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ABSTRACT

ON SLOWLY VARYING STOKES WAVES

by

VINCENT HWA-HING CHU

In this thesis investigations are made on the theory of a train of slow-

ly modulated gravity waves propagating over uneven bottom topography.

The primary object is to study the interplay of amplitude dispersion

the frequency dispersion in waves on the surface of water where the

depth is not too shallow compared to a typical wave length.

The solution of the wave train is expressed in expansions of the

WKB type with a small parameter which is proportional to the wave steep-

ness and the rate of modulation. A systematic perturbation scheme that

may be carried out for all orders is presented. It is found that new

terms directly representing modulation rate must be included to extend

the scope of the Whitham's theory based on an averaged variational

principle. Several specific examples are discussed and the following

main conclusions are reached:

1. The Stokes waves of constant amplitude are unstable for all

depths under three dimensional disturbances.

2. For quasi-steady waves normally incident on a mild beach, the

local rate of depth variation is found to affect the wave phase

which in turn gives additional dispersion effect as compared

to Stokes waves of constant amplitude.

3. In deep water, there exist solutions of permanent wave enve-

lopes which represent exact balance between amplitude disper-

sion and frequency dispersion.

4. Numerical computation on the transient development of the wave

envelopes reveals that any wave group deviated from permanent

form will eventually disintegrate into a sequence of peaks

separated by nodal points (where amplitude is zero) and locally

the wave group tends to approach the dynamically stable per-

manent form.

It is believed that basic studies of this kind may ultimately be of im-

portance to ocean engineering and oceanography as they permit a closer

look at the significance of the classical Stokes waves which have led

to an oversimplified picture of reality.

Thesis Supervisor: Chiang C. Mei

Title: Associate Professor of Civil Engineering
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CHAPTER 1

INTRODUCTION

Because of mathematical convenience, most engineering approaches to

water wave problems are essentially based on linearized approximation,

and the nonlinear effect is usually considered in an intuitive manner.

For example, one method in calculating wave amplitude in coastal waters

is to make use of the geometical optics approximation, i.e., to assume

energy conservation between wave rays. The nonlinear effect is then

taken into account later by using Stokes higher order solution as being

valid locally. In conjunction with some other additional assumptions

this method has been extensively used to study problems such as wave

force on coastal structures, shoaling and breaking of large amplitude

waves etc.. Although systematic perturbation calculation for Stokes

waves of uniform amplitude have been advanced to fifth order and even

to seventh order with aid of computers (see e.g. Ippen (1966), p.127)

it has not been questioned until recently whether Stokes waves of

uniform amplitude can really exist except under carefully controlled

laboratory conditions. It is therefore important to understand more

about Stokes waves before such efforts are pertinent.

1.1 SURVEY OF LITERATURE

Stokes (1847) was the first to consider the effects of nonlinearity

on periodic progressive waves on waters where the depth is not small

compared with a typical wave length. On the assumption that a finite

-6-
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amplitude wave of uniform amplitude exists, he expressed successive

order of approximate solutions by coefficients of a perturbation expan-

sion of small parameter which is proportional to the wave steepness.

In the field of water waves at least, this now familiar method of approx-

imation traditionally bear his name. Solution of Stokes waves of constant

amplitude has since carried out by Stokes, Rayleigh (1917) and others

to fifth order. Existance proofs for Stokes waves of uniform amplitude

have been given by Levi-Civita (1925), Struik (1926) and more recently

by Kraskovskii (1960,1961).

One important consequence of the recent study of nonlinear effects

in surface waves is the idea of radiation stress first proposed by

Longuet-Higgins & Stewart (1962). Analogous to the Reynolds stress

in the theory of turbulence, the radiation stress is defined as the

mean rate of transport of momentum induced by the oscillating wave

field. By taking averages over a wave length and wave period this

stress may be calculated explicitly, correct to the second order, from

the linearized plane wave solution. The concept of radiation stress

has since been applied to study many other nonlinear phenomena in

water waves, for example, the change of mean sea level due to storm

waves; the interaction of waves with currents; the generation of sea

waves, long shore and rip currents etc. (see e.g. Longuet-Higgins &

Stewart 1961,1962,1964; Longuet-Higgins 1969; Bowen 1969).

The superposition of several Stokes wave trains of constant

amplitude produces the so-called resonance at the third order, if the

wave numbers satisfy certain condition. Such resonance phenomena may

be studied by regarding the wave amplitude to be a slowly varying

-7-
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function of time. This problem is of considerable importance in

oceanography, for it deals with the mechanism of energy exchange among

different parts of the spectrum (see Phillips 1966).

Under a wide range of circumstances, real fluid effects, which

often constitute formidable obstacles in fluid mechanical problems,

play only a secondary role in the propagation of water waves. Many

intriguing features possessed by water waves are due to the fact that

they are basically nonlinear and dispersive. It is therefore natural

that when these two factors: nonlinearity (amplitude dispersion) and

(frequency) dispersion, are in strong contention, the physics becomes

quite complicated. In shallow waters it is well known that nonlinearity

tends to steepen the wave and frequency dispersion tends to flatten it

out, and the two can be in complete balance with each other, giving

rise to wave of permanent form such as solitary and cnoidal waves.

For water depth that is not small compared to the wave length this fact

is less well known. According to the linear theory any wave train which

is different from exactly sinusoidal form (e.g., a line spectrum) will

disperse into sinusoidal components each of which propagates with differ-

ent phase and group velocities. As a result the wave group spreads out;

this is a manifestation of frequency dispersion. Therefore, the exis-

tence of Stokes waves with permanent form is merely an indication that

amplitude dispersion and frequency dispersion can be exactly in balance.

the separate question of their instability appears to have been ignored

for a long time. It is Benjamin & Feir (1967) and Benjamin (1967) who

discovered, both theoretically and experimentally, that the exact bal-

ance between nonlinearity and frequency dispersion in Stokes waves is

-8-



in fact unstable subject to certain side-band disturbances. Given a

pair of side-band modes, with wave frequencies and wave numbers frac-

tionally different from the fundamental frequency and wave number, the

whole system grows at a rate exponential in time and distance. They

also performed experiments in a long tank in which a uniform wave train

is generated at one side of the wave tank; it was then found that far

downstream the wave disintegrated in a rather chaotic manner. It is

thus concluded that Stokes waves are unstable to certain side-band

disturbances and they cannot propagate over long distances without

changing form. This work was further generalized by Benney and Newell

(1967) for general weakly nonlinear dispersive systems and by Benney and

Roskes (1969) for the study of three dimensional instability of Stokes

waves.

In the instability analysis of Stokes waves initial disturbances

are assumed to be small compared with the wave steepness. Therefore

the conclusions are valid only for the initial period of growth. To

understand the subsequent development, and to predict perhaps the even-

tual fate, it is necessary to inquire into the nonlinear evolution. To

study the slow modulation of nonlinear dispersive waves in general,

Whitham (1962, 1965 a,u) introduced the method of averaging in which

the "microscopic" wave field is locally approximated by a plane wave

of slowly varying amplitude and phase. For nearly periodic wave trains

he deduced the basic equations governing the modulation of the amplitude,

the wave number, etc., with respect to both space and time. He further

introduced the alternative of assuming an averaged Lagrangian and showed

-9-
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that these equations followed from a variational principle (1967 a,b).

While Whitham's heuristic approach has since found wide applications,

its justification by formal perturbation scheme has also been given by

Luke (1966) for a nonlinear Klein-Gorden equation and by Hoogstraten

(1968, 1969) for both deep and shallow water waves. In Hoogstraten's

work two ordering parameters characterizing the wave steepness and the

modulation rate were distinguished and Whitham's results were rederived.

1.2 SCOPE OF PRESENT INVESTIGATION

The primary objective of this thesis is to apply a very general

perturbation scheme so as to study the slow evolution of Stokes waves

over an uneven bottom topography. Special attention is given to the

derivation of modulation equations similar to those obtained by

Whitham's averaging technique. The result of this general theory is

then applied to the study of three specific examples. First, we study

the instability of Stokes waves under three dimensional side-band dis-

turbances from a view somewhat different from Benney and Roskes (1969).

In the second example, we consider a quasi-steady wave train propagating

over a sloping beach in which we extend the existing investigations by

geometrical optics approximation and the modified Stokes wave solution.

Finally the general nonlinear evolution of deep water wave envelopes is

considered in quite extensive details in order to illucidate the post-

instability development.

1.3 ELEMENTARY IDEAS OF SLOW MODULATION OF WAVES

In this section we wish to bring out some essential ideas by con-

sidering a linear dispersive example. A slowly modulating wave train

-10-
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may be described in two different ways. It can be considered either

as a superposition of plane periodic waves of nearly equal frequencies

(i.e. a narrow-banded spectrum) or as a wave train with wave amplitude,

wave number and wave frequency being slowly varying functions of space

and time. As an example, let us consider the superposition of two

sinusoidal wave trains with equal wave amplitudes a but slightly differ-

ent wave frequencies w , 2 and wave numbers k , k
2 1 2

2a~ toS [-A-X - tj eos ()7eJ

This is the classical example of beats; the envelope is much longer

than the typical wave length and travels at the group velocity (Figure 1).

Now (1.1) may be regarded as a simple wave train with slowly changing

amplitude and phase. Rewriting (1.1) as,

= co)A (1.2)

where a(x,t) = the amplitude

A (,x,-t) = 2. (1.3)

and = the wave phase

= g - 'ul - t + M[ ti-A) (1.4)

where H(-A) is the heaviside step function. Note that as the wave

profile n(x,t) varies from one maximum point to the next maximum, i.e.,

-11-
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from one crest to the adjacent crest, the phase } changes by 27 so

that a wave number and a wave frequency may be defined by the phase

as,

and - (1.5 a,b)

and for this particular example,

k = I k~ Z and - OjCL-t j) (1.6 a,b)

By cross differentiating (1.5 a,b) we obtain

- 4 (1.7)

which is a conservation equation for wave crests. We stress that (1.5)

fails to define k and w at the nodal point where k, W -+ because

of the rapid change of phase by 7 there.

New let us suppose that the dispersive relation for each of the

plane waves is given by

We would like to ask whether the wave number k and the wave frequency

w for the slowly varying wave train (1.6 a,b) would satisfy the same

dispersion relation as the plane periodic wave given by (1.8). To be

exact, for dispersive waves such as water waves, the answer is "no",

because (1.8) is not linear. However, when ( k1 - k2  ) is small, i.e.

the length of the group is long, the dispersion relation for w and k

may be approximated by

-13-



Refering to (1.3) we note that (k - k ) is a small parameter charac-
1 2

terizing the spatial rate of modulation of wave amplitude. It is thus

clear from this simple example that the dispersion relation for a slowly

modulating wave train is generally different from the plane wave one by

a term proportional to the square of the rate of modulation.

