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ABSTRACT

Systems analysis techniques are employed in an operational
and financial evaluation of the potential for ultra short haul air
transportation. Direct and indirect costs are modeled as functions
of vehicle size and level of service. Access/egress time is ana-
lyzed using a probabilistic, random variate formulation of a total
travel time model. Subdivision of point-to-point markets into
region-to-point and intraregional cases is analyzed. Demand and
market share sensitivities are predicted as functions of a multi-
dimensional level of service quantity, where frequency of service,
market subdivisions, multistep policies, and vehicle size are iden-
tified as decision variables. A network example is solved using
expected values from a more general probabilistic network model.
Profit-seeking and market share maximizing fare policies are exa-
mined. Extensions of the model are identified as methods of alter-
native transportation technology analysis.
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1.0 Motivation for Research

The suburbanizatibn of the 1950's has had a great effect on the

transportation needs of the entire community, and on the ability of

existing transportation modes to serve those needs. This is not

merely a question of appropriate technology, but from the standpoint

of an evaluation of operational policy as well. The saturation of

available transportation capability in large metropolitan areas is

at hand, and worsening.

Recently, in response to problems in the related areas of energy

usage and urban air pollution, a greater awareness has developed as

to the history and future of this process of suburban growth and

urban sprawl; in particular, in regard to the congestion problems

arising from the sometimes painfully slow collection and distribution

of passengers engaging in intra-regional and intercity travel under

50 miles. Of the estimated 1.72 x 1012 total U.S. intercity passenger

miles this year, greater than 45 percent fall into this ultra-short

haul category.

Several concepts have been proposed to solve the problems of

congestion. Among them are high speed ground transportation. This

solution, however, suffers from the large public investments required

of fixed-line technology, and accentuates the problems of intermodal

trip itineraries, substituting modal congestion for link congestion.

Another proposal is region to point USH air transportation. Histori-

cally, both have suffered from the economics and demographics of



short haul transportation, in that a mass market is necessary for

provision of service at competitive prices.

As we shall see, only by a systematic search of operational

policies and service scenarios will a great enough market penetration

be expected such that the economies of scale that do exist are fully

exploited. Such a systems approach will require identification and

quantification of variables influencing the feasibility of the ser-

vice proposal, and a similar micro-scale view of the market for such

services.

Until now, analysis of ultra short haul air transportation in the

United States has been limited to retrospective demand analyses in

major metropolitan markets. As long as short haul market analysis is

limited to such techniques the development and exploitation of the

air mode is severely hindered. Were a generalized analytical model

embodying more comprehensive coverage of service variables available,

much of the expensive site-specific assumption formation and data de-

velopment process could be avoided, making the air mode better under-

stood and more readily integrable into the existing transportation

network.

The most recent evaluations of intraregional short haul service

proposals have dealt with extensions of airport feeder services to

the commuter sector, with assumptions made in the areas of demand,

travel time and costing criteria.

The Eastwood, Gosling and Waters study (Operational Evaluation

of a Regional Air Transportation System for the San Francisco Bay Area,



September 1976) prepared at ITTE (Institute of Transportation and

Traffic Engineering), University of California at Berkeley for

NASA Ames Research Center analyzed an intra-regional service from

a parametric standpoint, yielding data on potential usage patterns.

A minimum traffic density as a function of operational policy vari-

ables such as subsidy is one of many limiting constraints. The

variation of system evaluation characteristics with similar opera-

tional policy considerations is postulated. Of greatest importance

in the study is the behavior of the logit demand model at the "tails"

of the demand-cost-time surface. The proposed alternative modal

technology (air) is quite estranged from the calibration points of

the model used as it is a higher cost, lower time service to the

potential user. At fare levels representative of current VTOL tech-

nology, zero-length and line haul costs-are a magnitude greater than

fixed-line modal technology (auto, rail). Consequently, assumptions

of cost elasticities for various disaggregations of a market may

require more detailed formulation.

Similarly, the access-egress or collection and distribution

problem would have to more carefully formulated particularly for the

more general case. The results of an MIT/FTL study published in

March, 1976 (Mann, R.W. Jr., Short Haul Helicopter Service Proposal -

The Feasibility of New York Airways Expansion to Nassau County, FTL

R76-2) analyzing a similar intra-regional short haul service pointed

out the necessity for examination of the effects on the ease of access

by subdivision of the market through use of multiple stations within



a demand region.

Subsequent to the March 1976 MIT/FTL demand analysis, a finan-

cial assessment was undertaken indicating profitable operations on

total costs at load factors above 45% for a 30 seat vehicle. An

optimal vehicle was chosen and route generation undertaken using

MIT/FTL's FA-4.5 linear programming Fleet Assignment model. An

optimal fleet mix was then determined by exercising another FA-4.5

option. Relationships between vehicle size, number of terminals,

and nonstop vs. load building multi-stop routings were found to pro-

foundly affect trip time, costs (both direct and indirect) and con-

sequently demand and market traffic density.

The importance of an operational policy framework in which to

analyze the short haul air mode is of great importance. It has been

shown that of the two usual basic policy formulations - maximize

user benefit or maximize operator profit - the former may require

subsidy levels on the order of those afforded current fixed-line tech-

nology (50-100+% of revenues). The latter is feasible in any case

and operates comparatively at no net cost to society. The tradeoff of

passenger-operator-community-societal benefits can in effect be read

directly from the demand curves and resulting market share.

Some demographic and geographic characteristics of study areas

are truly unique, rendering generalization between regions infeasible.

The most important of these demographic factors - population and in-

come distribution - plus the gross geographics - natural barriers

and point-to-point vs. corridor markets - of a region can be incor-



porated within an analysis framework. The inclusion of a probabilis-

tic, random variate analysis of the access-egress problem, plus a

closed-form and parametric analysis of the network effects of market

subdivision, in a demand formulation of the product form establishes

the basis for analysis of multiple policy alternatives as discussed

above. Alternatively a total analysis of a particular operational

policy choice may be conducted.

The multiple station or market subdivision concept allows a

higher frequency of service to the user at the expense of a smaller

vehicle with higher unit costs, and (possibly) increased indirect

costs due to smaller station volume. This is balanced, however, by

the ability to build load factors (or utilize a larger vehicle) through

multi-stop routings and by reduced access-egress time. By analysis of

these tradeoffs in a general format, conclusions can be reached in

specific cases, and in varying operational policy criteria,

In an attempt to shed new light on a problem that has existed

for over a decade, this systems optimization will cover in depth quite

a bit of ground in the modeling area. In chapter 2, some of the

shortcomings of present demand and travel time modeling techniques

will be analyzed. The validity of closed-form solutions vs heuris-

tics derived from probability theory will be compared. Chapter 3

discusses cost modeling in USH air transportation. Direct and in-

direct costs and their causal attributes will be used to generate

decision variables for use in chapter 4, which introduces the use of

probabilistic techniques and results from queueing theory.



In chapter 5, a demand model is proposed that takes into account

the decision variables uncovered in chapters 3 and 4 to build a level

of service factor quantity. Using this vector, demand and market

share variations may be evaluated. Operational strategies and market

solution states from economic theory are presented in chapter 6 for

input into the case studies evaluation in chapter 7. Both region-to-

point and a general intraregional case are presented. Comparisons

and proposals for areas of future research are presented in chapter 8.

While the result of this ultra short haul transportation systems

analysis outlines feasible regions within policy alternatives, it is

not sufficient to stop here. Transportation systems planning on paper

does not carry passengers. Demonstration projects such as those pro-

posed in chapter 8 are an opportunity to experiment and to perform

market research to determine what the traveling public wants and will

respond to in terms of new and innovative transportation technology.

The formulation of a generalized model for alternative transportation

technology analysis will enable the generation of rationalized policies

for deployment of new proposed modes. A welcome spinoff to this model

is its implications for other problem analysis: airport access, per-

sonal rapid transit, demand responsive "Dial-a-Ride" proposals,

or generalized facilities locations problems.

The choice of introducing VTOL, STOL, compound technologies or

current modes on a market by market basis is economically straightfor-

ward. By developing a viable reference model, the necessity to "invent

the wheel" again and again is ended.



2.0 Problems with Current Short Haul Modeling

In general, the classic mathematical modelling techniques and

formulations used in the analysis of the demand for transportation

services are not suitable for assessment of "alternative" modal

technologies. Owing to stretching of time cost frontiers by innova-

tive transportation technology, such new modes are not well charac-

terized by models calibrated on existing operations.

2.1 Demand Modelling Choices

The two most widely used demand formulations, product and

logistic (logit), which are of the form

D TC product form
D 1form

1 + exp(ac+0t) logit form

where a,B - 0

Here, alpha and beta refer to the demand elasticities with respect

to cost and time respectively. These can be shown to exhibit fal-

lacious behavior at the extremes of the cost-time frontier. Graphi-

cally, these two demand formulations appear as in figure 2.1

We may characterize the behavior of operators of transportation

services as basically profit seeking in search of minimizing variable

costs, and adhering to a fare selection strategy that will maximize

contribution to overhead. Looking at the revenue side of such an

operator's strategy in a particular market, we find that revenues

are simply the product of fare and demand level at this particular

point. Intuitively, we would expect that there would be some fare

that would maximize revenue, and that below or above this fare,



revenue would be non-optimal either owing to inadequate fare level

or demand erosion. This concept is shown in figure ?.2

Graphically, these two demand formulations appear as in Figure

2.1

Figure 2.1

Product and Logit Demand Surfaces
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We also might expect that above a certain unreasonable fare,

that no passengers would desire to travel by this particular mode.

(All propensities to purchase Rolls Royce Corniche convertibles aside)

In the case of the product model, we can express the demand as a

function of fare, F as:

D c KoCcT B

TRIP Mce I $



Revenues are then:

R =F D

Or R = KoF ( rc+1)T

Maximizing R and reasonably assuming no trip time dependence on fare,

we find the proportionality:

3R (a+l) K1F
F

and that 3R is always positive and revenue unbounded for a>-l. This
aF

indicates Fopt= C. The case a = -1 corresponds to a constant revenue

irrespective of fare. For a < -1, which corresponds to a cost elastic

market, the derivative behaves as always negative and unbounded,

iridicating Fopt= 0. Analysis of the higher derivatives gives no better

interpretation of what would seem intuitively incorrect.

For the logit formulation which is extremely popular among urban

transportation planners, a similar analysis shows that when demand

and revenue are related as:

D = K2[ l+exp (F+BT)

as before, revenue, R = F * D

or: R =

l+exp(aF+K3 )

Differentiation with respect to fare, reveals that

aR = 1 + exp(aF+K3)(1-aF)
aF 1 + 2exp (aF+K3)+exp (2(aF+K 3) )

Hence, for all oc< 0 (which is the only logical conclusion), aR is
aF

always greater than zero. This indicates that the maximum fare



policy is also the maximum revenue policy.

In other words, both models suggest for optimization purposes

that the service provided is so valuable that as we continue to

increase fare, there will always be demand consistent with maximi-

zing revenues. This "value of service" concept, while perhaps

valid for long haul operations (moon shots, for example) where there

may not exist reasonable alternatives, is completely fallacious in

the short haul sector, and apparently invalidates the logit demand

formulation for alternative technology and financial analysis.

Here, our intuitive model would take over. We will expect to be

a ceiling fare above which no demand exists for a mode at a particular

level of service. Similarly, an upper bounding trip time will exist

such that even at zero fare, no demand will exist for this mode. So

strong are the modal cross-elasticities between price and level of

service that this is in reality for short haul markets, a fair asses-

sment of the situation.

Turning to travel time, the other demand variable, there are

other areas which need to be explored on the ultra short haul "micro"

scale.

2.2 Travel Time Modelling

In the area of travel time models, we have similar problems

induced by the uncertainties of the urban or regional nature of our



service offering. Large scale modelling often fails to take into

account the temporal and spatial dynamics evident in a metropolitan

situation.

As has been pointed out many times previously, the importance

of access/egress time as a percentage of portal-to-portal trip time

is inversely proportional to stage length. Hence in a transatlantic.

market, 30 minutes saved in access/egress is small as compared

with the seven hours required block time. By contrast, a similar

thirty minute decrease afforded a short haul market will likely

be the determinant of the financial viability of variously priced

modes.

This trend, in access/ egress time importance can be seen ana-

lytically in Figure 2.3, as we vary cruise speed or stage length,

Even instantaneous transport a la Star Trek, will yield a finite

(and low) block speed over any non-zero distance, increasing as

stage length when saddled with an zero-length access/egress time.

The large degree to which market level variations in travel

time affect the demand formulation casts doubt upon the validity

of our simple travel time model. This is normally functionally re-

presented as:

T = to + tl + t2 *d

f



Figure 2.3

Block speed and total travel time variation with cruise speed,

stage length zerp length times varying

- -" n-

J

w4=

I-

4vc 600

Vcptucfse

Stage length=25 miles, sum

oes 0

of zero length times= 4s * minutes

75 X

where to = sum of access, egress, passenger processing and cycle

times. "Zero Length Time".

ti = displacement (wait) time proportional to length of

day, inversely proportional to frequency of service.

Normally represented as one half the headway, a result

that can be proved through some of the probability



modelling techniques presented later on.

t2'd= block time; inversely proportional to cruise speed

of vehicle; proportional to stage length.

For this reason, the quantities of most importance to our

ultra short haul example will be those portions of the portal-to-

portal time that are alterable either through policy or technology

choices. For the purposes of this study, these are number and

distribution of transportation terminals, access/egress tech-

nology, and the service's operating policy. All of these items

affect the "fixed" to term in our macro model of travel time. This

term must, for the purposes of further analyses, be broken down into

individual terms bearing functional relationships to the variables of

interest.

The first concerns the degree to which certain large scale "area"

markets are sub-divided into smaller (in the limiting case) "point

to point" markets. An optimization methodology will be developed,

using a random varate formulation of access/egress travel time to

minimize a suitably weighted objective function subject to policy

and technological constraints. The effects of various access/egress

policy/technology considerations (Dial-A-Ride, Bulk Service, etc.)

can be shown. Finally, the financial operating statistics of pos-

sible operator strategies may be evaluated by tying together cost

projections and travel time models in the framework of a reasonable

demand formulation and a suitable fleet assignment model.



3.0 Cost Modelling in Ultra Short Haul Air Transportation

For the purposes of ultra short haul air transportation, only

two vehicle technologies currently exist: VTOL and STOL. The

development and eventual commercial use of a compound V/STOL

vehicle (tilt rotor, tilt wing, etc) will very likely hinge upon

whatever operating results are managed by current technology

systems. For planning purposes, however, such proposed vehicles

will be included in this study.

Optimizing the cost performance of a vehicle requires de-

tailed and exhaustive knowledge of its mission and operating en-

vironment. In the Mach .80 cruise, 3500 NM stage length, 360

available seat, 10,000 ft. paved runway regime, the Boeing 747

performs admirably, and at less than $5.00 per vehicle mile in

cruise. What, then should we expect in terms of operating costs

for a 140KT cruise, 50 NM stage length,50 seat VTOL machine?

Not surprisingly, no direct scale factor is involved. In fact,

the vertical take-off or short take-off device is,on a unit cost

basis, considerably more expensive to operate. The compromises

of aerodynamic v. powered lift v. vectored thrust; the large

number of flight cycles per hour, and the short field capabilities

of such a vehicle, combine to inflate direct operating cost to the

level of CTOL aircraft with a much greater productivity. For some

of the same reasons, STOL vehicle unit costs are also higher than

corresponding CTOL unit costs, although of an intermediate magnitude.



While STOL has proved its usefulness and financial success

in programs such as DeHavilland of Canada's Dash 7 service from

Montreal to Toronto, it may not be suitable for true city-center

operations. STOL aircraft are in reality constrained to conven-

tional or existing airfields. In the urban setting, land acqui-

sition costs are so high as to force adoption of a VTOL or com-

pound V/STOL technology. Comparing land costs alone for various

northeast corridor cities, a VTOL system undercuts a STOL system

of similar capacity by 75 percent. This, of course, at the ex-

pense of a vehicle with higher operating costs.

3.1 Direct Operating Costs

In order to model the costs of a current or proposed ultra-

short haul transportation system, an exhaustive analysis was made

of current helicopter direct operating cost. Data was gathered

on current transport category vehicles ranging in size from 5 to

40 available seats (1500 to 10,000 Ibs payload). Hourly costs

obtained from other than commercial transport operators were nor-

malized where possible to reflect statutory crew sizes, equipment

requirements, and standard reporting practices.

These standardized requirements and practices are detailed as

follows:

* 2 person crew (per F.A.R. 90.3) in transport category

aircraft. Crew costs from NASA CR-137685 based on data

supplied by Douglas Aircraft Company and shown in Figure

3.1 .



0 Fuel costs based on JP-4 Kerosene at 35¢ per gallon re-

flecting bulk contracting and projected cost increases.

Non-turbinekfuel at 55¢ per gallon.

* Dual IFR certification-instrumentation and hyperbolic

RNAV equipment (similar to DECCA, OMEGA, LORAN-C).

* Ownership or lease costs based on seven year depreciation

per CAB Form 41 standard reporting practices to residual

of 10 percent.

* Utilization of 2200 hrs per year.



Figure 3.1

Crew Costs NASA CR-135872

1975 dollars

2 person crew

NASA VT20,- VT80 vehicles

VT20

VT40

SVT60
VT80

40

Stage Length, tiles

70 100 200



With the exception of proposed/prototype vehicles all represent

operational experience with the particular model.

Some learning-curve type variations are to be expected in these

costs; the effects of familiarity with the vehicle type have not

been introduced, and while it is expected that "mature" direct

operating costs might be marginally lower, this affects only one

data point--the Aerospatial SA.330 Puma.

A linear regression analysis was performed on the data, revealing

that an excellent degree of fit was obtained with a single variable--

seats available. This corresponds to the standard propellor first

class "A" fare category seating density. Vehicle data and the linear

regression statistics are shown in Table 3.1 and Figure 3.2 .

The effects of newer technology can be seen as orthogonal to the

regression line. While a vehicle cruise speed variation of between

105 and 140 KT is present in the data, it does not correlate well

with direct operating costs.

Since all VTOL vehicles are range limited by comparison with

STOL and CTOL aerodynamic lifting vehicles, design range is not a

significant operating cost variable. The ultra short haul mission is

not one where ultimate design range enters heavily into operating

cost equations for current vehicle technology. Rather, stage length

is a more valid parameter. This effect is shown for several vehicle

sizes in Figure 3.3 .



