experiment would require an elaboration of the theory along

the lines indicated in section 2.6, an accurate determination

of the relevant parameters of CO2 and SF6 , and a monitoring

of the amplifier gain and absorber loss during the TEA pulse.

In such an approach, however, the law of diminishing returns

rapidly takes hold. The inherent simplicity of the theory be-

comes obscured. The excess gain in the cavity is difficult

to measure with sufficient accuracy to obtain a meaningful match

to the experimental results.

The approach taken here in characterizing the modelocked

is to demonstrate the approximate validity of the simple two-

level media model adopted in the theory over the range of

parameters studied. Rather than characterize each medium

separately, the system is viewed as a whole, and the medium

parameters are determined to be consistent with the two-level

model, published data, and the output observed from the laser.
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3.2.1 Modelocked Laser Output

Examples of the TEA laser output for free-running,

passively modelocked and forced modelocked operation are

shown in Figure 25. In the absence of any intracavity mode-

locking element the laser exhibits the multimode output of

Figure 25a. The random beat signal, which is periodic in the

cavity transit time, is a consequence of the fact that the

transient gain shoots well above the cavity loss line. Lasing

takes place on many cavity modes, despite the fact that the

gain medium is homogeneously broadened.

Figure 25b shows the laser output in the case of forced

modelocking when the modulator is tuned to the cavity mode

spacing. The peak power of the modelocked pulses increases

over that of the free running oscillator while the time average

output power decreases slightly due to the insertion loss of

the modulator.

Passive modelocking by means of the 1 mm SF6 absorbing

cell reduces the output power of the laser due to the require-

ment of near threshold operation. The photograph in Figure

25c shows three successive shots of the laser. Superpositions

of many shots of the passively modelocked laser are shown in

Figure 26a, b to demonstrate reproducibility. A more detailed

view of two pulses of a single shot is shown in Figure 26c.

The fact that modelocking occurs on every firing of the laser
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discharge supports the basic premise of the theory that the

buildup is deterministic, rather than the statistical selec-

tion of a noise spike. As we shall see, the considerable

shot-to-shot amplitude variation can be attributed to gain

variation rather than any inherent statistics of the buildup.
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3.2.2 Small Signal Gain

Measurements of the transient small signal gain of the

pin-type TEA laser amplifier have been reported by previous

authors.4 4 '47  In the 200-600 Torr pressure regime they in-

dicate a gain duration on the order of 10 ps. Since the

passively modelocked TEA pulse is less than 250 ns in

duration, the small signal gain can be considered constant

during the pulse. The fact that passive modelocking requires

near threshold operation then dictates that it is the maximum

value of small signal gain which is of interest to us.

The maximum small signal gain was measured over a range

of operating conditions--laser pressure and capacitor voltage

--by adding loss to the cavity until the laser quenched. The

loss was introduced by filling the absorber cell with SF6.

The small signal absorption of SF6 was then determined by

measuring the transmission of the cell external to the cavity

(see Chapter IV). The detailed passive modelocking experiments

were carried out on the P(24) transition of CO2 where the

-I -i
SF6 small signal absorption was measured to be .19 ± .02 cm torr

in good agreement with published values.48 ,49 The curves of

the peak gain versus capacitor voltage with the total laser

pressure as a parameter are shown in Figure 26 for the P(24)

transition. The dotted line indicates an absorber loading

corresponding to 80 torr of SF6 where most of the mode-

locking experiments were conducted.
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3.2.3 Saturation Powers

Both the CO2 amplifier and the SF6 absorber can be

characterized by relaxation times which are "fast" and "slow"

compared to the passively modelocked pulses generated by the

system. At the SF6 pressure used in our experiments the

only fast relaxation time characterizes the rotational relax-

ation. The slow relaxation times are associated with the

equilibration among the vibrational levels. The still slower

rate at which vibrational energy is converted into kinetic

energy of the gas can be neglected altogether, since it is

slow compared to the duration of the TEA pulse. In the case

of the CO2 amplifier, both the rotational relaxation and the

intramode vibrational equilibration can be faster than the

modelocked pulse. (Details of the CO2 relaxation processes

are discussed in Appendix B.) The slow relaxation is the rate

of intermolecular vibrational equilibration between the sym-

metric stretch and bending modes, which governs the relaxation

of the lower level of the lasing transition.

An experimental and theoretical study of SF6 saturation

is carried out in Chapter IV. Here our objectives are less

ambitious. We justify the application of the simple two level

models of the amplifier and absorber used in the theory of

passive modelocking to the CO2 - SF6 system. In doing so,

we obtain an estimate of the ratio of saturation powers PAF /PLS
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To estimate the saturation powers of the media we make

use of the well-known expression for the saturation intensity

of a two-level medium

-w
I - o (3.1)

aT

where a is the optical cross-section of the levels in question

and T is their relaxation time. Let us first compute the

fast saturation powers of CO2 and SF6 in order to check

the criterion (2.118) that the absorber response overpower the

laser response. As mentioned above, the fastest response of

both media is due to rotational bleaching.

In CO2 the cross-section of the rotational levels di-

rectly interacting with the field at line center is

X2 T2
L  - (3.2)

47r T
s

where T 2 - .65 * 10-7 s * torr is the dephasing time,5 0

51
and T =- 5 s is the spontaneous relaxation time. Using

-3 m -15 2
X % 10 cm we obtain aL = 1.2 * 10 cm * torr. The

saturation intensity for rotational bleaching can now be eval-

uated from (3.1)
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ILF 24 = 2.4 102 W cm 2 . torr 2  (3.3)
L T

where we have assumed that rotational equilibration occurs

in one collision, i.e., the rotational relaxation time equals

T2 '

As shall be shown in Chapter IV, the cross-section of the

rotational levels of SF6 directly interacting with the ra-

diation of the P(J) transition of the 10.6 p branch of

CO2 is given by

J

A - (3.4)
BN

J
where a is the small signal absorption coefficient of

SF6 on the P(J) transition, B is the fraction of absorb-

ing molecules which interact directly with the radiation, and

N is the number of molecules per unit volume. The small

24 -1
signal absorption on the P(24) transition a 0 .2 cm

-1 48torr1,48 and the fraction of absorbing molecules

52 24 -15
% b .003, so that substitution in (3.4) gives a 10

cm . Rotational equilibration in SF6 has been measured to

7 - -1 52
occur at a rate 4.5 * 107 s * torr . Thus, the satura-

tion intensity is given by
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o 2 -2 -1
I 8 10 W - cm * torr (3.5)

AF 24
A  * TA A

The ratio of the fast saturation powers for the two media

is given by

PAF IAF PA AA - (3.6)

PLF ILF PL2 AL

where pA, L is the pressure and AA, L is the cross-
, A, L

sectional area of the beam. For the cavity geometry of our

experiment the ratio AA/AL % .25. Over the 200 - 600 torr

total pressure range of the laser medium, and at the 80 torr

pressure of SF 6 , the ratio of the fast saturation powers is

computed to be in the range

-4 AF -3
1.9 * 10 < < 1.7 * 10 . (3.7)

PLF

Clearly, the rotational saturation of the laser medium is

negligible compared to that of the absorber.

On a time scale which is long compared to the rotational

rate, we can treat the kinetics of the rotational-vibrational

population as a two-level system by introducing an effective
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stimulated cross-section5 3

J , 4hc BJ -hcBJ 2 /k (3.8)SL = L W(J) = L  e (3.8)
kT
bg

where B = .37 cm - 1  is the rotational constant,5 3  kb is

Boltzmann's constant and T is the gas temperature. The

weighting factor on the right hand side takes into account

the equilibrium population distribution among the rotational

levels of the upper and lower vibrational states. On the

P(24) transition the weighting factor is W(J) = .063, as-

suming T = 300 0 K. Thus, the effective cross-section of the

24 -17
P(24) transition becomes L 24 . * 10 cm 2  torr.

Because the effective cross-sction is so much smaller than

aL' the fast saturation of the intramode vibrational 
levels

can also be neglected in comparison to the rotational bleaching

of SF 6.

In determining the saturation power for the response of

CO 2 which is slow compared to both. the modelocked pulsewidth

and the rotational relaxation rate, we again make use of the

effective cross-section defined above. Proceeding with our

characterization of the lasing transition as a two-level

medium, we recognize that the "bottleneck" rate for the TEA

laser operation is the intramolecular V-V relaxation from
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the lower level of the transition. The rate is fast,

5 -1 -1 54measured as Z12 = 3 * 10 s torr for pure CO2,

because of the near resonance of the (100) level of the

symmetric stretch mode with the (020) level of the bending

mode (see Appendix B).

From (3.1) we can now estimate the "slow" saturation

intensity as

wo 12 -2 -2
Io 2 4 16 W & cm * torr (3.9)LS 24

where we have assumed that the V-V rate Z12 depends only

on the partial pressure of CO2  in the CO2 :N2 :He mix of

2:1:6.54 Replacing ILF in (3.6) by ILS we can compute

the ratio of the fast saturation power of the absorber to

the slow saturation power of the laser medium to be in the

range

2.7 * 10 - 3 < 'AF < 2.5 . 10 -2 (3.10)

PLS

over the 200 to 600 torr total pressure range of the

laser.