It should be remarked here that in Whitham's averaging approach

the local dispersion relation for the modulating wave train is taken to

be the same as the plane periodic wave. For weakly nonlinear waves such

as Stokes waves, the nonlinear term which enters the dispersion relation

is second order in wave steepness. Unless the rate of modulation is

very small compared to the wave steepness, the effect of nonlinearity

can not be properly studied without including the direct effect of

wave modulation into the dispersion relation. In an example aiming at

testing Whitham's theory, Lighthill (1967) studied the nonlinear evolution

of wave envelope pulses. He found that the effect of nonlinearity tends

to steepen the wave envelope and hence to increase the rate of modulation

in general. Thus the rate of modulation may be initially small compared

with wave steepness, it may nevertheless catch up with the effect of

nonlinearity and become equally important. An analogous situation exists

in shallow water waves where nonlinearity and dispersion are both impor-

tant for the eventual nonlinear evolution of wave profiles (Madsen and

Mei 1969 a,u, 1970). One of the central ideas in this thesis is to

allow the direct effect of modulation rate and the nonlinearity to be

-14-



equally important. As this allowance introduces new dispersive effects,

phenomena not unlike those found in shallow water waves are found in

the envelope of deep water waves.

-15-
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CHAPTER 2

FORMULATION AND METHOD OF SOLUTION

2.1 BASIC FORMULATION

We consider a slowly modulating wave train over water where the depth

changes slowly. As illustrated in Figure 2, we take = (~,Y ) to be

the horizontal coordinates and I the vertical coordinate. We also

distinguish the three dimensional gradient vector 13 = 9 -

from the horizontal gradient vector 2= (O . The

water is modelled as a perfect fluid whose motion is irrotational. Accord-

ingly there exists a velocity potential 96; ) defined by

(2.1)

The potential 5 satisfies Laplace equation between the free surface

S (,4) and the bottom -= - ; i.e.,

3 V2  (2.2)

The kinematical condition at the bottom is

2, 2 = O F = ) (2.3)

Taking the total derivative, -- Se , to the Bernoulli equation and

using the kinematic boundary condition at the free surface we obtain a

single free surface boundary condition for the velocity potential E, i.e.,

,a (2-4)) j " I ' O(2.4

-16-
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For detailed derivation of equation (2.4), see e.g. Phillips (1966) p. 23.

The free surface elevation 9 is given by the Bernoulli equation:

t +  (2.5)

where the Bernoulli constant is absorbed in the velocity potential ,

The boundary conditions (2.4) and (2.5) are nonlinear and are applied

at a position unknown "a priori". Since the wave amplitude is generally

small compared to the wave length we may expand the free surface boundary

conditions(2.4) and (2.5) into Taylor series about = O , yielding,

0 

0'! t' 2 0

(2.6)

2 1 /A i -(2.7)

2.2 PERTURBATION EXPANSIONS

We now introduce the stretched variables,

X and T E (2.8)

to take care of the slow modulation of wave amplitude, wave number, etc..

Here & is a small parameter characterizing the slow rate of modulation.

For convenience we shall let the other small quantity, wave steepness,

to be also of order E . The solution for I and 7 are expanded into

perturbation series of the small parameter & as follows:

-18-



1 Xi YT ,T) A
= I -_- (2.9)

7l=i'4 '&,-- (2.10)

In order to keep m and to be real functions, 4 and

are defined to be the complex conjugates of and . In the first

order of approximation, i.e., 0(E), the series contain only zero and

first harmonic terms while in the higher order approximations higher

harmonic terms are included in view of the product terms arising from the

nonlinear boundary conditions. These expansions are essentially similar

to Stokes perturbation series used for water waves over uniform depth

(Wehausen and Laitone, 1960, p.654) except that now the idea of WKB

(Wentzel-Kramers-Brillouin) expansion method is also incorporated, i.e.

the amplitude functions ( X,,T), '~ IXTr) and the phase func-

tion (are now taken to be slowly varying functions of

space and time. The effect of stretching the horizontal coordinates and

the idea of WKB expansion can be seen by examining the variation of a

typical n th order term in the horizontal direction:

where V2 - )( j O) is the horizontal gradient vector for the

slow variable )( . Hence, any X derivative consists of two terms

-19-



(see inside the bracket ) of which the amplitude variation is the

smaller. Thus, the slow modulation of the amplitude is incorporated in

the formalism.

As remarked by Lighthill (1965) that if the wave length of the

adjacent waves are assumed to differ by only a small fraction, it is

very rare for a crest to cease being a crest, or to divide into two

crests. Under this circumstance the wave number and the wave frequency

may be defined by the phase function as follows:

= 4 and '\=--

(2.11 a,b)

By cross differentiation and adding up (2.11 a) and (2.11 b) we obtain

a conservation law for wave crests; i.e.,

- +V0o
V7 (2.12)

Following Stokes (1847) we also expand the wave frequency into pertur-

bation series; i.e.,

=0 2 (2.13)
N=o

The expansion of 0 into series of implies that the wave frequency

depends not only on wave number but also on the wave amplitude and the

rate of modulation.

Now upon substituting the perturbation expansion (2.9), (2.10) and

(2.13) into the governing equation and boundary conditions (2.2), (2.3),

-20-
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(2.6) and (2.7), different orders and harmonics may be separated,

yielding a set of ordinary differential equations for each indices (n, m):

Ch,- (m)M

Zyn 12  R XI/T)) c -

= F XF), o _

.,-r i , pC0o0 (XoT) - (X, (2.14 a-d)

The functions R(n ,m), G(n,m), F(n,m) and H(n,m) are in terms of solution

lower than order n; their explicit forms are derived in Appendix A.

Thus a kind of separation of variables is formally achieved and the task

remains to solve the boundary value problem defined by system (2.14) in

succession.

2.3 GENERAL METHOD FOR SOLUTION

Because of the increasing complexities at higher orders, it is

helpful to study some general features before going into the details.

We shall first present the formal solution to (2.14). In particular

the zeroth harmonic is the simplest. By taking m = 0, we obtain a

first order equation for 'f with two boundary conditions. The

solution satisfying (2.14 a) and (2.14 c) may be given as

o) (no) I, o)

(2.15)

-21-



(,o)

but this give no further information on . However, there is another

Ch o)
boundary condition for .1 at z = 0 yet to be satisfied. This

imposes a condition on R(n,O), F(n,0 ), and G(n ,0 ) , which will be called

a "solvability condition":

o (1,o) ( o) C )

R di- F - (2.16)

-h

where

(no) 2 (I-2, o) ( m, o) n-2,io)'
_2 0 and -T

(2.17 a,b)

as derived in equations (A.5) and (A.6) of Appendix A. It follows by

using the Leibniz rule that (2.16) is equivalent to

( m 2 o-n,o)
d -- , (2.18)

and (2.15) then gives

(n, o) 2 (m-2, a)( 1 dzV-2o) (2.19)

Equation (2.18), which is the consequence of the n th order, gives a

Sh-2,o) m-2,o)relation for V( ; in other words, restriction on V<-2,)

is found at two order later. Note the fact that we do not know

( -2,o) itself is not essential. Physically, contributes
('h contributes

at the n th order to the vertical mean current while SV 2  = (

contributes at the ( n+1 )th order to the horizontal mean current.

-22-



For other harmonics, m 0, the solution that satisfies (2.14 a)

and (2.14 c) is formally,

Ab A 05

a Q

+ sImlmj ~ R 0,boshm~Q - eoQ R S,,mQ (2.20)

where Q (7~4)and = - II . Substituting (2.20) into the free

surface condition (2.14 b) we have

(R Simbn- -7m cos ) 7nA ,M)

+ 3 COA fo sl'14 MI F 4n

R (d M)c& d ()

V f u j(2.21)

where co and : . In general for all n, m = 2, 3, 4, ... ,

Equation (2.21) fixes the coefficient A( n m ) uniquely. When n = 1 the

coefficient A( n ' l ) drops out explicitly from (2.21), which takes on

special significance, as discussed below.

For n = i1, m = i1, it is easy to show that R(1,1)=F(1,1)=G( =

H( 1,1 ) = 0 (Appendix A), and that the system (2.14 a,b,c) is homogeneous,

the solution is:

~ I os ,Q =,A c 6 a/2 (2.22 a,b)

-23-
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where - is defined as the first order amplitude. The classical dis-

persion relation may be obtained from (2.21), i.e.,

- R = (2.23)

For n = 1, m = 2, 3, ...., Equation (2.21) corresponds to the solvabi-

lity condition for the inhomogeneous boundary value problem defined by

(2.14 a,b,c); it specific form is

o

Now F(n,1) and R( n l ) involve the terms A(n-l,1) and n-)_ which

are yet to be determined. Equation (2.24) therefore imposes an extra

condition on them. Thus, for example, at the stage n = 2, (2.24)

provides a condition for A(1,1); at n = 3 it provides a relation

for ()2 leaving A(2,1)arbitrary,...

-24-



CHAPTER 3

EXPLICIT SOLUTIONS AND EQUATIONS

GOVERNING SLOW MODULATIONS

In this chapter we shall carry out the solution of (2.14 a,b,c,d)

explicitly to second order. Equations governing the modulation of

O, , , ) W2 9 V and 1 are derived from the solvability

conditions (2.18) and (2.24) using partly some result from third order.

(n,m) F(nm) (n,m) (n,m)
The explicit expressions for R(nm F , G and H are

derived and simplified in terms of lower order results in Appendix A

and B.

3.1 EXPLICIT SOLUTIONS

From Appendix A we have R(1,0 )= F(1)0 )= G(1H 0 )= H(1' 0 ) . It follows

immediately from (2.14) that for n = 1, m = 0,

(1,0) (o)
- = O . (3.1)

We recall that for n = 1, m = 1, the solution is given by (2.22) and

(2.23). So far a (or A(1 1)) and IV r, O)are arbitrary at this order

and will be determined by the higher order solvability conditions.

For n = 2, m = 0, we have R( 2 ' 0 ) = F ( 2 ', ) = G(2, 0 ) = 0 and

-(2,- ( 42-,-.)0 . Substituing into (2.19) and (2.14 d),

we obtain

( 2 o)_ (3.2 a)0

-25-
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and

(2, o)

where

0a-

Differentiating (3.2

b)- - goo tt2

b /) , = col 

b) with repect to X

52, 
(3.4)

Equation (3.4) is a momentum equation for the horizontal mean current

V (1,o)and mean water level (2,o) The last term in (3.4) is the

mean transport of momentum due to the first order wave field.

For n = 2, m = 1, we have R(2,1) V . " - V(

(2.1) (2, 1)
F = -~~:{ ~ ,H =

(211) 1 V ()( 1, 1

Upon integrating (2.20),

(2) (21) - 5 
+

and

(3.5)

where

J=
0 - (2,- and o= 2- (3.6 a,b,c)

(2,1)
The coefficient A for the homogeneous problem will be chosen here

so as to give the proper limits as A- o (which can be worked out

-26-
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independently); note that this requirement still does not give a unique

choice for A( 2,1 ) . Using the fact that Q-9 for -OO we take

(2,0) A,
WO o - t) ( C054 Q 4 011(Q S'.n Cb"j +d4)+o (QL)1c7) q

(3.7)

so that 0() ~ =O. This leads to

(2,1) - . C(3.8)

The solvability condition (2.24) for n = 2, m = 1 is equivalent to

8~9(1 -;~ ~(COAQ dal- og j &(,,~>

- ' os"% C', )C(U)'o" )T

Multiplying both sides by ' " and

S,
2

T--?T

making use of the Leibniz rule,

ho0 1,1)2

-- h
which can be further simplified by using (2.22) to give an energy equation:

" E
.J

where

E = energy density of the first order waves

= 9 O2Z29

-27-

Ic QIo ) z
(3.9)

(3.10)

(3.11)

(3.12)

_ _



r

and

C = the linear group velocity

= ) _ O 2' 4 SM2 ) (3.13)

For n = 2, m = 2, we have R(2,2)= F(2,2)= 0, and from Appendix B,

2 (2,2)
T 3 'W O O- .i r j2 o and-

Substituting into (2.22),

(2,2) 2 o b)) ;=o 3. 14

which, after some manipulation, gives A(2 2 )  Substituting into (2.20),

- ")U' (0C--1) cod5 2Qand (2.14 d), we obtain

and

(3.15 a,b)

The second order solutions are not yet complete. Additional rela-

tion between _7< lo' and r and the second order correction for

wave frequency cSZ are still to be determined from the third order sol-

vability condition.