Table 3.1

Current VTOL Technology DOC hr Figures

Vehicle GW * PL Sa DOCHR

S-58 (1 eng.) 13,000 3840 16 485

S-61L 19,000 6100 30 830

S-70 17,520 5600 20 505

S-65 36,600 7700 40 970

S-76 9,350 2550 10 293

BV-179 18,700 5657 25 615

BO-105C 5,105 1420 5 118

BV-107 (CH-46) 20,100 5940 26 868

SA.330 16,800 3700 17 710

Jet Ranger 5,950 1390 5 204



Current Technology VTOL Operating Costs

Linear Regression Results; Normalized DOChr

------ Gross Weights
- - - Payloads

Seats Available

S, seats
PL, klbs
GW, klbs

Regression Equations

DOChr(S) = $88.47 + $24.32 * S

R2 = .958

DOChr(GW) = $92.26 + $25.70 * (GW/lOOO00)

R2 = .902

DOChr(PL) = $29.68 + $106.80 * (PL/1000)

R2 = .820

1000

44 500

o
r-c(-
0

Figure 3.2



It is also apparent that while economies of scale do exist

in rotorcraft DOC, they are not large as one might expect. This

perhaps reflects the relative infancy of rotary wing technology. It

is also interesting to note that the most current designs are sized

below 20 seats, reflecting marketability projections for VTOL machines.

In order to assess the impact of state of the art on system

performance, a hybrid direct operating cost formula was assembled

for a vehicle of similar mission expectation. Drawing on studies

by NASA and Lockheed-California, a median direct operating cost

believed obtainable in the 1985 time frame is shown in Figure 3,4

By algebraic manipulation, this can be reduced to the desired

function of seats available formula by assumption of average stage

length alone. In recognition of the ultra short haul nature of the

markets involved, this assumed average stage length was 30 miles.

The formula then becomes:

DOCH $252.00 + 4.20 Sa

which compares favorably with similar forecasts made at MIT and else-

where.

It is interesting to note that as a function of technology, the

zero seat costs are now higher by a factor of 4 and vehicle expansion

costs reduced to one sixth their current technology level. This has

the effect of introducing extreme economies of scale into vehicle

direct operating costs, and can be expected to have a profound effect

on optimal vehicle sizing in 1990's ultra short haul air transporta-

tion markets,



NASA CR-135872

Advanced Helicopter Direct Hourly Operating Costs As Function of

Stage Length:

1000

o5000

0
VT80
VT60
VT40
VT20

70 100 200

Figure 3.4

Stage Length, NM

NASA CR-135872

Advanced Helicopter Direct Hourly Operating Costs, As a Function

of Vehicle Size:

DOChr = $252 + $4.20 ( S )

at a stage length of 30 NM

Vehicle Size, Seats Available

600

300S-

0

0

Figure 3.3



Unit seat-hour costs are compared for current and advanced

helicopter technologies as a function of vehicle size for selected

stage lengths in Figure, 3.5

Figure 3.5 Unit seat-hour costs - Current and Advanced Technol-

ogies, various stage lengths

1 - Current Technology, 20 NM stage

2 - Advanced Technology, 10 NM stage

3 - Advanced Technology, 30 NM stage

1
2
3

20 40 60

Vehicle Size, Seats Available

.. 30

200

100



3.2 Indirect and Systems Costs

The economics of facilities may be approached in a similar

manner to those of vehicles, becoming more complex only in the

effects of congestion. Whereas additional frequencies or larger

vehicles may be utilized to deal with short term under-capacity

in a market, congestion costs in terminals have no short term

solution.

As passenger throughput increases, utilization of personnel

and facilities become more efficient up to the point where their

design point is reached. Past this point increased costs are in-

curred in terms of passenger inconvenience and delay. Level of

service is adversely affected, and demand can be expected to erode.

As a function of design capacity, total facilities costs be-

have generally as our vehicle operating costs. There is a zero

capacity cost, plus an incremental cost of additional capacity.

Treating now the entire station operation cost--personnel plus

ownership costs--we may express the cost per passenger at any

individual facility as shown in Figure 3.6 . Below the design

capacity, there is an increasing unit cost. At operating points

above the design capacity, there is an apparent everpresent as-

symptomatic reduction in passenger costs. In reality, delay costs,

and level of service deterioration force actual incurred passenger

costs to remain at or in fact increase above assymptotic costs

present at the design capacity.



Figure 3.6

Station Costs As a Function of Design Capacity

Slope = Assymptotic
unit cost/pax

zero
capacity
cost

Design Capacity, pax per unit time

Figure 3.7

Station Unit Costs Per Passenger As a Function of Utilization
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This intuitive result is an excellent area for research, and is

shown schematically in Figure 3.7 . It is not clear whether these

congestion costs have ever been documented, although they certainly

exist.

To arrive at an accurate prediction of System Operating Costs

is difficult. Practically speaking, there is no direct means of

assessing instrumental increases in total system overhead. Using

the work of N.K. Taneja, we can get a valid "ballpark" in which to

field expected values. Using the regression equation for Local

Service air carriers we can perform a basic scatter plot to see how

well historical data from heli:copter transport carriers (New York

Airways, SFO Helicopters, and Chicago Helicopter Airlines) fits the

prediction. This plot is shown in Figure 3.8 , and indicates that

there is a high bias in the prediction in terms of the fixed con-

stant, but that the variable linear component of the equation is

quite valid.

Figure 3.8 Scatter plot of Helicopter v. Local Service Carrier IOC's
r 0 1
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REGRESSION EQUATION:

IOC ($/YR) = (2.002 x 106) + (0.43 * R)

FOR LOCAL SERVICE AIR CARRIERS - FROM FTL R67-2,

"A Multi-Regression Analysis of Airline Direct Operating Costs"

A supplementary regression was performed on several variables

including Revenues, RPM's, Revenue Miles (RM), Available Seat Miles

(ASM). The best fit to data was obtained with Revenues again, and is

of the form:

IOC ($/YR) = (0.131 x 106) + 0.435 * R

The degree of fit is described by:

R = .968, Standard Error = 0.074 x 106

This is similar in degree of fit to the equations derived by Taneja.

Neglected to this point have been the capital costs of service

initiation. On the groundside, the question of terminal design and

complexity is of great consequence in terms of required capital. From

the incremental income statement presented above, and from the cur-

rent operating statements it is clear that current operators of

helicopter services have not and could not intend to invest in land,

or complex ground facilities.

Current policy is towards the rental of space at general aviation

terminal facilities or industrial sites. At the point when access con-

siderations require that VTOL facilities move away from airport sites,

and be located optimally in city-center sites, the mode will have to



have priced itself into the market. This will be through a combi-

nation of:

- Reduction of DOC~per ASM as a function of Energy Efficiency

and maintenance complexity (both technology questions)

- Greater reliability as a function of better instrumentation

in reduced weather conditions (IFR flight) and mechanical

complexity.

3.3 Decision Variables For Systems Optimization:

Having reviewed the basic economics of USH mission vehicles and

representative service facilities, it is possible to postulate the

existence and importance of several decision variables for use in a

systems optimization of any market. The strategy is essentially one

of identifying factors affecting costs of providing service, asses-

sing impacts on level of service offered, and finally evaluating these

effects on demand, market penetration and financial statistics.

Breaking total cost associated with the services in a market

into direct operating costs and indirect operating costs, it is pos-

sible to quantify the above factors and observe the interrelation of

many of them.

The standard definition of direct operating costs includes those

portions of total' cost incurred solely.in the provision of service and

correlated with the level of such service. For the purpose of this

study, these costs may be termed variable costs. A standard profit

maximization will attempt to minimize variable costs thereby maximizing



contribution to overhead. It will be shown here that by the intro-

duction of several new degrees of freedom into portions of the demand

formulation, that this ,variable cost minimization may not be the

best tack.

Owing to certain limitations in our calculus, the assessment

of variations in fare and level of service at one time are not often

possible in a closed-form market solution. The author does not at-

tempt to infer the development of a new calculus of multiple varia-

tions. Rather, an iterative technique will be developed, playing

on certain factors inherent in the geometry of the product demand

formulation in level of service, and the demand-level of service

surface. For the moment, however, let us leave variation and demand

for later.

Returning to the identification of factors intuitively affecting

variance costs, several are flagged:

Vehicle size, S--direct operating cost functions were found to

have the best correlation with seats available. This is intuitively

correct, although somewhat surprising in light of an inferior regres-

sion fit of direct operating costs with payload. This indicates the

effect of differing mission strategies in the area of design cube

weights. (It must be remembered that except for relatively recent

designs, VTOL vehicles have not been designed with commercial pas-

senger transport as a primary goal). In order to reduce the unit costs

of seats provided, an operator attempts to maximize vehicle size in



order to gain from the effects of economy of scale.

Frequency of service, f--direct costs attributable to a market

are clearly proportionaj to the totalnumber of services offered in that

market. The operator has no choice but to dispatch entire vehicles,

rather than full seats, hence our linear relation with flight costs

and directional frequency. While vehicle size did not affect level

of service or demand, frequency most definitely will affect both, and

very strongly. At ultra short-haul stage lengths, frequency can be

shown to be the single most important factor affecting market pene-

tration.

Number of intermediate stops per flight, k--In dealing with

short range lengths, a large portion of total block time is cycle

time. This is the time associated with the taxi, takeoff, maneu-

ver, climb, descent and landing portions of the flight. Typically,

CTOL vehicles have cycle times in the over 20 minute range, far

overshadowing flight time for an ultra-short-haul segment. VTOL

vehicles, due to low altitude cruise and non-conventional abilities

to airtaxi and circumvent CTOL air traffic control procedures, are

able to reduce this by almost a magnitude, averaging 2 to 3 minutes.

This time is still significant however in multistop services as it

does not consider turnaround time. This is typically of the same

order as cycle time. Hence, multistop flights incur cycle cost

penalties and level of service (time) penalties but allow load

building capability with larger, lower unit cost vehicles and/or



a larger number of facilities.

Vehicle cruise speed, Vcr--while important, it can be shown that

although the effect of truise speed on DOC is a direct proportional

one, in the current vehicle analysis it will not be considered in favor

of the various other variables mentioned previously.

Minimization of direct costs while assuming the indirect operating

cost component fixed is a direct route to an operating loss. While

IOC is often of the same magnitude as DOC for domestic trunk carriers,

(this can be seen to result from sophisticated reservations capabi-

lities, monumental terminal facilities, and large passenger servicing

costs) the saving grace for the trunk carriers is a high vehicle pro-

ductivity and large passenger volume over which to distribute these

costs.

For the ultra short haul operator, a high productivity VTOL device

does not currently exist. While the promise of a 1980's era VTOL

vehicle with productivity comparable to or better than current STOL

technology exists, the present term does not offer such a solution.

Indirect costs must therefore be analyzed with the same vigor and

intensity as direct costs have traditionally been.

As has been shown, facilities can be as spartan or lavish as

need be, with costs commensurate with passenger appeal. Not wishing

to enter into one area of behavioral or market psychology, let it

merely be said that present term facilities should be designed with



austerity and function always in mind. This should be pictured

as somewhere between intercity bus and local service air carrier

complexity. The costs pssociated with these facilities vary

widely, yet per passenger, they fall between $0.50 and $5.00.

This order of magnitude appears large, but when viewed compared

to the levels of service offered the passenger (which must on

some quantitative--certainly qualitative--basis differ by much

more than a magnitude) is not really so great.

Drawing on previous analysis, the system optimization

variable with respect to station cost is:

Number of facilities, N--as some portion of facilities

costs is fixed, this overhead will vary lenearly with number of

facilities within the demand region. Of greater importance here

is the effect of number of facilities on the variable component

of station costs. As the number of stations increases, level of

service is increased by an area rule to be developed in a later

chapter. While utilization may fall off slightly, these effective

increased costs may be recouped by increased level of service or

in fact increased market penetration.

The effects of market subdivision and to some extent multi-

stop routings can be explained through the theory of spatially

distributed queues. This will be discussed in chapter four.



4.0 Travel time modelling

In the area of travel time modelling, we again require an

extensive knowledge of Certain quantities that characterize the

regions or cities (or segments of the same) involved. In par-

ticular, it is customary to take certain demographical quantities

of the .studied area into account when assessing segmented

or disaggregated demand potential. This data and geographic con-

siderations will almost entirely characterize any study area,

providing enough data for in depth analysis by traditional macro

models. It can be shown that this same data will also provide

a basis for the micro modelling postulated as necessary in the

analysis of ultra short air transportation systems.

As previously identified, the area of greatest interest in

discussion of travel time models will be in those areas termed

fixed in the macro model. These are the zero length travel time

terms comprising access, passenger processing, wait, cycle and

egress times. The block time portion of the model will not be

further analyzed except to the extent that it retains the distance

cruise speed relationships.

Various treatments of each portion of these segments of portal-

to-portal travel time have been used in previously proposed models.

Among the formulations used for analysis of access/egress times are

closed form and estimation (educated guess) techniques.



4.1 Closed Form Techniques

In the area of closed form relationships, those proposed by

Miller and Genest are the most rigorous, dealing with particularly

valid geometrizations of city and regional demand areas. Each pro-

poses a demand area geometry, a geometrically functional demand

density relationship, and a travel velocity functional. From these

are deduced closed-form travel time relationships that (not sur-

prisingly) vary strongly with deman density and geometry assumptions.

That form proposed by Miller in the fourteenth memorial Lan-

chester Lecture is of polar form, considering a circularly symmetric

demand region of radius, R. Detailed in Figure 4.1 , the region

consists of a central core of radius, rc with uniform demand density,

pc . At greater than city center radius, demand density drops off

geometrically with parameter, n as:

p(r) = p[ n where r >r (Figure 4.2)

The parameter is typically of the order, n n 2. Access is of

radial-metric type, along radial and arterial highways to any of m

terminals located at a common radius, rt . Clearly, there are two

possible paths involved: either r< rt corresponding to "inside"

access, or rt < R , the "outside" case.

The average distance travelled is:

S .=S-dp 4 pcrc

Idp + Pc

where dp = Pcrc r'-" drdO



A circularly symmetric city

Figure 4.2

p(r)

r radius of core city

rT radius of terminal location

R ultimate radius of
rc catchment area

A demand profile with geometrical decay

R

A demand profile with geometrical decay

rc R

radial distance

Figure 4.1



and S = rtO+(rt-r) (inside, outside cases)

(This recognizes that average distance travelled in the central core

region is two-thirds the central radius. The integration limits in

E are determined by E = 2r/m, the number of equally spaced terminals.

Let us consider the uniform demand density case.

p(r) = pc (rc )n

r

hence, the population of the region, P is:

JSR ZTp(r) r2 dr + PcFc

plr)'r cIt ~ Pc

'C

I R Zfp(r)rdr +PC
0

with Fc for uniform pc is 2 rc
T

The variation of I/R with R/rc and density decay parameter, n is:

I R

3

@0)

Figure 4.3

O 2 3 4
SPRAWL PARAMETEI, n

Now we can

the R/rc sprawl

The integration

find F/R with knowledge of decay parameter, n, and

characteristics of the catchment area.

over the two cases reduces to:

and



S = IfSdp + 2 Pcrc
3

Idp + Pc

= o Pcrc [ _ (rt-rc) + (R-2rt + rc)] + 2 pcrc
2 3

P + P

where to = 2/m as before.

Now plotting S vs. rt for some ultimate radius, r, we find a con-

r. rc b
venient linearization of the form (a + ). This is detailed in Figure

4.4

We may then express the sum of access/egress and wait times as

the time lost, Tz = T access + T egress + T wait

= 2t + T wait

= 2(a+b) rc + Twait (v.=average access/egress

m 7 speed)

Realizing that if previously, with one terminal location in the region,

f0 frequencies were provided in the market, with m terminals the de-

dicated frequency at any terminal m becomes:

fm = f/m

and hence,

TL= 2(a+b ) rc + m
m - 2f

By setting the differential aTt equal to zero, an optimum number of
am

terminals, m* may be determined. Similarly, an optimum dedicated fre-

quency, f* may be determined by substituting Tk into the demand equation.m



Extensions of this model to include network effects are apparent.

This analysis assumes travel time a constant. In order to cor-

rectly model the congestion effects present in any "loaded" trans-

portation network we incorporate a velocity function with parameter,

q.

v(r) = v ( )q (r < r <_R)

This varies with (r/rc) q as distance from the central core increases.

Values of q are typically 0.40 but are related to R/rc , the ultimate

catchment radius ratio , so that at r=R, v(R) - 50 mph, while v(rc) -

20 mph, a characteristic maximum in the city center. Clearly,

log [Vr/]

log R/ rc

Here, v r/V c describes the "far field" access velocity ratio of the

suburbs with respect to the city core. This normally varies from two

to five but is an intuitive function of R/rc. As expected, q is a

strong function of congestion and has an inverse relationship to the

population density p(r).

Now we can express the average access time t directly as:

Ia A .1r.Ft

Again, the integration and graphical analysis reveals that there is

still a linearized format with slope (m)-1 in the abscissa, but that



Figure 4.4 (a + ) linearization of average access distance as a
m function of terminal radial location and number

of terminals, m
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Figure 4.5 Long Island corridor market represented by multiple
circularly symmetric hubs for analysis by closed-form
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access times are longer. This is expected, and even more clearly

points out the necessity of city center terminal location.

Using this sort of analysis, we could also model a corridor mar-

ket as several catchment radii, Rn located at hubs H located on an n

common line haul axis as shown in Figure 4.5 , each with m terminals

at rt,n . This may be unacceptable, however, for the reasons that

--there is no truly exponential p(r) decay about the hubs, Hn.

--in order to model total service areas, catchment radii Rn will

not be unique, or if Rn are unique, the model geometry does not

allow the entire area to be modelled--it is not covered.

--modal split from such a formulation is difficult to envision,

--congestion effects are hub-centered, not corridor east-west

justified which clearly will be the more prominent effect.

A linearized normalization of the corridor axis velocity dis-

tribution is conceptually correct, but mathematically diffi-

cult to fathom.

Here we have touched on a geographic constraint to the model.

This will become a major reason for utilization of a probabilistic

random variate approach to the travel time problem.

The closed-form models of Genest consider various geometrically

shaped regions; square, rhomboid, circular, and segments of circular

cities. (Boston, for example, is a 270 degree city, Figure 4.6 .)

Yet these models suffer from extreme over-specification, and are highly



Figure 4.6 Boston, Massachusetts -- a "270 degree city"
t



specialized. Clearly, a more generalized--yet characteristic--

modelling technique must be developed.

4.2 An Alternative to Closed-Form Solutions

In order to deal with the spatial and temporal variations in-

herent to urban service systems, the use of a specialized mathematics

of uncertainty is proposed to evaluate design criteria. Through

employment of probability theory, geometrical probability, queuing

theory and spatially distributed queues, the task of systems analysis

in ultra-short haul air transportation is eased. In fact, this branch

of mathematics and its related operations research techniques are use-

ful in many forms of systems work.