In our case, therefore, even the slow response of the

laser medium can be neglected in comparison to the fast
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response of the absorber. Indeed, since we require that the

time average power in the field be less than the absorber

fast saturation power for the modelocking equation to apply,

the relations (3.7) and (3.10) indicate that modelocking can

only occur in the small signal regime of the laser medium.

The buildup and decay of the field is determined simply by

the time variation of the small signal gain.

The slow response of SF6 is more difficult to determine

due to the strong hot band contribution to absorption on the

P(24) transition. An experimental and theoretical study of

the SF6 saturation is conducted in Chapter IV, where it is

shown that the slow saturation of SF6 can also be neglected

for the experiments discussed here.
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3.3 Matching of the Experimental Pulse Shapes

The theory developed in Chapter II predicts that each

pulse in the modelocked train is a quasi-steady state pulse

of the form

I(t, n) = I o (n) dn 2  , y(n) 0 < y < 1 (3.11)

p(n)

where dn is a Jacobian elliptic function of argument t/Tp

and modulus y. The time t is "local" to one roundtrip

transit TR through the modelocked system, while n is an

integer which counts the number of transits. The peak in-

tensity I (n), width T (n) and modulus y(n) are specified

by the system characteristics on the nth pass and by requiring

the solution (3.11) to be periodic in the cavity roundtrip

transit time.

The output of the laser consists of a "long" pulse

approximately 250 ns in duration which modulates the short,

2 ns - 10 ns, modelocked pulses. In matching our experimental

results we must match both the overall TEA pulse and the

individual modelocked pulses under the TEA pulse envelope.

To begin with, we assume the small signal gain to have

a parabolic time dependence in the near threshold regime of

interest here. Lasing on the mode nearest line center ini-
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tiates when the gain equals the loss. We assume the initial

power in the field to be that of one photon, namely

o -13- 7.7 10 W.
TR

As shown in Figure 28, successful modelocking requires that

the gain be adjusted such that the modelocking threshold de-

fined by (2.51) is reached well after the gain has peaked.

If the threshold is reached too soon, the field intensity can

grow to a point where it fully bleaches the absorber, and

modelocking ceases to be possible. This is confirmed exper-

imentally by the fact that, as the small signal gain is

increased, a dramatic increase in TEA pulse power is ob-

served in passing from the regime of consistent modelocking

to the regime of erratic self-locking.

Plots of small signal gain, go(n), the time average

gain coefficient a(n), and the overall TEA pulse envelope

for a simulated case of transient modelocking are shown in

Figure 28. The simulation corresponds to an experiment in

which the laser is operated at a total pressure of 451 torr.
-i

From the linewidth dependence on pressure of 4.5 MHz * torr 1

and the 24 ns transit time, we determine LTR = 153. The

constant cavity loss, due to the 20% transmitting mirror,

diffraction grating and salt windows, is estimated as
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Aw T = .4. The addition of 80 torr of SF6 to the 1 mm

cell introduces a normalized loading q = 7.5 to the cavity

on the P(24) transition, where the small signal absorption

-i -i
is .19 cm1 torr-1

The dependence of the small signal gain on the number

of passes through the system is taken to be

(3.12)go(n) = gm 1 - n
n p

where gm is the maximum gain, np is the pump time in

number of passes required for the gain to reach gm, and

n is one-half the time that net gain exists in the systemo

given by

no = n g - ( + q) . (3.13)

From the small signal gain measurements

on the pin-type TEA CO2 laser at 350

the gain rise time to its peak value to

by the 24 ns roundtrip cavity transit

250.

that Lyon44 conducted

torr, we estimate

be 6 ps. Dividing

time we find n =
P

A modelocked laser pulse from the actual system charac-
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terized by the parameters given above is shown in Figure 29.

The asymmetry of the pulse predicted in Figure 28 is readily

apparent, namely a slowly rising front edge and rapidly fal-

ling trailing edge. (Note that time is reversed in Figure 29

because it is a contact print of the actual photograph.)

Furthermore, the widths of the experimental and theoretical

pulses are in good agreement.

Matching of individual modelocked pulses in the pulse

train was also carried out. By using the delayed sweep

capability of the 7B92 time base plug-in of the 7904

oscilloscope, pulses near the peak of the laser pulse could

be accurately measured. Two pulses just beyond the peak are

shown in Figure 30 for three successive shots of the laser.

The solid lines are tracings of a 3:1 enlargement of the

oscilloscope trace. The pulses on the right hand side of

Figure 30 and in subsequent Figures 31 - 34 have been

matched to the function given in (3.11) at different values

of the modulus y, keeping the periodicity fixed at the

24 ns cavity transit time. The matching parameter y is

related to the system parameters. For all cases considered

here, the absorber loading is fixed at q = 7.5 corresponding

to 80 torr of SF6 at P(24). In accordance with the

findings of section 3.2.3, the ratio of the absorber fast

saturation power to the laser slow saturation power is
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TEA Pulse Showing Asymmetry Match
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neglected, PAF/PLS = 0, and all other saturation powers

are assumed to play no role. Furthermore, the gain rise

time to its peak value is assumed to be 6 ps. For a given

value of laser pressure, i.e. wLTR, the only system para-

meter varied in matching the pulses is the peak value of the

small signal gain, gm"

In each case gm is varied until a good pulsewidth

match to the experimental pulse is found for a pulse near

the peak of the theoretical pulse train. The value of gm

used to match each set of pulses, and the value of 1 - y2

associated with each pulse are indicated on the figures. The

match of theoretical and experimental pulse shapes is excel-

lent. Discrepancies in the tails of the pulses and the slight

ringing between pulses can be attributed to the detector

response.

A plot of the pulsewidth versus inverse laser linewidth

is shown in Figure 35 for the matched pulses. Although the

pulses tend to shorten with increasing laser linewidth, there

is no discernible functional dependence. This is not sur-

prising in light of the fact that equation (2.70) predicts a

dependence

T 1 q A (3.14)

P L vo 2q
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The peak amplitude of the pulse, v o, is a sensitive

function of the small signal excess gain. Furthermore,

bounds are set on the values of excess gain Ag = gm -

(1 + q) at a given wL for which modelocking is possible.

If Agm  is too small, the threshold power for modelocking

is never reached, and the system runs single mode. If Agm

is too large, the power in the cavity builds up to a point

where the absorber is fully bleached, and the system exhibits

only erratic self-locking behavior.

Having matched the experimental pulse shapes to those

predicted by theory, we now examine the variation of the

relative amplitudes of the predicted pulses to the relative

amplitudes experimentally observed. The results are plotted

in Figure 36, where we normalize all amplitudes to that of

the highest pulse. The predicted "tracking" of the pulse

amplitude is seen to be in good agreement with the amplitude

variation observed.

The absolute amplitude of the highest measured pulse

was determined to be 1.5 KW. Accounting for the 20%

mirror transmission, this indicates an intracavity amplitude

of 7.5 KW. The peak power predicted for the matching pulse

is one-tenth of the absorber saturation power. From the

number for IAF given in (3.5) and the calculated beam cross-

section of % .2 cm2 in the absorber, we determine an ampli-

tude of 1.3 KW. The approximate factor of 6 difference
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between the absolute values of peak pulse amplitude is not

surprising in light of the assumptions built into the theory,

and the assumptions we have made about the behavior of CO2

and SF6.

Estimates of the maximum small signal gain, gm'

during operation of the system, were obtained by monitoring

the voltage applied to the discharge capacitors and making

use of the curves in Figure 27. A comparison with the values

used in matching the modelocked pulses is shown in Table III

Agreement is within experimental error. The error in the

estimates of gm is, admittedly, too large to enable any

conclusive statements. A careful measurement of the excess

gain of the system during the laser pulse would be necessary

to obtain a more definitive confirmation of the theory.

In review, we summarize the comparison of theory to

experiment as follows:

1. Qualitative agreement in the prediction of overall

laser pulse shape and variation with system parameters.

2. Excellent modelocked pulse shape agreement.

3. Accurate prediction of modelocked pulse amplitude

variation with system parameters.

4. Order of magnitude agreement in the prediction of the

absolute amplitude of the modelocked pulse.
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Table III

Maximum Excess Gain for Modelocking

Agm Ag-m

Experimental 1

.5

.7

.2

Theoretical

.54

.54

.55

.55

.55

wLTR-L-R

153

140

102
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5. Agreement with measured maximum small signal gain

within experimental error.

Taken together, the five points of comparison provide a

strong case for the validity of the theory.

One conclusion that stems from our analysis and which

our experiments support, is that the shortest pulse occurs

at the peak of the modelocked train. This appears to disa-

39
gree with the observation of Feldman and Figueira, on a

CO2 laser modelocked with a p-type Ge absorber, that the

pulse shortened continuously along the train. A possible

explanation for the disagreement lies in the difference in

intracavity intensity between our system , 10 kW/cm 2 and

theirs b 10 MW/cm 2 . In our system we were able to neglect

the gain saturation because of the low power level in the

cavity. In their system gain saturation and saturation

broadening are major effects. The depletion of the gain and

associated broadening of the laser linewidth leaves only the

Ge absorber to shape the decaying pulse. Consequently, the

analysis of Feldman and Figueira, in which they consider only

narrowing of the modelocked pulse due to the fast absorber

saturation on successive passes, is applicable to their system.