Since G o - the solvability

condition (2.18) leads to

-k
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or,
(2,o)

(3.16)

Ty

This is essentially an averaged continuity equation. The last term

- E is the total Lagrangian rate of mass flux due to first order
Wa

wave field.

For n = 3, m = 1,

((3,1 -

(210 2 r ' - 22 4)o .r

Substituting into solvability (2.24), we have,

-VAfter some manipulations equation (3.17d)gives the second order correction-h iAo) (2)

terms; i.e.,

S x T
O Z U2 - I2 2 . 2 2 (3.18)
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where S 4) a 1 0 +

(3. 19 a-e)U i I o)SD(2, )

DThsic ally thetermsg,

tivwherey the effesolution of Stokes amplitude dispefunctsions of eah harmonic such asnge,

of the wave conservation equation g(2.12) is now
where . is given by (3.18) and (3.19).

() (2(

Ox, (20) 2 )(321 a,b)

where the solution of the amplitude functions of each harmonic such as

4, . . .. has been given previously in this

-30-
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(1,0)

paragraph. Inspecting (3.21), we notice that there are new terms E ,

2 (2,) ,(2,) ,I.
27(2'O)~Z CpOS(!) and2t'2 s'6(--) added to the Stokes second order

solution. In Stokes waves of uniform amplitude the contribution due to

(')and 6 '1 may be ignored by redefining the potential " and the

depth . However, for a slowly varying wave train such mean quant-

ities are coupled to the wave amplitude in a non-trivial way (see
(2,1) (2,1)

(3.4) and (3.16)). We point out that the terms and which is

linear proportional to Q , may be obtained even if the free surface

boundary conditions are linearized to begin with. Furthermore,

(2 ,)Co ) and 2~E2 (21)5 si ( /)are 2 out of phase with the

others, hence they can be replaced by a phase shift defined by

00 2 ) 4)

(3.22 a,b)

where S o4(G-8) ( - -' o( 2 fZ)

and L
0and ( 4 (WO) /. (3.23 a,b)

Now the solution for1 and 7 are finally given by,

0C) 2 .(II) 42 i 4. " 3s)

2 ((2t) g 2 '(o) 2 ), ,o, 2 ) 4 0,

(3.24 a,b)

Since the phase b is a function of f , the wave front is not strictly

vertical.
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3.2 EQUATIONS GOVERNING SLOW MODULATIONS

We have shown in the preceeding section that a slowly modulating

wave train may be uniquely specified by four slowly varying wave

parameters, namely, the wave amplitude a , the wave number , the

S(2o)
mean current \ , and the mean water level 97 . Equations

governing these parameters are summarized as follows (cf (3.11), (3.16),

(3.4) and (3.20)):

SE=

(2,0)

+ WOE) 0

a-~ \7{p gj(2 ')+ ± -I(EJ 0o
-a

T 2 2
O(i) (3.25 a-d)

where various contributions to C 2z is given by (3.19). A similar set

of equations has been derived previously by Whitham from an averaged

variational principle. The first three equations (3.25 a,b,c) are

completely equivalent to three of Whitham's equations (1967 a, equa-

tion (39), (40)and (42)) while (3.25 d) differs from Whitham's corres-

X
ponding equation (1967 a, equation (41)) by two new terms, i.e. (A)2

and CLZ . As can be seen from their definitions given in (3.19) both

UL and involve terms twice differentiated with respect to space

and time. Thus they represent direct effects of wave modulation. Only
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when the modulation rate is very much less than the wave steepness

(i.e. when modulation is characterized by scales much longer thanO(O))

can X and Gz be ignored, in which case (3.25 d) reduces to Whitham's

exactly. We further remark that &2 and W2 , linear in O. , may be

obtained even if the free surface boundary condition are linearized to

begin with. In fact u and CO is the general second order correction

to the dispersion relation of a plane wave as illustrated by the simple

example in 1.3 (cf the term A)2 in (1.9)).

It was suggested by Whitham that Stokes waves are stable if the

set of governing modulation equations is hyperbolic and unstable if

elliptic. Now with the additional terms X and o z involving second

order derivatives, this classification is no longer appropriate, since

higher order derivatives change the mathematical character of partial

differential equations drastically.

Now let us go back to the discussion of (3.25). We note that

equation (3.25 a) is exactly the same energy equation as derived from

the linear theory. In the method of geometrical optics approximation

(i.e. the first order linear approximation) the frequency dispersion

relation is assumed to be the same as the linear periodic waves, so

that the group velocity Cg and the frequency (.o , uncoupled with

wave amplitude, may be uniquely determined from (3.25 d) alone. Once

the Cj and )o are determined the amplitude may be calculated from

the energy equation (3.25 a). For linear problems, there are two

types of factors which may affect the variation of C5 and Jo and
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consequently change the wave amplitude. The first is "frequency disper-

sion" which tends to sort out waves with longer waves propagating faster

than the shorter waves; as a result the energy spreads out and amplitude

reduces. The second factor is "refraction" in which the group velocity

is affected by changing of depth; the amplitude usually (not always)

tends to increase as waves propagate into shallower water. For non-

linear problems as described by (3.25), C5 and ()o are coupled with the

amplitude L and the mean quantities (or the long wave components) (2,o

and 9 '. Such nonlinear coupling effects between ( C , .O ) and

(7 , ), )0- are all aspects of "nonlinear dispersion". In

general it is impossible to isolate the dispersion effect due to non-

linearity from the effect of frequency dispersion and refraction because

they are all coupled to each other. However, in a loose sense, we may

consider the terms 2 7 (L + +U )in equation (3.25 d) to represent

the nonlinear amplitude dispersion since they are explicitly proportional

to square of the amplitude. For the rest of the terms in (3.25 d), c703

represents primarily the refraction and frequency dispersion while

Si7 L z- 2), being affected directly by the modulation rate, re-

presents the secondary effect of frequency dispersion.

So far we allow the total variation (not the rate) of wave amplitude

to be 0(Z), and that of wave number and wave frequency to be 00()

For a more restricted class of problems such as two of the examples that

we shall consider later in Chapters 4 and 6 the total initial variation
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of wave number is further restricted to be not more than O(E), i.e.,

( ,O + EC ,) (3.26)

where , being a constant, is the wave number of the primary wave

train propagating along the x-direction and i('s) is a small pertur-

bation. In order that (3.26) remains true for large distance and time

we must require ' '- O). Refering to (3.25 d) we note that

4OO vR + OC) (3.27)

hence we require in turn that the variation of bottom depth to be

O)on the present length scale ), i.e.,

oR 0(£) (3.28)

In other words, V2 ._Oc)on the natural scale. With the condition (3.26)

and (3.28) equation (3.25 a-d) may be further simplified as follows.

From definitions, we obtain,

,R + a/) 2: 2 9 0

- 2

where and C are respectively the wave frequency and the linear

group velocity of the primary wave train. In (3.29 c) second order terms
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are kept because in (3.25 d) the term VOo is 00) as compared to other

terms being O~ ). Now making use of (3.26) and (3.29 a,b,c) and in-

troducing the symbols d= 2,o), U ( , o)= V~ O'iand =

the set of modulation equations (3.25) is reduced to:

2 2 )

--- 2T Q (3.30 a - d

where only 0( I ) terms are kept in (3.30c,d) because.d and U are one

order magnitude smaller than 0L and /- . The second order correction of

wave frequency is much more simplified (see Appendix C), i.e.,

)

S2 C QX I C G
2 ( ) = 2-a 2 )(3.31)

where

S =  a (nd) and 0 =  ( - - ) (3.32 a,b)

We emphasize that in (3.30 b) the term O representing the

refraction effect must be Ocr) in order to be consistant with the condi-

tion (3.26 ) . It is hoped that the system (3.30) may be used as a

basis for studying the effect of depth variation on instability or non-

linear evolution.
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We remark that, in the linear instability analysis, the total

variation of wave amplitude and wave number is further restricted,namely,

a 4 , R = Q A , -; + (3.33)

where a , , are constant and at , , ~Al are the small

disturbances. More specifically, we require

>, C(')" 0 ( E ) and (3.34)

so that (3.30) can be

different theories is

linearized. -A comparison

summarized in Table 1.

of the limitation of

Total Variation of 0 , &() Modulation

&h a a) Length Scale

Whitham's Averaged

Equations

Equation (3.25) 0 ( ) O ) )

Equation (3.30) 0 (O (E) o )/

Linear Instability
Theory of 0 

Benjamin & Feir

TABLE 1. RANGE OF VALIDITY FOR DIFFERENT THEORIES; (6 =wave steepness)

-37-

__

I



CHAPTER 4

LINEARIZED INSTABILITY THEORY OF STOKES WAVES

Benjamin and Feir (1967) considered the two-dimensional nonlinear inter-

action in deep water between a Stokes wave train and two wave trains

with frequencies and wave numbers slightly different from the Stokes

wave. These 'side-band disturbances' if within certain 'cutoff' limits

grow exponentially with time and space. They also performed experiments

in a long tank in which a train of deep water waves of constant amplitude

was generated at one end of the tank. Far downstream it was observed that

the wave eventually disintegrated into rather irregular manner. By

artificial side-band disturbances measurement of the initial growth was

found to agree reasonably well with their theoretical prediction. Thus,

it is now firmly established that Stokes waves of constant amplitude

are unstable in deep water.

This instability analysis was later extended to finite depth by

Benjamin (1967). He found another cutoff limit at l=1.34 ; that

is for < .36 the waves are stable and for 1.3-6 the waves may

be unstable. Whitham (1967), based on his modulation equations, arrived

at the same cutoff limit of =1.36 but could give no information on

the cutoff limit of the side-band and the growth rate. Benney and Roskes

(1969), using the method of multiple scales, made several generalizations,

among which the modulation wave was taken to be oblique with respect to

the primary Stokes wave train. New side-band cutoff limits were found.
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We shall now demonstrate that the same problem can be equally well

treated on the basis of (3.30) in the manner of Whitham (1967 a).