The extent to which this area has been neglected in both the

literature and in textual material amazes the author. Most infor-

mation (save for a text to be published shortly by Larson and Odoni)

being gleaned from various esoteric cookbook-ish compendia of theo-

retical and analytical techniques in probability theory. Nevertheless,

exploitation of these techniques leads to breathtakingly applicable

heuristic solutions for the problems facing urban systems planners.

In particular, the results of geometrical probability may be used

to analyze the problems of access/egress times in multiply sub-

divided demand regions, or the theory of spatially distributed demand

in customer-to-server systems such as ultra short haul air transportation.

As mentioned previously, probability theory is responsible for the



standard transportation planning usage of expected waiting times of

one half the scheduled headway and conversely the often encountered

result that actual waiting times occasionally run to multiples of the

scheduled headways ("clumping"). Models operating on a more micro

scale still are able to predict the effects of temporal variations

in demand intensity on system utilization and queues. In all, a

powerful technique ideally suited to urban systems and transportation

research problems.

4.3 Probabilistic Techniques

Having seen the travel time modelling state of the art, we wish

to be able to improve on this through the addition of some of the

realisitic uncertainties associated with the system being analysed.

The model which will be presented here requires the reader to be some-

what familiar with functions of random variables. (The author publi-

shed the preceding disclaimer as opposed to a text in probability

theory). A good background in probabilistic modelling techniques is

also assumed.

Perhaps of greatest importance will be the concept of the Poisson

process--random incidence. In this process, events of interest are

distributed randomly and uniformly along some dimension. Examples are

Poisson arrivals'distributed randomly and uniformly in an interval of

time [O,t], or "Poisson requests" for service distributed randomly and

uniformly over a demand area A. This model has been found to be a rea-



sonable one for the generation of various events of interest.

A Poisson-type counting random variable N(t) has a probability

distribution function of the form:
k - X t

P[N(t)=k] 
= Xt e

K!

Where k is the "intensity" parameter of the process, denoting the

average rate per unit time of events occurring. It can be shown

that the mean, or "expected" value of k and its variance are equal

and of the form:

E[K] = X

G? [K] = A

Figure (4.7) The Poisson Random Variable N(t)

A Negative Exponential PDF

The process can be applied to a randomly and uniformly dis-

tributed spatial case. By substitution of an area function A(s)

for t in our counting variable, this is obtained.

In terms of the travel time, however, let us return to a simpler

model. A probabilistic approach to access/egress times.

Mean Travel Time in a Single Sector

In this simplest case, consider a rectangular sector S Figure

(4.8) of dimensions o = M, Yo= N. The area is consequently A = M'N.O 0



Assume for the moment that travel distance between two random points

is accomplished on a right-angle basis--normally called "Manhattan

Metric"--parallel to either the X or Y axis.

Now, assume the positions of demand (X1 , Y1) and servers

(X2 ,Y2) are independent.and uniformly distributed over the sector.

From this, we can show that the random variables X X are uni-

formly distributed from 0 -> M and Y1 ' Y2 similarly from 0->N.

Given these assumptions, all four variables are independent, and

the probability distribution function for the X and Y components

are easily found.

Figure 4.8 Travel Time in a Sector

(x , yl)

Nd[y *
(x2 , Y2) dx

Travel by "Manhattan Metric" (Right Angle Routing)

We have:

D1 = ix1- x2 1 
+ Y l- y 2

Sdx + dy

Letting X, Y be random variables representing distances in X,Y



directions respectively:

(Y.) 2(-L) I O .

Since the Manhattan Metric distance is the sum of X component and

Y component, we may use the scaling laws of random variables to state

that the mean (expected) travel distance E [D ] is the sum of the X

and Y exceptions:

E[DI] = E[Dx] + E[D ]

Which, through evaluation is found to be:

E[D 1] = 1/3[M + NI

The distribution of D_, should we wish to find it may be found by

letting the random variable Z equal the sum of X, Y

The probability distribution function of Z may be evaluated by the con-

volution integral

fz(z) = Pf (x) f (z-x)dx

From these expected distances we may derive the expected travel

time for right angle metric response, E[TJI by the assumptions of

travel velocities vx, vy in the x, y directions. The result is of the

form:



t = t x + ty

=dx +dy
x y

and E[TI] = 1 M + N
3 v v

x  y

In case the right-angle metric is not a valid assumption, the

straight line or Euclidean distance and time may be evaluated. Con-

sidering the relationship between the Manhattan Metric distance D

and the Euclidean distance, De = (X1 - X2)2 + (Y1 - Y2)2

D Dex1 - x2 +y - '2De

=R- De

Where R is the ratio of the distances

Again employing

Now this ratio

P
(xf ,y,

Right Angle Metric
Euclidean

scaling law properties of random variables, we find:

E[D. ] = E[R-DE] = E[R] * E[DEJ

R can be represented as follows:

-, - Fig. 4.9

100 Any Region, R



Where D = PO + OQ = IX1-X2 1+1Y 1-Y21
De = PQ = (X1-X2)2 + (Y1-Y2)2

and random variable / u' the angle of the X-axis with respect to the

hypotenuse PQ.

Redrawing PQ as the diameter of a circle, we have:

0

m e Fig. 4.10

Now as the axis syytem is rotated randomly and uniformly through an

angle of 11 , representing all possible axis orientations, PO and OQ

take on values from 0 -- PQ. At any i , we have:

PO = cos . DE

OQ = sinlP * DE

Therefore, we may express the right angle metric distance;

DI = PO + OQ

= (cos + sin 4) - DE

or, R = cos t + sin Y

For any particular Y ; and utilizing the trigonometric identity, the

ratio is:

(RI') = cos i + sin y =2 cos ( i- Ii)



and the cumulative distribution function of R is:

FR(r) = P.{R < r} = P {r2-cosI-l-) <r }

by allowing *to vary uniformly over 0 < < 11

-/2

FR(r) = 2
dr

L.L.

Where the lower limit, L.L., of integration is:

L.L. = [cos~' ( + II)]

We have:

FR(r) = 1-4 cos" ( ) 1 < r< 2

and: FR(r) = dFR(r) = 4 1
dr 1 , r 1< r< 2

or: E[R] = 4 nu 1.27
If

T 2 [R] = 1+ 2 - 16 n 0.121

Hence, for future reference, the right angle metric and euclidean

distances yield excellent upper and lower bounds for non-barred res-

ponses* , and we find:

E[DE] = E[D1 ] = 11 [M+N]

*Barriers to response may be considered also, and change the result
only slightly.



or:

E[TE] = [M + N ]
12 ak vr

Which is the direct travel time lower bound.

We may expand these results to variously shaped distances

using other results from geometrical probability. Larson does so

and finds, assuming a right angle metric travel distance and

travel velocities of vx and vy, the travel times in the following

rectangularly shaped sectors of area A:

Rectangular Sector: A= X * Y

E[T] = 1 [ Xo + Yo

Diamond Sector: A= X YI,-o

< o E[T 70 [Y Y]
30

Other potentially desirable convex region geometries are more dif-

ficult to analyze and require special methods.

Circular (Elliptical) Sector:

We will consider a sector of Area= X * Y (semi-axes Xo/vniF
-0 0



Y o/Ifi) as before, again, positions of passengers and terminal

independent and uniformly distributed over a region such as that

below: I

We could solve directly for the distance between (X , Y1,),

(X2, Y2 ) but it is fairly involved. Rather we prefer to use another

method: Crofton's Theory of mean values. [(Appendix (A Consider the

Euclidean ("as the crow flies") distance between two points dis-

tributed independently and uniformly over a circle of area A. By

Crofton it can be shown that the expected value of the Euclidean

distance, DE is:

E[DE] = 128 A
45rH

Now, consider the right angle, or metropolitan distance Dbetween

the points. Relating D and DE we find, as before:

D IX X 2- X2 + Y Y 2 yS(X-Y 2)2 + Y1-Y2 )2

(X1- X2)+(Y1 -Y2)2

Or: D =RDE where R = Ratio of Disantces Right Angle
Euclidean

Hence, E[DJ] = E[R] * E[DE]



vx an optimal sector dimension:
vy

Y vy

components tx, ty .

Having overviewed the concept of geometrical probability,

the reader may have noticed (and questioned) the assumption of

both points being randomly located. This in fact is a Poisson-

like situation, and is the most general result for any particular

geometry. Any individual case which provides an average response

for that particular sector which is greater than the random

incidence result is a substantially inferior facility location.

Fixing the position of either the customer or the server in the

analysis is in fact easier analytically, and is in general the

method employed in assessing a districting impact.

In the case of the rectangular sector, of Figure 4.8 above,

what is the impact upon expected travel time of locating a facility

M N
in the center of the district at ( 2 , 2 )? We have, now for the

right angle metric case:

D = 1x 2 + Y1 2 I

= (dx2 2 + (dyj Y2=



And, by inspection this is

E[D]= 1 [M+N]

M N
E T ]= [ + ]v 4 v

Or, the centrally located facility cuts E[T. ] by 24 percent.

We may look at an alternate result as well. For the same

value of system performance--say expected response time--how

much larger can a district be when employing a central facility?

Clearly, using the rectangular sector case, the area ratio of

centrally located facility region Ac to the randomly oriented case,

A, is:

A - A => A 33% larger district.c3

By judicious location of n facilities in a point lattice-

like array, covering a randomly shaped region, R, expected travel

time may be minimized. Such problems in coverage are a direct

outgrowth of geometrical probability.

Returning to our optimal sector design, with dimensions:

S vx

We may note that by algebraic manipulation, we may now express the



mean travel time in the optimal sector as:

E[T *] 2c 2c A
xy

Where C is the same function of geometry derived previously. In

the rectangular sector case, we have:

E[T*] = 2 A
Vvvxy

Where the assumptions here are that due to optimal sector construc-

tion, t x=t . In fact, however, recent studies by Larson have

shown that in actual sectors, where this assumption may not be met,

the mean travel times are within a few percent of predicted times.

A good example of how, (again and again and with no apparent reason)

in probabilistic situations, "Nature is kind to us."

In an extension of rectangular sector design, specific to the

case of large grids of individual demand regions easily quantized for

machine solution, the following rules are easily developed from the

preceding discussion, and the rules of so called intersector dispatch.

For an arbitrary large grid of M discrete demand regions Am of total

area A divided into N catchment regions An acting as watershed for

N facilities of comparable design capacity, (Figure 4.11 ) it

follows that the expected time for a passenger desiring to travel to

a particular terminal is approximately:

E[T] - Nv



(where the previous assumption of V = Vy yields V2). This may

be modified by an "inconvenience factor" which is a function of

facility utilization or congestion so that:

E[T] %2f (l+p) o.< p < 1

the functional p is the probability that the particular facility

designed to serve the particular demand region is unavailable or

inconvenient for some reason. Alternatively, p can be viewed as

a "congestion" term. This may be due to poor scheduling or other

poor level of service quantity. If all terminal facilities pro-

vided an equal level of service then p = 0, due to relative uni-

formity of service offering. Were the primary facility unavai-

lable for some reason and the second best terminal utilized with

probability = 1, then p = 1 and we expect an increase in the

travel time to access the non-optimal facility. It can be shown

through arguments related to those employed in queuing theory that

below p = 0.7 , the expected travel times vary linearly with p.

Above this value, "congestion effects" cause a sharp rise in E[T],

invalidating the relationship.



Figure 4.11 Arbitrary Region, B with Demand Regions and Facility

Catchment Areas:

O rRegion, R of Area A
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The next logical development step in the modelling technique

is the assumption that the individualdemand regions Am are indi-

visible "atoms" of demand. That is, over each Am the demand rate

Sm is a negative exponentially distributed Poisson parameter with

mean X and interdemand time . At this point, the model as-

sumes a full spatially distributed queuing form analyzable by use

of a hypercube queuing model. Further still, the analysis of

"peaking" characteristics of urban traffic flow can be undertaken

by the employment of a temporarily varyingdemand intensity X (t).

The results and analytic methods of Koopman can be employed to

derive time varying utilization statistics p (t), and hence, the

time varying components in travel times and facility queues. Tem-

poral variations in demand accounted for, optimal time-of-day

scheduling and fleet size requirements are then devised subject to

operational and financial constraints.



These last areas including the hypercube queueing model are

areas of current research in urban systems analysis and somewhat

beyond the scope of this paper. It should be realized, however,

that the orderly progression of analysis presented here should shed

further light on ultra short haul air transportation systems as well.



4.4 Decision Variables For Systems Optimization

Having reviewed a range of probabilistic modelling techniques,

it is possible to pick out several binding policies in formulating

a travel time model. From these, travel time optimization variables

can be chosen. Let us return to our ultra short haul air transpor-

tation example and develop these decision variables.

In general, the ultra short haul air example can be considered

either intra regional or point-to-point. The former case is best

exemplified by metropolitan region, corridor, or city center operations,

the latter by single market operations. Viewed at a micro level, the

intra-regional case is a series of point-to-point operations with

the possibility of intersector "dispatching" according to some route

matrix, r. The unfortunate problem with the intra-regional case is

its combinatorial mathematical nature-- the problem is in general,

underspecified. With the addition of several key assumptions,

though, the problem is specific enough for analysis.

Since one of the system performance measures of interest in

this case is the access/egress time, we will wish one output to be

E[T]. Analyzing now the single market case, the access time is seen

to be a function of the market subdivision factor. In effect, how

convenient (how many) are the terminal facilities at the origin and

destination. From our previous analysis, we see that the expected



travel time is:

E[Ta] n -SJ477
a a

where Aa is the area of origin region

Na is the number of origin region terminal facilities

Va is the isotropic average travel velocity.

We may form a similar expression for E[Te], the mean egress time,

by specifying Ae , Ne and V e . A travel time reduction by the square

root of subsector area is noted.

By some device, we wish to divide the origin and destination

demand region into Na and Ne catchment areas feeding corresponding

primary facilities. The actual location of these facilities may be

found through application of a standard linear programming facility

location solution methods, or for small N by hand. Another

criterion is design capacity of each facility, which is related to

station workload and utilization and the demand rate in the subregion.

An intuitive result from queueing theory dictates sector design by

workload (traffic density) matching, yet in the ultra short haul

air case, this result may not be applicable.

The unavailability (or inconvenience) of the primary facility,

leading to an increase in expected travel time will often lead the

prospective demand to "balk" -- to leave the system entirely -- as

opposed to enduring a subjective decrease in level of service at a



particular price. This is the basis of any modal split demand

model, and must be a constantly present feedback loop for evaluation

of policy considerations.

It is clear that the optimal access/egress travel times for

any particular passenger may be optimized by maximizing the number

of such facilities such that access/egress is reduced to a small

fixed "start up" time. From several other system performance

considerations, however., this is not possible. Economies of scale

in vehicles and facilities dictate spreading of fixed cost compo-

nets of direct and indirect operating costs over as many users as

possible. This criterion yields large vehicles, large facilities

and bulk service of patrons. These results may be augmented some-

what in the vehicle area by multistop load building patterns, at

the expense of increases in block times due to extra cycle times

and circuitry of routings.

As a result, all components of travel time must be considered,

as it is relative portal-to-portal time that will determine market

penetration. A total travel! time model of the following form is

indicated:

TTT = t +tl(m)+t2/ Na+t3-d(k)+- +t 5 (k+l)+t 6 / Ne

where t0 = sum of various zero length times, such as "start

up time", fixed facility-associated times, and other

related non-functional time relationships.



(where) t1  = passenger processing times. A queueing result

function of temporal demand rate and facility

desigh capacity yielding pm , facility utilization.

t2t 6 = origin destination region single facility access

times (from geometric probability result.)

Na,N = number of origin destination region terminal faci-

lities

t = cruise time per mile =(V cr) -

d(k) = market length of haul modified by a circuitry

factor based on number of intermediate stops, k.

t 4 = effective half-length of operating day

f = market frequencies per day

t 5 = cycle time, a function of air traffic control

constraints, but judged constant.

While this model attempts to identify and implement all of the

causal relationships present in the expected total travel time, it

is for the most part unmanageable in a practical sense.. The facility

utilization term pm may be determined by queueing theory through

(generally valid) assumptions of negative exponential passenger

arrival and service time distributions*, with mean arrival rates Xm

*It may be argued that due to "clumping" near departure times, arri-
vals are in fact a negative binomial process. In fact, passenger
build-up in lounge areas or ticket lift areas supports this contention.
It is not, however, a limiting assumption.



and mean service times - Data on the number of passenger
n

(ticket counters, etc.) processing stations, p, at the facility

as a function of time allows interpretation of p(t) by use of

an M/M/p queueing model. Were a demand oriented (vs. scheduled)

service envisioned, this model and its expected wait in queue

statistics would yield the demand arrival rates at the gate re-

quired for scheduling.

For preliminary analysis, this pm will be assumed constant,

yielding t 1 constant as well. Future microscale analysis should

include this term.

By assuming segment circuitry factor, d(k) to be either

constant or small with respect to ultimate market stage length,

the block time component, t 2 .d will also be fixed for a particular

market. This is reasonalble for a point-to-point market analysis,

but breaks down with the network considerations of an intraregional

case.

The simplified model of the form

TTT=t +t l/ Na+t2.d+ t 3/f+t 4(k+l)+t 5 / Ne

The decision variables for the travel time optimization are then:

Na, Ne , f, k. Those, with the addition of cost optimization variables

will be employed in the demand and market share formulation in order

to create a total picture of level of service and utility.



5.0 Demand As a Function of Optimization Variables

Up to this point, a range of variables influencing the

costs of providing ultra-short haul air transportation and the

various components of total travel times associated with such

service have been identified. The task remaining is the assess-

ment of the quantitative effects on demand and market share due

to exercising these decision variables. Ultimately, analysis of

particular problems will require the development of a constraint

framework so that a meaningful objective function may be optimized.

In assessing these impacts, primary attention must be paid to

variable cross-elasticity problems, as these affect not only the

outcome, but our ability to solve the problem by reasonable analytic

means. Ideally, solution by differential means or linear program-

ming methods are a hoped for result in this form of research. Un-

fortunately, the combinatorial and probabilistic nature of the

problem in its simplest form (and a combinatorial/probabilistic/

networks problem in its general form) forces either an iterative

solution in the small scale, or a machine aided mathematical program-

ming solution in the general case.

The outline of such a solution method will be presented here, and

fine tuned for specific case usage.

In assessing demand impact, we are relating factors which quan-

titatively characterize level of service - utility - to some abstract



behavioral psychological human reaction - propensity to travel

from A to B. In the general case, by varying individual level of

service components we vary the utulity of the mode. We may theorize

that prospective passengers attempt to minimize a weighted sum of

disutilities in the choice of whether to travel or not, and if so,

which mode to utilize. This brings us back to our demand model,

which may or may not handle the "tails" of the problem effectively.

Market calibration on the basis of existing modal technology is

valid only near the existing range of trip times and costs. Alter-

native transportation technology, by its very definition is sure to

be outside this calibration range, creating some amount of forecasting

uncertainty.