In our system, however, the gain dispersion remains a major

factor in determining the pulse shape throughout the buildup

and decay of the modelocked pulse, and the succession of quasi-

steady states analysis is valid.
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3.4 Forced Modelocking Experiments

As a comparison to the performance of the passively

modelocked system we also conducted forced modelocking ex-

periments in the same laser cavity by replacing the absorber

cell with a Ge acousto-optic modulator.

Examples of the individual modelocked pulses obtained

from the forced modelocked system are shown in Figure 37.

Each photograph shows the overlap of three shots of the laser.

The output of the forced modelocked system is noticeably more

stable from shot-to-shot than that of the passively modelocked

system. Furthermore, the requirement of near threshold oper-

ation, so critical to the reproducibility of passive mode-

locking, is of little consequence in the forced modelocked

system.

Both the improved stability and the ability to modelock

well above threshold can be explained by the fact that, from

the onset of lasing, one intracavity modulation tuned to the

cavity roundtrip transit time (wM = 2 /TR) discriminates

against growth of the field propagating around the cavity which

is not in synchronism with transmission maximum of the modu-

lator. In other words, there is no modelocking threshold

distinct from the lasing threshold. The fact that loss

modulation dictates a maximum gain at a single time within

the round trip transit leads to rapid pulse formation. Hence,



3 shots

2 ns/D.

pL= 504 torr

3 shots

2 ns/D.

pL= 450 torr

Figure 37: Forced Modelocked Pulses

175



176

for sufficient depth of modulation, modelocking occurs even

though the excess gain in the cavity is large.

The equation governing the evolution of tuned forced

modelocking is similar to that of passive modelocking:

=v(t, n) = Aw T Rg l + 1 - (1 + M sin2 wMt) v(t, n)

n- L2 t

(3.15)

where M/2 is the normalized modulation depth, and the

modulation frequency wM is assumed equal to the cavity

mode spacing. Again we have a gain minus loss equation

governing the evolution of the waveform v(t, n). The shaping

of the field on each pass is now dictated by the competition

between the gain dispersion and the forced modulation rather

than the passive modulation due to the absorber bleaching.

The solution to (3.15) can be attacked in the same manner

as was carried out for passive modelocking in Chapter II. The

periodic steady state solutions to (3.15) are Mathieu func-

tions. In the regime of well separated modelocked pulses,

however, the modulation function can be expanded to first

order, sin2 WMt = W t 2 and the solutions become gaus-

56,57
sians:
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Vo t 2

v = exp (3.16)
4 r 2 2Tp

where the pulsewidth is determined from the eigenvalue rela-

tions to be

T 4V/7M 1 . (3.17)

P •/JLML M

Excluding the weak dependence on saturated gain, the width of

the forced modelocked pulse is seen to depend only on the

fixed system parameters. As one might expect, this contrasts

sharply with the pulsewidth equation for passive modelocking

(3.14) in which the pulsewidth is found to vary inversely with

the peak amplitude of the pulse.

The validity of the pulsewidth relation (3.17) was veri-

fied by taking measurements of pulsewidth versus pressure on

our system. The crystal was driven at its 20.7859 MHz reso-

nance where the reflected power was kept less than 5%. The

absolute single pass modulation depth at the resonace,

AwcTRM/2 = .08 + .01, was determined prior to mounting the

modulator in the modelocked system by measuring the transmis-

sion of the driven modulator to the cw 10.6 p output of a
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low pressure CO 2 laser. The modulation depth relative to

the estimated cavity loss AwcTR = .4, then becomes M

.4 . The normalized maximum gain gm was kept at a value

of 7.5 by varying the capacitor voltage with pressure as

prescribed by the curves in Figure 27.

From the numbers given above we compute the linewidth

dependence of T as

T .73 * 10 - 7  1s (3.18)

L

where vL = WL/7 is the full linewidth in MHz. The line-

width was determined from the total laser pressure by the

relation VL = 4.5 MHz/torr. A comparison of the pulsewidths

measured and the theoretically predicted relation (3.18) is

shown in Figure 38. Agreement between theory and experiment

is excellent. The validity of the forced modelocking theory

applied to the transient system lends further credence to the

passive modelocking theory, since the theories make similar

fundamental assumptions about the system behavior.
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IV. Short Pulse Saturation of High Pressure SF6

Interest in the short pulse saturation properties of

58,59
SF 6  stems from its usefulness as a Q switching and

5,8
modelocking element for the P branch of the 10.6 p

band of the CO2 laser. More recently, work on laser iso-

tope separation using SF6 has intensified that interest.

Our primary motivation in carrying out the present study

of SF6 short pulse saturation is to determine the charac-

teristics of the medium appropriate to modelocking the high

pressure CO2 laser. The modelocking mechanism is the

bleaching of the SF6 absorption on the time scale of the

modelocked pulses. Thus, the absorption must, in part, be

due to a set of levels having a relaxation time on the order

of or less than the typical width of the modelocked pulse.

In other words, the attenuation experienced by an intense

pulse of duration T in propagating through a cell of SF6
should be less than that experienced by a long pulse signal

of the same energy. By long pulse we mean a pulse of duration

T greater than that of the modelocked pulse,but less than
P

the V - T relaxation time of SF 6, i.e.,

T << T << T
p p V - T
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We have completed a set of experiments which verify

this fact. By alternately irradiating a cell of SF6 with

the single mode output and the modelocked output of a high

pressure TEA CO2 laser we have measured the difference in

transmission of the cell for equal values of the total energy

in the TEA pulse.

The complexity of the energy level structure of SF6,

shown in Figure 39, makes it difficult to analyze. Models

developed by Burak et al60 and Brunet 62 show excellent agree-

ment with experiments on the cw saturation of SF6 . Closer

scrutiny of these experiments reveals that the only sensitive

parameter is the "bottleneck" V - T relaxation, which may

not even be identical to the one measured by ultrasonic dis-

persion experiments.63

The response of SF6 to short pulses, however, is not

well understood. The experiments can be interpreted in dif-

ferent ways. Steinfeld et a14 9 set up a model which explains

their double resonance results. The risetime of the 16 p

radiation measured by Knudtson and Flynn64 can be explained

by a similar model. The basic postulate of the model is that

all modes of SF6 come to equilibrium quickly. Their exper-

iments can be explained even if this is only partly true. In

addition, the model completely neglects the fast V-V process

within the pumped (v3) mode. The more recent model adopted
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by Oppenheim and Kaufman59 includes the V-V process, but

is unrealistic in that it assumes an instantaneous relaxation

rate for the excited state transition. Pulse transmission

measurements have also been performed by Armstrong and Gaddy, 65

but their model ignores V-V equilibration and neglects the

V3 - 2v3 excited state absorption. The model's prediction of

a v 6 - V3 + '6 relaxation time which is much faster than gas

kinetic and a V-T time which is at least two times faster

than previously determined values6 2,63 is a measure of its

weakness.

We have developed a simple closed form theory to explain

the saturation curves for both the single mode and modelocked

TEA pulse. The lower absorption seen by the modelocked TEA

pulse is shown to be due to the increase in rotational bleach-

ing. Our approach is similar to that of Oppenheim and Kaufman

in that initially we consider only the absorption of the v3

mode and neglect the coupling to other vibrational modes of

the molecule. Our model can be extended, however, to include

the effect of additional modes, provided we make simplifying

assumptions about the molecule. Furthermore, in contrast to

previous work, we include the three fold degeneracy of the

V3 mode and the saturation of the excited state absorption

v 3 + 2v3 as influenced by the fast V-V relaxation process.

In section 4.1 we describe our experimental results.
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The theory is presented in three sections, 4.2-4.4, corres-

ponding to the major effects considered: (1) Saturation due

to the pumping of the vibrational manifold, (2) bleaching of

the rotational levels interacting directly with the incident

radiation, and (3) pressure and power broadening of the ab-

sorbing transitions. A comparison of theory to experiment is

presented in section 4.5.
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4.1 Measurements

The transmission of SF 6 at the P(16) and P(22)

lines of the 10.6 p band of the TEA CO2 laser was measured

over a range of SF6 pressures and TEA pulse intensities.

The experimental setup is shown in Figure 40. Two distinct

cases were compared:

1. Transmission of a single mode TEA pulse shown in

Figure 41 through a 1 mm long cell containing SF6.

2. Transmission of a modelocked TEA pulse shown in

Figure 41 through the same cell. The modelocked TEA pulse

consisted of a train of 2 ns pulses spaced 24 ns apart,

thus giving a 12:1 peak power enhancement over the single

mode TEA pulse of equal total energy.