We take = constant and allow for small disturbances to . ,

, d and U so that

-- I

S d + d , (U,o ) C U = ( o) + E(U,) (4.1 a-d)

Linearizing (3.30) with respect to primed quantities, and dropping the

symbol for the constant state (i.e. the Stokes waves with constant

amplitude):

(1) a 1 + (ICY) E (2. )/ +U )4- 0 U

+T + V-U) + (y ) L - E )C- 4 U + E (wjDO) dj OF
-At

(4.2 a-d)

U T 4 V d + go ad = O

The system of homogeneous linear partial differential equations (4.2)

admits sinusoidal solutions ( the eigenfunctions) represented by,

, - p , / .X (4.3)
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where 1 , K = (K1 , K2) and '. are the amplitude, wave number

and frequency for the small disturbances. Substituting (4.3) into (4.2)

we obtain a set of algebraic equations which can be written in mattrix

form as

Aa=o (4.4)

where

-. ,+C K) K, E )k 2  o o o

K, 0 0 - KI  2  (4.5 a,b)

99DoQK, o o 3 K, -1 o

S3DoK 2  o 0 3 K2  0 _

2 2

Ao= WI2 a so +

For non-trivial solution of 6 we must have,

k' (4.6)

d t A= o

which may be solved by successive approximations and yeild six eigen-

frequencies (see Appendix D). Four of them are real to the order O(I i.e.,

and _ - (+  , 2-- K2
2) -1- 0(E) (4.7 a,b)

which corresponds to stable solutions. The remaining two may be complex:

4o-
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where

(9/u2 + 2 /3.)o) C5 + -Do, sec29
OE = S + ) 2%

C - + se t 2e

(4.9 a,b,c)

& = +an-'( k2/K, )

The above result is completely equivalent to that of Benney & Roskes

(1969) (see also Roskes (1969)).

The solution (4.8) is complex, and hence unstable, if

or, equivalently in the first quardrant,

(4.10 a,b)

The regions of instability, that is the intersections of (4.10 a,b), are

given in Figure 3 for three different depths c-o O, R =L36 and

- =1,0, Figure 3(c) shows that the Stokes waves can be unstable for

g<1 36 if the disturbances are allowed to be oblique to the primary

wave train. In general the Stokes waves are unstable for all depths

except for j R =0.38 the waves are stable for disturbances in any direc-

tion (see Benney & Roskes (1969)). The growth rate for the unstable

waves may be obtained by

( C( - ) 13 (4.11)

= ~-1 I E2/5 2()2 2 23C 2 4-
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K2 / (k 2 a) K2/ (k 2 a)

(b) kh = 1.36

0 2 4 60 2 4 6 0

K / (k 2 a)

(c) kh = 1.00

2 4

Kl/ (k 2 a)

FIGURE 3 INSTABILITY REGIONS (SHADOWED) FOR STOKES WAVES

(regions in other quadrants can be obtained

by mirror reflection about K1 and K2 axes)

K2 / (k 2 a)

(a) kh - -

KI/ (k 2 a)
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A more detailed discussion on the regions of instability and the

direction for maximum growth in the (KI - K2 ) plane has been given by

Benney & Roskes (1969) and will be omitted here. We point out that

for e = O (i.e., K2 = 0) equations (4.8), (4.9) and (4.11) are

reducible to Benjamin (1967, equation (46)) while Whitham's result

(1967 a, equation (57)) is obtained by further letting K1 
= 0 (i.e.

corresponding to zero side-band width).
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CHAPTER 5

QUASI-STEADY WAVE TRAINS OVER CLOSED BEACH

In the coastal engineering literature the problem of wave shoaling

has occupied an important position. Much has been attempted in develop-

ing a theory that would (i) correctly predict shoaling characteristics

of finite amplitude waves (ii) hopefully lead to correct quantitative

understanding of breaking. Both aspects are of practical significance

in the inshore beach processes. Many publications have been devoted

along the lines of Rayleigh's classical theory of refraction of in-

finitesimal waves i.e. by assuming (i) Stokes theory for a horizontal

bottom to be valid locally and (ii) energy flux in Stokes waves is

constant between rays. The more complete theory was largely the contri-

butions of Longuet-Higgins and Stewart (1964) and Whitham (1962). Their

approach is a systematic averaging over a distance much longer than a

wave length and integrating over the depth. Since the problem is one

of slow modulation caused by the slow variation of water depth, the

present general theory should apply. We shall now show certain new se-

cond order features that have not been discussed heretofore.

Before going into the details, it would seem that Benjamin & Feir's

and Benney & Roskes' theories of instability of Stokes waves would

render the study of time periodic waves meaningless. However, firstly

whether the uneven bottom may alter the conclusions of instability is
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still to be studied. Secondly, over natural beaches refraction tends

to turn all waves to normal incidence, reducing the likelihood of oblique

side-band disturbances. Hence waves can still be stable in sufficiently

shallow water. Thirdly, the growth of instability is a very slow process

requiring a long distance for its manifestation. If the waves are of

small amplitude compared to bottom slope, nonlinear effects will not be

present until shallow water is reached, but then instability may not

develop sufficiently fast to alter the basic picture before the occurrence

of breaking near the shore. For these reasons it is still worthwhile to

establish a good theory of shoaling of finite amplitude waves.

One important question is the reflection by the beach. This un-

fortunately cannot yet be answered before the mechanics of breaking is

completely known. It is therefore necessary to take the simplifying

yet reasonable assumption that all incident wave energy is absorbed at

the breaker and no energy is reflected.

Now, for quasi-steady wave trains, the wave parameters such as . ,

0(o) (2)0)
n , 7 and are real and independent of t. The follow-

ing classical results are immediate from equations (3.25 a,b,c,d):

Cc (5.1)

R e("° E + constant (5.2)

(2,) )o - (5.3)

L) = CO + 2 2 .OE3) =constant

(5.4)
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Equation (5.1) represents the well-known energy conservation in refract-

ing waves which can be further integrated explicitly in two dimensions

a (5.5))

where 0o is the first order amplitude in infinitely deep water. Equation

(5.2) states the constancy of mass flux due to waves, first obtained by

Whitham (1962). In the case of a closed beach the constant vanishes and

( O'o)represents the return current. Equation (5.3) gives the mean sea

level change first predicted by Longuet-Higgins & Stewart (1962) as a

consequence of radiation stress.

In the rest of this section we restrict to the case of normal in-

cidence over a closed beach of constant slope, hence=()O) and XX 0

etc. Now the solutions for T and j may be rewritten from (3.24) as,

4 p(t)& ~ ( + '12 + ES) +QCOE

z7 ,t) - 2 )a t2l co~ (t + 2E4-f-SD) 4

(5.6 a,b)

where the amplitude functions (ID) ,2 1o) j) , , ,) (2, )

and 71 are given by (5.2), (5.3), (2.22 a,b) and (3.15 a,b) respective-

ly. One feature that is not known in existing theories is the phase lag

5 given in (3.23). For normal incidence, (3.23) can be further sim-

plified to give,
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)=
(StA22+2% (- -)

(S'hh 21V 2 1)

which has the following properties:

(i) VA -> 0 as - o for all

(ii) LS/A.. -0 as - o> for all

(iii) (S/X) vanishes identically for (/) = O ,

(iv) ( 5/ ) = 2 3 5,, % + 2 (always positive) for ( R =-
(5,-, 21 +2 -"

The phase lag (S/) as a function of ( ) & () is given in Figure 4(a).

Due to the ? dependence of the phase lag a a surface of constant

phase is no longer vertical, but is given by

(5.8)

for fixed T = T . Equation (5.8) may be rewritten as
0

1 = o = constant

SdX y o

X0X
4..... dX

With X0 being defined by j SdX, ( oT0 o = O the equal phase sur-

face (or the wave front) can be written explicitly from (5.9) as:
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(5.9)

(,/-A )

S= j Xy + &2 (X*I) - .o. = constant

+ 2 S (X ,I ) - LooToa



TF (X,z)
2 S (X8 )

= X-XO = O( 4 )

It is interesting to note that the wave front given by (X,) = o is

perpendicular to the free surface 0 =o and the bottom *+ R (X) = o

To establish this property we have to prove in natural coordinates,

and

I)%'?FZ4Px I-ax.

0 at Z=O

aiitR K=__ at

(5.11 a,b)

I = -

or, to prove equivalently, in strained coordinates,

a2 g = at = 0

(5.12 a,b)

S ) ('x ,)= E2(R,

Differentiating (3.23) with respect to j we obtain,

---- "/ (t4- Q SeJQ) V-

It follows im

At z = 0,

mediately SA = - X at

I 1 
2

_-.S2

A"A'')c,h2 + 2 )l
14 A"cs~

10- so that (5.12 a) is true.

.~X~-R O (5(111)2

- z (a2Cc)x O (5.14)

WO -i A (1)Cok 1 jX
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since (a 2 )X = 0 from (5.1). Hence (5.12 b) is also established.

Typical geometry of equal phase curves is given in Figure 4(b) & 4(c)

which show that the wave fronts are indeed perpendicular to the free

surface and the bottom (note that, with the normalized scale, it is

shown in Figure 4(b) & 4(c) that d / )=O 0 at =  and

d.k/,J(- I)at ((f ) =-1 as given by (5.12 a,b)). Figure 4(b) &4(c)

also show the concavity of the wave fronts towards the shore; Battjes'

(1968) speculation that they are circular is incorrect.

Referring to (5.4) G)0 = 00- 2 * O( E 4 ) is not strictly a

constant so that the second order correction for the wave number may

be calculated by expanding - +$ 2' ---- as follows. From

(2.23) we have

2

which, after expanding into Taylor's series, gives

Rotan4 < = 0/ (5.15)

% (5.16)

Referring to (3.18)

:2 2 2 ) (5.17)

We point out that CO2 is new. The expression for iJX is lengthy and

is given in Appendix C. Various contributions to the second order
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correction to the local wave number are calculated and plotted in Figure 5.

It should be noted that over the beach, the Stokes' term - - is

always negative while zd C

words,- -- would tend to give a larger phase speed than that given by

the first order linearized theory ( ) whereas- L u) + )would

do just the opposite. In particular the return current term -

~(now ) , ) nearly cancels the Stokes term-_ . The

two opposing trends seems to explain that in experimental measurements

of wave speed on plane beaches, the first order linearized theory often

gives a better prediction than an incomplete one using only the Stokes

term, i.e., by - - only (Eagleson, 1956).We also note that the contri-

uution of -2 can be quite significant when the bottom slope

is large compared to the wave steepness 0. The dependence of

on -and 1 is given in Figure 6. Although the modification

to the wave number is only second order, for three dimensional problems

the refraction diagram may be significantly modified (especially near

the caustic) due to the cumulative second order effect along the wave

orthogonal.
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FIGURE 5 VARIOUS CONTRIBUTIONS TO SECOND ORDER MODIFICATION

OF WAVE NUMBER; NORMAL INCIDENCE ON PLANE BEACH
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CHAPTER 6

NONLINEAR EVOLUTION OF WAVE ENVELOPES IN DEEP WATER

In the linearized instability analysis of Stokes waves the initial dis-

turbances are assumed to be small. The result is only valid for the in-

itial growth of the unstable wave as long as it is still slightly deviated

from an uniform wave train. Now it is natural to ask what is the subse-

quent development after the onset of instability. Would the waves

settle down to some other stable situation or the waves would become so

irregular that they cannot be considered as deterministic process? To

understand the nonlinear process at large, it is therefore important to

study the nonlinear evolution of the wave envelopes.

A particular example of nonlinear evolution of a wave group with

non-uniform amplitude was studied by Lighthill (1965 b, 1967) based on

Whitham's averaged variational principle. For a symmetrical envelope

pulse (Figure 7) with initially uniform wave length, Lighthill found that

the wave length decreases in the front of the group and increases behind

the group, and energy tends to concentrate at the center. Eventually,

the amplitude peaks up to a cusp at the center and the frequency changes

rapidly, displaying a discontinuity in wave length at the center of the

wave group. Such a discontinuity was speculated by Lighthill to be in

some way analogous to the aerodynamic 'shock' in compressible flow.