Some portion of our reliance on the product form model stems

from its linear format in a logarithmic plane and accompanying ease

of calibration by multiple linear regression techniques. While ex-

hibiting certain disquieting tendencies at extrema, it is mathema-

tically tractible under analysis. As a result, it will be used to

analyze the effects of the decision variable identified previously.

The formulation for a particular market is:

D = KCaT~

Where D demand is a function of level of service passengers

C, the total trip cost

a, the cost elasticity of demand



T, the total trip time

8, the time elasticity of demand

and K, a proportionatity constant.

5.1 The Level of Service Vector Quantity, ( LOS )

Previous development has shown that for optimization purposes,

trip cost and travel time will each have a multicomponent functional

relationship of the form

C = function (S, n, f, k)

T = function (n, f, k)

From these relationships, the concept of a multidimensional

level of service vector is indicated. Through the calculus, we

will attempt to analyze a multidimensional demand surface by dif-

ferential means, iterating to an optimal tableau of level of service

element values. Although convexity of the demand surface and uni-

queness of solution are not assured, adequate subjective evidence

of stability can be shown.

The non-linearity within the problem specification and the

level of service vector does not lend itself to total differen-

tiation, hence the use of partial derivative with respect to each

vector quantity is proposed.



We wish to determine:

aD

a D
SD_ n

a D
a k

a D

These are easily derived from the product model and the time and

cost equations.

Looking at the passenger perceived sensitivities to frequency

of service, market subdivision, multistop routings and vehicle size,

and assuming initially that fare is fixed, we have the following:

5.1.1 Frequency Sensitivity

D =  KFa TB

= K TS

= K'(T + t1)

aD BK(T )

T

and therefore that (a D/D)/(af/f)= P (-~ )f T

From this it may be seen that as might be expected in the limiting



case, D/af approaches zero at infinite frequency. A useful con-

cept is that of saturation frequency, f* at which a certain high

precentage of the ultimate (infinite frequency) demand is generated.

It has been shown by Simpson that f* is an inverse function of length

of haul, being higher in short haul "convenience" markets and lower

in long haul "value of service" markets. The variation is shown in

Figure 5.1 for ultra-short haul through transcontinental lengths.

5.1.2 Access/Egress market subdivision sensitivity

D = K (T + nt2+ )

8D - D(t2 tl

T
V [t 2 t

and therefore that (aD/D)/(n/n) = T[ f 2M ]

The creation of submarkets within a demand region has a dimini-

shing return to scale given a fixed daily frequency, but is a

function of the ratio of access to displacement times. Minimizing

the expression above leads to

aD

n n(t2 -n 2

n

or at the minimum, tl _ 2n
t2 f



given the ratio t1 and f* we have
t
2

t f* t 5
n*(t 1 , f*) (f t

t 2

For a typical market, this is shown in Figure 5.2 , and is the

equivalent of a saturation market subdivision parameter. Note the

significance of t . In a given market this expresses a "congestion
t

factor",t , which2as it increases may justify multiple terminal

facilities.

Figure 5.1 Saturation Frequency

L~o *~

f* Varies inversely with length of haul.

* 30JOO



Figure 5.2 Optimum Number of Market Subdivisions
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5.1.3 Multistop cycle time sensitivity

D = K (T'+t 3 (k+l)

D = K (T + t3 (k+1)) -I t3

= BD[ 3 ]
T

and therefore (OD/D)/( K/k) =Bk[t3 ]
T

An increase in the number of intermediate stops is seen to have the

expected negative effects on demand due to increased block to block

time. The network implications, however, dictate that intermediate

stops allow the use of a larger vehicle, with load building and

frequency spreading in the associated sub-markets. The passenger,

however, sees only the increase in total travel time, hence the

deleterious effects on demand.



5.1.4 Vehicle Size Sensitivity

Demand is not a function of vehicle size viewed from the pas-

senger's viewpoint in a fare fixed scenario. Therefore,

aD
aS

This is a subject for management/marketing psychologists,

affecting some subjective "image" or "confidence" variable. Utility,

however, is not affected, resulting in the above relationship.

5.2 Market Share Variations With Demand

Having determined analytically the demand model's reaction to

frequency of service, market subdivision, multistop operations and

vehicle size, the corresponding variation in market share can be

determined. The product formulation of modal split model is defined

D ab =Dab" for all modes, j

= Mab pja T B

or, MS = D D
MSabi ab ab

= PiaTi B

= 3Z Pja Tj
SDab

i

Dab + Z Dab,

This would appear simple to analyze, yet one of the drawbacks of the



product demand model is that it makes market share analysis tedious.

A phenomenon known as demand stimulation occurs when any

existing mode increases its level of service, or a new mode is intro-

duced. In effect, "new" patrons whose level or service requirements

match those offered by the addition are created by the model. This

demand is then rationalized in the process of nomalizing the total

market's demand. The resulting market shares incorporate the

switching in passenger preference. This is shown for a hypothetical

market inTable 5.1where high speed ground transportation is added.

We have defined the variations on the demand surface as the

various vector components of aD/aLOS. From this, we desire aMS/3LOS

In terms of the stimulated demand, 6Dk due to mode k, we have

D = D+6Dk = D+6Dk Y

D k = Dk+6Dk

MSk = MSk+6MSk

= DK+6DK r

ED. +6Dk

Dk+6Dk + 6Dk
.D, +Dk D:+6Dk

which, if 6 Dk<< Dj , yields

~/ Dk
MSk MS +k k ED.+ 6Dk

or 6MSk= 6Dk
_DT



Table 5.1

Demand Stimulation in Metropolitan

Capital City:

Existing Modes Total Travel Time

Air 4

Corridor, Businesstown to

Out of Pocket Cost

70.

Market Share

56.2

12 50. 22.5

16 40. 21.1

200 150. " 0.3

10 60. ?

mode improves service then total demand increases.

normalizing for inclusion of High Speed Ground Transport

MS AD,% 6MS

48.1 -14.4 -8.1

19.2 -14.4 -3.3

18.0 -14.4 -3.1

% 0.3 -14.4 'm 0

17.4 -- + 14.4

Car

Bus

Foot

HSGT

If any

Hence,

Mode

Air

Car

Bus

Foot

HSGT



By this relation of change in demand to sum of initial and

stimulated demands, the incremental market share is determined.

The error in this estinate is plotted in Figure 5.3 as a function

of the ratio of stimulated demand to intial demand. The small

6Dk assumption is found to be valid within a stimulated demand

percentage of <0.15 D.

From these level of service impacts on demand and market

share, the effects on carrier revenues may be determined as

functions of operational policy variables. In order to perform a

profit or contribution maximization, however, it is necessary

to know the supply cost variations with each policy alternative.

Figure 5. 3

Error Analysis:

Small 6Dk Assumption in Calculation of 6MSk

-lb

O .lo .Zo

7/



6.0 Marketinq Strateqies

Due to the nature of the problem at hand -- that is, a

quasi-stable relationship between demand, costs and prices --

it is necessary to look to the operator's perspective view of

level of service in the marketplace. The implementation of any

policy affecting quality of service -- utility to the public--

profoundly affects his costs of providing a supply of trans-

portation services. This concept is easy to grasp in the direct

operating cost regime, but rather more difficult to assess in the

indirect costs area. It was shown that for the ultra-short haul

operator, these indirect operating costs and associated passenger

oriented costs account for a large portion of total costs. It

remains now to relate supply costs to operational policy, and

demand to supply of transportation services.

6.1 Operational Policies

The analysis of supply costs for the ultra-short haul operator

follows a similar line to that of the demand analysis, but addresses

the operator perceived variations in operating costs due to level

of service and quantity of service changes. Their costs may be ex-

pressed as a sum of direct and indirect costs:

C = Direct Operating Cost + Indirect Operating Costs +

System Overhead



C = (C +Cl .S )t flight f + N - SOC

when tflight = tblock + (k+l)tcycl e

(The overhead will not enter into our cost functional. It is

generally a straight percentage of revenues and may be ignored

for now.) .

By analysis of this equation, it is possible to find the operator's

percentage and marginal costs of implementing changes in service

frequency, vehicle size, market subdivision, and load building

multistop policy.

Differentiating with respect to the operational policy de-

cision variables defined previously, the following relationships

are developed.

6.1.1 Frequency Sensitivity

ac- = (C+C 1 .s) tf = DOCh f

= Marginal Cost per Frequency

= MCf

Although some of the indirect cost components relate to

station utilization and passenger volume, in marginal frequency

terms these are treated as fixed, as they are not a variable cost

component. This is the operator's incremental cost of a frequency



and can be seen to vary with vehicle size. This is shown in

Figure 6.1

6.1.2 Vehicle Size Sensitivity

aC C . t flight

Marginal cost per seat
= MCs

In response to changing market conditions, an operator may

desire to employ a vehicle of different capacity. S. From the

derivation of the direct operating costs model, the marginal cost

of "adding a seat" may be determined. This should not, however,

be construed as an operative policy. The unit of supply is the

frequency, hence the variation with vehicle size is a planning

era exercise. The operator may only exploit economies of scale

in vehicle size before the fact or with "inflatable vehicles."

6.1.3 Market Subdivision

aC = SOC

= Station Creation Cost

The cost of subdividing the market is just the cost of station

creation and operation, assuming this analysis is undertaken in the

initial planning stages.

6.1.4 Multi-Stop Sensitivity

- tcyc DOC + [circuity factor]
cycle hr



This is merely the cost associated with the cycle time plus some

circuitry term. On longer haul operations, circuity is treated

as a higher order term in k, but this may be overly simple for

ultra short haul operations. As segment additions increase d,

there may also be a tflight increment to assess. In any case the

causal variable is time, leading to the above relationship.

From these sensitivities, it is possible to show that at the

market level, economies of scale exist. As demand, and the quantity

of services increase, the unit supply costs are lower. Looking

at our point-to-point market, variable cost reductions are attri-

butable to larger aircraft. Pure economic efficiency corresponds

with a fewer number of frequencies with larger passenger loads.

While this is true in cases where indirect costs are not a

high percentage of total cost, it ignores the effects of changing

demand with level of service variation. N large vehicle frequencies

supplying q seats do not provide the same level of service as 2N

smaller vehicle frequencies supplying the same q (or likely a

greater number of) seats. Variable ground costs per passenger due

to differences in station loading (again a characteristic of ultra

short haul air transportation) are also neglected in this classic

economic efficiency formulation.

The network basis of the intraregional problem injects further

difficulty into the determination of supply costs, making it im-

possible to analyze quality variations in marginal costs unless



the level of service vector quantities are held constant. Unit

supply incremental costs also vary with time of day and routing

factors due to the inability to correctly account for and allo-

cate costs. The calculus of variations is not up to the task

created by such a problem. Determination of unit quantities

for further economic analysis requires that a scheduling function

which optimizes profit be constructed; only in this manner may

supply quantity be altered and marginal costs and revenues be

found. As a result, only in the simplest cases will unique mar-

ginal costs exist. For other than these cases, a cut and try

with recursive parametrization will be required.

Before embarking on a case study, however, the issue of

operational policy and demand-supply must be clarified.

6.2 Market Solutions

It has been shown that for our demand model, the demand level

of service/cost relationships are similar to those in Figure

This consumer model has its analogue in the operator's supply/LOS/

cost relationships. Supply quantities available at particular level

of service and variable costs are shown in figures 6.1, 6.2. It

may be seen that at a given level of service and vehicle size, as

output quantities are increased, average variable costs per seat

assymptotically approach the expected marginal cost per seat.



Figure 6.1 Variable costs based on frequencies offered
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Figure 6.2 Variable costs based on quantity of seats offered
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These variable operational costs may be derived from the

direct operational cost per hour equations:
C

TVC(q) = (C oC 1 * S) f= (- - + C1 ) q

AVC(q) = TVC(q) = (C + C1) (Given L.O.S.)

The marginal operating costs are expressed:

Per Frequency:

CMCf = o + C
S

Per Seat:

MCs= C1  (Given L.O.S.)

Hence, for a given vehicle size, MCs and MCf are constants, with

MC< MCf for finite vehicle size.

In relating the demand and supply curves, the ratio of demand

to seats offered is termed load factor, LF. Unfortunately, if the

non-uniqueness of a particular cost associated with a service of-

fering has proven discomforting, a similar non-uniqueness in the

basic "breakeven" load factor is not likely to elicit confidence.

This ratio, LFDE(cost ) normalizes the price (consumer) and cost

(operator) portions of the demand and supply curves and exists in

total, variable-and marginal formats.

Equating net yield per passenger to price allows investigation

of profit maximizing behavior as the operator varies supply quan-



tity, q while maintaining a given level of service. The profit

relationship is simply excess of revenues over costs:

I1I=R C

Varying the supply quantity yields:

an aR aC
- D - MR-MC

5q 5q aq

Maximizing, MR=MC at optimal supply quantity. Hence, marginal cost

pricing maximizes the profit at a given level of service. Now, the

revenues are:

R = NYp* D = P.D

and MR = p.aD
aq

It remains, then, to find the variation of demand with supply quan-

tity. One may theorize various functional relationships, but these

are best explored through specific examples.

At this point, a general case may be analyzed: a monopolist

supplier of ultra short haul transportation services in the metro-

politan market AB. The carrier will control price (net yield per

passenger)*, supply quantity (in the dimensions frequency and

vehicle size) and level of service (in the dimensions frequency,

market subdivision and intermediate stop policy) in order to establish

a market solution maximizing profit. One may argue these various

strategies by allowing a minimal number of degrees of freedom, and



analyzing through the calculus.

6.2.1 Operator Varies S, Vehicle Size (f, P, Level of Service fixed)

This case has been discussed previously. The passenger.does

not perceive vehicle size as a demand variable as long as seat

is available for him/her. The resulting solution is:

aD _
aq

and C 0 For11*
Sq

This, however is an inconsequential result, as the operator attempts

to minimize variable costs by selling his aircraft and investing

the capital. The result is an infinite load factor, LF* = o . If

the maximum load factor is constrained such that

0 < LF < 1.0- max -

The result is that LF* = LFmax . This is diagrammed in Figure 6.3

S* is shown to be defined by the intersection of the LFmax and

constant demand loci. This maximizes profit at 1* . The optimal

value of LFmax is determined by trading off passenger access to any

particular flight versus profitability through application of a

* The yield, NYp will be found to vary as a function of demand and

load factor. For the time being, though, the carrier controls it.



Figure 6.3 Optimizing vehicle size for a monopolist carrier
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reservations policy. Clearly, as LFmax rises towards 1, the pro-

bability of a random passenger finding a seat available drops.

LF varies with the degree to which demand is stochastic as op-
max

posed to deterministic.**

Neuve Eglise and Simpson solve analytically for S* through the

technique of the Lagrangian multiplier,

S= R - C + A ( -LF )f-s max

Where A is a weighting function of the "value" of load factor

increase.

a= MCs f - A = 0 at S*

31 = D - LF
aA maxf-S

or, LF* =LF S* -max f-LFmaxmax

This analysis yields the optimal vehicle size as a function

of projected demand and maximum vehicle loading. In reality,

however, the operator does not have the capability to vary S,

rather he fine tunes the market by adjusting daily frequencies.

This case is taken next.

** For purely deterministic demand LFmax= 1. Forr-O, LFmax is

lower.



6.2.2 Operator Varies f, Daily Frequencies (S,P, other level of

Service Variables Fixed)

With an existing'fleet, and a regulated price, the operator

varies level of service through its frequency of service component.

This alters the demand function and affects the total demand, D.

Hence; through variation of f:

aD_ aD 1
aq T S-

and the marginal revenue expression from before becomes:

aD S aD S-1
MR = P- aq = p f S

The profit equation then is:

an_ P aD31 - P D - MC S
5f S - Mf f.

and: aD - MCf.S , the marginal breakeven load

p

or: D MCf LF the marginal breakeven load factor.
aq BEM'

Notice that in varying frequency the load factor drops to

breakeven marginal in the last additional service. This is as

opposed to LFmax with seats as a variable. Wherever vehicle size

is left free, analysis by Lagrangian multiplier method yields this

result. The optimal frequency, f* is found by deduction from the



assumed demand profile, where:

D= KP" TB / t 2Where T=T +

and T = sum of other time components

aD _ K/ T(L- t 2 )
af f

and {f*IDD MCf-Sf p

Therefore f*= [-f2 P

6.2.3 Operator Varies N, Number of Terminals (q, P, other Level of

Service Fixed)

Here, the operator explores the effects of reduced access time

as a level of service variable. In that the only meaningful M is

integer, the results are discrete in M. No reasonable differential

format is possible. A graphical or cut-and-try method is preferable.

6.2.4 Operator Varies k, Number of Intermediate Stops

Again, as a trade-off between load building and reduced block

time, the operator varies k. k is integer, and results are discrete

in k. The graphical method will be employed.

6.2.5 Operator Varies f, S: (P, other level of service fixed)

As we are leaving S free, LF rises to LFmax at f* and S*. Using

the Lagrange multiplier,



S= R-C+A(D - LF )f-s max

M = P D MCf S - A[D- 1
f af F S fS " af

= -MCs f -[

Now a _ alaNow D- = 0, and

_D LF

3A ftS max

Which gives the expected LF*=LFmaxmax

Then: [P+ -S] aD-D=

Or A = -MC,. S2*f2. D

And aD
And aD (MCf-MCs)S

P-MCs/LFmax

MCf-S + A* Df'-s

= LBE
f, s

This LBEfsBEf~s is smaller than LBE due to the higher degree of freedom.

Using the demand formulation method employed previously with

T=T' + t 2 we have:
f

D = K'T



aD (MC t-MC )Sand {f*j -(Mt s
P-MC s/LFmax

s max

therefore, f* = -K't 2
%f/)

6.2.6 Operator Varies P, f, S:

Here, operator attempts to maximize profit while varying both

price and supply of seats. This, of necessity, requires a correction

to the yield per passenger term:

F = P +GCp

Where GC = Ground costs per passenger = constant (for now).

S= R-C+A (D LF )f.S max

a _ (_ aD A aD-- ap (D+P ) + a
a -ap ap f-S ap

Using this last equation, and substituting for A = -MCsf 2 S2

D

aD -D
ap (P- MC )

LFmax

now, returning to the demand formulation,

D = K F' TB

K" FD

= K"F = [--]ap



Substituting this expression for CD ,
dp

aD -D
F (P-MC' )

LF
max

and F = [p- MCs ]
LFLFma x

but F = P+GCp

or P* MCs - GCa+1 L P+

= F* - GCp

[NOTE: That this is only meaningful for a <l1, denoting a price

elastic market.]

and: F* = [MC + GC ]0t+ LF Pmax

Now, substitute P* into the optimal frequency and vehicle size

3Dsolution to find the breakeven load, (-5)*. This yields f* and S*.

