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Abstract

In this thesis, the feasibility of using blade-mounted servoflap actuation or conven-
tional root pitch (swashplate) actuation to control helicopter vibration is investigated.
A linear, time invariant, state space model is derived and presented in a form of fre-
quency response (Bode plot) which is useful for control studies. Multi-blade coordi-
nates are used to transform the blade's degrees of freedom in the rotating frame to the
rotor disk modes in the non-rotating frame in order to achieve linear, time invariant
system. The linearized model provides general trends of the rotor blade behavior at
different flight situations but may not be as accurate at high advance ratio cases.

The model was used to investigate the feasibility of using the servoflap actuation
on a one-sixth scale CH-47 model rotor. It is found from the model that as little
as 3 deg of servoflap deflection can achieve significant level of vibration reduction.
Surprisingly, it is also found that an inboard actuator (f = 0.6-0.8) is more effective
than an outboard actuator (f = 0.8-1.0). The root pitch actuation is found to be
less effective than the servoflap actuation, due to a zero introduced in the transfer
function at the frequency of interest.
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Notation

An attempt was made to use notation as consistent as possible with that of Johnson

[11] and Garcia [7]. Dimensionless quantities are normalized by the rotor radius R,

the rotation rate , and/or the air density p, where possible.

a blade section lift-curve slope cl0
a modal amplitude of the generalized mode

A rotor area, rR 2

A state matrix

Ak rotor integral, see Appendix A

B state control matrix

Bk rotor integral, see Appendix A

c blade chord

c normalized blade chord, c/R

C output matrix

CL roll moment coefficient, Mx/pAR(QR) 2

CM pitch moment coefficient, My/pAR(QR) 2

CT thrust coefficient, T/pA(QR)2

Cr/a blade loading

Ck rotor integral, see Appendix A

D output control matrix

Dk rotor integral, see Appendix A

e flap hinge offset

e normalized flap hinge offset, e/R

Ek rotor integral, see Appendix A

El flapping stiffness

Fk rotor integral, see Appendix A

GOro transfer function, (CT/ a)/Oro
G,7  transfer function, (CT/a)/ro

GJ torsional stiffness

Gk rotor integral, see Appendix A

hi spanwise length of the i th finite element

Hk rotor integral, see Appendix A

I identity matrix

Ib characteristic inertia of the rotor blade, fRn mr2 dr



Icg blade sectional inertia

jk rotor integral, see Appendix A
K blade stiffness matrix in general

ko stiffness of rotor pitch link

Kk rotor integral, see Appendix A

f sectional lift force

L aerodynamic matrices, see Appendix A

1C stiffness matrix for inflow dynamics

Lk rotor integral, see Appendix A

m blade sectional mass

m sectional moment force

M blade mass matrix in general

M aerodynamic matrices, see Appendix A

m* rotor integral, see Appendix A

m rotor integral, see Appendix A

Mk rotor integral, see Appendix A

M mass matrix for inflow dynamics

n lift coefficient of servoflap, cl,
ii normalized lift coefficient of servoflap, cl,/a

N number of blades

Ne number of elements in finite element model

nm number of modes selected for generalized purpose

p moment coefficient of servoflap, cm,
p1 normalized moment coefficient of servoflap, cm,/a

q blade index

qk eigenvector corresponding to the kth eigenvalue
Q aerodyanmic forcing term

r rotor disk radial coordinate

f normalized radial coordinate, r/R

rl inboard servoflap location

r 2  outboard servoflap location

rC root cutout

R rotor radius

s Laplace variable



s normalized Laplace variable, s/Q

Sk rotor integral, see Appendix A

t time

T tension due to centripetal force

T* kinetic coenergy of the rotor blade

u control input vector

u state vector for finite element analysis

up velocity ratio of blade section, normal to disk plane

UR velocity ratio of blade section, in radial direction

UT velocity ratio of blade section, parallel to disk plane

U section resultant velocity ratio, u} + u2

V potential energy of the rotor blade

w spanwise deflection

x rotating blade chordwise coordinate

x normalized chordwise coordinate, x/c

xcg center of gravity offset, positive aft of quarter chord

x state vector

y output vector

a blade section angle of attack

ad rotor disk angle with respect to helicopter velocity

0i flapping slope of the i th element, positive upward

y Lock number, pacR4/Ib

F aerodynamic hub reaction matrices, see Appendix A

A dynamic matrices, see Appendix A

rl servoflap angle

0 blade sectional pitch angle

o8 blade root pitch angle
A rotor inflow ratio, Af + Ai

Af free stream inflow ratio, (V sin ad + v)/ QR

Ai induced inflow ratio, v/QR

p rotor advance ratio, V cos ad/QR

p air density

a rotor solidity Nc/7R

0 section inflow angle, tan- (p/uT)



me

Wk

Wk

S

Subscripts

0

c
f

i

r

s

Superscripts

n

T

collective

longitudinal cyclic

free stream

induced flow

blade root

lateral cyclic

derivative

exponent on r, see Appendix A

transpose

mth flapping deflection mode shape

m th flapping slope mode shape

m th torsional mode shape

rigid twisting mode shape

eigenvector matrix used for generalizing purpose

inertial hub reaction matrices, see Appendix A

azimuth angle of rotor blade

azimuth angle of q th rotor blade

dynamic matrices, see Appendix A

frequency [rad/s]

nondimensional frequency w/1
natural frequency of k th generalized mode

normalized natural frequency of k th generalized mode, wk/Q

rotor speed [rad/s]



Chapter 1

Introduction

Helicopter rotors are subjected to periodic aerodynamic forces, especially due to so-

called blade vortex interaction (BVI). BVI can cause significant levels of vibration,

which reduces pilot effectiveness, passenger comfort, and increases structural weight

and maintenance cost. Therefore, reducing vibration is of great interest.

The main cause of BVI is the blade tip vortices created by the spinning rotor.

As the rotor spins, these vortices trail and create a nonuniform flow field behind

each blade, and the passage of the other blades through the nonuniform flow field

causes them to vibrate. As each blade moves around the azimuth, it experiences

aerodynamic forcing. The forcing is periodic, so that the blade experiences the same

force each time it passes a given azimuthal position. Therefore, the force on each

blade can be Fourier decomposed as a sum of sines and cosines, with frequencies at

integer multiples of the rotation rate, Q. The forces experienced by one blade will

be the same as the forces experienced by another, except for a change in the phase.

When summing up the forces from all the blades, the phase differences cause the

forces to cancel, except at multiples of the blade passage frequency, NQ, where N

is the number of blades. Controlling these harmonics is known as higher harmonic

control (HHC). Much research effort has been directed to the use of HHC theory,

and number of wind-tunnel tests, as well as flight tests, were performed based on

the HHC algorithms [19] [22]. For more complete references to HHC techniques, see

Reference 9.



There are several ways to reduce vibrations, including the use of a rotor isolation

system [3], a floor/fuel isolation system [4], and vibration absorbers [10]. In this thesis,

we are concerned with using the rotor itself to control vibrations. There are two ways

to actuate the rotor. Most of the HHC literature has assumed root pitch actuation

through the swashplate. The other approach is to use some sort of blade-mounted

actuation. These two methods are discussed in the sections below.

1.1 Root Pitch Actuation

Conventional helicopter rotors are controlled by a swashplate, located below the hub

of the main rotor, which converts pilot controls in the fixed frame to blade pitch angle

in the rotating frame. By moving the swashplate through the flight control, the pilot

can control the collective thrust, the pitching moment, and the rolling moment of

the helicopter rotor. Shaw et al. [19] have demonstrated the use of closed-loop HHC

on a dynamically scaled model of the three-bladed CH-47D rotor. The controller

applied small amounts of oscillatory swashplate motion to produce multi-harmonic

blade pitch angle of up to +3.0 degrees, and they were able to demonstrate a 90

percent decrease in vibratory shears at the hub. Kottapalli et al. [12] have showed

similar results using a 4 bladed full scale S-76 rotor.

There are two problems with the use of the swashplate for rotor control. First,

in order to achieve HHC, the swashplate must be actuated as fast as NQ, where a

typical value of Q is 200 RPM. Therefore, actuation must take place at about 10

Hz, and accomplishing that with a swashplate is difficult. Second, the swashplate

has only three degrees of freedom. For some applications other than HHC (blade

tracking, noise control etc) it is desirable to control each blade individually. It is not

possible to control the blades of a rotor with four or more blades individually using

only a swashplate.