Using the same variational technique Howe (1967,1968) considered the non-
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x = half width at /aax = 0.5, t = 050 max

tcrit = critical time when the discontinuity occurs

a/9 1.5

t/tcr =it 1.0
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N

/ t/tit = 0
crt0.5

1i" 0.54
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0 t/tcrit = 0.7 1 x-Cgt

x
5 0

FIGURE 7 NONLINEAR EVOLUTION OF A WAVE PULSE IN DEEP WATERS

(taken from Lighthill, 1965)
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linear evolution of waves generated by steady uniform flow passing a

slowly modulated wavy wall (to simulate the diverging waves developed

by a ship). A frequency 'shock', which he called a 'phase jump', was

also obtained in his numerical calculations.

As pointed out before, Whitham's averaging method is valid only

when the modulation rate is small compared to the wave steepness. There-

fore the same restriction must apply to Lighthill's and Howe's analyses.

As is indeed implied by Lighthill's result that modulation always in-

creases gradually in certain part of the wave group; the modulation rate,

inevitably, becomes comparable to the wave steepness, leading to the

complete break-down of the theory. Thus, uniform validity of Lighthill's

and Howe's analysis over indefinitely long time is out of the question.

Indeed , long before the actual occurrence of the discontinuity, i.e.

the 'shock' or the 'phase jump', the basic assumption of slow modulation

is already violated.

Although experimental results (Feir 1967) agree qualitatively with

some of Lighthill's predictions in the initial development of the wave

pulse there appear to be essential discrepancies in the large time be-

havior, especially with regard to the frequency 'shock'. Based on the

present more complete theory, the objective of this chapter is to

extend the linear instability analysis and Lighthill's nonlinear analy-

sis for large time. Special attention is given to the consideration of

the interplay between amplitude dispersion and frequency dispersion.

For simplicity we shall consider only the two-dimensional wave

propagation in deep water. In this case the mean current and the change
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of water level are uncoupled with the wave amplitude so that the

governing modulation equations reduce to two with only two dependent

variables, i.e. the wave amplitude and wave number. Now the physical

process is also the simplest in that the dispersion effect involves

only frequency dispersion and the so-called amplitude dispersion due to

nonlinear coupling of amplitude in the dispersion relation.

6.1 GOVERNING EQUATIONS

Consider the case that the variation of wave number is initially

small so that (3.26) is satisfied and the governing modulation equations

are given by (3.30). In deep water where --oo , -- 1 and T,- o

the terms proportional to the square of wave amplitude drop out from

equations (3.30 c,d) so that the long wave components d and U are

decoupled with the wave amplitude and wave number. Furthermore, we have

-V-- from (3.30 c), so that the modulation equations (3.30 a,b)

may be given, in two dimensions, as follows,

2

3T aX aX o 2 Q) 2
(6.1 a,b)

Notice now the changes of *2 and / following the group velocity are

always OcU). We may therefore switch to a moving coordinate and rescale

the time variable to acount for the slow evolution, i.e.

C= -CT and rZ = - (6.2 a,b)
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With this moving coordinate system the modulation equations (6.1 a,b)

may be more conveniently written as

+d ± (±--2 O (6.3 a,b)

To simplify further we introduce the dimensionless variables:

2 k E5( k )
- 2 7 2 _ (6.4 a-d)
' -Rand O

where [ is the typical initial wave amplitude. Since - -d ---and

/ - _ in deep water, the dimensionless modulation equations

following the group velocity are given by,

+ A (- W A') o
aT' aX' 2-'W 2  A2 Ax-- F

+ )/ - /\ =_ - O (6.5 a,b)
"aT' X' 4r 16A

where A and W are respectively the normalized wave amplitude and

wave frequency. We recall the meaning of the above equations. Equation

(6.3 a) states the conservation of wave energy where the velocity of

energy flux in the moving frame is - . Equation (6.5 b) states the
2

conservation of waves with the term ( ~ )representing the effect of

amplitude dispersion and the term 2 M- Arepresenting the effect of

frequency dispersion. From this various other conservation laws can

be derived in the manner of Whitham (1965 a) or others, but they do
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not have any immediate physical meaning.

By letting A/+6, = sp equation (6.5) may be linearized to

give

(T ' ' - ' ' o

(6.6)

or, after eliminating (

o(T'- X I - o( X /8 = o (6.7)
64

which resembles the governing equation for an oscillating elastic

column under axial load. With o( being the lateral displacement, the

terms oT~' , o~(XX' and dx' ik, represent the effect of inertia,

the effect of compression and the effect of shearing force respectively

(see Morse (1948), p. 166).

6.2 PERMANENT WAVE ENVELOPES

For long wave in shallow water it is well known that nonlinearity

and dispersion can be exactly in balance, giving rise to waves of per-

manent form such as solitary waves and cnoidal waves. Analogously,

if amplitude dispersion and frequency dispersion in deep water waves

are exactly in balance the wave envelopes will propagate without changing

form. One trivial solution of (6.5 a,b) that has this property is

A = constant and W = constant (6.8)
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which is just the Stokes waves of constant amplitude. For other per-

manent wave envelopes, we let 0 and integrate (6.5) with respect

to ,

WA2 = C = constant I

- 4 4 A A C2 constant

(6.9 a,b)

Eliminating VA from (6.9 a,b) and integrating once more,

x - A2 2 2 (6.10)

or, in term of E = A2

E 3 42 -E C 2  (6.11)1 -8 E 4c 2 F + -C3 -

Equation (6.11) is well known to give solution of solitary or cnoidal

type. The existance of solitary and cnoidal wave envelopes in weakly

nonlinear dispersive system was first pointed out by Benney & Newell

(1967). Now, (6.11) may be written in another way as,

SI']- 2 (E) - 3 ("mty-E-)( Ein)( -_ ) (6.12)

where MAy , Emi'n are the maximum and minimum of E respectively.

Comparing (6.11) and (6.12) we have

C, =- ~ ax 2 i EO (6.13)

which shown that Eo must be negative. A sketch of the properties of

(6.12) and its various possible solutions are given in Figure 8. The
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FIGURE 8 PERMANENT WAVE ENVELOPES
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general solution of (6.12) is given by (see Lamb (1932), p. 426),

E = -xM m.4.Y) (6.14)

where cn( ) is the cnoidal function and its modulus is defined by

2 . (6.15)

I-E /EmA

The wave length of the envelope (6.14) is given by

The frequency 4 as evaluatedJ ~r Em

The frequency VVJ as evaluated

(6.16)dr

fromI- (695IhZ)i

from (6.9 a) is

CI _ dJ- , dx - . i EM i (6.17)

We note that the solutions (6.14) and (6.17) are uniquely determined once

Emax , Emin and EO are specified.

There are no specific physical meaning attached to EO ; however, its

relation to the wave length 2 is given by (6.16) which may be rewritten

as:

6 F( ) S - E , max- min)/2

where

kind.

(6.18)

1(12) d Fis the complete elliptic integal of the first

The solution for k may be obtained graphically from Figure 9.
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FIGURE 9 GRAPHICAL METHOD FOR DETERMINING THE WAVE LENGTH OF THE

PERMANENT WAVE ENVELOPES
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For the special cases (b) and (c) as described in Figure 8, Emin = 0

so that V/r O and the wave length is uniform over the group. Now,

from (6.12), we have (A) = 2 Fmay ( o) at E=A=o. This implies

that if EO # 0, AX'# 0 at the nodes as shown in Figure 8(b). However,

if we further let EO--> 0 (i.e. k- I or A-)o) we obtain the solitary

wave envelope as shown in Figure 8(c):

= j .
or,

A/A ha = eck -,2 Am '
(6.19)

Note in particular as X- c , A - o so the solitary envelope is a

pulse on zero background. The width 2 X 5o of the solitary pulse may

be defined at A/Ama x = 0.5 :

- o.935 (6.20)

A rrx

so that the width of a solitary pulse is inversely proportional to wave

steepness. Referring to Figure 9, we notice the solution of approaches

very rapidly to unity for moderately large (say 3 or 4). It follows

from (6.15) that -9 I implies that E0 -- E min - 0. This is

to say for large S the permanent solution approach solitary pulse

(6.19); i.e. case (c) as shown in Figure 8.

The general propagation speed of the cnoidal wave envelopes may be

obtained from (6.17). We note from (6.17) that
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Eo F in,
k/in 2= Emi (6.21)

or, by definition (6.4)

c- 2 EmaX  (6.22)

It follows immediately that the propagation speed is,

9 ~EI E ErME
2 ~+ = k +cri" EmC CAx (6.23)
2Z 2 oin 2 E may 5,ph 1

When Emi n -- 0, omin = c and C = . Therefore the propagation

speeds for the permanent wave envelopes in Figures 7(b) and 7(c) are

constant and independent of wave amplitude.

6.3 NUMERICAL METHOD

Beyond what is already discussed in 6.2 analytical solution for

(6.5) is in general very difficult. Therefore, the transient evolution

of wave envelope has to be obtained through numerical computation. The

numerical scheme used here is an explicit one. The finite difference

equations for (6.5 a,b) are given as

2 A . T 2

S(AT) A 2. - A , A A -

16 (AX') A ,j A Lj i

(6.24 a,b)
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For computation convenience, a periodic boundary condition is applied

for every A grid points over space; i.e.

(6.25)
Initial values of A & V are then prescribed.

Numerical stability analysis for (6.24) and (6.25) is difficult for

their nonlinearity. However (6.7), i.e. the linearized model of (6.5 a,b),

has been studied by an explicit scheme (see Richtmyer, 1964, p.185). in

which z is found to be the parameter deciding numerical stability.
(AX)2

Using the linearized model as a guide our numerical stability criterion

is obtained through trial and error on the computer and we found (6.24)

and (6.25) are always stable if . As a further check of this

numerical scheme we place a permanent wave envelope (6.19), as initially

condition and choose 61 = 0.01, AX'= 0.1, N = 200. After

500(AT/) we found the permanent wave envelope essentially unchanged as

predicted; the change of peak amplitude is 0.3% and the change of total

energy is 0.02%. This accuracy is certainly satisfactory. In fact

for all cases considered later the total energy is always conserved to

within 0.5%.

6.4 TRANSIENT EVOLUTION OF WAVE ENVELOPES

Experiments on the nonlinear evolution of wave envelope in deep

water has been done by Feir and reported by Benjamin (1967) and Feir

(1967). The primary purpose of this section is to confirm several
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important features in their records. With respect to the wave envelope

pulse Lighthill (1965 b, 1967) has given analytical solutions based on

Whitham's theory.

6.4.1 Wave Pulse Experiment

To isolated the effect of nonlinear dispersion we first use the

modulation equations derived by Whitham (i.e., to neglect the dispersive

term Ax' )from (6.5 a,b)) to study a wave pulse which at time T = 0

is given by A=seeJiX, v1 /O (This is precisely Lighthill's problem).

The numerical result is presented in Figure 10 which shows that the wave

frequency tends to increase in the front and decrease behind the group,

and, at the same time, the amplitude peaks up at the center of the group.

As time increases further a rapid change of wave frequency and a sharp

peak of amplitude is developed at the center. At this stage both theory

and numerical solution break down. Essentially the same behavior has

been analytically predicted by Lighthill (1965 b, 1967) and he speculated

that the rapid change of frequency at the center may be in some way

analogous to the aerodynamic 'shock'. Referring to (6.19) we note that

the initial condition chosen for this calculation is a permanent wave

envelope which according to the fuller theory with the dispersive term

should propagate without change of form!