From these results, an optimal "neighborhood" may be searched

numerically such that those discrete variables, N and k are also

optimized. This will be the subject of the case studies of Chapter 7.



7.0 Case Studies and Results

The preceding results, drawn from urban service systems ana-

lysis and transportation economics, may be tied together in a pur-

poseful analysis on the case study level. While taken individually,

these disciplines permit great insight into particular areas of

interest in transportation research. This approach does not fully

exploit the information uncovered in such an analysis. By employ-

ing a systems approach to such a study, the areas of subtle inter-

relation between decision variables are fully explored. This is

of greatest importance in the urban sector due to the "randomness"

of the study's operational environment. Deterministic behavior

does not, however, diminish the suitability in other areas of ana-

lysis.

Two case studies will be presented in this chapter: The first,

an analysis of a "corridor market"; the second illustrating the com-

plexity of a general intra-regional analysis. Both will proceed in

the fashion laid out in the preceding background. While the first

case study is more or less determinate, the generalized case will point

out several areas for research in alternative transportation analysis.

The term "Optimization" requires that there be some objective

measure of performance to maximize. What, exactly, this measure should

be is dependent on the operational policy the system is run under--

public or private sector.



Clearly, the initial operating policy under which ultra

short haul air transportation functions will be to a large extent

the determinant of its'eventual role in the total regional trans-

portation system. To the extent that the system is competitively

priced with regard to operating costs, value and level of service

provided, it will at some point maximize not only its financial

return to the operator, but perhaps its market share as well.

From the picture of vehicle and facilities costs, it is pos-

sible to characterize policies ranging from maximum passenger bene-

fit through maximum operator benefit, with associated profit (or

subsidy) and market penetration statistics. While maximizing

operator benefit is easily stated mathematically, maximizing pas-

senger benefit is not. The "zero profit" condition can be used

as a maximum marketshare indicator, but does not very well argue

the point of maximizing passenger utility. A service operating

in the public sector (e.g. mass transit) may tend to surrender

the inherent advantages possessed by ultra short haul air and thereby

degrade the quality of service provided. This has occured in each

case where the public sector has attempted an optimization (revi-

talization?) of existing transportation technology whether it be

mass transit, rail, barge or the proposed regulatory reform of the

domestic air transportation industry.



For this reason, the analysis will maintain a private sector

basis for the operation of the ultra short haul service.

7.1 Long Island ServiCe Study

The first study evaluates the market impact of the addition

of ultra short haul air service to the Long Island/New York City

CBD corridor. (Figure 7.1 ). This is an extension of the previous

project undertaken by the author in the early days of this research.

At that time, a captive volume of journey-to-work trips was used

to assess the feasibility of such a project. By analyzing this

particular travel group -- commuters -- the problems presented

by demand stimulation were removed. This portion of the total

regional trip volume is relatively insensitive to level of service

in the sense of demand stimulation. In terms of modal choice, this

group is extremely sensitive, and it was in this light that the

analysis was conducted.

The Long Island corridor is a classic example of the growth

and development of a suburban labor force causing a dichotomy between

the transportation technology to satisfy those needs. As subur-

banization and "sprawl" occured, a developing network of arterial

and radial highways served the commuters' needs for transportation

services to the city center central business districts. At the

point when further expansion meant population displacement,
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Table 7.1

ORIGINS - PLACE OF RESIDENCE

W. Nassau County

Nassau Co. 125858

Suffolk Co. 3726

Queens Co. 24139

Brooklyn 17458

Manhattan 59th St. So.57726

Manhattan 59th St. No. 8306

Bronx 2060

Westchester 9340

o
Conn., N.J.

Totals

3201

243408

E. Nassau County

122401

9733

17728

11258

26684

4429

1466

397

1968

196074

W. Suffolk County

28074

101530

8527

5188

15168

1924

641

253

1163

162458

FROM: "Long Island Journey to Work Report," New York Office of Transportation, 1970

Totals

276333

114989

50394

33904

99570

14659

4167

1584

6332

601940

- --- _ --- - -- -_-- ---- _ --- --

- --



development of this highway network was curtailed.

As suburban employment centers developed, worktrips in-

volving intra-suburban area transport quickly overtaxed existing

suburban transit facilities and sent suburbanites heading for the

highways. Large numbers of suburban residents continued to commute

to city center central business district areas, while increasing

numbers of ultra short intra suburban trips were generated.

Illustrative of this situation is an analysis of the worktrip

passenger movements in a portion of the Long Island corridor pre-

sented in Figure 7.1, Nassau and Suffolk Counties comprise the

outlying two-thirds of the Island corridor, and represent the de-

marcation of the "suburban" region spoken of above. Table 7.1

shows the origin-destination matrix for Nassau and Suffolk Counties

to the New York standard metropolitan statistical area. The

magnitude of these flows regularly saturate existing transportation

services. The low level of service offered in fixed-line tech-

nologies (rail, subway, bus) induces intermodal trip itineraries

and shifts towards automobile usage. Congestion effects yield un-

acceptably long trip times as shown in Table 7.2 -- uncharacteristically

independent of mode or technology level. In short, transportation

services in the Long Island corridor are operating in saturation.

There is a need for an evaluation of transportation alternatives.
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Table 7.2

BASE CASE

REPRESENTATIVE TOTAL TRIP TIMES (MINUTES) AS A

FUNCTION OF TRAVEL MODE

To
From

W. Nassau
Auto E. Nassau

W. Suffolk

To
From

W. Nassau
Rail E. Nassau

W. Suffolk

To

From

W. Nassau
Park/ E. Nassau
Ride W. Suffolk

Wall
Street

56.9
68.3
87.3

Wall
Street

44.5
63.0
77.5

Wall
Street

45.5
63.8
83.8

Upper
Manhattan

63.1
74.5
93.5

Upper
Manhattan

45.4
63.7
83.1

Upper
Manhattan

46.5
64.5
89.4
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LGA

46.3
57.7
76.7

LGA

55.3
73.8
93.2

JFK

43.2
55.0
74.0

JFK

N/A
N/A
N/A

LGA

65.3
74.6
99.5

JFK

N/A
N/A
N/A



One of these alternatives is ultra short haul air transportation.

An ultra short haul air transportation system will be defined

as serving intraregional and inter urban trips by passengers and

freight over distances of less than 50 miles. The advantages of

air are many, and include higher block speed and freedom from

geographical constraints. An air system uses a smaller percentage

of the land required by fixed line technology, and has the poten-

tial of having a much smaller noise impact. New "high technology"

ground systems require large, high risk initial public investment

yet are by comparison far less flexible and demand responsive than

air systems. The "blight" and dislocation created by surface or

subsurface technology is not created by an air system -- it is

readily integrable into existing facilities. Finally, air systems

offer better travel services to the passenger, and have the poten-

tial of being a fuel efficient alternative to the private automobile.

In this light, a feasibility study -- an alternative techno-

logy analysis -- was undertaken. In order to view the situation in

the most objective manner possible, the current state of transpor-

tation systems on Long Island was assessed, then modelled. The

proposed alternative, ultra short haul air transportation, was then

added to the model in order to evaluate its impact on a captive

volume of travel -- the journey to work trips.

The study area -- essentially the eastern portion of the New

York standard metropolitan statistical area -- consists of Manhattan
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(New York City central business district), Nassau County and Suf-

folk County. These portions of the corridor were chosen on the

basis of commuting trip volumes, income levels and thoughts towards

interfaceability with an existing ultra-short haul air network.

Queens County was eliminated from the analysis due to ready avai-

lability of high frequency surface modes and its proximity to the

central business district. This proximity argument is a strong

determinant of modal split. Considering the journey to work trip,

the O-D matrix is primarily from out-Island to central business

district during the morning commute. The return from work flow

(decommute) would in general be similar with respect to flow

magnitudes and directions. The temporal variations of congestion

effects are also analogous during the morning and evening peak

periods of travel.

Subregions within the two counties and the central business

district were linked into an existing transportation network demand

model, and the model calibrated to fit available flow and modal split

data. Four modes were identified -- auto, rail, park-ride, and the

ultra short haul air alternative. Reported total travel times by

mode matched those output by the model primarily due to the existence

of a "congestion function" based on the ratio of actual to design

link volumes.

The demand forecast was performed for several operational policy/

Elasticities and individual modal "image" variables were found via

regression analysis and are listed in Table 7.4, page 118.
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scenario combinations. The results indicated that there was suf-

ficient demand to support a multiple rotorcraft fleet at acceptable

levels of utilization., The ultra-short haul air mode market pene-

tration ranged from 1.9 percent to 6.0 percent over the range of

policies/scenarios investigated. Sensitivity analyses were per-

formed on level of service parameters including fare, frequency,

service patters and heliport location. Fleet requirements for

the Sikorsky S-61 Rotorcraft were calculated as a function of

overall level of service and a sample fleet assignment and schedule

generated. System planning for off-peak use was not examined, but

would add to:equipment utilization and latent demanistimulation in

the non-business sector. [For a full examination of this preliminary

work, the reader should refer to M.I.T. Flight Transportation Labo-

ratory Report FTL R76-2 "Short Haul Helicopter Demonstration Program."]

This analysis pointed out several areas for research. Among them:

1. A better treatment of access/egress distance and time.

2. Terminal "coverage" of demand regions.

3. Does an optimum number of sub-regions within a demand

region exist?

4. Limiting criteria for use of ultra-short haul air

transportation.

5. The network considerations of "randomness" in the analysis-

of access/egress and urban problems in general.
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Using the data aggregated for the previous study and developing

the costing and travel time analysis technologies of Chapters 3

and 4, the Long Island problem was again analyzed. This time, however,

with a "clean slate" and from the standpoint of a systems optimization.

With Queens and Kings County excluded from the demand region for

reasons previously mentioned, the "corridor" market took on more of

a point-to-point nature. The system could now be modelled as an A-B

market with the characteristics as shown in Figure 7.3. The Nassau-

Suffolk County region was quantized into cells of work trip demand,

corresponding to census reporting regions compiled by the Tri-State

Regional Planning Commission. From this data and from that of the

previous study, the mean access time between random orientations of

demand cells and a single facility were found. In order to comply

with the homogeneity requirements of the probabilistic analysis,

the region was remodelled in this manner. Interestingly, by norma-

lizing demand density with income level, a nearly homogenous demand/

income density was created. The only real requirement was the om-

mission of the very sparsely populated and remote eastern portion

of Suffolk County. This resulted in a roughly rectangular homogenous

demand region with dimensionsl3 by 35 miles containing 20,000 journey

to work trips to the New York central business district.
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Travel Time:

A simple application of the material in Chapter IV shows that

for right angle metricu travel, the expected travel distance to a

single, randomly located facility would be 16 miles, and that central

location would yield a 12 mile expectation. The previous analysis

based on demand cells, network travel and a single facility had

yielded an average access distance of 13.4 miles, with link conges-

tion showing an average travel speed of 34 MPH en route.

Figure 7.3

Long Island -- New York City Central Business District Market

Characteristics

GEOCARAPICAL. MARKFT

/18onaF~rK

NJ YC
C SD

A mowNA%
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Remembering the upper and lower bounding relationships of

right angle metric distance and Euclidean distance, and taking the

isotropic travel speedof 34 MPH average, developed in FTL R76-2

(March 1976),, we have the following bounding criteria for access

travel distance and time to a single facility.

Random Central
Location Location

Distance Time(min) Distance Time(min)

Right Angle 16.0 mi 28.2 12.0 mi 21.18
Metric

Euclidean 12.6 22.2 9.42 16.63

Model Estimate 13.6 miles/ 24.0 min

As a conservative estimate, the baseline (single facility)

access time was chosen as 24 min (0.40 hrs) reflecting the belief that

access routes, even if basically Euclidean in nature, may be to a

certain extent (10 to 12 percent) circuitous, and that facility

location is rarely "optimal" (or in this case central) in practice,

but must be formally integrated into the community. This 0.40 hour

figure was then used in the travel time model as the base coeffi-

cient to normalize the area rule term showing the influence of market

subdivision on total travel time.

The in-vehicle component of travel time can be broken down into

block time t b and cycle time tc components. The block time is related
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only to segment length and cruise speed, while the cycle time is

incurred in multiples of climb-maneuver-descent operations. Hence,

nonstop flights incure a single cycle time. In general, a passenger

on a flight with k intermediate stops incurs [(k + l)tc+tb] in-

vehicle travel time. Cycle times for rotorcraft at major metro-

politan airports where VTOL aircraft are often treated like CTOL

aircraft for air traffic control purposes are on the order of 3 --

4 minutes. Cycle times at outlying metroports are shorter, due to

the absence of air traffic control restrictions. Poor weather ope-

rations would raise these figures (especially at major airports)

and an efficient VTOL air traffic control strategy could lower them.

For modelling purposes, cycle time has been set at 3 minutes.

This is conservative, but takes poor weather delays into account.

Block time is figured on the basis of a cruise speed of 140 KT and

a nominal stage length of 30 NM. This distance is again dependent

upon actual facility location, but is easily derived on a proba-

bilistic basis. In a case such as this, where intraregional dis-

tance is large by comparison to the market point-to-point distance,

careful consideration of routings as to circuitry is required.

Displacement, or wait time, tw is that portion of the total

travel time incurred at the originating facility waiting for the

next scheduled service. This is generally regarded (and was shown
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probabilistically by Simpson) to be one half the interarrival

time or headway. Knowing the frequency of service, f, the dis-

placement time is then proportional to 1/2 f-' . The modifying

coefficient to this term is normally of the order "hours of

operation." Strictly, then, if f services are offered, during

H hours a day, expected wait time is: H . More reasonably,
2f

service is assumed demand responsive and hence during morning

and evening peak hours, local headways are lower. Based on two

four hour peak periods per day, and ten off-peak hours per 18

hour day, with a total daily frequency f weighted in response to

demand, expected peak hour wait time is more on the order to

2/3 the long term average. Hence, the analysis has used tw=

2/3 18 - 6 as the frequency related portion of total travel2f

time. This is conservative for peak hour travellers and not

unreasonalbe for less time sensitive off peak travellers.

Passenger processing times tp are assumed fixed in this

analysis and function as a catch-all for such terms as parking lot

to terminal time, ticketing (assumed simplified--more along the

lines of purchasing rail tickets), baggage claim (assumed primarily

carry-on/off) and interline time to egress mode. Logically, some of

these items should bear functional relationships to facility traffic

volume or other system variable. Realistically, an entire system

stimulation is not practical, as these items are by comparison cause
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and effectively incidental to the big picture when viewed in the

macro sense. The sum of the processing times was taken as 12

minutes (0.20) hours,

Egress time is generally treated the same as access time, with

an area rule governing segmentation of the destination region. For

the purposes of the model, however, the destination egress time will

be considered fixed so as not to cloud the issue of demand stimulation

by market segmentation. Thus, egress time is then from the single

facility time in the March 1976 report, and it is assumed te = 0.20 hr.

The total travel time model is formulated as follows:

TTT = ta + tw + tb + tc + te + tp

=0.40n-12 + +dnom + 0.05 (k+l) + 0.40.f 140

Where n =number of origin region subregional facilities = 1,2,3...

f =daily frequency of service f > 20

dnom =nominal point-to-point market distance d ' 30 NM

k =number of intermediate stops experienced k = 0,1,2,3...

7.2 Costs of Providing Service

Direct operating cost per hour as a function of seats available

and stage length are drawn from the material of chapter 3. Based on

nominal stage length of 30 NM the NASA cost equation becomes:
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DOChr = $252 + $4.20(S)

From regression of current equipment operating costs, the cor-

responding cost equation is

DOChr = $88.50 + $24.30(S)

These projections are then converted to variable frequency

costs given a vehicle size through multiplication by flight time,

the sum of block and cycle times. Based on the 30 NM nominal

distance,

tb = 0.21 hours

tf = 0.26 + 0.05 k

The resulting frequency costs are then:

MCf = tf(Direct Operating Costs/hour)

Indirect costs of a variable nature lie basically in the

area of station costs, and passenger servicing costs, traffic and

aircraft serving costs, promotion and sales and general and adminis-

trative overhead. With the exception of station costs and general

and administrative costs, the rest of the indirect operating cost

components are more or less proportional to passengers boarded. The

most generally regarded figures for the local service carriers were

estimated by Douglas Aircraft at:

Passenger, Aircraft, Traffic Servicing:

SVC = $4/Boarding + $100/Departure + $150
Gross Wt.Ton
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Sales = .12* Yield

Overhead = .05 * (SVC + Sales)

These servicing costs are predicated on cycle times and manning

requirements that are an order of ten higher than those envisioned

for the ultra short haul operator. Sales and general and administrative

however, are reasonable. As such, these traffic associated costs are

subtracted directly from the net yield per passenger. The number of

stations, however, will be one of the level of service variations

in the analysis. As such, a separate break out of this cost will be

required.

The facilities envisioned are assumed rather functional, and the

capital costs paid for primarily by concessionaire rental such as

parking and on-site rentals. A passenger rebillable station operation

cost of approximately $1,000/day, of which 5 percent, or $250/day

is a fixed capital cost. The remainder of this cost is quite rea-

sonably associated with the previously mentioned traffic statistics.

These station related ground costs are averaged over passengers

boarded. At low frequencies of service, demand will exceed capacity

for all but large vehicle sizes, and indirect operating costs per

passenger is a large percentage of the ticket price. As capacity

catches up to demand, and load factor drops below LFmax , variable

indirect costs are a much smaller percentage of the total fare. In

any case, the model subtracts ground costs from the ticket yield such
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that:

NY = F - GC

where GCp = f (SOC,LF)

7.3 The Demand Model

The demand model used is of the product form and assumes two

demand groups, roughly described as business and pleasure. These

models were fit to the traffic base based on existing travel volume

and modal splits. The result was a parametric program that exercised

each of the portions of the level of service vector, and described the

demand surface in several dimensions. The changes in demand level

may be expressed in terms of market share by the assumption of other

modal utilities remaining constant.

The characteristics of the two travel groups differ mainly in

respect to their time and cost demand elasticities. On an aggregate

basis, the two country total travel demand and modal split to the

New York City central business district is well modelled by "gravity"

elasticities. (a=B=-2.0). Using time-series home interview survey

data provided by the Tri-State Planning Commission, the travel

volumes for both journey-to-work land supplementary travel were analyzed

via regressionanalysis. Considering only those regions of interest

in the Long Island Corridor, these figures provide an excellent

reference point. Disaggregating the market groups, the journey-to-

work portion of the flow, which accounts for 46 percent of total
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corridor travel and 84 percent of total trips to the CBD is

slightly biased towards time elasticity (although remaining

fully cost elastic) with convenience and modal "attractiveness"

accounting for a shift to the public transit mode. The model

used for the journey to work portion of the flow used a time

elasticity of -2.50 with a cost elasticity of -1.50. Modal

attractiveness coefficients developed in the regression favored

"non-participatory" modes, which would bias the modal split of

the line haul portion of the trip towards rail and park-ride.