In order to resolve the problem of the limited degrees of freedom, the conventional

swashplate actuation can be substituted with servo actuators for each blade. Use of

such actuators makes it possible to apply individual control to any number of rotor



blades. This control strategy is called individual blade control (IBC).

Jacklin and Nguyen[16] have demonstrated the IBC technique on a full scale BO-

105 rotor by replacing the rotating pitchlinks at the hub with servo actuators. The

effect of up to +1.2 deg of open-loop IBC was studied at various speeds, and for some

cases 50 to 70 percent of rotor balance forces and moments were suppressed.

One difficulty with direct control of blade root pitch is the weight and complexity of

the actuators. Generally, the power density of electric actuators is too low. Hydraulic

actuators have higher power densities, but it is impractical to use hydraulics in the

rotating frame.

1.2 Blade-Mounted Actuation

Blade-mounted actuation have been developed as another vibration reduction method.

The blade-mounted methods include the use of circulation control rotor (CCR) [21]

and servoflap control [20] method.

CCR is based on the Coanda Effect, in which tangential air flow from the trail-

ing edge of an elliptically shaped rotor blade delays the boundary layer separation,

providing high sectional lift coefficients. HHC can be achieved without moving any

parts except the rotating blade itself. However, the mechanical complexity of CCR

limits its usage.

Mounting an actuator on a helicopter blade for HHC is not an easy task, due to

the limited space within or around each blade and the large centripetal force exerted

during normal operations. A helicopter blade is a long thin structure usually built

with solid shell and honeycomb fillings. The available space for placing a servoflap

is, therefore, limited. Also, during a normal flight, the rotor blades experience a

centripetal force on the order of hundreds of g's. These considerations eliminate the

use of any type of conventional hydraulic systems.

Spangler and Hall [20] first suggested the use of active materials to actuate a

servoflap for rotor control. They proposed using a piezoelectric bimorph bender

to actuate a trailing edge flap. Piezoelectric ceramics possess the high bandwidth



necessary for rotor control. Furthermore, they are solid state devices requiring no

additional moving parts for operation. Spangler and Hall demonstrated the bender

concept in a wind tunnel by incorporating a dynamically scaled actuator into a one

fifth model scale CH-47 rotor blade section. Their results showed that blade-mounted

actuation is possible, but they ran into problems due to friction and backlash in the

flap hinges.

Hall and Prechtl [8] improved on this design, eliminating the friction and backlash

problems by replacing the hinges with flexures. In addition, they increased the bender

mechanical efficiency by tapering its cross-sectional properties. They conducted a

bench test of this actuator and demonstrated flap deflections of ±11.5 deg under no-

load conditions. Their results show that, if properly scaled, this actuator can provide

up to ±5 deg of flap deflection at the 90 percent span location of an operational

helicopter in hover. Furthermore, the bandwidth of their actuator went as high as

7/rev in the experiment and, with proper inertial scaling, can be raised to 10/rev.

Piezoelectric ceramics, on the other hand, are heavy and brittle material. There-

fore, placing them in such an aggressive environment as a helicopter rotor blade

requires much thought to ensure actuator lifetimes. It is not clear that a piezoelectric

bender is the best way to actuate a trailing edge flap. Current research at MIT is

examining a number of actuator alternatives to achieve the same goal.

1.3 Thesis Goal and Overview

Due to the complex dynamics and aeroelasticity involved in helicopter rotor oper-

ations, it is necessary to computationally simulate the rotor dynamics in order to

investigate the feasibility of adding the active control system. Developing a simple,

linear time invariant model of a helicopter rotor would allow us to observe the trends

of the rotor behavior at various flying conditions. Fox [6] has developed a linear, time

invariant, state space rotor model using multi-blade coordinates to transform dynam-

ics from the rotating frame to the fixed frame. Garcia's work [7] was the extension

of the work done by Fox [6], and this thesis builds on Garcia's work. The goal of



this thesis is to develop a linear time invariant model which incorporates some blade

properties which are known to be important for the rotor dynamics but are excluded

in Garcia's model. Such properties include the blade elastic bending properties and

the blade spanwise center of gravity offset distribution.

Chapter 2 explains the derivation of the state space model of a rotor system with

assumptions such as time invariant rotor dynamics and linear aerodynamic forces.

Multi-blade coordinates are used to achieve successful transformation from rotating

frame dynamics to non-rotating frame dynamics.

Chapter 3 presents results of the linear, time invariant, state space model derived

in Chapter 2. The model is validated by comparing certain results with the results

obtained by Garcia's [7] state space model. Parametric studies using a one-sixth

model scale CH-47 rotor are done by varying properties such as servofiap spanwise

location and helicopter forward velocity. The thrust response due to collective root

pitch actuation and servoflap actuation are the primary interest, therefore, thrust

frequency response due to such actuations are presented and studied in the form of

Bode plots.

Chapter 4 presents the summary of the important conclusions, and some sugges-

tions for the possible further research are listed.
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Chapter 2

Model Derivation

In this chapter, a linear, time invariant, state space model of a helicopter rotor is

developed. A semi-articulated rotor model with elastic flapping and elastic torsion is

assumed. The inputs of the state space system are the root pitch angle and servoflap

deflection. The outputs are the hub loads, namely, vertical force, pitching moment,

and rolling moment. The model is derived by first finding the stiffness and mass

matrices of the rotor blade from the blade structural properties using a finite element

method. The natural frequencies of the blade flapping and torsion, as well as their

mode shapes are simultaneously found. Then, the forces and moments due to aero-

dynamic forces due to modal deflections are calculated. Modal forces and moments

are then transformed from the rotating frame to the fixed frame using multi-blade

coordinates (MBC). A dynamic inflow model developed by Pitt and Peters [17] is also

added to the dynamics. Finally, these structural dynamics, aerodynamics and inflow

dynamics are coupled together to form a state space model of a helicopter rotor which

includes root pitch and servoflap actuations. Before the derivation of the state space

model, the notation and coordinates of the rotor system is presented.

2.1 Rotor Coordinates

Polar coordinates are used to describe a rotor disk: r for radial position and 0I for

azimuth angle. These coordinates are illustrated in Figure 2-1. It is assumed that the
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Figure 2-1: Helicopter Rotor Coordinates

rotor rotates counterclockwise if viewed from the top, as is conventional for American

helicopters. The rotational velocity is denoted Q. Each blade flaps elastically about

a flapping hinge at r = e, and the blade's spanwise flapping displacement from the

horizontal plane is denoted w(r). Servoflaps are located between spanwise locations

rl and r2 of each blade, and servoflaps are deflected an angle of rl, defined positive

downward. Each blade is also allowed to twist elastically across the span with an

angle 0, defined nose up positive. In order to achieve root pitch actuation, the whole

blade is allowed to pitch rigidly with an angle 0r. For this model, the pitch axis

coincides with the neutral axis at the quarter chord. The center of gravity offset

is denoted xzg defined aft of quarter chord positive. The sectional coordinate are

illustrated in Figure 2-2. For convenience, the normalized radial location is f = r/R

and the normalized chordwise location is t = x/c.

2.2 Multi-Blade Coordinates

In this chapter, a linear, time invariant, state space model is derived. A linear, time

invariant system allows the use of frequency response as a method for rotor dynamics

simulation. Frequency response has not been thought to suite as a method of solution

to rotor blade dynamics simulation because rotor blade dynamic forces are periodic
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Figure 2-2: Blade Sectional Coordinate

and incorporating periodic effects into frequency response is very complicated. In

the previous work such as Shaw [19], NQ root pitch actuations were often evaluated

in a form of T matrix. T matrix shows the NQ cosine and sine output effects due

to NQ cosine and sine input with varying forward speed. The results of the T ma-

trix, however, often showed only a small influence of periodic effects in the output.

Therefore, by neglecting certain periodic terms, linear, time invariant, system of the

rotor blade dynamics could be derived, and the frequency response of both root pitch

and servoflap actuations can be obtained. Multi-blade coordinates (MBC) are used

to transform blade forcing properties from the rotating frame to the non-rotating

frame in order to achieve linear, time invariant, system. In Appendix B, the general

procedure of using MBC and an example are given. This information is taken from

Garcia [7, chapter 2]. A more detailed explanation is available in Johnson [11].