Now we use the complete nonlinear theory, i.e. equations (6.5), to

calculate several pulse-shaped wave envelopes. For numerical calculations

the distance between the boundaries are chosen to be large enough so

that a 2L o at the boundary and hence the periodic boundary conditions
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FIGURE 10 NONLINEAR EVOLUTION OF WAVE .PULSE BASED ON WHITHAM'S THEORY

(Initial conditions: A = sechJiX, W = 0)
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do not affect the main region of interest. Let us consider first a wave

pulse which is initially flatter than permanent form and the wave length

is chosen to be uniform initially. In this case the amplitude dispersion

is smaller than the frequency dispersion. Figure 11 shows that the

wave amplitude starts to peak up and frequency increases in the front of

the group and decreases behind it. However, as the time increases beyond.

T' - 4.5 , the wave frequency at the center of the group tends to decrease

back to zero and the amplitude gradually approaches a solitary envelope

(6.19)*. This indicates that a local dynamic equilibrium between non-

linearity and frequency dispersion is achieved. In Figure 12 where the

AT
maximum amplitude and the growth rate, - , at the center of the wave

A
group is plotted v.s. T'. It is shown that the growth rate gradually

diminishes as the wave envelope approaches permanent form. This suggests

that the wave envelope now settles down to a stable form. Another in-

teresting aspect observed in Figure 11 is that the wave group has a tendency

to disintegrate into groups separated by nodal points where the amplitude

vanishes to zero and the frequency grows indefinitely. As the frequency

becomes too large at the nodal point the theory breaks down and the nu-

merical computation cannot be continued. Mathematically, a sharp peak of

wave frequency at the nodal point simply implies a sudden change in the

*In Figures 8, 9, 10 & 11 the wave envelope is comparable with the

solitary pulse solution (6.19) because >0.95 for all these cases.
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FIGURE 11 SYMMETRICAL PULSE INITIALLY FLATTER THAN PERMANENT

WAVE ENVELOPE

Initial conditions: A = sechfX/2, W= 0
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FIGURE 12 VARIATION OF WAVE AMPLITUDE AND GROWTH RATE AT THE CENTER
OF THE WAVE GROUP
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wave phase (see definition (2.11 a, b)) and the conservation law for

wave crests breaks down at such points. Referring to the example given

in 1.3 a rapid change of phase at the nodes is in fact also present

in the linear theory.

Several other situations have also been considered. In Figure 13

the wave pulse is initially steeper than a solitary pulse of equal

maximum height. Again the wave pulse disintegrates into groups separat-

ed by nodes where the wave phase changes rapidly. The main wave group

first approaches a solitary pulse. However, the frequency seems to

reach different levels in different wave groups. Unfortunately, once

the nodes are formed, the numerical calculation cannot proceed further

and we cannot really be sure about the eventual situation.

In Figure 14 we consider an asymmetrical wave pulse, the front

face is exactly the solitary pulse of equal height but the back is

flatter. Similar to the previous cases, the wave pulse disintegrates.

The central group first approaches permanent form while the leading

group is smaller than the trailing group. This situation, as we shall

see, is rather close to several cases of Feir's experimental observation.

In all previous cases the wave length is initially uniform (i.e.

W = 0). Now in Figure 15 we consider a symmetrical wave pulse with

wavelength that are initially not uniform. In this case we find the

wave envelope first distorted and than disintegrated. The largest

group approaches solitary pulse and the side groups are not symmetri-

cal.
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FIGURE 13 SYMMETRICAL PULSE INITIALLY STEEPER THAN PERMANENT

WAVE ENVELOPE

Initial conditions: A = sechl.2T2X, W = 0
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FIGURE 14 ASYMMETRICAL PULSE INITIAL

Initial conditions: A = sechl2(X-6.5)

LY UNIFORM WAVE LENGTH

, X6.5 ; W = 0

sechf2 (X-6.5)/2, X'/ 6 5
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FIGURE 15 SYMMETRICAL PULSE WITH INITIAL FREQUENCY SPREAD

Initial conditions: A = exp(-.178

AX = 0.15, AT = 0.005, N = 150
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6.4.2 Heuristic Discussion

We shall attempt to give a qualitative discussion of the numerical

results obtained in the previous section. The process of evolution of

wave envelopes may be considered as a redistribution of wave energy with-

in the wave group. The agent which does the redistribution is the

group velocity. As we have mentioned previously in Chapter 3 that the

group velocity, depending on the frequency WG , may be affected by

various types of dispersion effects. For deep water waves these disper-

sion effects are frequency dispersion and the so-called 'amplitude

dispersion' due to the nonlinear coupling between the group velocity and

the amplitude. Referring to the dimensionless equation (6.5 a) we

note that (- H ) is essentially the group velocity, while the terms (A
2)

2 4

and (- A+ ) in (6.5 b) represent the amplitude dispersion and the
4 16A XI

frequency dispersion respectively. To illustrate these two types of

dispersion, we choose an initial pulse: A = Sech bX', W = 0 and plot

out the amplitude dispersion term and the frequency dispersion term in

Figure 16(b) and 16(c). We found that the effect of amplitude dispersion

is to increase W (i.e., to decrease the group velocity) in the front of

the wave group and to decrease W behind it. Since energy is con-

vected by (- W ), the amplitude dispersion is to concentrate the energy
2

(as directed by the arrows in Figure 16) into the center of the group

and frequency dispersion tends to spread out the wave energy. For a

group of waves which is initially flatter than the permanent wave envelope,
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A = Sech bX'

W= 0

(a) Initial profile

A
2

X

A2  b 2,--( ) = + - Sech bx tanh bX

(b) amplitude dispersion effect

16A X

2  P ' x
4 16A )X'

b2
3 Sech2bX tanh bX

4

(c) Frequency dispersion effect

FIGURE 16 SKETCH ILLUSTRATING EFFECTS OF AMPLITUDE DISPERSION AND

FREQUENCY DISPERSION AT SMALL TIME.
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the amplitude dispersion is initially stronger than the frequency dis-

persion. Therefore, as shown in Figure 17(a), amplitude will increase at

the center until the amplitude dispersion and frequency dispersion

reach equilibrium. On the other hand if the wave pulse is initially

steeper than permanent wave the amplitude at the center would first

decrease as illustrated in Figure 17(b).

The formation of the nodal points is probably due to the fact that

for the first case the rate of energy convection from the two sides to

the center (for the second case from center to two sides) is not uniform

(Figure 17). The energy convection is much more rapid near the center

than near the tails. Therefore between the center and the tails there

is an energy defficiency and nodal points are formed.

6.4.3 Periodic Modulations

Since a periodic boundary condition is used, the present numerical

scheme is very suitable for computing periodic modulation of wave envelopes,

corresponding therefore to the problem studies by Benjamin and Feir (1967).

For the sake of reference we first rederive the results for linear in-

stability from (6.6) directly. Let us assume the following solutions:

r( pep (K'X- T')] (6.26)

where K and are the normalized wave number and normalized wave

frequency of the side-band disturbances. The eigenvalue relation fol-

lows immediately,

I =I-K K -- 8 (6.27)

The disturbances (6.26) are unstable if K<,Z and stable otherwise.
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The growth rates for the unstable waves are given by

T (T. - (6.28)
o _ 8

It is easily shown that at K' = 2 the growth rates are maximum; i.e.,

O-T' _  _I Substituting (6.26) into (6.6 b) we found for K' = 2 :
01- 2.

O( K
- -- L (6.29)

So that o and 3 are equal in amplitude but out of phase by O.

We now consider the nonlinear problem and take the following as

initial condition corresponding to the fastest growing case

A = I (0- I) cos2X V. = (o0.) sn 2X0)
(6.30)

The results of numerical calculation are shown in Figure 18. First we

notice that the initial evolution of the disturbances is not exactly

sinusoidal as the linearized instability theory predicted. There are

sharper crest and flatter trough for the modulated envelope and this is

indeed observed in one experimental record obtained by Feir (Benjamin

1967). As time proceeds further the wave envelope again disintegrates

and develops into distinct groups separated by nodal points across

which the phase changes rapidly. The frequency over the largest of

the group returns to zero (Figure 18(b)). It is most significant that

at a certain large time T ' 5.2 the wave envelope approaches the

cnoidal solution (6.14) and (6.17) with Emin = 0 (each group reaching

a cnoidal wave of amplitude equal to that of the group). This suggests
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FIGURE 18 NONLINEAR EVOLUTION OF AN UNSTABLE STOKES WAVE

(Initial condition: A = 1 + (0.1)Cos 2X , W = (0.1)Sin 2X/)
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that dynamic equilibrium between amplitude dispersion and frequency

dispersion is reached. We further remark that the higher wave group

tends very closely to solitary pulse solution given in (6.19) but not

the lower group. This is because the parameter, o oqh, is very close

to unity for the higher group as compared to -0,3 for the lower group

(As discussed previously the cnoidal solution (6.14) approaches solitary

solution (6.19) as -->j ). The growth rate of the disturbances is

given in Figure 19. The crest of the envelope appears to grow faster than

the trough. The trough is defined to be the mid-point between the two

successive crests. Initially the growth rate for the height of the dis-

turbance (i.e., the amplitude difference between the crest and the trough

of the wave envelope) agrees with the linearized instability theory. It

is interesting to observe that the growth rate finally reduce to zero

as the wave envelope approaches permanent form. Although the numerical

calculation cannot be proceeded further as soon as the nodal points

are developed, due to the fact that the approach to permanent waves

coincides with the diminishing growth rate, it appears quite certain that

the permanent form is the final stage of evolution and no further changes

can be expected. We recall that these cnoidal waves envelopes all travel

at the same speed irrespective of their maximum amplitudes (at least to

the present degree of approximation). These permanent envelopes of

different amplitude will not separate from one another, which is a

feature somewhat different from the comparable problem studied by Madsen

and Mei (1969) for shallow water long waves.
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Another example of periodic modulation is considered in Figure 20.

In this case the initial periodic modulation on both wave amplitude

and wave frequency is chosen to be very large. After going through a

rather complicated evolution the wave envelope is again found to

disintegrate and settle down to permanent forms.

We shall now summarize the entire picture of the instability of

Stokes waves in deep water. When a side-band disturbance is within

K
certain range - - 2 the maximum amplitude of the envelope grows

exponentially. The envelope develops into a wave form with sharp peaks

and flat troughs. Further onwards the growth rate diminishes while

nodes develop at about wavelength from the crests of the envelope.

Between nodes the envelope would seem to settle down to permanent

cnoidal waves of different amplitudes appropriate for the wavelengths.

Across the envelope nodes the frequency has sharp peaks signifying fast

changes of phase. The envelope which consists of cnoidal waves of dif-

ferent amplitudes move at the same speed equal to the group velocity

of the primary Stokes wave without further change of form. The situation

is therefore quite analogous to other hydrodynamic instability problems

when initial instability leads to a secondary steady state of finite

amplitude.