The attractiveness coefficient for the ultra-short haul air

alternative was set the same as that for park-ride. Although

unquestionably more aesthetically and technically attractive,

a reduce reliabiltiy (in the present term, at any rate) would

tend to force ultra-short haul air to compete on a time savings

basis alone. Advancements in the reliability of all-weather

operations would of course raise its attractiveness proportionally.

These regression developments are summarized in Table 7.4.

7.4 Fare Policy:

Here, two cases were run corresponding to the vehicle tech-

nology and costing model employed. Each fare schedule used the

results of Chapter VI and was linearized to a boarding charge plus

cost per line haul mile basis. In that the vehicle costs differ

extremely, so do the fare policies and the resulting demand and
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De Havilland of Canada
$8.00+0.75*D

Study $4.00+0.10*D

rkeley $2.00+.10*D

tanford
$1.75+.10*D

Boeing

.50+.02*D
3.00+.02*D

2.50+.02*D

50 100

Distance, N Miles

Figure 7.4

Various Fare Formulae Employed in Short Haul Studies



market compositions.

Table 7.4

Dj= MI.PaT

D = EDj cj

Auto
Attractiveness Modifier 1.74

Price

Total Travel Time

Market Share

Travel Group

Journey to Work

1.75 2.30

1.75 1.25

.265

(c, )

(-1.5, -2.5)

.463

2.05 (7.00N28.50)

1.30 0.90

.247

Vol ume

116,000

Other Hub Bound Travel (2.25,-1.75) 27,800

%Total Travel

0.807

0.193

Aggregate (2.0,-2.0)

*Prior to demand stimulation

118

ParkRide
2.67

Rail
1.24

Air
2.67

143,800* 100



The distance-linearized fare formula for each vehicle is

presented below. This is a composite of the NASA, Lockheed-

California, Stanford,De Havilland of Canada and McDonnell Douglas

fares shown in Figure 7.4.

Fare = Boarding Charge + (Line Haul Mile charge) * Distance

For the existing vehicle family, this is:

Fare = 15.00 + 0.55 * Distance

For the NASA vehicle family:

Fare = 4.00 + 0.10 * Distance

The differences in the fare policies reflect the belief that

greater economies of scale may be exploited in both productivity

per direct operating cost dollar, and in efficiency or cost-sharing

in the indirect cost area. The current vehicle family fare policy

also reflects the very real cost of operations, which when viewed

in comparison to short haul CTOL or STOL vehicles are a magni-

tude higher in the line haul.

7.5 Case Study Results: 7.5.1 Maximize Contribution Policy

Based on the sensitivities and heuristics discussed in Chapter

6 and results from actual operations, areas of feasibility with

respect to each of the level of service variables were defined. A

recursive parametric program was used to assess the various combi-

nations and resulting levels of service. The outputs of the program
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were demand, overall financial statistics and various operating

ratios such as ratio of direct to indirect costs, load factors.

From these figures, ap excellent view is provided of the feasibility

and practicability of the proposed service.

Figures 7.5, 7.6 show the effeczs of demand stimulation by

improved frequency of service and the subdivision of the demand

region. It is noted that for the co.muter demand group, these

effects are greater due to a greater time elasticity. The satu-

ration frequencies, f* corresponding to the 90th percentile of the

infinite frequency demand, are seen to be in the range of 72 to

36 dependent upon degree of of market subdivision. This is inter-

esting in that market subdivision with a fixed price policy has the

same effect as making the market in question a "value of service"

market or increasing its effective stage length by reducing the

access to total time ratio. This is a far reaching effect, as it

allows multistop load building routing, and larger vehicles while

retaining the attractiveness of a minimized access time. While

there is no "weighting" of in-vehicle vs. out-of-vehicle times,

this serves to indicate a bias in favior of in-vehicle vs. out-of-

vehicle time as being less objectionable to the passenger. This

result , if true, would alter certain thoughts regarding the value

of vehicles possessing high block speeds vs. improvements to out-

of-vehicle services -- a trade-off oz indirect operating costs vs.

direct operating costs.
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Financial statistics of various operational policies and

scenarios are presented in Figures 7.7 through 7.12. These

indicate profit (or loss) on total costs and revenues based on

various vehicle sizes, levels of station operating costs, market

subdivision, and fare policy. It can be seen that with smaller

vehicle sizes and at lower daily frequencies, operations are

capacitated by maximum load factor in the analyses, this is set

at 80 percent, a figure which for scheduled service with greater

than four frequencies per hour provides an excellent "second

chance" facility, even during the peak hours of usage. As vehicle

size increases, LF drops, and operations at smaller breakeven

loads remain profitable. At higher frequencies of service with

a particular vehicle size, market subdivision allows maintenance

of a profitable operation through demand stimulation and increased

modal utility. As station operation costs increase, the net yield

per passenger drops, increasing the breakeven passenger load.

This has the effect of squeezing the feasible frequency/vehiclelsize/

multistop/multistation region, narrowing the range of policy choices

over which a profitable operation is possible. It can be shown

by varying station cost over a rather narrow range corresponding to

short versus long term retirement of capital costs that indirect

operating costs per passenger will increase to a critical percentage

of total revenues [Figure 7.13].
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The variation of indirect operating costs per passenger

in capacitated operations is detailed in Figures 7.14 and 7.15.

Economies of scale ae evident in all but the traffic and

passenger servicing areas of indirect costs, leading to the

assymptotic decline in indirect operating costs per passenger

towards this figure. In cases where traffic volume is not

heavy enough to support the overhead structure, the indirect

operating costs will rise, eventually exceeding the fare charged.

This is shown for the composite market group in Figure 7.14.

As a "mature" operation is evolved, it is possible that even the

passenger and traffic sercicing component may be subject to eco-

nomies of scale in terms of employee productivity and management

advances. History, however, does not bear out this possibility.

The effects of multistop routings are difficult to analyze

in the single market case. The extra delays incurred due to the

increased cycle time component of total time will diminish demand

for the through segments of such a flight. On the other hand,

the ability to offer service at a higher daily frequency with a

larger vehicle is provided. This may or may not outweigh the delay

costs. The analysis of Figures 7.16 and 7.17 is based on an ef-

fective frequency term of:

f'k = f*( l+9*k) k= 0,1, 2, ...
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where f= nonstop frequency

k= number of intermediate stops experienced by passengers

at the originating station.

The multistop frequency weighting value of .9 is derived from

the demand function as representing an equivalent disutility (hence

demand diminution). Combining the effects of multistation

operations and the previous heuristic for fk' we have for each

specific N, k,

V f(1+0.9*k)
f'N,k *  N k=O1,2...

N=l ,2,3

where now, f = nonstop daily total market frequency

k = number of intermediate stops

N = number of equal workoad submarkets (stations)

The demand model's response and the magnitude of station

operation costs SOC, will influence the width of the feasibility

region. By introducing quite a bit of added complexity into the

analysis, this formulation of effective frequency heavily in-

fluences the network aspects of the model. It is exactly this

problem that must be addressed in the general intraregional

problem considered in the*next chapter. .

7.5.2 Maximize Market Share Policy

This related case used the results of Chapter 6 and optimum

pricing policy in order to maximize market share with the additional

constraint that revenues must equal or exceed total costs, This is
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achieved in the parametric model by a recursive method similar

to Newton-Raphson approximation. The convexity of the demand -

level of service surface is exploited in order to guarantee con-

vergence within six to eight iterations. Demand and price are

recalculated within each iteration as a check on the degree of

stability of the solution. Breakeven solutions are found in 92

percent of all cases. The remaining cases run into trouble with

the double curvature found in the low ranges of the demand-

frequency curves. Final statistics are output for each para-

metrization

Breakeven fare based on total costs is shown in Figures

7.18, 7.19 for the current and NASA vehicles. Demand at the

given fare is presented in Figures 7.20 through 7.27 for the

composite market and various vehicles.
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7.5.3 Intraregional Service Study

If the results of the Long Island example shed light on the

interelationships amoDg various levels of service variables, it

also brought some questions to the fore. Among them:

- The limitations inherent in a single market analysis of

the various factors affecting level of service as opposed

to a network analysis. (e.g., the intraregional trans-

portation problem)

- The probabilistic nature of travel times in a network

- The temporal and spatial distribution of demand, and its

effects on station workload and other queuing results.

The problem of single market vs. network analysis is one that

is easily treated by making assumptions about travel times and

about demand distributions in time and space. Using the heuristics

and results of probability theory developed in Chapter 6 , a net-

work model may be systhesized.

Knowing the relationships of demand to frequency, market sub-

division and multistop service, it is possible to formulate a linear

programming problem to solve for best generalized equipment utili-

zation and routing policies. We must, however, abandon the idea of

probabilistic and temporal variations in travel times in favor of

analyzing the scenario during various locales during the operating

day and using instead these expectations. Spatial distribution of
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demand must be assumed such that workload sharing occurs and such

that no queuing occurs. Those passengers who cannot be accomo-

dated in their own district and find no seats or reservations

available are (quite reasonably) lost to the system.

Another problem not currently encountered in the model that

is termed "the burden of central location". Well documented in

the literature and an intuitively correct result - this documents

the tendency for the workload in a centrally located facility to

be higher than average due to its greater probability of being

a "second best choice" to several remote facilities. This is

easily shown for a three sector corridor example in Figure 7.26.

The assumption of workload aeraging and sector-dedicated demand

allows a simpler formulation of the problem, yet it begins to

deviate from the intuitive "real world" theory of operation. It

can be

d " Facility 2 functions as a
"second best"choice for demands
dl,d3, in regions 1 and 3.

SWorkload at facility 2 is
therefore higher than system

3 average.

Figure 7.26

shown, however, that for cases where a steady state results exists,

that the modelled result is very close to the actual situation.
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The network analysis of operational and financial feasibility

was performed using the IBM linear programming package MPSX with

the Flight Transporation Laboratory's FA-4.5 fleet assignment

model (Figure 7.27). FA-4.5 preprocesses and postprocesses matrices

of input data to and from the MPSX solution package. It was

altered slightly in order to function as a demand assignment model,

and by varying costs, routing and fleet mix was allowed to solve

for local optima within scenarios. The man-machine interface then

"globalized" the problem, which although combinatorial in nature,

may be radically reduced in size.

From the results of the Long Island market example, demand

responsiveness to level of service variables is known. For a

generalized intraregional case, we may alter the relationships

with reference to a random station:

- access and egress times are proportional to (n) - 1/2

- effective frequencies are again normalized with respect

to k and n, but must include normalization with respect to

n and ne.

fnane k = f*(l+0.9*k)
n an ek N aNeae ae

- demand is responsive to effective frequency

The problem is then solved with variables ranging similar to those



FLEET ASSIGNMENT MODEL

FA-4.5

OBJECTIVE FUNCTION:

MAX YpQ *PPQR - DCRA* NRA

PQ RE:pQ R

ICT

SUBJECT TO THE FOLLOWING CONSTRAINTS:

IA) LOAD FACTORS

LFRA * SA * RA

I <Q

PPQR S0 IJCR

IB) TRAFFIC-FREQUENCY RELATIONSHIPS

K K
PpQ * NpQ P QR IPQ

REEM

IC) DAILY FREQUENCIES SUM OF SEGMENT FREQUENCIES

M A RElQ

KNRA NPQ 0
K
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FLEET ASSIGNMENT MODEL

FA-4.5 (coNT'D)

2) FLEET AVAILABILITY

TBLOCKRA * NRA A

I

A A

R

4) LEVEL OF SERVICE

N RA
M= M;

N MlNpQ
RIQ
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of the Long Island study and projected indirect operating costs,

fare levels and vehicle sizes. Expected minimum utilization may be

input to solve for required fleet size.

The example uses a generalized intraregional market similar to

that of the Long Island case. The region-to-point market is ex-

panded into a true region-to-region case. The region, R (Figure

7.28) consists of a number of demand sub-regions A, B, C, etc.

Sub-regions A and B are employed to illustrate the problem. Each

subregion Q is served by several facilities ql, q2' q3' ..."" qn

each with a dedicated local demand. A market PQ experiences a

level of service - primarily defined by frequency of service, f -

according to f" , the effective frequency given N and N fornanek a e
P and Q. A three by three station example is used due to its ap-

parent optimality in the region-to-point profit optimization. Hence,

each local market experiences a frequency f"33,k- The total

demand may be divided into three equal workloads, and the model is

run for nonstop, onestop and twostop routings with the VT20 - VT80

family of NASA rotorcraft.
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Figure 7.28 The Intraregional Example c N

er %, I --pt-pt. AB experiences f = f ' \\ ~6Reg.-pt.a B exp. 'f'=fnR- an,k \ #

Reg'i. a nb exp. f"=fnm,

Particular variable values used in the network solution

were:

Vehicle and Direct Costs

*The VT series of NASA costs were used, hence

DOCHR= 252. + 4.20 (S)

For the individual vehicles, these are

VT20 @ $336./HR

VT40 @ $420./HR

VT60 @ $504./HR

VT80 @ $588./HR

Cruise speeds conservatively chosen as 140 KT

Maximum utilization (rotors on) of 8 hours per day

Fares

SThe NASA/Lockheed composite fare of $4.00 + $0.10*(d)

Network data

-Six stations - AI, A2, A3, BI, B2, B3 - three in each demand

subregion.

*15 city pairs, eight linehaul and six local (intra A,B).
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*Traffic-frequency curves normalized from the Long Island example.

Directional
Demand Per
Day Fig. 7.29

Traffic-Frequency
Curve

*Multistop frequency weightings

nonstop = 1.0

onestop = 0.9

twostop = 0.8

72 possible routings of two stops or less

In general, with N and M stations in origin and destination

zones, the upper bound on the number of k-stop or less flights

is:

[r] = N+MPk+1 =(k+1) < (N+M)=<) (kl)< (+M

<(N+M- (k+l)!

Symmetry pares this down by a factor of two, and rationalized

routing reduces this further.

Indirect Costs

Boarding charge is $2.50 per passenger plus an indirect charge

of $0.05 per mile in cruise.

Overhead is (N+M)*station capital costs
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OVH = $3000 / day for six stations

Financial Statistics

-Revenue is the tptal income from fares.

-Yield is 0.96 * Revenues

-Net Yield per passenger is Fare minus Passenger Costs

NY =(F - GC )

-Direct operating costs are the sum of fleet DOCHR times

utilization.

-Systems costs are (0.161* 106) + 0.43 * Revenues

-Contribution is the objective function of the linear program

and is excess of revenues over total costs.

Geographical Data

-Interregional stage length of 30 NM.

•Intraregional stage length equal to 9 NM. This was derived

from a 200 NM2 assumed circular capture area for each subregion, with

three stations per subregion. Hence 66.7 NM2 per station capture

area yielding interstation distance of 9 NM.

The results of the network analysis are presented in FA-4.5

postprocessor output format in Table 7.5. The optimal solution

yields a contribution to overhead of $18,283 per day on the basis

of 371 flights and 519 segments flown. The market penetration is

8.07 percent with 17,600 passengers and 527,000 revenue passenger
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miles. System average load factor is 78 percent. Fleet require-

ments for the optimal three by three intraregional example are

14 aircraft, of which 8 are the VT80 and 6 VT20. No VT40 or VT60

aircraft are used.

Greater than 81 percent of the passengers travel nonstop, and none

travel via twostop flight. Although fully 40 percent of the total

system flights are onestop, these are generally flown with the VT20

aircraft and are flown for positioning purposes. These tag ends

account for the system wide load factor being less than the 80

percent maximum.

Note that the system total effective frequency in the AB market

is 129 daily round trips, and that on the average during the 16

hour operating day this is 8.05 flights per hour A B. This

provides a system mean headway of 7.5 minutes and an expected wait

time of less than 4 minutes. The dedicated submarket round trip

frequency is 21.5 with a headway of 44.6 minutes and an expected

wait time of less than 23 minutes.

With a rolling scheduled, zone fare system, these dedicated

submarket statistics are quite reasonable. Realizing that in fact

the "second best" local facility may be an adequate substitute

doubles the effective frequency, although perturbing the localized

demand model. A steady state argument may be advanced, however,

invoking a derivative of the Law of Detailed Balance from probability
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theory to assume a net zero sum from those passengers crossing

localized facility boundaries. This modifies any queueing ar-

gument to be drawn from the data from M/M/1 to M/M/n, but adds

a realistic bit of behavioral and marketing psychology to the

model.
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0* UL'PHA SHORT JlAUL NETWONK M( AMPL E -- PX3 :TAT ION: .4

INP1ITS SHOILD IE VALUES FOR THE SYSTEM TOTALS FER DAY .
qFCAUSE TUlE SOLUI ION ASSIV FS A SYMMVFTICAL SYSTFM, DEMANDS AND 1,ODTES A RE ENTERED FOLR ONE WAY otJ.LY.
OUTPItrS WILL PF TIIF FOIL SYSTEM TOTAL PER IAY MILTIPLIFD MY 1,000 PS SPECIFIED I: THIE IrPUT 0111A.
THE OUTPUT WILL lIE ADJUSTED TO ELIMINATE FREQUFNLIFS LFSS THAN 0.50 FLIGHTS PER DAY :f PCSSqI.T.

IOC'S:
BASIC OVERHFAD PER DAY =S 1500.000
IOC PER RFVENUE rASSENGFY MIIE=$ 0.0
IOC PEP AIRCRAFT MILE=$ 0.0500
IOC PPFR PASSENGER POAFrING=$ 2.500
IOC PER AIRCRAFT CEPAPTURE=$ C.C
TOC PER PASSEIGER CCNNFCTICN=$ 0.0

AIPCqAPT DATA:
NAMY OUfJNTITY
VT20 10.0
VT4 1n.0
VTtO 10.0
VT80 10.0

Irt'S/ DAY
4. 000 o
s.000
H. OOC
S.000

liCURS/IC
0.050
0.050
0.050
0.050

COST/TO
0.0
u.0
3.0
0.0

SPFpD
110.0
110.0

140.0

COST/MI
0.0
0. c
0.0
0.0

COST/IP
310.00
420.00
304. 00
Sia.00

SEATS5
20.0
40.C
00.0
80.0

IOC/TO
0.0
0.0
0.0
C.0

!OC/MI
0.050
C.0CSO
0.050
0.051)

l.A N( I 1!
2C(.

2r.
2,. .