2.3 Finite Element Analysis

In this section, the finite element procedure used to model the blade's elastic motion

is described. The finite element model will produce equations of motion of the form

Mii + Ku = Q (2.1)

where M, and K are the mass and stiffness matrices, respectively, u is a vector of

elastic degrees of freedom, and Q is the forcing term from aerodynamics. In this study,



material damping is ignored, and hence there is no damping term in Equation 2.1.

All damping in the model will arise from aerodynamic considerations. The objective

of the finite element code developed in this section is to find the stiffness and mass

matrices of Equation 2.1, and also find the natural frequencies with the corresponding

mode shapes for a given rotor blade. The natural frequencies and the mode shapes

are obtained by solving the generalized eigenvalue problem

Kqk = W Mqk (2.2)

where wk is the kth natural frequency and qk is the corresponding mode shape.

The stiffness and mass matrices can be found by many different techniques. Garcia

[7] used a lumped mass model to simulate the blade properties. However, due to the

limited number of masses which can be incorporated in a lumped mass model, only

the approximated spanwise properties (mass, inertia etc) could be used. The finite

element method, on the other hand, can incorporate the blade properties across the

span with much higher precision than the lumped mass model since blade properties

are usually given in either tabular or graphical format, and are generally piecewise

linear. By breaking up a blade into elements appropriately, each element will have all

linear properties. Therefore, much more accurate equations of motion can be derived.

The advantage of the finite element method over any other method is that the

equations of motion for the system can be derived by first deriving the equations

of motion for a typical finite element and then assembling the individual elements'

equations of motion to find the over all system's equation of motion.

Figure 2-3 shows a typical rotor blade finite element of arbitrary width, hi. Let

Ne be the number of total number of blade elements. The motion of the system is

defined in terms of the displacement, wi(t), slope, w'(t), and torsional displacement,

Oi, of the element end points, where i varies from 1 to Ne + 1. The stiffness and mass

matrices for each element are found by determining the elastic potential energy, V,



Figure 2-3: Finite element example

and the kinetic energy, T*, of the element. The potential energy is

1 [h a2W 2 1 hi 2 - hi d 2
V=- EI al dx + - I T dx + - j GJ dx

2 OX2 ) 2o 1X 2Jox
(2.3)

and the kinetic energy is

1 M ( _ xcgo) 2  1 hi 2 .T*= dx - Ic2dx .
2 o 2 o

(2.4)

where El, T, and GJ in Equation 2.3 are the blade spanwise flapping stiffness, the

tension due to blade centripetal force, and the twisting torsional stiffness, respectively.

Ig is the blade's sectional moment mass of inertia about its center of gravity. The

deflections, w and 0, are interpolated between the element end points via

(2.5)

(2.6)

where

L(x)= Lo(x)
- 322 + 2X 3

- 2h. 2 + h, 3

322 - 2: 3

-hU 2 + hi 3

(2.7)

o(x, t) = L (x) qo (t)

w(x, t) = LS ()q(t)



and
Oi

q(t) (q(t) Wi (2.8)

Wi+ 1

Wi+ 1

where r = x/hi. The polynomials in L(x) are chosen to satisfy the torsional and

bending boundary conditions, which are

I

L, (0)

Lw2 (0)

Lw3 (0)

L4 (0)

Lo1(0) -

Lo 2(hi) =

L' (0)=

L[2 (O) =
L'. (0) =

W3\

L'4 (0)

1

0

0

1

0

0

Lo, (hi) = 0

L o2(hi) = 1

L,, (hi) = 0

Lw2 (h ) = 0

L3(hi) = 1

Lw4 (hi) = 0

L', (hi)

LI 2 (hi)

L', (hi)

W'4

(2.9)= 0

= 0

= 0

=1

By substituting

kinetic energies

Equations 2.5 and 2.6

become

into Equations 2.3 and 2.4, the potential and

1 hi GJ (-9LI ) T 0
V = - q] x dx qo2 V= 0 E (2) (2 L_ ) T

2 9x2 aX2 49X 09X

(2.10)
1 hi mx2 L9L T + IL 0 L T mxcgLoL T O

T* 1 T m LL +  m gLL dx (2.11)
2 10 fo mZ cgLwLT mLL T

The matrices within each integrals in Equations 2.10 and 2.11 are the stiffness matrix

and mass matrix, respectively:

k ax ) 
0 E I(2L )

mx~gLoL + IcgLoL

mxcgLwL

0
12L_)T "L - T dx

± 6 + T(9
mxcL°LT ] dx

W~I

hi

Ki =

M f

(2.12)

(2.13)

=



other
entries = 0 [ KNe]

Figure 2-4: Assembly process

The properties in Equations 2.12 and 2.13 such as GJ, EI, T, m, Ieg, and x, are linear

within the element which makes it possible to evaluate the integrals in closed form.

The element stiffness and mass matrices are calculated in subroutine FEsubexact .m,

attached in Appendix D.

Each 6 x 6 stiffness and mass matrices represent potential and kinetic energies

of each element, and by summing the energies of each element appropriately, the

potential and kinetic energies of the whole rotor blade can be found in the form of

stiffness and mass matrices. Let Ki and Mi be the stiffness and mass matrices of the

ith element, and K, and M be the stiffness and mass matrices of the whole rotor

blade. Then, summing of energies can be accomplished as shown in Figure 2-4. The

stiffness matrix of the whole blade, K,, is found by placing the 6 x 6 stiffness matrices

from each element diagonally to each other with left upper and/or right lower 3 x 3

part overlapping to the adjacent matrices. The overlapped parts between the two

matrices are the potential energies from the same blade location. Therefore, they are

simply added entry by entry. The mass matrix of the whole blade is found the same

way. Eventually, both K, and M become (3Ne + 3) x (3Ne + 3), large where Ne is

the number of elements used to model the rotor blade.

The boundary conditions for this rotor blade come from the fact that the flapping

deflection and the flapping moment at the flapping hinge are both zero. It is sufficient

to satisfy only the geometric boundary condition, wl = 0, to achieve an accurate

model. Therefore, the row and column corresponding to wl in Kw and Mw are

set to zero and deleted. Finally, to find all the natural frequencies, wk, and the

corresponding mode shapes, qk, the eigenvalue problem in Equation 2.2 is solved by

using the obtained Kw and Mw.



The eigenvalues represent the combined torsional and flapping natural frequencies

of the rotor blade. Each eigenvalue has a corresponding eigenvector, and the eigen-

vector which contains information of torsional, flapping deflection and flapping slope

modes represents the mode shape of the corresponding eigenvalue. Similar to Fourier

Series, a motion of a blade can be expressed as a linear combinations of the mode

shapes. The coefficient or the amplifying factor for each mode shape is the modal

amplitude which is used as the state variable in the state space model derived in this

thesis. In Garcia's approach [7], torsional modes and rigid flapping deflection mode

were treated separately whereas the present study combines all torsional, flapping

deflection and flapping slope modes as just plain modes. One of the advantages of

using combined modes is that the necessary number of modal amplitudes for the state

space model is much less. Therefore, fewer state variables are needed. Also, modes

with coupled torsion and flapping are easily incorporated into the state space model.

One of our objectives for this study is to analyze the effect of rotor blade's root

pitch actuation, i. e., swashplate control. In order to do this, there is a need to include

a torsional mode which represents pure rigid pitch motion, because the mode shapes

obtained from the finite element code have boundary conditions which exclude this

rigid pitch mode. Let 40 consist of a vector that represents the rigid pitch mode

shape, qgo, and let a0o be the modal amplitude of the rigid pitch mode.

The state vector, u, in Equation 2.1, which consists of the modal amplitudes of

all of the eigenvectors, can be simplified and reduced to have a desired number of

degrees of freedom by retaining a certain number of modes with lowest frequencies.