In both cases the TEA pulse was generated by a three

electrode CO2 laser operated at a total pressure of 460

Torr, with a CO2 :N2 :He gas mix of 2:1:4. An intracavity

aperture limited the operation of the laser to the fundamental

transverse mode. Allowed to run freely, the TEA laser out-

put showed erratic self locking. Consistent single mode

operation was achieved with a 2.5 cm long intracavity cell

of low pressure SF6  (< 2 torr). On the other hand, consis-

tent modelocking was produced by an intracavity acousto-optic

modulator tuned to the cavity mode spacing at approximately



Lov4 Prewure
Cell Modulaor

- I -

0 Les

cisgh 9tessore Cell

A-Cace

scope An er

I

Figure 40: Experimental Set-Up for Measurement of SF 6 Saturation



riiaimiuiu-

1W

Single Mode

20 ns/D

Modelocked

20 ns/D

2 Modelocked Pulses

5 ns/D

Figure 41: Pulses Incident on SF 6 Cell

187

,i

L

I1

j -- c

-

00



188

42 MHz.

The output of the TEA laser was passed through a 3 mm

aperture to ensure a nearly uniform intensity distribution

across the beam and focussed by a salt lens to a .2 mm dia-

meter spot inside the SF6 cell. A second lens recollimated

the beam before it was detected by a Au:Ge detector. Dif-

ferent values of input intensity were achieved by placing

calibrated CaF 2 attentuators in the path of the beam. From

the detector the signal was amplified by an amplifier which

was slow (% 5 ps) compared to the TEA pulse (% 250 ns)

so that its response depended only on the total energy in the

TEA pulse. The amplifier output was then fed into a RIDL

400 channel pulse height analyzer which displayed the distri-

bution of transmitted TEA pulse energy for successive shots

of the laser. The use of the analyzer enabled us to distin-

quish between shot to shot fluctuations in the laser output

energy (% 10%) and differences in absorber transmission.

Results of the transmission measurements at various SF6

pressures for the P(16) and P(22) lines of 10.6 p CO2

output are shown in Figures 42 and 43 respectively. The mode-

locked pulse transmission is always higher than that of the

single mode pulse. Furthermore, we observe that the saturation

curves appear to be roughly asymptotic to the small signal ab-

sorption values measured by Wood et al. 48 indicating that the

absorption cross-section does not change appreciably with pres-

sure.
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4.2 Pumping of the Vibrational Manifold

In order to describe the saturation behavior of SF6

for the different lines of the 10.6 p band we must consider

the response of both the ground state and the excited state

absorption. We adopt a model shown in Figure 44, which is

60 62
similar to those described by Burak et al, Brunet and

Oppenheim. 59 In our model we take into account the fast

V-V processes that will thermalize any given vibrational

mode at a vibrational temperature TV . A theoretical justi-

fication for the use of "box" models will be given in

a forthcoming publication.66 The following notation is used:

Nl, N2 , N21' N3  Population densities in the three vibra-

tional levels which are directly inter-

acting with the incident field.

N11 , N2 2 , N33  Population densities which do not

interact directly with the field.

SAbsorption corss-sections of the rotational

levels which interact directly with the

incident field.

Rotational relaxation rate.
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3B Fraction of total number of molecules

in the vth vibrational level which

interact directly with the field.

k Rate constant for equilibration among the
vv

vibrational levels.

We have omitted any reference to the V-T relaxation time

because it is slow compared to our pulse duration. Measured

values of the V-T rate place it at 95 ps/torr61 which is

much greater than our 250 ns pulsewidth even at 250 torr,

the maximum pressure used in our experiments.

The absorption coefficient for the medium modelled in

Figure 44 is given by

a = o 1 N2 + l N2 ' 2 N3  (4.1)
2 3

where g is the dengeneracy of the vth vibrational level.

From the symmetry properties of the SF6 molecule we know

the v3 mode is three fold degenerate so that the level de-

generacies are given by

gl = 1, g2 = 3, g3 = 6.
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We neglect the absorption contribution of vibrational states

higher than the first excited state because of the increasing

anharmonicity of the vibrational mode. Furthermore, we should

note the following: NV = 6V N V. Pressure and power broaden-

ing influence both V3 and aV in such a way that, in a

continuous spectrum like SF6, the product oa ~ is constant.

This results in an absorption coefficient that is independent

of pressure or power for a given vibrational population

N + N . Increasing the pressure or the laser power results

in an increase in B and a decrease in a --the only direct

influence being on the "effective" rotational relaxation rate

SYR.

To determine the absorption seen by the TEA pulse we

shall assume that both the rotational and vibrational levels

remain in thermal equilibrium. The assumption is justified

by the fact that both the rotational relaxation rate and the

7 -1vibrational equilibration rate, measured as 10 sec -

-I 5 6 -1 -1 63torr and 10 - 10 sec - torr respectively, are

short compared to the pulsewidth in the range of pressures we

have investigated. The assumption that thermal equilibrium

is maintained among both the rotational and vibrational levels

in the presence of the incident field can be expressed mathe-

matically as follows:

N (
R-T Equilibrium: - (4.2)

N -
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N22 g2 h12
V-V Equilibrium: - - exp

N11 g1  kTV

N33 g3 hw23
- exp3 (4.3)

N22 g2  kTV

where w.. is the transition frequency and TV  is the

vibrational temperature. Since the V-T time is slow, all

of the incident energy absorbed by the medium is distributed

throughout the vibrational manifold. Thus, saturation occurs

as the v 3 mode of the medium is pumped to a higher vibra-

tional temperature TV. For sufficiently high absorbed energy,

kTV >> w12' Ah 2 3 , the population difference between the

absorbing levels goes to zero and the medium is totally bleached.

Assuming that coupling to the other vibrational modes can

be neglected, the total absorbed energy is equal to the energy

in the v 3 manifold

Eab s = N (4.4)abs v

where Nt is the total density of molecules having energy

E above the ground state. According to the Maxwell-Boltzmann

distribution law the numbers N are given by
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N e
Ng Vexp I- k--

t =N - (4.5)

where N is the total population .density and Q is the

partition function of the v3 vibrational mode. Using (4.5)

the expression for the absorbed energy becomes

Eabs Z g= E exp
Qv kT

which can be rewritten as66

(4.6)

(4.7)Eabs = Nk T 2 1 dQ
Q dTv

The partition function for the triply degenerate v3 mode is

given, in the harmonic oscillator approximation, by

Q = [1 - exp(-h o/kTV ) -3 (4.8)

where hw is the energy separation between levels, assumed
o

to be constant.

Substituting (4.8) in (4.7) and defining y E hw /kTV

we obtain the expression for the absorbed energy
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3N -hw
E = o (4.9)
abs e - 1

which is Planck's law for a triply degenerate vibrational

mode. Alternatively we can express the vibrational tempera-

ture in terms of the number of photons absorbed per molecule

np = Eabs/Nh o :

TVo 0 (4.10)
k n 3 + n

k In - p

p

Returning to equation (4.5) we see that the number of

molecules in a given level of the v3 manifold is given in

terms of the number of absorbed photons by

Vt ( Y j 33nn v
Nt = ( + )N Ng 3 (4.11)

p p

We now assume

1 2 = 3 E << 1 (4.12)

namely, that only a small fraction of the molecules in each
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level interacts with the radiation (this number has been

estimated to be a .00352 for P(20)). Equation (4.11)

combined with (4.1) gives the dependence of the absorption

coefficient on the number of absorbed photons:

a N 3 1 + K P3n (4.13)
3 + n 3 + n

where K = o / o . The small signal absorption coefficient

is, therefore,

an = = B Nao. (4.14)
p

The absorption coefficient is related to the field in-

tensity I by

1 dl (4.15)
I dx

For an optically thin sample of length £ (4.15) can be

written in terms of the incident intensity and the time rate

of change of the number of absorbed photons per molecule

dn
I. - I = I. La = -h N - . (4.16)
n out in o dt
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Thus, we have a first order differential equation relating

the number of absorbed photons to the incident intensity

dn a I.
p _ on 3

dt N w o 3 + n
o p

(4.17)3n1 + K
3 + n

p.

The equation integrates to the form

3 + n

81 3

where E.
in

x5 dx

(1 + 3 ) x - 9 K

is the total incident energy in the pulse, i.e.

E. = I I. dt (4in in
--00

t
and n is the total number of photons absorbed per mole-

P
cule. The left hand side of (4.18) can be integrated in

closed form.

The total energy absorbed by the medium is given by

abs t
- n NV (4

h0 P
0

a E.
o in

N 4ioo
(4.18)

.19)

.20)
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where V is the volume of the absorbing medium in the path

of the radiation. The transmission T of the sample is

defined as

E E
out ab sT - 1 abs (4.21)

E. E.
in in

Using (4.21) and (4.20) we can express the transmission as

tn
T = 1 - a P (4.22)

SF(n )
p

The saturation of the absorption of the optically thin sample

is dependent on the ratio of the number of photons absorbed

per molecule to the effective number of photons incident per

molecule given by F(npt ). Plots of n pt/F(npt ) versus npt

for various values of the cross section ratio K are shown

in Figure 45. The approximate cross section ratios in SF6

for P(16), P(20) and P(22) radiation have been taken

49
from the estimates of Steinfeld, et al. The cross section

ratio increases with increasing line number due to the red

shift of the excited state transition with respect to the

ground state transition which are listed in Table IV.