FARE STRUCTURE=$ 4. 00/DEP RTURE + $C. 1000/MIL. (ANY FARES GIVEN I N THE CITY PAIF DATA WILL BE ?F'LAC1 )8
YIELD IS 0.q60 TIFFS THE FARE

FREQUENCY COEFFICIENTS: NONSTOP=1.0000 ONESTCP=0.9000 WOSTOP=o.8000ooo

STATION DkTA: NAME MA
AlI
A2
Al
l I
c2
( 3

THFRE ARE 6 STATIONS

X DEP
0.0
0.0
0.0
0.0
0.0
0.0
IN THE

LANDING FFES
$ 0.0
$ 0.0
$ 0.0
$ 0.0
$ 0.0
$ 0.0

LIST

BY A/C
5 0.0
5 0.0
S 0.0
S 0.0

$ 0.0
$ 0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

z= a== CITY FAIR DATA: ====

LOAD FACTOPF VALUES WILL BE MULTIPLIED BY 1,000 (THE LOAD FACTORS PRINTED BELOW

Al -p1 LFtO.8000 FARE=S 7.00 CISTANCEw 30.0
TRfAFFIC CURVE: ( 12, 4q6.00) ( 28, 976.00) ( 44, 1233.00)

FyR'QO ClOF': (1.00,0. 0,C.0) (1.00,0.C,0.hO01 (.00,0.90,0.$0)

Al -B2 LF=0.9000 FABFzT 7.00 DISTANCE= 30.0
TRAFFIC C RVF: ( 12, 496.00) ( 28, 976.00) ( 44, 1233.00)

FRE) COFF: (1.00,0.90,0.80) (1.00,0.90,0.80) (1.00,0.90,0.80)

Al -R3 LF=0.8000 FARE=$ 7.00 DISTANCE= 30.0
TPAFFIC CURVE: ( 12, 196.00) ( 2,3, 976.00) ( 44, 1233.00)

FR!Q COEF: (1.00,0.90,0.UO) (1.00,C.90,0.80) (1.CO,0.90,0.80)

ARE THE INPUTS DFFORk ALZ (TION)

( 6C, 1390.00) (
(1 .00,C0.91,0.60)

( bO, 1390.00C) (
(1,0,0.900,080)

( 00, 1390.00) (
(1.0 0, 0.90,0. 0)

A2 -81B LF=O.8000 FAE=$S 7.00 CISTANCEY 30.C
TRAFFIC CURVF: ( 12, 496.00) ( 28, 976.00) ( 44, 1233.00) ( 60, 1390.00) (

FRF.IJ CORE: (1.00,0.90,C.080) (1.00,0,90,0.80) (1.00,0.q0,0.80) (1.00,0.90,0.80)

A7 -12 LF=Q.ROOQ A(fE=$ 7.00 CTSTANCE= 30.0

-0.

CD

-- j

I

fD

(0

-.

0J

(Dcn

C0)CDC)

CD)



Y'8EFO COF?: (1 .00,O0. 90, 0. 8O) (1 .00, 0 .'0, 0. -co (1.00,0.90,0..-C) i:,0q00.

A2 -11) L.Fo0.900 FARE.-$ 7.00 UUiSANCF- 10.0
TAFFIC CORVE - ( 12, 4 96. 00) ( 28, 976.0C) ( '44, 1233.00) ( 60, 1390.00)

PRFQ C01FF: (1.00,0. 90,0.80) (1.O00,C.90,0. 80) (1. 00, 0. 90, 0. 80) (1 .0 0,0. 90, 0.8a0)

A3 -81 LF=0.8000 FARE=$ 7.00 CISTANCI4 30.0
TRAFIC CUJRVE: ( 12, 4196.00) ( 28, 

9 7n.00) ( UL4, 1233.00) ( 60, 1390.00)
FAfO COEF: (1.00,C.90,C.80) (1.00,0.90,0.6301 41.00,0.90,0.80) (1.00,0.90,0.80)

A3 -42 LF=0.900C FARE=$ 7.00 DISTANCF= 30.0
TRAFFIC CURVL': ( 12, '496.00) 4 26, 476.00) ( 44, 1233.00) (60, 1390.OC)

FRF') COFF* (1.00.1o0,Qo0.R0) 01.00,0.90,0.60) 41.00,C.90,0.80) (.009,.0

A) -83 LF=O.8000 FARF=$ 7.00 DISTANCva 30.0
T'1AQFTC CURIVE: ( 12, 496.00) C 28, 976.00) (44, 1233.00) (60, 1390.00)

FRE0 COE?: (1.00,0.90,0.60) (1.00,0.90,0.130) (1.00',0.90,0.80) (1.00,0.,;0,0.80)

.41 -A2 LF=0.3000 FARE-$ 4.50 DISTANCE= 5.0

Al -A3 LF=~0.9000 FARE=$ '4.50 rIS'IANCE= 5.0

A2 -h3 LF=..000 fAIhE=$ 4.50 DISIANCi= 5.0

P1 -P2 LF-0.8030 FARF=$ 4. 90 rISIANCFz 5.0

V? -113 LF=0.8000 FARE=$ 4.50 CTSIANCEz 5.0

V1 -83 LF:0.8000 FARE=T 4.9C CISTANCF= 5.0
THEiF. ARE 15 CITY PAIRS IN ThE LIST

C:)

st-x -z~a R011TE DA'rA
COSTS COMPtITED FRCM THEF TIMES USING CCST/bli VALtJk
IF -)IF TIAF IS N GATIVF, THE COPPFSFONDINC, AII CPAFI IS NOT PERMITTED ro FLY THE ROV74F.
6O071L 1 Al P2 TIMESS 0.086 0. C16 0. cdi. 0. 086

COSTS= $ 28.80 $ 6b.00 f 43. 20 $ 50. 40 C
PO!!TE 2 k1 B2 TIM~ES= 0.2644 0.264 0.264 0.264

COSTS= % 8s88 S 111e.0 T 133.20 $ 195.40 $
ROUTF 3 Al P3 TIMES= 0.2E4 0.2b4 0.264 0.264

COSTS= $ 88.80 s 111.00 $ 133.20 $ 155.40 1
ROUTE 4 %2 H1 TIMES= 0.2t44 0.2o4 0.264 0.264

COSTS= $ 8.80 s 111.00 S 133.20 $ 155.40 $
ROUTE 5 A2 02 TIM ES= 0.264 0o2 64 0.264 0.264

COSTS= T 88.8P S 111.00 $ 133.20 't 155.40 $
ROUTE 6 A2 B3 TIi~S= 0.264 0.264 0.2b4 0.264

COSTS= S 898.80 $ 111. 00 $ 133. 20 $ 155. 40 t
R0UTE 7 A~3 B1 TIMES= 0.2b4 0.264 0.264 0.264

COSTS* S 88.80 f. 111.00 $ 133.20 $ 155.40 $,
R0UTE 8 A3 02 TIIMES& 0.264 0.264 0.'464 0.?64

COSTS= $ 08.80 $ 111.00 1 133.20 $ 155 .40 S

ROUTE q A) 63 -TIMES= 0.2uL4 C. 6 0.264 0.264
COSTS= $ 88.80 $ 111.00 1, 132.20 $155.40 $

ROUTE 10 Al I81 B2 T I M1I:S' C .3 90 C.35C 0.350 0. 350
cosvsm S 117,60 $ 147.00 $ 176.40 $ 205.80 $

RO 1)T E 11 Al k 1 5 3 TIMES= Co 350 0,35Q 0.350 01.350
COSTS= 1 117.60 $ 147 .00 $ 176. 40 $ 205.80 $

POOTE 12 Al 102 H 1 T TM FSa 0.350 0. $50 0.350 0. 350
COSTS= $ 117.60 $ 147.00 1 176.4C $ 2C5.90 $

FOllT? 13 Al B2 B3 TIMES= 0 .35 C 0.350 0.350 0.350
cos?s= s 117.60 S 147.00 1 176.40 $ 2C5.PO $

ROUITE 14 Al P3 61 73Nfsa r,.350 0.35C 0.350 0.350
COST'S* % 117.u0 t 147.00 117c.40 $ 209).P0 t



COSTS= $ 117.60
ROUTF 16 A2 81 82

CO IsTS S 117.0
RO UIT 17 A2 81 I 3

COSTS= $ 117.0
ROUITE 20 A2 V3 B1l

COSTS= S 117.60
ROUTE 21 A2 B3 82

COSTS= S 117.60
ROUTE 22 A3 RI D2

COSTS
=  5 117.60

ROUTE 23 A3 B1 D3
COSTS= $ 117.60

ROUTE 24 A3 82 P1
COSTS= $ 117.60

ROUTE 25 A3 82 83
COSTS= S 117.60

ROUTE 26 A3 B3 81
COSTS= $ 117.60

ROUTE 27 A3 83 D2
COSTS= $ 117.60

ROUTE 30 Al A2 f1
COSTS= $ 117.60

ROUTF 31 Al A2 82
COSTS= S 117.60

ROUTE 32 Al A2 03
COSTS= S 117.60

ROU
T
E 33 k1 A3 n1
COSIS= 5 117.60

ROUTF 34 Al AJ 82
COSTS

=  
$ 117.60

ROUTE 35 Al1 A3 83
COS:S= $ 117.60

ROUTTE 36 A2 Al 81
COSTS= S 117.60

ROUTE 37 A2 Al 81
COSTS

=  5 117.60
ROUTE 38 A2 Al 83

COSTS= S 117.60
ROUTE 39 2 Al B1

COSTS= S 117.60
ROUTE 40 12 A3 q2

COSTS= S 117.60
ROUTE I1 A2 A3 83

COSTS= $ 117.60
ROUTE 4? A3 k1 81

COSTS= $ 117.60
RO0UTE 43 13 Al 02

COS:S= 117.60
ROUTE 44 k3 Al E9

COSTS= 117.60
ROUTE 45 A3 A2 81

COS:S= $ 117.60
ROUTE 46 A3 A2 82

COSTS= $ 117.60
ROUTE 47 Al A2 133

COSTS= S 117.60

S 147.00 $
TIMNES=

$ 117.00 3
TIM S

=

$ 147.00
TIMFS=

$ 147.00 $
TIMIES=z

5 147.00 $
TI ES=

$ 147.00 1
TIMES=

$ 147.00 $
TI 9ES

=

$ 147.00 $s
TIMES=

$ 147.00 $
TIMES=

$ 147.00 $
TIMES:

S 147.00 $
TIMES

=

1 147.00 5
TIMES=

$ 147.00 5
TIMES:

$ 147.CO $

$ 147.00 $TIMES=
5 147.00 

TIMES=
$ 147.00 $

TIM ES=
S 147.00 1

TIMES=
$ 147.00 $

TIMES=
$ 147.00 $TIMES=
5 147.00 5

TINES=
$ 147.00 $

TIMES=
$ 147.00 5

TINES:
$ 147.00 5

TIMNES=
5 17.00 $

TINES:
$ 147.)0 $

TIMES=
$ 147.00 $

TIMES=
$ 147.0'0 $

TIMES=
$ 147.00 $TIMES=

$ 147.00 $TlIMES
=

$ 147.00 %
TIMES=

S 147. 00 $
. .. .. . . . .

THERE APE 43 RUUTES IN THE LIST

176.40
0.350

176. 40
0.350

176.40
0.35C

176.40
0.350

176. 40
0.350

17b. 40
0.350

176. 0
0.350

176.40
C.350

176.40
0.350

176. 40
0.350

176. 40
S.350

176. 40
C.350

176.40
C.350

176.30
0.350

176. 30
0.350

171,. 40
0.350

176. 40
C.350

176.40
0.350
176.40

C.350
176.40
0.350

176.30
0.350

176. 30
0.350

176.40
0.350

176. 40
0.350

176.40
C.350

1711. 330
C.350

176. 40
0.350

176.40
0.350

176. 4Q

205.80 $
0.350
2095.30 5
0.350
205.80 5
C.350
205. 0e $
0.350
205.80 5
0.350
205.80 $
0.350
205.80 $
C .350
205.60 S
0.350
2C5.80 $
0.350
205.80 $
0.350
205.80 $
C.350
2C9.80 S
0.350
205.80 $
0.350
205. 80 $
0.350
205.80 $
0.350
2C5.80 $
0. 350
2C5.&0 $
0.350
205.80 S
0.350
205.P0 T
0.350
205.80 $
0.350
205. 80 $
0.350
205.80 $
0. 150
205.80 $
0.350
205.80 $
0.3J 0
2C5. O0 f
:.350
205.80 
C.150
20Cb. P0 5
0.350
205.80 $
0.350
205.60 5

0.350

0.350

0.350

0.350

0.150

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350C

0.350

0.350

0.350

0.350

0,350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0. 350

0.350

0. 350

0.350

0.350

0.350

0.350

0.350

0.350

C.350

0. 350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0.350

0. 350

0.350

0.350

0.350

0.350



1.ROUTTE DATA
T VAI.U'S GTV1N A11I rOll (JNI WAY TVArFJ' THAT I; V jUl UNIE HALF OF A SYMMPTHTCAT. S~r;~

R01ITE 1C01 Al TC A2
NU FLIGHUTS ARE FLOWN ON THIS ROUTE

ROUTE 1002 Al TC 112
P34.4 9 PS';EN,-E0S FROM Al TO B2
1 1.04 TRIPS PFR DAY

13.04 TRIPS USING; VTdC

qOUTE 1003 Al TO B3
662.15 PASSENGERS ~FROM Al TO 83
10.35 TRIPS PEA CAY
10.3R TRIPS USING VT80O

ROUTE 1O004 A2 TO El
976.00 PASSENGERS FROM A2 TO B1
15.25 TRIES PES DAY

15.25 TRIPS USTNO VT80

ROUJTE 1COS A2 TO B2
976.00 PASSENGERS FROM A2 T10 B2

15.2; TRTPS PEN DAY
15.25 TRIPS USING VT60

ROUTE 1006 A2 TO B3
9'76.00 nASSFNGERS FROM A2 TO 133
15.2 TRIPS PER DAY

__j 15.25 TRIPS USING VT80

ROU1TE 1007 A3 TO P11
q76.00 PASSENGFRS FROM A3 TO B1
15.25 ThIPs PER DAY

15.25 TRIPS USING VT8O

ROUT?' 1008 A3 TC 22
POB.l30 PASSINGFRS FROM A3 TO 132

13.89 TRIPS P?'R RAY

13.89 TRIPS USING V740

ROUTE 1009 0~ TO 93
811.15 P.!SSfNGFFIS FROM Q) TO L43
12.q9 TRIPS PER CAY

12.99 TRIPS USING V T 8C

ROUTE 1010 hl TO 11 TO 82
No FLIGHTS ARE FLCWN ON Till$ ROUTE

ROUTE 1011 Al TO 14 51 7TO 13
NO FLIGHTS ARE FLOWN ON TUil ROUTE

ROU1TE 1012 Al TO B2 TO 91
0.0 PASSENGERS FROM 52 TO B1
'9.78 PASSENGERS FROM Al TO 81
0.0 PASSENGERS PROM Al TO 92
5.61 rR4PS PER LAY

5.b1 TRIPS U15ING VT20

ROUIT? 1013 Al TO R32 TC B3
NO FLIGHTS ARE FLOWN ON THIS MOTE

ROUTE 1014 Al TO 133 To Dl1
WO FLIG11TS AR?' F LCW N ON TI'111 ROUTE



ROUTE 1015 Al TO 83 TO ui
NO FLItGHTS ABE FLOWN 1ON4 THIS SOUTE

ROUTE 101b A2 TO ni TO 112
NO FLIGHTS ARE FLOWN ON THIS ROUTE

ROUTE 1017 A2 TO 81 t10 83
NO FLIGHTS ARE FLOWN ON THIS ROUITE

ROUITE 1020 A2 TO 83 TC 81
NO FLIGHTS ARE FLOWN ON THIS RCUTE

ROUTE 1021 A2 TO 83 TO P2
NO FLIGHTS ARE FLOWN CN THIS EOUTE

ROUTE 1022 A3 TO 1 TO 82
NO FLIGHTS ARE PLCWN Ch THIS ROliTE

ROUTE 1023 A3 TO 81 TO E3
NO FLIGHTS AR! FLCWN ON THIS ROUTF

ROUTE 1024 A3 TO 82 TO 81
NO FLIGHTS ARE FLCWN CN THIS ROUTE

POlITE 1025 A3 TO 132 TO 03
0.0 PASSENGERS FPOM 82 TO 83

144.85 FASSENGERS FROM 43 TO V1
0.0 PASSENGERS FROM A3 TO R2
9.05 IpIPS P.R DAY
9.05 TRIPS USING VT20

CY ROUTE 1026 A3 TO B3 TO B1
w NO FLIGIHTS APE FLOWN ON THIS ROUTE

IOUTE 1027 A3 TO 113 TO 12
NO VLI(;IITS AMl I 1ILWN ON TII 1 00UTI,

PtoIlT 1630 Al TO Ad .rc fl1
0.0 PASJENGFRS FhOM A2 '1tO 1

682.22 PASSENGERS FIROM Al TO 331
0.0 PASSFNGERS FROM Al TO A2
12.75 TRIPS PER DkY
2.79 TRIPS USING VT20
9.96 'ITRIPS USING VTO80

ROUTE 1031 Al TO A2 TC B2
3.0 PASSENGERS FROM A2 TO P2

141.51 PASSENGERS FROM Al TO 82
0.0 FASSFNGERS FROM. Al TO A2
8.84 TRIPS PER DAY

8.84 TRIPS USING VT20

ROlUTE 1032 Al TO A2 TC 83
0.0 PASSENGERS FROM A2 TO 83

204.00 PASSENGLRS FROM Al To P3
0.0 PASSENGF RS FROM Al TO A2
12.75 TRIPS PER DAY

12.75 TRIPS USING VT20

ROUTE 1033 Al TO A3 TO e1
0,0 PASSFNGERS FROM A3 TO 81

204.00 PASSENGERS FROM N1 TC 01
0.0 PASSENGFS FROM Al TO A3
12.75 TFIPS FE1 DAY

12,75 TRIPS USING VT20



ROUITE 1034 Al TO
24.71 PASSENGERS
0.0 PA;; N(FIHS
0.0 tASStNG; kHS
1.54 T[TIPS PER

1.54 TI Jr USING

ROUTI 1035 Al TO
0.0 FASSfNGFRS

109.85 PASSENGES
0.0 PASSENGFRS
6.87 TRiPS PER
6.87 TRIPS USING

ROUTS 1036 A2 TO Al TO 0 1
NO FLIGITS AFF FLCWN CN TillS ROUTF

1037 A2
NO FLIGHTS

1038 A2
NO FLIGHTS

1039 A2
NO FLIGHTS

1040 A2
NO FL GHTS

1041 A2
NO FLIGHTS

1042 A3
NO FLIGHTS

1043 A3
NO FLIGHTS

1044 A3
NO FIIGHTS

1045 A3

TO Al
ARE FLCWN

TO Al
ARE FLCWN

TO A3
APF FLCWN

TO Al
APE FLOWN

TO 43
AI. FPLCWN

TO Al
ARE FLOWN

TO Al
APE FLOWN

TC Al
ARF FLOWN

TO A2

11
THIS

1 3
THIS

TI S
'1v2

THIS

13THIS

THIS

81

ROUTF

RCUTF

ROUTE

ROIITF

ROUTE

RCUITF

ROUTF

ROC T E

NO FLIGHTS ARE FLOWN ON TillS RCUTE

ROUTE 1046 A3 TO A2 TC D2
0.0 PASSENGERS PROM A2 TO 82
62.49 PASSPNGFRS FRCM A3 TO 82
0.0 PASSENGE S FBOM A3 TC A2
3.91 TRIPS FES DAY

3.91 TRIPS USING VT20

0OIITE 1047 A3 TO A2 TC 83
NO FLIGHTS AFF FLOWN CN TIllS ROUTE

A3
FROM
P11HO
FROM
DAY
VT20

A3
FFOM
FROM
FROM
CAY
VT20

ROUTE

ROUTF

ROUTE

ROUT?