Let Nm be the desired number of degrees of freedom to be contained in the state

space model, then, (L consists of the first Nm columns of eigenvectors, qi's, and aL

consists of the first Nm modal amplitudes. The simplification can be accomplished

by expressing u as

u = Oa (2.14)

where

=[ o L ]=[qo q, q2 qN ] (2.15)



and

a [ao aL- [a0o a1 a 2 .' aNm ]. (2.16)

Substituting Equation 2.14 into Equation 2.1 and multiplying by IT on both sides,

the equations of motion can be rewritten as

(WTMWn i + T K,(a = DTQ. (2.17)

Substituting Equation 2.15 and 2.16 into Equation 2.17, the equations of motion can

be rewritten as

qo Mqo q0OM.qL i d+f 0 Kwqo qo K.qL i a0  (2.18)
qLMqo qjM~qL L qj Kwqo q KqL aL q

The matrices above may be simplified as

MOO MOL do Koo KOL ao Qo
+ = (2.19)

MLO MLL aL KLO KLL aL QL

where subscripts with 0 represents properties of the rigid pitch motion and subscripts

with L represents properties of other modes. The terms Qo and QL represent the

aerodynamic forcing terms applied on the rigid pitch mode and the other modes,

respectively, and they are derived in the next section. Notice that the original mass

and stiffness matrices from Equation 2.1 were (3Ne + 2) x (3Ne + 2), but the new

mass and stiffness matrices in Equation 2.19 are shrunk to (Nm + 1) x (Nm + 1).

The second row of Equation 2.19 can be rewritten as

MLLGL + KLLaL = QL - ML0o0 - KLao. (2.20)

The term Koo in Equation 2.19 is the stiffness associated with the blade's rigid pitch

motion, and is therefore zero. In fact, Koo is not quite zero, due to propeller moment

terms. However, these effects are small, and will be ignored. Since K00oo is zero

and the stiffness matrix is positive definite, KLO and KOL must be zero. In the



finite element code, however, the pitch link stiffness is incorporated into the blade

properties, modeled as one end of the pitch link attached to the blade and the other

attached to the swashplate. The finite element code allows the movement of the

blade's rigid pitch actuation but holds the swashplate rigid. This motion results

in stretching and compressing the pitch link as the root pitch actuation is done.

Therefore, the stiffness associated with the blade's rigid pitch motion without moving

the swashplate is not zero. The actual root pitch actuation is achieved by actuating

both the blade and the swashplate, therefore, the stiffness of the pitch link does not

affect the stiffness associated with the rigid pitch motion. This is why Koo as well as

KLO and KOL must all be set to zero.

After setting KLO equal to zero, the modal amplitudes and their time-derivatives

in Equation 2.20 are transformed using multi-blade coordinates, and the equations of

motion become

AiaL + AAZaL + AaaL = QL - la iio - 0% tO - or, ao. (2.21)

The various A and F matrices are defined in Appendix A. In order to complete the

derivation, the aerodynamic forcing term, QL, needs to be evaluated.

2.4 Aerodynamic Model

In this section, aerodynamic forcing term, QL, in Equation 2.21 is derived. Linear

aerodynamic forces are assumed by keeping sectional lift curve slope, cl,, sectional

servoflap lift coefficient, cl,, and other variables constant spanwise and azimuthally.

Torsional aerodynamic damping is also included assuming quasi-steady aerodynamics.

Before proceeding with the aerodynamic derivations, nondimensional fixed frame and

rotating frame velocity components are explained.

The rotor disk may have an angle of attack, ad, relative to the helicopter velocity,

V. The air velocity relative to the rotor disk can be decomposed into two components,

one parallel and one normal to the disk plane. After being nondimensionalized by



the blade tip velocity, QR, the parallel velocity component relative to the rotor disk

is the advance ratio, P, defined as

V cos ad (2.22)
QR

The normal component of the air velocity is the inflow, A, which is composed of two

parts,

A = A+ Ai (2.23)

where Af is the inflow due to the free stream velocity, V, defined as

V sin ad
A -=V d (2.24)

QR

and Ai is the induced inflow of the rotor.

The airflow relative to the blade due to rotor motions can be decomposed into

three terms, namely the tangential velocity, UT, defined positive toward trailing edge,

radial velocity, uR, defined positive toward blade tip, and normal velocity, up, defined

positive up through the disk plane. Figure 2-5 illustrates these velocities, nondimen-

sionalized by QR. In forward flight, these velocities are

UT = r + y sin V (2.25)

UR = p cos 4 (2.26)

up = A +t w' cos V + b (2.27)

which are the function of azimuth angle, 4, and radial position, r.

The aerodynamic components that make up the forcing term, QL, in Equation 2.20

are the modal forces due to the airfoil sectional lift and moment. The modal forces are

expressed as the sum of the product of a sectional force and the corresponding mode

shape over the whole blade. The sectional lift force, with small angle approximation,



Figure 2-5: Nondimensional velocities

= -pcuT (QR)2 cl
2
1

= pcu 2 (QR)2 (ac + n)
2

(2.28)

(2.29)

where the sectional lift coefficient, c1, is approximated as a linear combination of angle

of attack, a, and servoflap deflection angle, r. The sectional lift curve slope, a and



the sectional servoflap lift coefficient, n, are

a = ci (2.30)

n = cl1 . (2.31)

The sectional moment force is

m = 1pc ~4 (QR) 2 (pr) (2.32)

where the moment is also assumed to be linear to servoflap deflection, and the sec-

tional servoflap moment coefficient, p, is

p = cmq. (2.33)

The airfoil coefficients, a, n, and p are obtained from the 2-dimensional panel code,

XFOIL [5], which includes viscous and compressibility effects.

Due to the three-dimensional flow effects, there must be a finite distance near the

blade tip to drop blade loading to zero. This so-called tip-loss effect is approximated

by assuming the blade loading farther outboard of radial station F = B to be zero.

Typical values for B range from 0.96 to 0.98. Therefore, spanwise aerodynamic

integrations are carried out from the root cutout, Yf, to B.

The modal force due to lift, L, is obtained by integrating the sectional lift, f, over

the corresponding mode shapes. Normalizing L by Ib2 gives

-L -j uoa (r) dr + - u2nr (r) dr (2.34)

where the subscript, m, indicates the mth mode shape. The mth flapping and tor-

sional mode shapes are expressed as /j (r) and 00 (r), respectively. The angle of

attack, a, can be expressed as

S(r) = r + 0 - (2.35)
UT



= Or + 0- (A + pw' cos + t) . (2.36)
UT

Therefore, the modal force can be decomposed into the sum of several terms:

L = Lo, + Lo + LA + Lw, + L, + L7, (2.37)

where

, 2U2 OW (2.38)
Lorm -2 J UT () ' (f) df ao (2.38)

Lomn = - J uO (r) ¢m (r) di aLn (2.39)

LA =- UTWm (f) df A (2.40)

LW- = - UTr COS ()O (f) ) d aL (2.41)

2 B

Lm= UT¢ ( ) d f hL, (2.42)

2 Jri

Notice that blade deflection, w, slope, w', and torsional angle, 0 are substituted with

the corresponding products of mode shapes and modal amplitudes. Inserting the

linear inflow approximation of Equation 2.55, the tangential velocity of Equation 2.25,

and the rotor integrals of Appendix A, the modal force components can be rewritten

as

Lor = [S2 + 2p sin oS1 + p2 sin 2 So ] ao (2.44)

Lomn = [Amn + 2p sin OAm + /2 sin2 AO] aL, (2.45)

LAm = - [D' + / sin VD°] \o -

[D2 + tp sin D] (A, cos V + A, sin ) (2.46)

[ 12
= [ cos 2 sin 2 Bmn, aL (2.47)

Lm n = [Cn p sin 'CoC am L (2.48)

Lo = [Em + 2p sin VEm + #2 sin 2 V)Eo] m. (2.49)77M M I/u



The modal force due to moment, M, is obtained by integrating the sectional

moment, m, over the corresponding mode shapes. Normalizing M by Ib2 gives

Mm _ Jp2cu m (f) dr r, - 6UTf (f) m (F) df ALm
2 ft 16

rB E2 1 02

- 7 UT (f) Om (f) df ao (2.50)

where the first term, which will be denoted M 77m, is the moment modal force on mth

modal shape due to servoflap deflection, and the last two terms, M 0  and M0 , are

the elastic and the root pitch torsional aerodynamic damping terms if quasi-steady

aerodynamics are assumed [2]. The term qOr (f) is the mode shape for rigid pitch

motion. Substituting the tangential velocity Equation 2.25, and the rotor integrals of

Appendix A, the components of the modal force due to moment can be rewritten as

M [m = [L2 + 2p in L sin 2 in2Lo] (2.51)

M6m = [Mm + i sin VM,] aL, (2.52)

Mrm = [Nm + p sin No ] ao0 . (2.53)

Combining modal forces due to lift and moment and transforming them to MBC,

the forcing term, QL, in Equation 2.21 becomes

QL = (La + Ma) aL + (La + M) iL +

(LO, + Mo,) ao + M6 ao + (L, + M,) 7r + LxA (2.54)

where the L and M terms are given in Appendix A.