For values of K greater than one the saturation curves
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Figure 45: Universal Saturation Curves



202

Table IV

SF 6 Small Signal Absorption Coefficients and

Cross-Section Ratios on Different CO 2 Transitions

CO 2 Transition

P(16)

P(20)

P(22)

P(24)

-1 -1a (cm * torr )-o

.55

.46

.25

.19

K

.25

1

2

3



203

of Figure 45 show an initial increase in absorption with

increasing incident energy (negative saturation) as the mole-

cules in the ground state are pumped to the lower level of

the excited state transition. The excited state transition

must be bleached before the medium saturates. Thus, we ex-

pect the saturation intensity of SF6 at P(22) to be higher

than that at P(16), as is the case.

Thus far in our analysis we have considered only the role

of the v3 mode of SF6  in the absorption. Following the

approach taken by Brunet we can extend our modes to account

for the contribution of the other modes of SF6 to the ab-

sorption of the 10.6 p band of CO2 .

Brunet succeeded in fitting the saturation curves of

SF6 excited by a cw CO2 laser using the expression

-1 Il+y -

I
a + = (a + ) s (4.23)

I1 +

s

where (ao + Bo) and (a + 8) are the unsaturated and

saturated absorption coefficients which have been divided

into a part due to the ground state, a , and a part due to

the hot-bands, o . The parameter y used by Brunet is a

measure of the residual absorption of the hot-band transition
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in the limit I >> I s . The saturation intensity is given by
5

I = N

ao TV-T
(4.24)

where fo is the fraction of molecules in the ground vibra-

tional state.

Equation (4.23) is obtainable from an "optical pumping"

model developed by Brunet. Photons are absorbed from the

ground vibrational state and pump the v3 = 1 level. Fast

V-V processes, typified by the collisions:

SF 6 ( 3 ) + SF 6 (0)

-l
SF 6 (V 2) + SF 6(V 6) - 42 cm-1

-l1
+ SF 6 ( 4 ) + SF 6(V 6 ) - 16 cm-1

SSF6 ( 5
) + SF6 ( 6

) + 76 cm-1
+ SF6(5) + SF6(v) + 76 cm

populate the v2' v4  V6 vibrations. Indeed, Knudtson

and Flynn 63 have measured the risetime of the v4 vibration

-6
band as 1.1 x 10-6 sec-torr. Brunet then attributes a total

population N2 and an average absorption coefficient to these

hot bands in order to obtain his formula.

Connection to our model can be made by introducing the

(4.25)
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fast V-V collisions, of the type

SF6 6( ) + SF6 6 ) + SF6(2v 6 ) + SF6(0) etc. (4.26)

which set up the vibrational temperature within the v6

mode. If the population of the v6 mode becomes high (N2

> N in Brunet's notation) the fast V-V process will

populate the higher vibrational states. The population of

each state is given by Equation (4.5) when in Equation (4.10)

np is replaced by N2. We assume in the above that there is

no transfer from states kv6 to any other mode. For N2 <<

N we expect this to be a good approximation. A very com-

plicated satuation can develop for N2 >> N where several

modes are excited to various temperatures. A sweeping as-

sumption can be made at this point, that the absorption of

light by levels SF 6 (kv 6 ) k = 1, 2, ... is all similar,

i.e. all the bands SF 6 (kv 6) + hv + SF 6 (kv 6, v 3 )[(k 6 + V3 )

- V3  in Herzberg's notation] have the same oscillator

strength and frequencies. If this is true, Brunet's formula

follows.

In a similar manner we can extend our model to include

V- other V relaxation processes. In order to give a speci-

fic example, we will assume that vibrational thermal equili-

brium is maintained within the v3 (excited) mode, and in
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addition we introduce the process

SF 6 (v 3) + SF 6 (0) - SF 6 (v 4 ) + SF 6 ( 6 ). (4.27)

In equilibrium the vibrational temperatures of the modes

satisfy

Y3 = 2y4 = 2y6, (4.28)

where the vibrational temperatures of the various modes are

defined analogously to Equations (4.5)-(4.8). If we now

make an assumption even more sweeping than before, i.e. that

all SF 6 (kv 2 ' v 6 ' 3 = 0) + hv + SF 6 (k 2, RZ6' \3) absorp-

tion bands have the same frequency and absorption strength,

we obtain the same "universal" absorption curves as in our

old model, the only difference being that the horizontal scale,

tn is changed by a factor of 2, i.e., twice as many photons
p
must be absorbed for the same amount of bleaching.
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4.3 Rotational Bleaching

The pumping of the vibrational manifold is not the only

saturation mechanism. We must also consider the instantaneous

response of the rotational levels which interact directly with

the incident field.

Under the assumption that both the vibrational and ro-

tation levels remain equilibrated, the rate equations govern-

ing the population densities of the energy levels interacting

directly with the radiation become5 9

-dN1  I N 1  N2 1R - N11 BR

dt hw g2

I 2 1  1 N NR+N 0dNt 0 g
dN2 _ o I Nl  N2 - N2R + N22 BR

dt hw g2

dN2 l 1 2
I N2' N3 - N2R + N22 BRdt hog g

dN3 l g o
- I N2 ' N3  - N3R +N3 R

dt o g3

(4.29)

(4.30)

where N V is the population density of the levels not
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interacting directly with the radiation and is determined

from the vibrational distribution dictated by the total number

of photons absorbed as in section 4.2. We see that the rate

equations (4.29) and (4.30) describe two uncoupled two level

absorbers whose population difference equations are

+ - In - nlR + N0 g N2 2  R (4.31)1 1 11 22
92 92

dn2 1 92 o o2d - 1 + 2 In2 - n2 +R + N22  N33 BR
dt o g3

where we have defined

91n 1 1 g2n2 E N2  N3 .
93

The absorption coefficient of the medium is simply

a = n a0 + n a .10 2

dnl

dt ho

(4.32)

(4.33)

(4.34)

In the case where the rotational relaxation rate is fast
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compared to the modelocked pulse width, i.e.

R >> >> -1
T T

P p

the population densities of the levels interacting directly

with the radiation are in staedy state with the incident

field, so that

dn I  dn
t -d 0.

dt dt

Thus, the population differences are given by

nl (t) =

n 2 (t) =

N N011 - 22
92

1+ I(t)

I1

22 g3  33

I (t)1+

(4.35)

(4.36)

(4.37)

(4.38)
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where we have defined the saturation intensities

R o 1

Ca 1 +
0

R -Aw
I - o. (4.39)

2 D2

S 1 + 92

Equations (4.37) and (4.38) describe the instantaneous

response of the absorber. We now wish to determine the medium

response to the entire TEA pulse, both single mode and mode-

locking. To do so we model the TEA pulse as shown in Figure

46. The single mode TEA pulse is taken to be a square pulse

of duration T and intensity ISM* The modelocked TEA
p SM

pulse consists of a train of equal amplitude rectangular pulses

of peak amplitude IML and duration Tp separated by the

time TR and lasting for a time T p. Defining a fast time

scale t local to an individual modelocked pulse and a slow

time T = k TR, where k is an integer counting the pulses

in the train, we see from (4.16) that the number of photons

absorbed per molecule is governed by the differential equation
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n3 n np (t) [nl (t T) + Kn2(t, T)1. (4.39)
3t 9T NT 4E oR 0

The population differences nl and n2 are found from (4.37)

and (4.38) where the population densities NV (T) are now

allowed to be functions of the slow time T.

Since we have taken both the single mode and the mode-

locked pulses to be rectangular, (4.39) can be integrated

directly in t to give

dn a T
dnp _ o Tp I [nl ( T ) + Kn 2 (T)1. (4.40)

dT NTR hwo 2

The vibrational levels are assumed equilibrated on the slow

time scale T, so that substituting (4.37) and (4.38) in

(4.40) and making use of (4.11) we obtain

dn a.'t 3 [ 3n
p_ o P 1 + K' (4.41)

dT f NT 3 + n 3 + n
o R p P

where we have defined



S' = 0

1 + --
I

and

1+!
1

K' = K

1 + ..
12.

Equation (4.41) now integrates to the form

t1 3 + n t
81 p
81 3

x 5 dx

(1 + 3K')x - 9K'

a I
- E.inhw

o

and we have recognized that the total energy incident is given

by

TT
E - I.
in

TRR

tThe integral in (4.44) is of the same form as F(n )

(4.45)

defined

by (4.19).

Equation (4.44) is applicable to both the single mode

and the modelocked response. For the single mode response

213

(4.42)

(4.43)

(4.44)
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we set T = TR and I = I SM. In the case of the modelocked

response T << TR and I = IMLP ML
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4.4 Line Broadening

In section 4.2 we argued that the product a B remains

invariant under the influence of pressure and power broadening,

so that broadening effects play no role in the saturation due

to the pumping of the vibrational manifold. As indicated in

(4.39), however, the cross-section alone enters into the

expressions for the saturation intensities for rotational

bleaching. We now examine the influence of pressure and power

broadening on the rotational saturation behavior of SF6.

Pressure broadening is found to be negligible, while power

broadening is found to be significant over the range of pressure

and power used in the experiments.