6.4.4 Experimental Evidence

We shall attempt to discuss Feir's experiments (1967) based on our

numerical results presented in the previous sections. In Feir's experi-

ment wave pulses in the form of a half sine curve and with initially
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constant frequency were generated by varying the wave maker amplitude

but keeping its frequency constant. For a detailed discussion of the

experimental set up see Feir (1967) The resulting surface displacement

with respect to t was measured at two stations 4 ft and 28 ft down

stream of the wave maker. Two records measured at 28 ft from the wave

maker are reproduced in Figure 21. In order to get an idea on the rela-

tive effect of frequency dispersion and amplitude dispersion we compare

the measured envelope with the envelope of permanent form, i.e. the

solitary pulse. Notice that the wave records are now presented in

dimensional variables. For comparison the solitary pulse (6.19) is

rewritten in dimensional form:

= ech 2 (6.31)

where ,6=O is chosen at a =map . The width of the pulse 2 5o, defined

at /aX=O., is

t50 -7 (6.32)

Comparing the measured envelope with the solitary pulse (6.31) we found

that Figure 21(a) corresponds to wave envelope that is initially steeper

than permanent form and Figure 21(b) corresponds to envelope that is

flatter than permanent form. We now define T[g'to be the dimensionless

time needed for the main group to travel from x = 4' to x = 28' , i.e.,

, 2

T/g, (= (- (6.33)
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In Figure 21(a) the wave steepness is very small so that the dimensionless

time T28 , corresponding to a propagation of 24 ft is also small. In

this case the frequency remains essentially uniform over the group as

expected for small T. For the present discussion let us ignore the

narrow frequency peaks exihibited at the two ends of the group, which

are resulted from the lack of smoothness of the initial pulse generated

by the wave maker (for a discussion of this see Lighthill 1967). The

record for a pulse initially flatter than solitary pulse is given in

Figure 21(b). The corresponding dimensionless time T2 8  increases

to 4.5 as a result of increasing wave steepness. The frequency is no

longer uniform over the group but becomes higher in the front and lower

in the back; at the center, the amplitude steepens up to approach a

solitary pulse. These features are essentially in agreement with the

numerical calculations in Figure 11 for the same T = 4.5 . At this

stage T is still too small (or nonlinear effect is too weak) for the

disintegration of the main group.

Another set of six records corresponding to different initial wave

steepness is presented in Figure 22. It should be pointed out that in

the second order, OL is not the amplitude measured from the still water

level, but 2a is the total wave height from crest to trough. We there-

fore replotted Feir's records so that the horizontal axis corresponds to

the mid-line between crests and troughs. Comparison of each experimental

record with permanent envelope is given in Figures 23, 24, 25, 26, 27 and

28. We first note that the viscous damping is very large in all these
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experiments. By integrating the area in the 0. curve, it can be

estimated that 50% of the total energy is lost as the waves propagated

from 4 ft to 28 ft. It is interesting that in Figures 23 and 24 viscous

damping reduces the maximum amplitude and at the same time reduces

amplitude dispersion as compared to frequency dispersion, since it tends

to make the wave envelope steeper than the permanent form. As may be

expected from the small values of T2 8 in Figures 23 and 24, the nonlinear

effect in the first two experiments is very small. Even if the viscous

damping is neglected as in numerical calculation, it is not expected

that the wave profile would reach dynamic equilibrium between amplitude

dispersion and frequency dispersion at such small T2 8, (cf. Figure 11).

However, as T2 8' become larger and larger in Figures 25 to 28 the non-

linear effect becomes more important compared to viscous damping. Now,

at the 28 ft station, the main group appears to approach gradually the

permanent form. Disintegration of one wave group into multiple groups

separated by nodal points is also observed in the last three cases

(Figures 26, 27 and 28) when T2 8 ' is large. Note that the disintegration

in these experiments occurs only in the back of the main wave group.

This is because the initial profiles at station 4 ft are very asymmetri-

cal with the front being very close to permanent form and the back much

flatter than the permanent form. Furthermore, if one studies carefully

the profile near the nodal point for the last two cases (Figure 22)

rapid change of wave phase is indeed observed.
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CHAPTER 7

CONCLUSION

7.1 SUMMARY

The slow modulation of nearly periodic waves over uneven depth

has been studied in this thesis. Improved results are obtained for

quasi-steady waves over sloping bottoms. The general modulation

equations are found to include further dispersion terms in comparison

with Whitham's theory. As an example the difference between Whitham's

and others' theory on the linear instability of Stokes waves is resolved.

Envelopes of permanent forms are studied in detail. Finally, solitary

and periodic envelopes are investigated numerically for their transient

evolution. Many features revealed here resemble dispersive long waves

in shallow water; in both cases the primary cause of the complex pheno-

mena is the competition between amplitude and frequency dispersion.

In the numerical calculation of an unstable Stokes wave in deep

water (Figure 18) the maximum wave amplitude actually increases to

approximately 2.4 times larger than the initial amplitude of the Stokes

wave. Other examples in Figures 11, 14, 15 and 20 all indicate increase

of several fold in maximum wave amplitude. Such an increase of maximum

wave amplitude is one particular nonlinear feature which would not be

predicted from the linear theory with only frequency dispersion, because

the effect of frequency dispersion always tends to spread out wave

energy and decrease the wave amplitude. Since the maximum wave amplitude
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is generally the most significant engineering design parameter, the

study of nonlinear evolution of wave envelope is therefore important in

showing that the classical theory may represent gross under-estimation.

Although viscous damping of wave energy in Feir experiments has

been found as high as 50%, this is very likely due to side wall boundary

layers. The viscous attenuation of gravity waves in ocean is usually

small compared to the nonlinear growth. Take for example, a wave train

in deep water, with a period of 10 sec and wave amplitude of 8 ft, the

viscous attenuation of amplitude is only 0.002% over a distance of

32 miles (which equivalent to T ' 10.0). As noted by Lighthill

(1967 a) according to the linear theory the group velocity is not affected

by the presence of small amount of dissipation. It is also known that

in weakly nonlinear waves the dispersion relation is scarcely affected

by viscosity. Hence the general nonlinear features will remain un-

changed and the decay of wave amplitude may be estimated by the linear

theory for periodic waves of the same wave length.

7.2 FUTURE PROSPECTS

7.2.1 Nonlinear Evolution Over Uneven Bottom

So far we have considered only the nonlinear evolution problem

in deep water. The more interesting problem, especially in near shore

oceanography, would be the study of evolution of unsteady wave train

over uneven bottom (as opposed to the quasi-steady wave train studied in

Chapter 5). The bottom slope in most coastal waters or of the continental
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slopes may be considered as one order of magnitude smaller than the

wave steepness. Under this condition, i.e. P "~ ),amplitude and

frequency dispersions are as important as the refraction effect as

discussed in Chapter 3. Now the governing equations (3.30) involve

four dependent variables. This implies that a more complicated numeri-

cal scheme is to be developed to study this type of problems.

7.2.2 Simple Models of Ship Waves

Another extension to the present study would be to consider the

three dimensional steady state evolution of wave envelope in deep water.

One simple case that may be of interest to the Naval Architect is the

waves generated by a uniform current passing a slowly modulated wavy

wall, as studied by Howe (1967, 1968).

According to the linearized theory of Kelvin, that a ship generate

two systems of waves in a wedge of half angle 19.50 . One system

consists of diverging waves with crests roughly parallel to the ship's

course; and the other is composed of lateral waves with crests roughly

perpendicular to the ship's course. At high Froude numbers (e.g. at

high speed) the former dominates while the latter is more visible at

low Froude numbers. As may be observed from any aerial photograph of

ship waves the divergent wave system is separated by nodes where sudden

change of phase occurs (Figure 29). This phenomenon, unpredicted from

linear theory, is quite similar to what we found in Chapter 5 that a

two dimensional long crested wave group would tends to disintegrate and

be separated by nodes where the phase changes rapidly.
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Since the wavy wall creates waves crests inclined in the down

stream direction it is useful to model the divergent waves for a

narrow wave length spectrum (Figure 30). Now the wave pattern is

steady, and the governing modulation equations involves only two in-

dependent variables, i.e., X and Y. The problem now is one of

changing the numerical calculation of Chapter 5 from the (X, T)

domain to (X, Y) domain, and no major difficulty can be forseen at

this stage.
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APPENDIX A

DERIVATION OF PERTURBATION EQUATIONS

We define the symbol ( )"' m)by

?oO '))cn

-A= 0 rM =-?I

ZE "
D = L "-

<vf e

/)f 0, M) ;n~/

-A -- 0 -*A

For example, since by differentiation,

v2z=lj1"v71

(A.1 a,b,c)

.- n~m

i'kcJ

we obtain

P2 ) cm - im

(A.2)

(A.2)

(A.3)

where the first index in the superscript cannot be smaller than the second.

Thus ( ) is essentially an operator identifying orders and harmonics,

i.e. < is just the n th order and m th harmonic component of the

series =
6.0 +IM YA

-Ant ~

Now applying the operator ( to the bottom boundary condition (2.3)

<) ) (-(724V20
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or, upon making use of (A.3),

2L
By differentiating (A.3) again we obtain (V2  ; and the Laplace equation

(2.2) can be separated to give

-im I V (A.6)

For the nonlinear boundary conditions on the free surface, we have

- + qE0.t=

-- 0 ({(A.7)

A general compact expression such as (A.5) and (A.6) cannot be easily

written down for CT and H . To keep track of the very involved

computation of T" and A- it is helpful to refer to the diagram de-

picted in Figure 31. As a demonstration, let us consider the product

>= = - i' the pertinent elements and q

can be collected from the two opposite sides of the two rectangles

(4i, )
defined in Figure 31. Thus () includes the following terms:

(3,' ) (,) (2 2,2) (1(-1) (3,Z) ((2,) ,) (3, t) (3
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and /I are now calculated according to (A.7)

and (A.8) as follows:

1) For - J,2 we define

f = 0 8 5 (±72iI l
2 z

2z~tl (A.9)

Thus we have,

S(2, ()'

('0o) O0,)

(2,2)

4: --

+ 1, ( I )

(4 . °

(3,Q) - (21-) (1 - J-C'(v, (2,0 )

(3 )