2.5 Inflow Dynamics

Unlike the fixed wing case, helicopter rotor in forward flight creates very complicated

inflow dynamics. The shed wake and trailing vorticities produced by the rotating

airfoil creates a skewed helical wake which influences the inflow at the rotor disk, so



that the induced inflow is a complicated function of radius and azimuth. However, a

simple linear approximation developed by Pitt and Peters [17] can provide adequate

results. The linear inflow approximation

A = A0 + Acf cos + Asf sin (2.55)

is used for the purpose of this research which is based on the actuator disk the-

ory. Simple dynamics relate the A perturbations to the aerodynamic loads, namely

thrust coefficient, CT, pitch moment coefficient, CM, and roll moment coefficient, CL.

Defining the vectors

CT Ao
Yaero- CM , A= Ac , (2.56)

aero

the inflow dynamics presented by Pitt and Peters [17] and used in this research are

A = -M 1'C A M-Kyaero (2.57)

which can easily be incorporated into the state space model. The inflow dynamics

matrices, MA4 and CA, are given in Appendix C.

2.6 Hub Reactions

In the rotating frame, the vertical shear force due to the aerodynamic force minus the

inertial force is the applied loading on each blade. These forces can be transformed

to non-rotating frame by the MBC transformation, and our nondimensional hub re-

actions of interests which are the thrust, pitch moment, and roll moment coefficients,

or CT, CM, and CL, can be found.

The output of interest has two terms,

CT CT CT

CM = CM + CM (2.58)

CL CL aero CL inertial



where the aerodynamic term is the shear force and it is needed to force the inflow

dynamics. The vertical shear force at the blade root, S, is the integral of the vertical

force acting along the blade. This vertical force is composed of sectional lifting force

acting upward and the sectional inertial force acting downward. The resultant forces

are normalized by pA (QR) 2, and they are

=a B1 -a f2 1 maR R

S = d + - dr - - mi (r) dr
N 2 T N 11 2 T N-b

oaR R aaR R
+ , m dr + -a C mxcgOr dr (2.59)+ Nlb Ire NTy b re

where angle of attack, c, is defined in Equation 2.36. The vertical shear force may

be rewritten as

S= So, + S +SA + S,, + S+S,+ S, + S+S+S. (2.60)

The first six terms are the aerodynamic terms and the last three are the inertial terms.

Using terms in Appendix A, each normalized vertical shear force may be rewritten

as

o, = [F2 + 2/t sin F1 + f 2 sin 2 Fo] ao (2.61)
2N= 2

SO =2 [G + 2p sin V)GI + 2 n2 V'Go] a,, (2.62)

A =  2N [F1 + p sin V)Fo] Ao

1
2 [F2 + p sin VF1] (Ac cos + A, sin ) (2.63)2N

1 1 2  ]
S 2N = [ cos pH 2+ f sin 20Hm aLm (2.64)

SM 2 [JA + psinOJm (2.65)

2NS [K2 + 2p sin /)K' + [, 2 sin 2  ,KO] 7 (2.66)

1
S,- = Mo io (2.67)

1 (2.68)
-ianm - Nm*.. aLm (2.68)

am N aLma Lm



Summing over N blades, the rotor thrust coefficient is given by

N

T= (So+ o+ SA+ 9. w S9+ ,+ , + ).
q=

which is equivalent to doing the MBC collective summation operator.

mensional moment due to the qth blade is

eS
CMq = pAR (QR)2

CMq = E (O, + So+ A + ,S + S + g, + O, + S,).

(2.69)

The nondi-

(2.70)

(2.71)

By summing the contributions of all the blades, pitch and roll moment coefficients

are

CM = E
q=1

N

CL = E
q=1

(-CMq cos q)

(CMq sin #)

(2.72)

(2.73)

which are similar in the form to the MBC cyclic summation operators.

The partial hub reactions due to the aerodynamic effects only and the total hub

reactions are

CT

CM

CL aero

CT

CM

CL

= FaaL + F&aL + FAA + Forao + Fr (2.74)

= (Fr + ~P) aL + (Fr + &) aL + adk

+ (For + oe,) ao + ~,Oro + 4,' ao + FA + Frj (2.75)

where the F and 4 matrices are defined in Appendix A.



2.7 State Space Model

Using the dynamic equations of motions defined in Equations 2.21 and 2.54 with

the hub reaction Equations 2.74 and 2.75, a linear, time invariant, state space rep-

resentation of a rotor with blade-mounted servoflaps can be assembled. The model

is

iX = Ax + Bu + Bxyaero, (2.76)

Yaero = CaeroX + DaeroU, (2.77)

y = Cx + Du (2.78)

where the state and control vectors, x and u, are defined as

aL

x= A , u=-. (2.79)

ao

a0

The output vectors, Yaero and y, are defined as

CT CT

Yaero C , Y= C (2.80)

CL Laeroaero

The state space matrices are

0 I 0 0 0

a 21  a 22  a 23  a 24  a 2 5

A = 0 0 -MjI A-1 0 0 (2.81)

0 0 0 0 I

0 0 0 0 0



where

a 2 1 - 1 A (La + Ma - Aa)

a22 1= -  (La + Ma - Aa)

a 2 3 = A 1 L
A

a 2 4 -= A1 (Lo, + Mo - or,)

a 25 -= 1 (Mo, - o'r) ,

0 0

B= 0 0 (2.82)

0 0

I 0

0

0

BA Mj (2.83)

0

0

Caero [Fa Fa FA F, 0] (2.84)

Daero =[0 F ] (2.85)

C- [c C2 C3 C4 C5  (2.86)

where

C1 = Fa + a + aAd 1 (La + Ma - "a)

c2 = ra + 4a+ 4 A - 1 (La + Ma - Aa)

C3  FA + 4  1aA-ILA

C4 F + -- 0r - 1 (L0o, + Mo, - fOr)



Or + ~1A 1 -(M)

Ai (L, + M) . (2.87)

Combining Equations 2.76 and 2.77, the dynamic inflow loop can be closed yielding

the state space model

x = (A + BACaero)x + (B + BADaero) u,

y = Cx + Du.

(2.88)

(2.89)

D = [ 4i F, ]+ 4 [ -,d- LTg
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Chapter 3

Results and Analysis

In this chapter, the notations and definitions of the input and output for the state

space model developed in the previous chapter are discussed. Then, the accuracy

of the state space model is verified by comparing results with Garcia's results [7].

After validating the model, the behavior of a model scale CH-47 rotor is evaluated by

varying parameters such as forward flight speed and servoflap location. The objectives

of this parameter studies are to observe the trend of the rotor response to forward

flight speed, and estimate the optimal servoflap location

3.1 Input and Output Definitions

In the previous chapter, a linear, time invariant, state space model was developed.

The model is capable of simulating both root pitch and servoflap rotor actuations.

This model has six inputs, namely collective and two cyclics each for root pitch and

servoflap actuations. There are three outputs, namely coefficient of thrust, pitch-

ing moment, and rolling moment. Hence, the state space model yields 18 individual

transfer functions. Of these, we are mainly interested two, the effect of collective root

pitch and servoflap actuations on thrust coefficient. The transfer function from col-

lective root pitch to thrust, (CT/cx)/Oro, is denoted by Goro (). Similarly the transfer

function from servoflap deflection to thrust is (CTr/)/ro, which is denoted by G,,0 ().