Earlier we defined the fraction of the total number of

molecules in a given vibrational state which can absorb the

incident radiation as

N
S= (4.46)
N + N

By doing so we determine an effective bandwidth for the ab-

sorber

(4.47)6feff = tAf
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where Af is the total width of the absorption band. For

-1 61
SF6 Af is of the order of 10 cm . Low pressure mea-

surements of cw SF6 saturation indicate a value of .003

for B at P(20), resulting in an effective bandwidth

-1
Af = .03 cm . Studies of the SF 6 spectrum in the

-3 -1 61
10.6 y regime show a density of one line per 10 cm .

Thus, 6feff encompasses about thirty lines of the spectrum.

Furthermore, 6feff is much wider than the linewidth of an

individual transition. As noted by previous authors 52 ,61 it

is therefore likely that a superposition of absorbing trans-

itions is responsible for SF6 absorption at each P line

of the 10.6 p CO2 band.

The homogeneous linewidth of an individual SF6 trans-

ition can be estimated from its relaxation time, namely

6f H  -<> (RV-V + RR-T) + 1 (4.48)
rad

where RV_V and RR-T are the vibrational and rotational

equilibration rates and Trad is the radiative lifetime of

the upper state. When subjected to intense radiation the

net relaxation time is further shortened by saturation

broadening, giving

1 1 IB126fH (RVV + RR-T) + + 12 (4.49)

rad H
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B12 is the Einstein absorption coefficient for the ground

state transition given by

o Af
B 0 . (4.50)
12

o

The radiative lifetime is related to BI2 via the expression

for the emission coefficient A21

1 A = 8h B (4.51)
21 22 2

Trad c 2

The long radiative lifetime dictated by (4.51) enables us to

drop the second term of (4.49). Furthermore, our knowledge

that RR-T is at least an order of magnitude greater than

RV-V enables us to neglect the RV-V term. Solving (4.49)

for 6fH now gives

6f_ 1 [RR + (RT + 4T IB 2 ) 1/2 (4.52)
2x

Thus, the homogeneous linewidth is pressure and power depen-

dent and the effective absorber bandwidth becomes

6fef f = Af /1 + (6fH/Af) 2 . (4.53)
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At low incident intensities pressure broadening is the

dominant mechanism in determining 6 f H . Using the value

7 -1 -1 -1
R-T = 10 - torr we obtain 6f H 3 MHz torr-.

Thus, 6f H = BAf at a pressure of 300 torr. Below 300 torr

pressure broadening does not play a significant role in deter-

mining 6feff

At pressures below 300 torr we need only consider the

effect of power broadening, i.e.

T B12
f =1(4.54)

6fH

The intensity at which saturation broadening becomes signifi-

cant is determined by

sb = (f 2 . (4.55)
B12

7 2 -1 -1
For P(20) we calculate BI2 = 2.4 * 10 cm - erg - s

using the small signal absorption coefficient given,

a = .46 cm 1 torr 1 .62  (4.55) then gives Isb " 10 KW/cm 2 .

Assuming for the sake of simplicity that our single mode

TEA pulse is a rectangular pulse of duration Tp = 400 ns,

the pulse energy at which saturation broadening becomes
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significant is Esb " 4 mj. Thus, saturation broadening is

an important effect over the range of pulse energy used in

our experiments.

Our treatment of saturation broadening, limited so far

to the ground state transition, can be applied to the excited

state transition as well. Since the total absorption band-

width of the two transitions is approximately equal,4 9 the

Einstein absorption coefficient of the excited state transi-

tion is given by

B23 = B (4.56)

Thus, the excited state transition has a homogeneous line-

width given by (4.52) where B23 is substituted for B1 2.

The two transitions are now characterized by different values

of a :

S 6fH -21/20 (4.57)

To incorporate line broadening into our saturation

analysis, we make the substitution a -- a' in equations

(4.39). The effect of saturation broadening is to make the

medium harder to saturate since, in effect, the relaxation

rate R increases with the incident field intensity.
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4.5 Comparison of Theory to Experiment

The theoretical transmission curves for the single

mode and modelocked TEA pulse were computed from (4.44)

including the effects of line broadening via (4.57). The

theoretical curves are compared to the experimental results

of section 4.1 in Figures 47 and 48. The fact that the

increase in transmission predicted by the theory is in

reasonably good agreement with that observed, verifies the

underlying premise of the analysis that it is the fast

rotational bleaching which causes the higher transmission

of the modelocked pulse train at a given TEA pulse energy.

We conclude that rotational bleaching is responsible

for the inducement of passive modelocking in the experi-

ments discussed in Chapter III. This conflicts with the

hypothesis of previous authors that the mode coupling is

caused by the dielectric nonlinearity in SF61 37, 38 rather

than the absorption nonlinearity. Although the dielectric

response can play a role, the effect of the absorption

response must, almost by definition, dominate in a satur-

able absorber. Furthermore, the stability of the mode-

locked pulse requires a fast absorption response in order

to ensure that the net gain between the modelocked pulses

in smaller than at their peak.6 6

The theoretical and experimental curves are seen not
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to agree very well in absolute saturation energy. The

discrepancy can be attributed to the fact that equation

(4.44) includes only the absorption due to the v3 mode.

As discussed in section 4.2, the absorption due to the

other modes of SF6 will make the medium harder to sa-

turate, as the experimental curves indicate. The increase

of relaxation rates with pressure strengthens the coupling

to other modes. Thus, we would expect the disagreement

between the simple v3 mode theory and experiment to in-

crease with pressure, as is, in fact, the case.
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V. Design Criteria for Passively Modelocked Systems

In Chapter II we carried out a detailed investigation

of the steady state and transient behavior of the passively

modelocked system. In our attention to detail, however, we

may have obscured the major results of our analysis. Now

that we have shown in Chapters III and IV that the modelocking

theory is borne out by experiment, we pause here to enumerate

our findings, and their implications for the design of pas-

sively modelocked systems.

Modelocking systems can be divided into two categories:

(1) cw, in which the system must settle into a steady state,

and (2) transient, in which the field builds up and decays

in a finite time, and a true steady state is never attained.

For both the cw and the transient systems the mechanism

which causes evolution of the field in the cavity is the net

gain. The net gain of the cw system increases initially

due to the pumping of the laser medium and then decreases to

zero as the laser medium saturates. The gain variation is

similarly dictated in transient systems, save that the net

gain decreases until it becomes a net loss, and the field

decays in a finite time.

Since the cw system allows "infinite" time for the

field in the cavity to reach steady state,.the steady state
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is independent of the initial multimode fluctuations in the

cavity. In other words, the manner in which the field in

the cw system builds up is not important in the determina-

tion of the steady state. As shown in Chapter II, however,

the system parameters must satisfy a number of constraints

in order to ensure that a stable steady state operating point

is found.

In the transient system gain only exists for a finite

time. Consequently, the output observed is related to the

field in the cavity at the modelocking threshold. In order

to ensure the deterministic buildup of a single pulse, care

must be taken that the field at the modelocking threshold is

primarily single mode. On the other hand, because the pulses

obtained are always growing or decaying, the existence of

modelocking solutions is not subject to the stability con-

straints required of cw modelocking solutions.

The design criteria for cw and transient systems are

considered separately in sections 5.1 and 5.2. In section

5.3 we propose several applications of the criteria to the

design of new modelocking systems.
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5.1 CW Systems

The criteria for the existence and stability of the

steady state modelocking solutions are established in sec-

tions 2.2 and 2.6 of Chapter II. Given a set of system

parameters one is shown how to find the operating point of

the system. The reverse process, in which we are given the

desired characteristics of the output pulse and must design

a system to produce it, is of more interest to us here. All

of the necessary design information is contained in the equa-

tions and figures of Chapter II. Rather than lose ourselves

in a specific problem, however, we wish to establish some

general rules of thumb for the system design.

The criteria gleaned from the analysis in Chapter II,

which must be met to ensure a wide operating range of the

passively modelocked cw system,can be listed as follows:

1. A small signal absorber loading which exceeds the

constant cavity loss

q > 1 (5.1)

to ensure the availability of sufficient absorber

"modulation depth".
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2. Saturation powers characterizing the fast (F) and

slow (S) relaxation times of the absorber and laser

medium which satisfy the inequalities:

PAF << PLF (5.2)

to ensure that the fast response of the absorber

overpowers that of the laser;

PAF >> PLS (5.3)

to ensure that the slow saturation of the laser is

sufficient to stabilize the steady state solutions;

and

PAS LS (5.4)

to ensure both that the destabilizing slow saturation

of the absorber is negligible,and that condition (5.1)

is satisfied at the steady state operating point.

3. A time average power in the cavity which exceeds the

modelocking threshold power

S> p ( 2 2  1 + q (5.5)
p > Po() 2 AF

q (WL TR )
2 AF



228

to ensure that the single mode steady state is unstable.

4. A peak power in the cavity which is less than one half

the absorber saturation power

I 2  < AF (5.6)
2

to ensure that the absorber is not fully bleached.

5. A linewidth-transit time product, WLTR, which is large

enough to enable the obtainment of short pulses, but not

too large to ensure that operating point intercepts can

be found.