2) For 73) we define
2) For -V3) - 'I

()3

+ 27 3 a
~~~? 4y 3 (((w
(2-L -t72s§V

Thus we have,

(2,0)

(2d1)

i (Io) (Io)
2 -

f,
(A. 10)

(2,1) ) (,-1)
, S = 2,0o- ,

-110-

n __- -- -

Using this method
h m) ( , )

= - 2('u. 4

(2,2) ( 2,2)
= - 4 '(A),o

$$ C~ 4t

2_ (22) ( (o _)(2,),, (,O), (2,o) Q,-) 2)



(3,o) (2o)

9 2-FT

(2-')

4,

(3,1) (2,1)
s= T -

_ (2,1) .2 (p i

( 1,U) (

(3,')
2',o - 2

I,- I) (2,o) (1,o)

+*fef c

V (1,-1) (2,2)
k + f

*4~ c~~'

3) For we define

Thus

(2,o) 1 (1,o)z

P22

(2,') (I,o) ')

-'12 97 r

4) For Itwe have

(ihm)
Of>=

(n- ,:1) (3M)O
7T - Io Gg m 3

and for ,

(.- ,) ( T - 2,q,) C- )

TT tT

_ T 2 .ch,m) 2L co)1
-M-2MLoW

(A.13)
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5) Now from (A.8),

C(,o)

= (<22)

-2.0) C,(1 ) (' ')

( I,')

#z T
(4) ,)

<' Go 44

i (,-) (1,1)

(I,o)

(1 )

r I Wo z

6) From (A.7),

(i,o)

(2,o)
69

C o) (1-1) (1') 2 1 1i) (1)-1)
-3 + Q + O 1 )

(1-I) ( b,-

-g( Qp7 ? " I 
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APPENDIX B

SIMPLIFICATION FOR G(n,m) AND H(n,m)

We first note that the functions G(n,m) and H(nm) appeared in the free

surface boundary conditions of (2.14 a-d) are evaluated at z = 0.

Therefore, all simplifications present in this Appendix will restricted

only for z = 0.

Referring to Appendix A, we have R(1 0 ) = F(1, 0 ) = G(1 0 ) = H (1,0)

R (1,0 ) = F(1,0) = G(1, 0 ) = H(1, 0 ) = 0. The first order relations at

z = 0 are obtained immediately from (2.14 a-d); i.e.,

S(0) (i,o)

U =  r(B.1)

Making use of (B.1), the second order nonlinear terms given in Appendix A

may be further simplified as follows:
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Before going into third order, we first summarize the second order

results at z = 0 :
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APPENDIX C

X
SIMPLIFICATIONS OF 0 FOR TWO SPECIFIC CASES

C.1 TWO-DIMENSIONAL WAVE TRAINS

We consider here a long crested wave propagated along the x-direction

and the depth of water is assumed to be a function of x only, so that

= o and k = ~. Let us first differentiate

pect to X :

and )with res-
and 1 with res-

x - 'j {o, 2 cs 443 o)s) Q o
(C.1)

where

, ( A (~' )o
2= k2 (C.2)

(C.3)
C(I)'Ilr

( x%'  k2( A(')') . 2 042__X) olqx =-'9 kl{ dz, ) - 2 ,
:j ; f 12+ 2 2 /1 C3 + )0-CA

(2ald2 4 (4 + aly l"M(4 ( J) 0 cos

+ ( 2-t 4 3 + 2  4)sl'qQ 43 k.

From (3.7) and (3.23) we write

L2.1)

where

_A20 C Q hq + d 2 a)li 4 d3J Q CSQ1

(C.5)
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A (1., ( 2z

+ C 42 o 3 + 3) 2 cosQ

-t- ( 3c. 2 Q2
4 Q s~L ~3o3 0(,3 os -b

+ (3 c 1:43 2 5 I'h

From (C.3), (C.5) and (C.6),
(0") -(21) 2, ) 1A ")

- xX ' = - Ce) 1L

(P5 Q 2 eo4 Q

to. Q , ILQ

+ (rQ C5st 6a I

where

+ 2 3a 0(1 "

4 a 0. * I -3 + o1X<

i- f , a., + dI1 o, a3 4- 2 ~,X /

+ 2 ,l

S2 2

L
1*(3 4 2 d3

6 e, a

4 t 3 (C.8)
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Differentiating (C.5),
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(C.7)
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Differentiating ,i., z and oC3 with respect to X, we get,

(C.9a)

{~(I kx/O 6,),
a ~ )x SA 6,')

2
= 2 -2a 3 _or2

where

(C.9b)

13 -(K~k = a5 L-c 3

where

(C.9c)

Now /3, defined in (C.8) may be further simplified to give,

/ = 3a, , 2

(z - 4 O'i0°Z * /'/- 4 d"

3 = 14,d + 4' t3 +d4 ,

= 2 , ( 3 + 2d5 2

5 0 o3 L -4 2 d 5

(P b
(C. 10)

7 =- 3
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Equation (3.19e) is now integrated as follows:
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C.2 THREE-DIMENSIONAL WAVE TRAINS WITH SMALL FREQUENCY SPREAD

We let

S(, ) (/ l )

where k = constant. We further assume VK-O(i.)so that only Voa. 1).

From (3.6) we have

ox
/ ( -ea

(C.13)) . v O(E

and

Differentiating (C.14) and (2.22a),
Differentiating (C.J.4) and ( 2.22a),

Vp(2 V) X

2 W

oIs

(c.14)

(C.15)

(C.16)

Now, substituting (C.15) and (C.16) into (3.19e) and integrating:

-k

- - (.0 .)4- _

Since
nd -w he

5 142~

and we have
Te 51,4S i U

(C.17)

(abJ16)-
(C.18)
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Substitutin (C.18) into (C.17), we obtain a simplified expression

X
for Cz .i.e.,

-
2.

(C. 19)SOkyy

For two-dimensional wave trains in deep water,
L

so that (C.19) reduces to

(C.20)
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APPENDIX D

THE ZERO OF THE CHARACTERISTIC DETERMINANT (4.5)

Referring to (4.5) and (4.6) we have,

E'A, K + CK5K
2Ao K2  C k2det.A =

DK, o

3Dok, o

, D 0a 2 O

0 0k £.)W

E u~kDo~j E2 pKj

1 8t<iaoI v0 2  Rk2 0

o - RK, hkz

o 3 k
o 5K 2

-§1

c)

--

(D.1)

Now assume

-n/k= Co + E C -t -----

Substituting (D.2) anto (D.1) and collecting zeroth order terms,

we obtain

which give six roots:

which give six roots:

(D.2)

(D.3)

(Z = ("5ill c,

(double roots)

(D.4a,b,c)

(double roots)

The higher order corrections for the first four roots in (D.4) are

always real. However the first order corrections for the last two roots

can be complex as is found below:
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0

- aC,

c5 tan o

0 0 -C,
o o

e A0

SAotane

Do t
SDoat h

D,40 ,

Expanding (D.5),

-E -')c, , C,
+ A 0 4K

- C5 (c,-9hfane2 ) +kc ,+ ]

I- cg (9-SE tan C9 I

-'-k. 9C~ C, 7
-I .DD L(- -oa 5 ) 5eC Co±tOA 2  

A )idk. tAJO

+ C) (D.6)

After some

ci2 )0oC,= 2

'tk (- #a+t&,)Lp&e(e C + 2

-CwoDo (- ~O S )Dt0  (c)hfu, (fo o4 ah A ] -0 c

manipulation, the first order corrections for C = C+ E)is,

-[ - 2
k ,,CIAO 2-g4 £S

+ y/Dseeh8&

(D.7)
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or, in terms of and defined in (4.9),

C 2 )r 2 (D.8)
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APPENDIX E

LISTING OF COMPUTER PROGRAM

The following computer program is developed for the numerical calculation

of the finite difference equations (6.24 a,b) and (6.25). The program

is written in 'Fortran IV'. The comment cards should make the program

self-explanatory.
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***** THIS PIOGRAM USE AN EXPLICITE SCHEME TO
CALCULATE THF TRANSIENT WAVE ENVELOPE IN DEEP WATER *****

** ** A(TJ), W(I,J) = AMPLITUDE AND FRFQUENC *****
~* ** N,M = NO. OF STEPS IN SPACE AND TIME **,**
* * DX, DT = STEP ST E IN SPACE AND T IMF =***
**"* t, LI = SPACF AND TIME INTERVALS FOR PUTPUIT **~*

DIMENSION A(50,3), W(500,3)
READ (5,112) N, '4, L, LL, DX, DT

112 FORMAT (414, ?F1).7 )
WRITF (6,333) N, M, !)X, DT

333 FORMAT ( 29H NP. nF GRID PTS. IN SPACE = 14/
1 ?PH NO. 9F i.RTD PTS. IN TIMF = 14/
2 22H STEP SIE IN SPACE = F10.7 /
3 21H STEn SIZE IN TIMF = F10.7 / )

JJ = -1
NN =
NHAIF = (N+1)/2
NNN = N-2
E=n .

C ***-* INITIAL CCNgITION ****
RFAD (5,113) (A(1,1), I=NN,NNN)

113 FCRMAT(SE5I .8)
READ (5,113) (W(I,1), I=NN,NNN)
P 77 I = NN,NNN
E = F + A(I,1)**2

77 CONTINUF
C ***l* nUTPUT UT

2c0 JJ = JJ + 1
IF (JJ) 261, 16), 260

260 CONTINUE
WRITF (6,700) J

700 FnRMAT ( /// 13 H TIMF STFP = I
WRITF (6,601) (4(I,1),I=NN,NNN
WRITE (6,601) (W(I,1) ,I=NNNNN

601 FORMAT(5X,5F15.8)
WRITF (6,602) E

602 FIRMAT ( 13H SUM CHEFK = E15.8
JJ = -LL

261 CqNTTNUF
E=0 .0
A(1,1) = A(N-4,1)
A(2,1) = A(N-3,1)
A(N-1,1) = A(4,1)
A(Ni) =A(5,1)
W(1,1) = W(N-4,1)
W(2,1) = W(N-3,1)
W(N-1,1) = W(4,1)
W(Nl) = W(5,1)

4
,L)
,L)
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C ***** FINITE DIFFERENCE EQUATIONS *****
IF (J-1) 1Cl,101102

101 CONTINUE
DO 259 I = NN, NNN
AXXA =

1((A(I,1)+A( I+2,1 ))*A(T-1, 1)-(A( I, 1)+A I-2,1))*4A(+1,19 /fA(I+1,1)
2*A( I-i ,1))

AXXA = AXXA/(4.*DX**?)
W(IT,2)=W( I,1 )+T*(W(T+1, 1)**2-W(I-11)**2-A( 1+I91 **2+
A(I-1, 1)**,?2-AXXA)/( 8.*DX)
A(I,2)=SQRT(A(T,1)**2+OT*(W(I+1,1)*A(1+1,1)**?

1-W(I-1,1)*A(I-1,1)**2)/(4.*DX))
E = F+A(I,1)**2

259 CONTINUE
A(1,2) = A(N-4,')
A(2,2) = A(N-~,2)
A(N-1,2) = A(4,2)
A(N,2) = A(5,2)
W(1,2) = W(N-4,2)
W(2,2) = W(N-3,2)
W(N-1,2) = W(4,2)
W(N,2) = W (5 2)
DO 2359 I = 1, N
WW = W(T,2)
W(I,2) = W(I,1)
W(I,1) = WW
AA = A( T,2 )
Af(It ) = A(Ipl)
A(I,1) = AA

2359 CONTINUE
J = J + 1
Gn TO 250

102 CONTINUF
DO 2459 I = 1, N
WW = W(I,2)
W( ,2) = W(11)
W(il) = WW
AA = AfI,?)
A(I,2) = A4(1,1)
A(I,1) = AA

2459 CONTINIJE
Dr 22?5 I = NN, NNN
AXXA =

1((AfI,7)+A(I+2,2 ))*A(I-1,2)-(A(I,2)+A(I-- ,?))X*A(I+1,2))/(A(1+1,2)
2*A( -1,2))

AXXA = AXXA/(4.*DX**?)
W(I,1)=W(TI,1 +nT*(W(I+1,2!**2-W(I-1,2)**2-A(I+1,2)**2+

IA(I-1 ,2)*2-AXXA)/( 4.*DX)
A(I,1)=SQRT(A(I,1,**2+DT*(W(1I+1,?)*A(T+,2)**2

1-WI-1,2)*A(I-1,2)**2 /(2.*DXI)
F = E+A(I,1)**2
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2259 CONTINUE
IF (J-M) 711,712,712

:711 J = J+1
GO TO 250

712 CONTINUE
CALL EXIT
END
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