, is the Laplace operator normalized by Q. In order to achieve Go,° (9) from the state



space model, the transfer function for collective root pitch acceleration, (CT/a)/Oro,

must be integrated twice, so that

=2 CT/U CT/U
Go, ()= s (3.1)

Oro Oro

The nominal value of CT/a is approximately equivalent to 1 g of thrust, so that

(ACT/a)/(CT/a) is a measure of control authority in g's. For this study, CT/a of

0.1 is assumed, and the control loads required for 0.1 g of higher harmonic control

authority is evaluated. The magnitude plots of all Go,0 (o) and G,7o(jo) presented

in this chapter are measured in units of deg -1 to determine the amount of authority

per deg of root pitch or servo-flap deflection.

In a higher harmonic control system for vibration reduction, the control effort is

concentrated around NQ, so for the H-34 rotor the frequencies near 4Q are of interest.

Later, for the model CH-47 rotor, the frequencies of interest are near 3Q.

Table 3.1 lists all the baseline parameters for both H-34 rotor blade and model

size CH-47 rotor blade used for this analysis. In this study the size of the servoflap is

set to 20 percent chord length wide and 20 percent long spanwise. The detailed blade

properties are given in the MATLAB input code listed in Appendix D of this thesis.

3.2 Model Verification

As previously stated, the state space model derived in the previous chapter is verified

by comparing with Garcia's results [7]. Garcia used Boeing Helicopters' rotor analysis

program, C60, for validation of his state space model. In this thesis, some verification

of the model was done by comparing it to the model of Garcia. Garcia's model

includes torsional bending modes and rigid flapping mode, but does not include any

elastic flapping modes. By scaling the flapping stiffness, EI, six orders of magnitude

higher from its original value in the present model, a blade with rigid flapping and

elastic torsion can be simulated and compared to Garcia's model. In addition, later in

this chapter, some results with elastic flapping were compared to simulations run by



Table 3.1: Baseline Parameters for H-34 and model CH-47 rotors

Property Variable H-34 Model CH-47

number of blades N 4 3

radius of rotor R 28 ft 5.052 ft

normalized chord length c 0.0488 0.0889

normalized flapping hinge location 0.0357 0.0420

rotor solidity a 0.0621 0.0849

normalized root cutout location rT 0.2100 0.2000

normalized inner servoflap location i1 0.6000 0.6000

normalized outer servoflap location r2 0.8000 0.8000

sectional lift curve slope a 6.30 7.64

sectional servoflap lift coefficient n 0.500 0.461

sectional servoflap moment coefficient p -0.082 -0.084

Locke number 7 8.11 10.10

normalized first torsional frequency c1 7.65 4.50

Boeing Helicopters, although no systematic verification was done against the Boeing

models.

Figure 3-1 shows the frequency response of the blade tip twisting angle due to root

pitch actuation and servoflap actuation. The peak around 7.5Q is the first torsional

natural frequency, and the next two peaks at higher frequency range are the second

and third torsional natural frequencies. Other peaks obtained by the present model

but not by Garcia's model are either the higher torsional natural frequencies or the

artificially stiffened elastic flapping natural frequencies. The present model (as well as

Garcia's model) can incorporate as many torsional modes as needed. For convenience,

the present model has nine torsional modes and Garcia's model has three torsional

modes. By adding more modes, the accuracy of the frequency response around the
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Figure 3-1: Blade tip twist angle due to (a) root pitch actuation and (b)
servoflap actuation.

first few modes increases. Therefore, only the results at low frequency range (< 40Q)

in Figure 3-1 should be evaluated, and higher frequency range (> 40Q) should be

ignored. The level of agreement in the frequency responses of the present model

and Garcia's model is quite high in both the root pitch actuation and the servoflap

actuation cases.

Figure 3-2 shows the frequency response of Go,o (jC) in edgewise flight at various

forward flight velocities using the present model. An advance ratio of 0 corresponds to

hover, 0.2 is about 80 nautical knots, and 0.4 is about 160 nautical knots. Notice the

magnitude of the root pitch actuation at DC increases slightly as the advance ratio is

increased. This is due to the fact that higher advance ratio provides higher dynamic

pressure on the advancing side of the rotor, and thus more lift is achieved. It should

also be noted that rotor operations at higher advance ratio exhibit greater blade stall

effects on the blade retreating side of the rotor. The present model does not include
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Figure 3-2: GOro (j&) by the present model with H-34 rotor blade at various
forward speeds.

the blade stall effect, so an increase in advance ratio increases the dynamic effects

only. Again, the results of frequencies above 40Q are the high frequency torsional

modes and/or artificially stiffened elastic flapping modes, and should be ignored.

The frequency response for the same case using Garcia's model G 0o (j*D) is shown

in Figure 3-3. The locations of natural frequencies, as well as the phase curve, agree

with the present model very well. In the high advance ratio case, however, a zero

appears in the transfer function around 2Q, as seen in Figure 3-3, but the zero does

not appear in Figure 3-2. In Figure 3-2, the zero may have smoothed out, due to the

fact that the flapping stiffness in the present model is not perfectly rigid, as it is in

Garcia's case. However, the reason why a zero is introduced only in the high advance

ratio cases is not clear. Later in this section, when we compare the H-34 servoflap

actuation using the present model to Garcia's model (Figure 3-4 and 3-5), the effect

of zero in the high advance ratio cases is evident in Garcia's model, and even though
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Figure 3-3: Gero (j) by Garcia's model with H-34 rotor blade at various
forward speeds.

less in magnitude, the same effect is observed in the present model. Therefore, the

effect of zero is present in both the present model and Garcia's model; however, the

strength of the zero effect is lower in the present model.

Figure 3-4 shows the frequency response G,o0 (jC) in edgewise flight at various

forward flight velocities. It is desired to actuate the servoflap in aileron reversal in

order to provide sizable thrust control. Aileron reversal is the condition where positive

servoflap deflection twists the blade enough to create a negative rotor thrust change.

This is why the thrust output and servoflap input have 180 deg of phase difference, as

observed in Figure 3-4, except at DC in the hover case (p = 0). The dynamic pressure

at the servoflap location in hover case is not enough to provide sufficient moment for

servoflap deflection to overcome the stiffness of the blade. Using softer blades would

achieve aileron reversal easier. However, other problems arise such as instability

caused by blade flutter. Aileron reversal of a blade is dependent on the torsional
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Figure 3-4: G,o (jcj) by the state space model with H-34 rotor blade at various
forward speeds.

stiffness, location of servoflap, forward flight speed, and many other parameters. The

blade response with different servoflap locations is studied later using model scale

CH-47 rotor blade.

Figure 3-5 shows Garcia's frequency responses of Gqo(jD) in edgewise flight at

various forward flight velocities. The hover case also demonstrates the failure of

achieving aileron reversal at DC due to torsionally stiff blade and not enough dynamic

pressure. The input file of H-34 rotor obtained from Garcia [7] had to be converted

from the lumped mass model used by Garcia to the finite element model used in this

study, and this conversion creates some discrepancies between the present model and

Garcia's model. The DC magnitudes of G,o show such discrepancies in Figure 3-4

and Figure 3-5.

The effect of the zero in the transfer function, G,70 (jCD), around 2Q is much more

evident in Garcia's case in Figure 3-5 than in the present model in Figure 3-4. Similar
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Figure 3-5: Gno(jo) by Garcia's model with H-34 rotor blade at various for-
ward speeds.

to the root pitch actuation case, the finite flapping stiffness in the present model may

have smoothed out some of the zero effects, where as Garcia's case which incorporates

purely rigid flapping stiffness shows much more of the zero effects.

The general behavior of the H-34 rotor blade determined by both the present

model and Garcia's model agree especially in hover case where there is no blade stall

effect. For cases at higher advance ratios, the present model and Garcia's model starts

to show some differences. These differences may have been caused by the different

flapping stiffnesses of the H-34 rotor blade used in the two models. Even though

the accuracy of the present model's results in the high advance ratio cases is not as

high as in the hover case or in the low advance ratio cases, the results in the high

advance ratio cases help to determine the trends of the rotor behavior across the

whole frequency envelope.

Other minor differences between the present model and Garcia's model in hover



or in low advance ratio flights, therefore, may have come from the fact that the same

problem was solved in two very different methods, and those differences are small

enough to ignore. Generally, the frequency response of both root pitch and servoflap

actuations in the present model are reliable in hover or at low advance ratio flights.

In the next section, the model CH-47 blade is used to study the feasibility of servoflap

actuation.