The above criteria enable us to tell at a "glance" whether a

particular amplitier-absorber-cavity combination can lead to

stable modelocking, and what "knobs" need turning to obtain

the shortest possible pulses with the highest peak power.

We should note here that throughout the analysis we have

assumed the relationship

T >> T p> TAF

between the slow relaxation time of the laser medium, the fast

relaxation time of the absorber and the modelocked pulsewidth.

Cases in which one or the other or both inequalities break-

down have been discussed elsewhere.
2 5' 4 2
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5.2 Transient Systems

The time variation of the gain in the transient system

provides an additional degree of freedom over the steady state

operation of the cw system. The gain must vary such that

quasi-steady state modelocking solutions of constant perio-

dicity can be found at each transit through the system. Con-

sequently, we establish the following restrictions:

1. A slow rise/easy saturation of the laser medium gain

near the lasing threshold in order to ensure that lasing

is primarily confined to a single mode by the time the

modelocking threshold is reached.

2. The attainment of a sufficient small signal gain to

ensure that the modelocking threshold is reached, but

decay/saturation of the gain before the power in the

cavity fully bleaches the absorber.

3. A small time average gain coefficient, a << 1, over

each transit to ensure the adiabatic evolution of the

quasi-steady state modelocking solutions.

The criteria on all parameters, other than the gain,

for the existence of quasi-steady state solutions over a wide
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power range, are identical to those established for the cw

system in section 5.1, with one qualification. The quasi-

steady states need not satisfy the stability criteria. Thus,

the requirement PAF >> PLS need not be met in transient

systems, provided the small signal gain satisfies conditions

1-3 stated above. From the standpoint of energy extraction

from the system, however, it is clear that condition (5.3)

is desir able to ensure saturation of the laser medium during

the modelocked pulse train.
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5.3 Applications of the Design Criteria

The criteria discussed in the previous sections provide

the guidelines for two avenues of investigation into the

development of new cw and transient passively modelocked

systems. First, they provide a handbook by which, given

the characteristics of a laser medium and an associated fast

absorber, a modelocked system can be designed and optimized.

Second, they provide the insight which enables the design of

new system configurations with improved stability and repro-

ducibility characteristics. Here we shall proceed a short

way along the second avenue to see what lies just ahead.
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5.3.1 Multi-Absorber Systems

In the single absorber cw system, constraint (5.5)

places an upper bound on the absorber fast saturation power

PAF relative to the time average power in the system P,

and (5.3) places a lower bound on PAF relative to the laser

medium slow saturation power PLSO Care must be taken that

an operating regime exists between the two bounds. Further-

more, the lowering of PAF to satisfy (5.5) limits the peak

power capability of the system by (5.6).

The difficulty in simultaneously satisfying the various

criteria for PAF can be circumvented by the use of two or

more absorbers having different saturation powers. Assume,

for example, that part of the loading in the cavity consists

of a "soft" absorber whose saturation power easily satisfies

the threshold condition (5.5), and the remainder consists of

a "stiff" absorber whose saturation power ensures that con-

ditions (5.3) and (5.6) are satisfied. The soft absorber

enables modelocking to initiate. As the field builds up in

the cavity, however, the soft absorber becomes fully bleached,

and the stiff absorber must take over the role of narrowing

the pulse. Thus, by the time the steady state operating point

is reached, the stiff absorber dominates.

The two absorber system does not necessarily require

different absorbing media since the saturation power can be

varied by a judicious cavity design which adjusts the relative
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beam cross-sections in the absorbers. If, however, absorbers

with different saturation intensities were used, it would

not matter if the softer absorber had a relatively long re-

laxation time compared to the steady state pulse, provided

it was still significantly shorter than the cavity transit

time. The soft absorber only governs the initial shaping of

the field where an ultrafast response is not required.

The performance of a two absorber passively modelocked

dye system was recently described by Ippen and Shank:
67

"A major improvement in the stability of short-
pulse generation has been achieved by using a combina-
tion of two saturable absorbers as the mode-locking
element. Although DODCI which has a relatively long
recovery time has been used alone to produce short
pulses, such operation occurs near laser threshold
and requires careful adjustment and stabilization of
all parameters. Addition of the triphenylmethane dye
malachite green to the DODCI solution permits short-
pulse operation well above threshold. On the other
hand, malachite green, which has a recovery time in
the picosecond range, has not produced stable mode
locking by itself in this laser. With the absorber
combination, output pulse characteristics remain con-
stant for many hours without readjustment."

If we assume that the saturation intensity of the fast

absorber, malachite green, is much greater than that of

DODCI, the observations of Ippen and Shank are entirely

consistent with our discussion. As noted by New and Haus,

DODCI alone can produce short pulses only because of the

response of the gain medium which cuts off the tail of the
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pulse. We postulate that malachite green does not produce

stable modelocking by itself because the threshold condition,

(5.5), cannot be satisfied without violating the constraints

on the bandwidth-transit time product, wLTR.
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5.3.2 Multi-Laser Systems

As discussed in section 2.3, the requirement in trans-

ient systems that the field be primarily single mode at the

modelocking threshold is extremely restrictive if the laser

medium has a wide bandwidth. The upper limit on the rate of

-13
increase of the gain per pass was computed to be 10 for

Nd:glass, indicating a pump time of 104 s ! The addition

of a bandwidth limiting etalon to the cavity would make the

threshold criterion less stringent, but would preclude the

generation of pulses which utilize the full laser medium

bandwidth.

A system which employed more than one laser medium,

having different bandwidths and saturation powers, how-

ever, would allow the threshold condition to be satisfied

without curtailing the short pulse capability of the system

in the large signal regime. For example, the system could

contain both an easily saturated Nd:YAG amplifier and a

hard to saturate Nd:glass amplifier. In the low power

regime, the comparatively narrowband Nd:YAG laser medium

would determine the bandwidth of the system. Consequently,

the threshold condition could be satisfied. As power built

up in the field, however, the soft Nd:YAG amplifier would

saturate quickly, and the bandwidth of the system would broaden

to include the full Nd:glass linewidth.
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5.3.3 Cascaded Systems

We have proposed a second technique of controlling the

buildup of modelocking by using a combination of forced and

71
passive modelocking. Both active and passive techniques

of modelocking have drawbacks. However, on several important

points the advantages of one technique compensate for the dis-

advantages of the other.

As observed in section 3.3, forced modelocking is in-

herently more stable than passive. However, the power

handling capability of the modulator is usually lower than

that of a saturable absorber, and the absorber has the capa-

bility of producing shorter pulses. A system which would

realize the stability of forced modelockingras well as the

power handling and short pulse capability of passive modelocking

would be one in which the forced modelocked output of a com-

paratively low power laser is injected off-axis into the

saturable absorber of a second, high power laser, to produce

"prebleaching" of the absorber during the gain buildup of the

second laser. The lengths of the two laser cavities must be

set equal to ensure the synchronism of the pulse formed in the

second laser with the modulation applied to the absorber by the

first.
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VI. Conclusion

We have developed the first deterministic theory of

the transient evolution of passive modelocking with a fast

saturable absorber which gives a closed form expression for

the pulse on each transit through the system. The buildup

and decay of the field has been shown to proceed as an

adiabatic succession of quasi-steady state solutions to the

modelocking equation.

The first matching of the experimental pulses to those

predicted by the theory has been performed using a TEA CO2

laser modelocked by an SF6  saturable absorber. In applying

the theory, simple two level models are adopted for both the

laser medium and the absorber. The overall laser pulse out-

put predicted shows good qualitative agreement with the out-

put observed in the modelocking regime. Variations in the

output from shot-to-shot are shown to be attributable to

variations in the small signal gain, rather than any statis-

tics of the modelocking buildup. The shapes and relative

amplitudes of the modelocked pulses are shown to be in ex-

cellent agreement with the predictions of the theory. Order

of magnitude agreement is found with the absolute peak power

of the modelocked pulses and the excess gain in the system.

In an attempt to understand the role of SF6 in mode-
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locking, we have also investigated the short pulse saturation

properties of SF6 . Measurements of the difference in trans-

mission of SF6 to long pulse and short pulse 10.6 p radi-

ation show good agreement with a simple theory of SF6

saturation which attributes the short pulse response of the

medium to rotational bleaching. We are able to conclude,

therefore, that the fast rotational bleaching of SF6 is the

mechanism which induces modelocking. The result that the

saturation energies predicted by the theory were lower than

those measured can be explained by the fact that the model

considers only abosrption by the v3 mode of SF6.

The transient modelocking analysis has also shed new

light on the steady state behavior of cw modelocked systems.

The addition of the periodicity constraint to the eigenvalue

relations derived by Haus24 leads to a simple procedure for

finding the operating point of the cw system. The ability

to find the steady state operating point provides a powerful

new tool in the design of cw passive modelocked systems.

Furthermore, the transient analysis is the key to investi-

gating the stability of the steady state solutions. Stability

boundaries are delineated in the steady state solution space.

Each set of system parameters has been shown to correspond

to a unique steady state.