PO OT E

ROUTE

ROUTE



2. ROUITE SEGMENT DATA
TIlE VA.IUF: IVEI, ARE F OR ONVI WAY TRAFPTC, TIIAT II FORI UNI IIALF uF A ;YMMIT I('AL ;Y:i'ItM,

ROUTE SFGMENT A2 TO Al
1027.74 PASSENGERS. LOAC FACTOR=U.80 MAXIM1M

682.22 PASSENGEPS FROM hOUTF 1030
141.51 PASSENGERS FRCM ROUTF'1031
204.00 PASSENGERS FRCM RCUT!F 1032

ROUTE SEGMFNT A3 TO Al
113.85 PASSENGEIS. LOAD FACTOR0-.80 MAXIMUM

204.CO PASSENGERS FRCM ROUTE 1033
109.85 PASSENGERS FRCM ROUTE 1035

NO PASSENGERS FECM FOUTE(ST 1C34,

ROUTE SEGMENT A3 TO A2
62.49 PASSENGERS. ,OAD FACTCR=0.80 MAXIMUM

62.49 PASSENGERS FROM ROUTE 1046

ROIITE SEGMENT B1 TO Al
NO SFPVICES FROM ANY RCIITES

ROUTE SEGMENT P1 TO A2
lb .22 PASSENGERS. LOAD PACTOR=0.8C MAXIMUM

q76.00 PASSENGERS FRCM ROCTIE 1004
bR2.22 PASSENGERS FRCM HOIITF 1030

ROUTE SEGMENT 01 TO A3
1180.00 PASENGFPRS. LOAD FACTCR=0.PO MAXIMUM

q76.OC PASSENGERS FPCM ROUTE 1007
204.00 PASSENGERS FRCM HCUTE 1033

ROUTE SEGMFNT B2 TC Al
924.26 PASSENGFRS. LOAD FACTCR=O.HO MAXIMUM

834.49 PASSENGERS FhCM ROIITE 1002
F1.7b PASSENGERS FBCM ROUTF 1012

ROUTE SEGMFNT 82 TO A2
1180.)0 PASSENGERS. LOAD FACTOR-0.80 MAXIMUM

976.00 PASSENGERS FROM ROUT? 1005
141.51 PASSENGERS FRCM ROUTE 1031
62.49 PASSENGERS FRCM ROUTP 1046

ROUITE SEGMFNT 12 TO A3
1058.37 PSSENGEirS. LOAD FACICR=O0.80 MAXIMUM

88R.HC PASSENGERS FECM ROUiT 1008
144.85 PASSENGERS FPCM POUTE 1025
24.71 PASSENGEIR FRCM ROUTF 1034

ROUTE SEGMENT 82 TO 81
89.78 PASSENGERS. LOAD FACTCR=O.f0 MAXIMUM

89.7H8 PASSENGERS BRCM ROUTF 1012

ROUTE SEGMENT 83 TO Al
662.15 PASSENGERS. LOAD FACTCRO=.80 MAXIMUM

6o2,15 PASSENGERS FBCM ROUTE 1003

ROUTF SEGMFNT 83 TO A2
114O0.C P.SSENGERS. LOAD FACTOR=O.8C MAXIMUM

976.00 PASSENGES FRCM ROITE 1006
204.00 PASSENGERS FRCI ROUTF 1032

POtTEl SEGMENT Pl TO 1A
140.9l9Q RA4,SENIGEiS. LOAD FACTO1=O.flO MAXIMUM

PERMTSSIBLE LOAD FACTOR=O.R

PERMISSIBLE LOAD FACTOR=O.O

PERMISSIBLE LOAD FACTOR=0.80

PERMISSIBLE LOAD FACTOR=0.80

PERMISSIBLE LOAD FACTOR=0.80

PERMISSIBLE LOAD F''TOR=0.80

PERMISSIBLE LOAD FACTOR=0.80

PERMISSIBLE LOAD I.

PERMISSIBLE LOAD FACTOR=,80

PERMISSIBLE LOAD FACTOR=0.HO

PERMTSSIDLE LOAD FACTOR=0,80

PEnMISSIBLE LOAD FACTOR=OO



itoLiTI I;vtMENT I1 1 'T o 1
NJ EIhVICtS FhOM ANY UIITES

ROiUTE SEGMENT B3 TC 02
144.d5 PASSENGFRS. LOAD FPCTOR=O.bO MAXIMUM PERMISSIBLE LOAD FACTOR=0.80

144.85 PASSENGErS FRCM ROUTE 1025

3. CITY PAIR ORIGIN AND DESTINATION DATA
'HE VALU(CS GIVEN ARE FPO ONF WAY TRAFFIC, TihAT

CTTY PAIR V1 TO Al
976.00C PASSENGERS, 31.11 SERVICES

476.00 PASSENGERS, 31.11 ONESTCP

CITY PkIR P1 TO A2
976.00 PASSENGFRS, 28.00 SERVICES

976.00 PFSSENGFRS, 28.00 NONSTOF

CITY PAIR 3I TO A3
976.C3 PASSENGERS, 28.OC SERVICES

S7o.CC PASSENGFRS, 28.00 NONSTO

CITY PAIR 82 ro Al
976.00C PASSENGERS, 29.C4 SERVICES

8314.49 PAS:;EN(F'RS, 1H.u5 NCNSTOE
141.51 PASS)N(;ERS, 10.39 ONESTOF

CITY PAIR 02 TO 42
976.00 FASSENGERS, 28.00 SERVICES

97o.00 PASSENGERS, 28.00 NCNSTOE

CITY PAIR P2 TO A3
976.OC PSSENGERS, 28.19 SERVICES

913.51 PASSENGPRS, 24.49 NONSTOF
62.49 PASSENGERS, 3.91 ONESTOF

CITY PAIR E3 TO Al
976.00 PASSENGFRS, 29.96 SERVICES

602.15 PASSENGFRS, 10.15 NONSTOU
313.85 PASSENGERS, 19.62 ONFSTOt

CITY PAIR P3 TO A2
976.00 PASSENGERS, 28.00 SERVICES

976.00 PASSENGERS, 28.00 NCNS'OF

CITY PAIR E3 TO A3
q76.00 PASSENGERS, 28.91 SERVICES

831.15 PASSENGPRS, 14.85 NONSTOF
144.85 PASSENGERS, q.05 ONESTOF

IS FORl ONE HALF OF A SYMMETRICAL SYSTEM.

SERVICES FROM ROUTE(S) 1012, 1030, 1033,

SERVICES FROM ROUTE(S) 1004, 1030,

SFRVICES FROM ROUTE(S) 1007, 1033,

SFRVICES PROM ROUT F(S) 1002, 1012,
SFRVICPS FROM hOUTE(S) 1031, 1034,

SERVICES FROM ROUTE(S) 1035, 1031, 1046,

SFRVICES FROM HOU4TF(S) 1008, 1025, 1034,
SERVICES FRCM ROUTE(S) 1046,

SERVICES FROM ROUTE(S) 1003,
SERVICES FROM ROUTE(S) 1032, 1035,

SERVICES FROM BOUTF(S) 1006, 1032,

SFRVICES FROM ROUTr(S) 1009, 1035,
SERVTCES AFROJ ROUTE(S) 1025,



ALL VALUIES IN SfCTIONS 4 THROUGH 7 ARE FOR TWO WAY TIIPFFIC, TIIAT 1S POFl TIlE TOTAL ACT1VITIFS OF TlHE SYMMEThIICA
A MlIL'Trl I,,1FYR OF 1.000 IIAS tIB FN APII111E)

D 0 TIIESE PER DAY VALIIUE, A:; REQOII STF IN TIHE INPIU: PATA.

4. SYSTEM ECONOMICS IN DOLLARS PEE DAY
REVENUF = 118056.62
DOC = 53760.91
10C 4= 6C12.90
LANDING FEES = 0.0
CONTRIUTICN = 18282.78
ODJECTIVF FN = 165b2.34

5. SYSTEM TRAFFIC PEE DAY
PASSENGERS -= 17567.945

81.34% TPAVELED WITH 0 STOPS.
16.66% TRAVELED WITH 1 STOPS.
0.0 % TEAVELED WIT1h 2 STOPS.

RPM = 527038.875
RM 11860.730
TAKE OFFS = 51. 814
FLIGHTS = 370.6h6
LF(PAX/SFATS) = 0.798
LP (RPM/RS) = 0.77o

AVFRAGE TRIP LENGTH=
AVEPAGE TRIP LFNGTl=I
AVERAGE TRIP LENGTH=

6. FLEET FISAGE DATA PER DAY
AIRCRAFT lIPS ACTIVE

VT2) 44.68
VT40O 0.0
VT60 0.0
VTRO 6 .79

HRS IDLE
35.12
P0.0c
80.00
14.21

TAKECFFS PERU'HR
5.714
0.0
0.0
3.988

AVERAGE STAGE LENGTH
17.50
0.0
0.0

2R.10

7. ATRPORT ACTIVITY
NAME LANDINGS
Al 94.5C
A2 122.2
A3 97.40
B1 61.61
V2 85.8C
f3 67.25

DATA FER DAY

***** ULTRA SHORT HAUL NETWORK EXAMPLE -- 3X3 STATIONS

30.00 MILES
30.00 MIL'S
0.0 MILES

HPS GAINED
0.0

C.0
0.0

HRS LOST
0.0
0.0
0.0
0.0

* ***



8.0 Towards Alternative Transportation Technology Analysis

Having seen the results of the single market and network

analyses, it is possible to draw soue conclusions regarding

systems optimization in ultra short haul air transportation.

Several points may be advanced when treating decision variables

and looking at the operational policy/scenario interface beyond

which the system operates. Other questions exist in the areas

of operational feasibility and social implications.

8.1 Operational Feasibility

Vehicle size is only ademand stimulus if the operator is allowed

a flexible pricing policy permitting vehicle-specific costs to be

recovered. In a regulated price environment, the operator choses

vehicle size to maximize contribution to overhead while maintaining

a breakeven load on the last additional frequency. There is no

incremental level of service attribute under such a constant

price policy, hence no deman stimulation accountable to vehicle

size. In order to give an ultra short haul operator the flexibility

required to maximize his market share he must be allowed pricing

flexibility in order to comply with demand fluctuations.

Market subdivision, while clearly a reasonable option for the

profit maximizing operator, may not be a valid concept for the ope-

rator in search of maximum market share. The relatively higher

indirect costs per passenger associated with the multiple station

operations exceed the weighted level of service increases offered
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by such a policy. The maximum market share occurs at the mi-

nimum disutility consistent with breakeven operations. For this

reason, the high costoof station operation vs. other forms of e-

quivalent level of service increase is the determinant in the

maximum market share case.

The advantages of multistop service are universal. Its

ability to allow load building with larger vehicles (thus ex-

ploiting economies of scale in large vehicle operating costs)

and provision of service at higher effective frequencies makes

it a useful tool in either profit or market share maximization.

In the intraregional example, it is multistop service (and

associated low turnaround times) that yield demands close to

those of nonstop service, yet at appreciably lower fully allo-

cated costs to both operator and consumer. The higher effective

frequencies provided by multistop service also allow higher

equipment utilization or a smaller fleet requirement at a given

level of service.

A historical trend of lower than average equipment utili-

zations due to the highly directional and peaked traffic flows

is an area that bears close study. Were the higher local uti-

lization levels obtained during the peak hours able to be main-

tained throughout the operating day, an operation such as that

proposed would be an unquestioned success. To this date, no

*Indirect costs, however are higher due to fewer passengers en-
planed per stop. Breakeven fares are therefore higher.
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method short of cross-subsidization of off-peak travel has been

proposed, either through peak hour pricing or off-peak subsidy.

[The premises of this paper has been that ultra short haul air

transportation can pay its own way; as such no subsidy has been

proposed.] The stimulation of off-peak travel is a market re-

search area of potential interest to ground and air mode trans-

portation planners alike. This area is an absolute priority for

any profit-seeking mode, as equipping for peak period demands

will require a much larger capital investment in fleet than can

be supported on low average utilization and off peak demand.

8.2 Policy Implications

Another area affecting operational feasibility is the air

traffic control environment and the reliability of the ultra-

short haul air service. While cancellations and delays due to

mechanical failures have been for the most part eliminated in

rotorcraft, (New York Airways reports less than two percent

mechanicals on a yearly basis) the problems inherent in VTOL

all-weather operations have not been as fully solved. Experiments

with various forms of navigation aids have yielded a large body of

operational experience. The present primary nonprecision approach

aid continues to be the VOR/DME. While highly accurate VLF hyper-

bolic and RNAV systems are available and deployed, their in-service
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reliability has been only fair and they are not approved for pre-

cision approaches. The ILS and MLS are the approved precision

approach devices and Vhile both reliable and accurate, they do not

cater to the particular capabilities and needs of VTOL vehicles.

Including VTOL aircraft in a group with CTOL aircraft for the pur-

poses of terminal procedural compliance completely ignores the

special capabilities of the VTOL device. The relatively large

body of airspace reserved for CTOL procedures is not consistent

with the ability of the VTOL aircraft to make an approach to a

point in space and hold. By segregation of VTOL and CTOL terminal

approaches and adoption of relaxed weather reporting and approach

minimum criteria, the operational capabilities and reliability of

rotor craft operations may be maximized.

8.3 Social Questions

The final area of interest in this systems look at ultra short

haul air transportation is one that is not readily quantizable

in any case - social costs and community acceptance. In demons-

trating the air service to the travelling-public, the expectations

and desires of the non-travelling public in these social areas must

be considered. An equally important aspect of any demonstration is

the illustration of the improved environmental aspects of lower

noise, pollution and better local access traffic pattens to the
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public at large for the purpose of obtaining the required levels

of community support and acceptance. Only with careful planning -

and this must include the public at all levels, not just in the
4.

post facto stages - will ultra short haul air transportation

receive enough exposure so that the needed advances in the state of

the art of tilt-wing/rotor and other VTOL technologies can occur.
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APPENDIX A: Crofton's Method for Mean Values

Linear Crofton Case:

X1 , X2 Distributed uniformly and independently

1 = E[IX 1-X21]

I I I

o a a+6a

Define

1Xi-X 21 over [0, a+6a] A p+6sp

Consider 4 partitioning events (mutually exclusive)

E: (o<_ x < a, o<_ x2 <a)

E2: (o< x1 <_a, a < x2 < a+6a)

E3: (a < xi< a+6a, 0< xz < a)

E4: (a<x, < a+6a), a x2 < a+6

a
2

P(E1) = a2(a+6a)z

I a-6a
2P(E3 ) = (a+6a)z

P(E4 ) :
(aa)2

(a+6a)2

4
1+61p - 5

(=1
EE(IX1-x21)IEL] P(EL)

a+6a)
= 11 (a+6a)2

1l - E[(IxI-x 21)I one point in [a, a+6a] ]

Now

+ 2p1

Where

a6a
(a+6a) + O(6a?)
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(We calculate i1i due to its ease compared to i.)

By inspection, pl= + H.O.T.

we simplify by:

6p= 21i-pi ( 6a)
a

substitute

a a-2i )a
1= " , = ( a )aa

or,

= p+ 1
da a

which gives

v = , the expected result.

This may be extended to a 2 dimensional case, and is very

useful in the analysis of mean distances in a circular region.
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Travel Times (Distances) In A Circle Using Crofton's Theorem on

Mean Values:

Apply Crofton's method for finding mean Euclidean distance

E[DE] = E[I(x1-x2) 2+(y1-y2 )2 ]

Where (xljy) -,(x 2ly 2 ) are assumed uniformly and independently

distributed over a circle of radius R.

Now, let i = E[DE

i1= E[DEI one point in 6R Ring]

p+6i = Mean Travel Distance in Circle of Radius R+6R

Consider 4 mutually exclusive events and their probabilities:
4

E1: (Both points in circle, R) P(E )=(R+FR)4

E2: (Pt. 1 in circle, Pt. 2 in 6R Ring) P(E 2R36R

E3 : (Pt. 2 in circle, Pt. 1 in 6R Ring) P(E) 2R36R

E4: (Both points in 6R Ring) P(E4 4R2(6R)2

And the four events partition the assumptions on the 2 points.

Hence, we know that:

4 

p+6p = E E[DE I Ei
]  P { E i }

i=1
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R'
= I TR+6R)" + 2i

Expanding 1
(R+6R) 4

2R 36R + H.O.T.
(R+6R)

gives:

(R+6R)-4 Z R- - 4R- 5 6R + H.O.T.

Or P+SP = P(1-4 ( 6 --R +4 ,( R ) + H.O.T.

Hence, 6P = 4(6-R) 6R
R

Now, to find i1 we fix a point, A in the 6R Ring

of the circle, and define a 6x Ring which is a distance x to A;

Sits width is 6x.

Now, area of 6x Ring is: 20x6x = 2x(Cos- 2R)

From above, P1 = EEDEIGiven a point in 6x]

And by varying x from o-2R we can cover the entire circle.

If pi = E[DEI 1 point in 6x]

1 12Rx 2x (Cos -'

(L.e. Total area in R)

x ) dx
2 R
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X
Now, substitute for 2R = y in above integral,

and

ll =  16R j Cos-ly dy

0

y3 Cos-y 1 _ 2y2)_?2l, 16R,
3 3

11= 2 . 16R = 32R
9 TI 911

Now, returning to p :
32R

P =  4(-) R = 4( -) HSR
RR

= (128 -41 ) 6R911 R

let P =  k-R , find k:

128 128 128Rk 1 - 4k Hence k= and 4511
9H 4511 4511

In summary, we have:

2 points independently and uniformly distributed over space.

We wish to calculate the expectation of a function of their relative

position. We expand the space by a small increment, 6 and relate the

desired expectation to the expectation of the same function conditioned

on the assumption that one event lies within 6. (The conditional mean

is easier to calculate than using the elliptical (Tables). The desired

expectation is then found by solving a (usually simpler) differential

-equation.
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