3.3 Parametric Studies

In this section, the model CH-47 rotor with rigid and elastic flapping and elastic

torsion is used to simulate the root pitch and the servoflap actuations using the

frequency response analysis. Then, parameters such as advance ratio and location of

servoflap are varied to observe the blade behavior at different structural and flight

situations.

3.3.1 Forward Flight Velocity Study

In this section, the effect of advance ratio on Gro (JD) and G,7 (jo) is investigated.

Figure 3-6 and Figure 3-7 display Go,o(j) and G,7o(jO), respectively, with three

different advance ratios.

In Figure 3-6, the second, third and fourth flapping natural frequencies can be

observed around 2.4Q, 4.7Q, and 7.9Q. The first torsional natural frequency at 4.5Q

is overlapped by the second flapping frequency, which makes it difficult to distinguish

in Figure 3-6. The first heavily damped peak at 0.9Q is the damped rigid flapping

mode.

In higher harmonic control for vibration reduction using the CH-47 rotor, the

control effort is concentrated around 3Q. In Figure 3-6, however, the root pitch

control around 3Q is ineffective, due to a zero in the transfer function around the

frequency of interest. The zero around 3Q may be due to the interactions between

the second and third flapping modes excited by the root pitch actuation. In order

to find the modal force due to the root pitch actuation, the dot product between the
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Figure 3-6: GeOo (w) of model CH-47 rotor at various forward speeds.

spanwise lift force due to the root pitch actuation ( uqBT (f)) and the flapping mode

shape (= ~W(f)) is taken, as seen in Equation 2.38. The lift force due to the root pitch

actuation increases quadratically with radius, thus, the outboard of the rotor blade

provides most of the lift. The second and third flapping mode shapes are plotted in

Figure 3-8, and the signs of the outboard flapping deflection of the two mode shapes

are different. The second flapping mode shape has a positive deflection at outboard,

whereas the third flapping mode shape has a negative deflection at outboard. The

modal forces due to the second flapping mode and the third flapping mode, therefore,

have different signs. The change of sign between the two modal forces indicates that

there is a point where root pitch actuation becomes ineffective between the second

and third flapping frequencies, and such a point is seen at 3Q in Figure 3-6. From

Figure 3-6, the necessary root pitch actuation angle for achieving 0.1 g thrust increase

at 32 is about 5 deg.
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Figure 3-7 shows the effect of advance ratio on servoflap actuation authority for

the model CH-47 rotor. For the low frequency range, the effect of advance ratio is

evident. An increase in advance ratio causes the dynamic pressure to increase, which

produces more lift and moment, and therefore more thrust authority is achieved. For

frequencies higher than the second flapping natural frequency at 2.4Q, the effect of

varying advance ratio diminishes. At 32, there seems to be no effect at all of varying

advance ratio on servoflap actuation. The necessary servoflap deflection for achieving

0.1 g thrust increase for the hover case is around 3 deg.

Johnson [11, p.568] discusses the relative accuracy of linear time invariant and

periodic models. The major difference between the two types of models is the elimi-

nation of periodic terms during the process of multi-blade coordinates, which is done

only for the linear time invariant model (See Appendix B). All the eliminated peri-
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of model CH-47 rotor

odic terms happen to be multiples of advance ratio. Therefore, there is a significant

amount of forward flight information loss when a linear time invariant model is used.

This also means that flight cases with small advance ratios, while having some error,

will be more accurate than high advance ratio cases.

Another possible reason for the missing advance ratio influence on the servoflap

actuation is that blade stall effect is not included in the state space model. The blades

experience stall when rotating through the retreating side, especially during the high

advance ratio flights. Modeling of the blade stall is very complicated, so it was not

included in the model. However, it is known that the effect of blade stall can have a

large effect on rotor dynamics.

In general, the present model shows valid root pitch and servoflap frequency re-

sponses in hover case. As the advance ratio increases, the accuracy of the frequency

responses decreases. During the process of forming the present state space model,

some terms with advance ratio were neglected during multi-blade coordinates. Also,

blade stall effects are not included in the present model. These simplifications may

have caused the loss of accuracy in forward flight cases. However, the general rotor

behavior can be observed through out a wide range of frequency envelope, and the

reliability of the hover and low advance ratio cases are acceptable.

I I I I

Second flapping mode shape
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Figure 3-9: G,O (jC) of model CH-47 rotor blade at hover with various ser-
voflap locations.

3.3.2 Servoflap Location Study

In this section, the effect of servoflap placement on G 10 (jC) is investigated. Keep-

ing the servoflap span constant at 0.2R, the radial position is varied from f = 0.4-0.6

to F = 0.8-1.0 in hover and forward flight cases. Generally, it is desirable to place

the servoflap inboard on the blade, because the actuator is subjected to a centripetal

force which is proportional to the radial distance from the root. There is no guarantee

that actuators can stand hundreds of g's of centripetal force. Also, the root and hub

must be built to hold the stress each blades with actuators exert while rotating.

Figure 3-9 shows the frequency response of G 70 (jC) at hover with three different

servoflap locations. Aerodynamically, the farther out the servoflap is located, the

more effective servoflap actuation becomes due to the increase in dynamic pressure.

Also, the effective torsional stiffness of the blade decreases as servoflap is moved



outward, since

sectional torsional stiffness
effective torsional stiffness s (3.2)distance between root and servoflap (3.2)

and the distance between the root and servoflap is longer. This is why placing the

servoflap at f = 0.6-0.8 is more effective than placing it at f = 0.4-0.6, as seen in

Figure 3-9.

By placing the servoflap at r = 0.8-1.0, it would be expected to have even higher

effectiveness in servoflap actuation. However, there is a zero in the transfer function

around 3Q, which actually makes the servoflap actuation less effective. This phe-

nomena is caused by the interaction between the second flapping mode and the first

torsional mode [15]. Placing the centroid of the servoflap on the node location of the

second flapping mode minimizes the excitation of that mode. The node location of

the second flapping mode is around 0.75R as seen in Figure 3-8. Moving the centroid

of the servoflap outward from the node location of the second flapping mode causes

the excitation of the second flapping and first torsional modes. The interaction of

the two modes, then, cancels each other and reduces the effectiveness of 3Q servoflap

actuation.

Similar results are observed in Figure 3-10, in which the effects of servoflap location

on G,,o(jcD) with an advance ratio of 0.2 are shown. The effectiveness of the servoflap

actuation increases as its location moves from f = 0.4-0.6 to f = 0.6-0.8. When the

servoflap is moved to f = 0.8-1.0, centroid of the servoflap moves outboard of the

node location of the second flapping mode shape. Therefore, a zero is introduced to

the transfer function which lowers the servoflap actuation effectiveness.

It is desired to place the servoflap inboard to reduce the high centripetal forces

exerted on the actuators. However, the actuators must also be effective in terms of

thrust control, and placing them too close to the root would not allow the servoflaps to

operate in aileron reversal. It is also desired to minimize the interaction between the

second flapping and the first torsional modes, which introduces a zero in the transfer

function around 3Q. From these considerations, placing the servoflap between the
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Figure 3-10: G,7 o0 (j) of model CH-47 rotor blade at p = 0.2 with various
servoflap locations.

range of f = 0.4 to 0.8 would allow effective servoflap actuations. Minimum servoflap

deflection is required if the servoflap is located at f = 0.6-0.8. If not possible due to

the mechanical difficulties, then, the servoflap must be moved inboard where larger

servoflap deflections are required.

3.3.3 Blade Tip Motion Comparison

In this section, the necessary blade tip pitch angle and its coefficient of lift for achiev-

ing 0.1 g thrust increase with forward flight velocities of 80 knots (p = 0.18) and

160 knots (u = 0.36) are compared between the present model results and Boeing's

results. Boeing Helicopters has run their rotor analysis program using model CH-47

blade with 35 percent chord wide and 10 percent radially long servoflap located at

85 to 95 percent span. Our model, therefore, uses a servoflap sized and located the
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Figure 3-11: Rotor blade tip pitch angle verses azimuthal angle at (a) 80
knots and (b) 160 knots. Solid line is the state space model
result and dashed line is Boeing's result.

same as the Boeing's configuration. The data from Boeing Helicopters includes the

blade's spanwise pitch angle verses azimuthal angle and other data with and without

the 3Q servoflap actuation. Only the blade tip pitch angle and coefficient of lift verses

azimuthal angle are investigated here.