Although we conclude here confident of the wide appli-

cability of the theory of passive modelocking presented,

further work is needed to obtain definitive confirmation of
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its predictive power. Such confirmation should be attempted

by:

(1) Carrying out detailed experiments on a well understood

system to determine the correlation of the operating

regimes with those predicted by theory,

(2) Trying new system configurations, based upon the

dictates of the design criteria stemming from the

theory, to improve the performance of existing systems,

and

(3) Using the design criteria to search for successful op-

erating regimes of modelocked systems employing new

laser and absorber materials.

In any event, dear reader, whatever the future may bring--

our work here is done!
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Appendix A

Periodic Solutions to the Steady State

Modelocking Equation

The solutions to the modelocking equation (2.23) are

characterized by a quartic potential (2.26). As enumerated

in Abramowitz and Stegun 7 0 , twelve periodic solutions exist

to an equation of this form. By restricting our attention

to physically meaningful solutions, namely stable bounded

solutions characterized by positive real values of power, we

can narrow the field of solutions to two.

In order to simplify the algebra we first normalize the

equation as follows:

a d2 + 2y 2 - b y = 0 (A.1)

dx2

where

y v/v 0

x t/T P
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2PA (1 + q
1 PA

a-
L T V qLpo q

2PA
1 +q-g Ab- .

Equation (A.1) can be integrated to the form

a2 (dy/dx)2 + y4 - by2 + c = 0

where c is the constant of integration. Solving for

x (y) we obtain

x =

Yl

dy

Vp (y)

(A.2)

(A.3)

where yl and y2 are the roots of the polynomial

P(y) = - y 4 + by2 - c (A.4)

which determine the turning points of x(y).
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For the two cases of interest here the solution (A.3)

can be inverted to obtain y(x) in terms of the Jacobian

elliptic functions of x and modulus y:

dn(x, y)

y =

cn (x, 1/y)

0 < y <

1 < y < /Z.

The coefficients of the equation are constrained to be

r1
a = i y

in the respective ranges of y indicated in (A.5) and

b = 2 - y2

c =1 - y2

over the full range 0 < y < /2.

The periodicity of the two solutions is as follows

(A.5a)

(A.5b)

(A.6a)

(A.6b)

(A.7)

(A.8)

dn(x + 2K) = dn(x) (A.9a)
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cn(x + 2K) = - cn(x) (A.9b)

where K(y) is the complete elliptic integral of the first

kind. The first solution is periodic in 2K and is positive

definite while the second is periodic in 4K and alternates

sign over period 2K. Hence, we call (A.5a) the symmetric (S)

solution and (A.5b) the antisymmetric (AS) solution.

The strong saturation equation (2.121) differs from (2.23)

in that it has a potential which is cubic in v 2 . We rewrite

the equation in the form

S2 dx -3y + 2b y2 - c y = 0 (A.10)
s dxy s sj

where the coefficients are now defined as

3 PAa -

s 2v 2

0

3(l + q - g) PA
C -s 4

q v 0
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Integrating (A.10) we obtain

(A.11)as2 (dy/dx) - y + bsY - sy2 + ds = 0

where d is the constant of integration. The expression

for x(y) is given by (A.3) where yl and y2 are the

first two roots of the polynomial

P(y) = y 6 - bY 4 + CS y 2 - d (A.12)

which determine the turning points of x(y).

The inversion of (A.3) in the strong saturation case now

gives the solutions

dn(x, y)

/1 - B2 sn 2 (x, y)

cn(x, 1/y)

/1 - (/y) 2 sn 2 (x, 1/y)

0 < < y < 1l

1 < y < /Z

(A.13a)

(A.13b)
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Restricting our attention to (A.13a) for the sake of brevity

we find the coefficients of (A.10) to be

a = - 2 (A.14)
s 2(1 y 2 )

b
5

c
s

G- Gy

a2

G
- YB

(A.15)

(A.16)

where

2B 4 + 2y 4 B2 - (86 + B4y2 + 22 + 4)

BY (Y2 _- 2)2

and GyB is obtained by interchanging y and B in G y.

The constant of integration in (A.11) is related to y and

3 via the roots of the polynomial (A.12) as shown in Figure

22, i.e.

22 2

Y2 0 V- V +

2 2 2
+ -o

(A.17)
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v 2

P2 _ o . (A.18)
2v+
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Appendix B

Relaxation Rates in the CO 2 Molecule

Justification of the simple two-level saturation model

adopted in Chapter 3 requires a knowledge of the energy transfer

mechanisms in the TEA CO 2 amplifier. We are able to group

the relevant relaxation rates of the medium into those which

are fast and those which are slow compared to the modelocked

pulse width. The only fast saturation mechanism is the cross

relaxation among the rotational levels.

The TEA laser medium is a gaseous mixture of CO 2, N2 ,

and He. The total number density of molecules in the mixture

is given by

N = cN + NN + HN  (B.1)

where ,c' N, H is the mole fraction of CO 2, N 2, and

He respectively. The vibrational energy levels of CO 2 and

N 2 pertinent to amplification are shown in Figure 49 . The

single vibrational mode of the diatomic nitrogen molecule has

its first vibrational energy level in the electronic ground

-l
state lying at 2330 cm-1, while the linear triatomic CO 2

molecule has three independent vibrational modes designated

as follows:
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-l
vl = symmetric stretch mode [-h1 = (1388 cm- )1c],

-1
v2 = doubly degenerate bending mode [hw2 = (667 cm )tic], and

-1
v3 = asymmetric stretch mode [rhr 3 = (2349 cm-1 )hc].

The carbon dioxide molecule can oscillate in any combination

of these normal modes, for example, with i quanta of exci-

tation in vl, j in the degenerate v2 mode, and k quanta

in mode v3. Each vibrational energy level has a correspond-

ing set of rotational energy levels.

The dominant energy transfer processes in the amplifying

medium due to binary collisions of the molecules are summarized

as follows:

1. V-T in the v2 mode:

The process by which bending mode vibrational energy is

converted into kinetic energy of the gas.

ZYT

CO 2 [i, j, k] + M - CO2[i, j - 1i, k] + M + t2

where ZVT is the characteristic rate of the process and M

is an arbitrary collision partner, i.e. CO2 , N2 , or He

for the system under consideration. The released energy is

taken up by the translational kinetic energy of the gas.
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2. Intermolecular V-V between v3 and v :

The resonant collisional transfer of vibrational energy

between N2 and CO2 molecules

C0 2 [i, j, k] + N2 [v] Z C02 [i, j, k - 1]

-i
+ N2 [v + l] + 18 cm-1

3. Intramolecular V-V:

The dominant transfer processes among the three vibra-

tional modes of CO2 are:

32
CO 2 [i, j, k + 1] + M Z CO2[i, j + 3, k]

+ M + h(3w2 - 3 )

z12
CO2[i + 1i, j, k] + M i+ CO 2 [i, j + 2, k]

+ M + h(W 1 - 2w 2 ).
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4. Intramode V-V:

The energy equilibration within a given vibrational

mode, for example in v3

Z3 3

C0 2 [i, j, k + 1] + C02[i', j', k'] C0 2 [i, j, k]

+ C02 [i', j', k' + 1]

allows the population of the levels in that mode to be

characterized by a Boltzmann Temperature.

5. R-T:

A CO2 molecule in a particular vibrational state

specified by the quantum numbers [i, j, k] can also experi-

ence cross relaxation among its rotational levels via the

process

R
CO2[J] + M CO2 [J'] + M.

The characteristic relaxation rates of the energy transfer

processes are listed in Table V . In general each of the

rates depends on the gas mixture. However, the V-T rate is
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known to be He dominated72 and it is reasonable to assume

that the intramolecular and intramode V-V rates are CO2

dominated, so that the rates quoted for processes 1., 3.,

4. are for the pure gases. The intermolecular V-V rate

for CO2 - N2 resonance transfer is dependent on the combined

CO2 - N2 pressure.

For the gas mix (CO2 :N 2 :He = 2:1:6) and pressure range

(200 - 600 Torr) used in our experiments we can compare the

relaxation rates to the characteristic time scales of the

modelocked TEA laser pulse given below

T " 250 ns.
P

TR = 24 ns.

1.5 ns. < T < 10 ns.

From the rates given in Table B-1 we conclude

Z < 1- << Z
3N - T 12T

R 12

S < - 33 < R.
12 % 33

p



Table V

Characteristic Relaxation Rates of Energy

Transfer Processes in CO2 - N2 - HeTr ,-2

Process

1. V-T

2. Intermolecular

3. Intramolecular

4. Intramode V-V

V-V

ZVT

Z3N

z 3 2

z1 2

V-V

z 3 3

Rate

3 -1 -1
= 4.10 s torr

= 1.9 x 10

Reference

72

-1 -1
s torr 72

-1 -1= 40 s torr

5 -1 -1
= 3 * 10 s torr

6 -1 -1= 5.3 x 10 s torr

72

7 -1 -l
R = 1.5 * 10 s torr 505. R-T
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The above comparison, which show that the characteristic

pulse widths roughly fall between the characteristic medium

times, form the basis for our treatment of the laser satura-

tion in Chapter 3. Both ZVT and Z32 are slower than

Z3 N, which is slow compared to the TEA pulsewidth, and,

hence, can be ignored.
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