Figure 3-11 shows the change of rotor blade tip pitch angle during one cycle

of rotation at two different forward flight speeds. The servoflap is actuated at 3Q

and deflected enough to achieve about 0.1 g thrust increase. The magnitude of the

servoflap deflection is on the order of 3 to 5 deg. The 80 knot case is plotted in

Figure 3-11(a) and 160 knot case is plotted in Figure 3-11(b). The present model

result and Boeing's result are plotted as solid line and dashed line, respectively. In

both cases, the blade tip pitch angle on the advancing side (0 < 4 < 180) shows larger

magnitudes of angle motions compared to the blade tip pitch angle on the retreating
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knots(p = 0.18) and (b) 160 knots(p = 0.36). Solid line is the
state space model result and dashed line is Boeing's result.

side (180 < pi < 360). This is expected, since the relative velocity of the blade to

airspeed is higher on the advancing side than on the retreating side. At 80 knots, the

agreement between the present model and Boeing's results is good. At 160 knots,

the agreement is not as good. The effect of blade stall and nonlinear aerodynamics

incorporated in Boeing's model predicts different blade tip motions in high advance

ratio flight, especially on the retreating side. As stated before, the present model

does not include such nonlinearities.

Figure 3-12 shows the present model results of coefficient of lift at blade tip verses

azimuthal angle in solid line and Boeing's results in dashed line at 80 knots and 160

knots. The step taken in the present model from Figure 3-11 to achieve Figure 3-12

is just multiplying the lift curve slope, c,, by the blade tip angle curve. However,

Boeing's results in both Figure 3-12 (a) and (b) show a slight phase shift and the



presence of blade stall, which are not seen in Figure 3-11 (a) and (b). This is due

to the more complicated aerodynamic model used by Boeing. Predicting the rotor

behavior becomes more difficult as the advance ratio is increased, since the present

model does not include the blade stall effects. Also the linear, time invariant, system

ignores some terms with advance ratio during the multi-blade coordinates. Again,

the correspondence between the present model and Boeing's results at 80 knots is

good but the agreement at 160 knots is not as good.

Even though the detailed pitch angle and coefficient of lift at blade tip were not

simulated well by the present model, the general trends and the order of magnitudes

were matched with Boeing Helicopter's results, especially in the low advance ratio

cases. This indicates that the reliability of the present model at low advance ratio

flights is acceptable as a device to predict the general requirements for doing servoflap

actuations. Even though the information about the pitch angle and the coefficient

of lift at blade tip in hover were not available from Boeing Helicopters, it can be

predicted from that those data by the present model and the Boeing's model would

agree as well, or agree even better than they did in the 80 knot case.



Chapter 4

Conclusions

In this thesis, a linear time invariant state space model of a helicopter rotor with

root pitch or servoflap actuation has been developed. The model includes elastic

blade torsion and elastic blade bending. The model also includes the dynamic inflow

model developed by Pitt and Peters [17]. The use of multi-blade coordinates and

neglecting some periodic terms of the rotor dynamics result in an approximate linear

time invariant model for the helicopter dynamics.

Parametric studies of varying forward flight speed and servoflap location have

been performed using the model CH-47 rotor blade. The summary of the parametric

studies is given in the following section.

4.1 Summary of Parametric Studies

Root pitch actuation and servoflap actuation were compared at several different ad-

vance ratios using the one sixth model scale CH-47 rotor. The root pitch actuation

seemed to be less sensitive to the advance ratio compared to the case in servoflap

actuation. But in both cases for constant input, cases with higher advance ratio pro-

vided larger thrust control authority. At 3/rev actuation frequency, however, both

root pitch and servoflap actuation demonstrated much less sensitivity of the thrust

control authority to advance ratio.

The servoflap location study demonstrated the importance of choosing the appro-



Table 4.1: Effectiveness of root pitch and servoflap actuation at 3/rev for
various flight speed and servoflap locations.

Actuation for 0.1 g

Advance Ratio Servoflap location cB o 0

(per deg) (per deg)

0 0.4-0.6 2.18e-03 2.05e-03 4.6 4.9

0 0.6-0.8 2.18e-03 3.36e-03 4.6 3.0

0 0.8-1.0 2.18e-03 1.70e-03 4.6 5.9

0.2 0.4-0.6 1.68e-03 2.02e-03 5.9 5.0

0.2 0.6-0.8 1.68e-03 3.26e-03 5.9 3.1

0.2 0.8-1.0 1.68e-03 2.07e-03 5.9 4.8

0.4 0.4-0.6 1.76e-03 1.91e-03 5.7 5.2

0.4 0.6-0.8 1.76e-03 3.03e-03 5.7 3.3

0.4 0.8-1.0 1.76e-03 3.00e-03 5.7 3.3

priate servoflap location in order to achieve efficient thrust control. By adding the

flapping modes to the state space model, phenomena such as coupling of the first

torsional mode and the second flapping mode were observed. This phenomena was

not seen in Garcia's model [7] because it does not incorporate any elastic flapping

modes. The best location to attach the servoflap seems to be near the node point

of the second flapping mode (f = 0.75). By doing this, the excitation of the second

flapping mode can be suppressed, and the coupling with the first torsional mode can

be minimized. Therefore, placing a servoflap at f = 0.6-0.8 is found much more ef-

fective than placing it at f = 0.8-1.0. A similar result was observed by Millott and

Friedmann [15].

The results of necessary root pitch actuation and servoflap actuation for achieving

0.1 g of thrust increase are tabulated in Table 4.1. The width of the servoflap is 20



percent chord and the length is 20 percent of the radius of the helicopter rotor disk.

Note that the state space model presented here has two important approximations

that affect the output rotor behavior. The state space model lacks the blade stall

model, and stall effects are important for high advance ratio flights. During the

multi-blade coordinates, some of the products of advance ratio and periodic terms

are neglected to achieve a linear time invariant system. Therefore, for low advance

ratio flights, the error is small enough to ignore. However, in high advance ratio

flight, the uncertainty in the present model results increase. In any case, even though

two important simplifications are made during the process of deriving the state space

model, the general requirements and trends can be estimated by this model.

4.2 Future Possible Work

Adding elastic flapping modes to the state space model allowed us to learn the phe-

nomena where first torsional mode and second flapping mode couple and lower the

thrust control authorities. This phenomena was also predicted by Millott and Freid-

mann [15] previously, but they also stated that lead-lag modes couple with flapping

and torsional modes. Therefore, adding the lead-lag modes to the state space model

would allow us to simulate the blade more realistically and possibly find new phe-

nomena that cannot be seen by the present model.

The requirement that the model be linear time invariant system during forward

flight lowers the accuracy of the state space model, especially in flights with high

advance ratios. During the multi-blade coordinates, if linear periodic system can be

incorporated rather than linear time invariant system, then products of the advance

ratios and periodic properties don't have to be neglected, and the accuracy of the

state space model in forward flight case would rise.

If the lift curve slope is allowed to vary along the radius and around the azimuthal

angle, nonlinear effects such as blade stall can easily be incorporated into the state

space model. The bladetip results from Boeing Helicopters presented in Section 3-3-3

were calculated with variable lift curve slope radially and azimuthally. However, the



state space model developed in this study has only one value of lift curve slope for

any radial or azimuthal locations. Radially and azimuthally variable lift curve slope

would allow the state space model to capture the rotor behavior more realistically.

The state space model developed in this study only accepts one servoflap per

blade, but due to the linearity of the model, it would not be hard to modify the code

to accept several servoflaps at desired locations actuated at desired frequencies.



Appendix A

Rotor Integrals and Matrices

This Appendix lists all the necessary integrals and matrices used in Chapter 2 in

order to derive the state space model.

A.1 Aerodynamic Integrals
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Appendix B

Multi-Blade Coordinates

The following description of the multi-blade coornidates was also used by Garcia [7].

It is taken directly from Reference 4, and is included here for completeness.

In general, the dynamics of a rotor system are periodic, but the evaluation of

continuous frequency response functions requires a linear time-invariant (LTI) as-

sumption. Using multi-blade coordinates (MBC), an LTI approximation of the rotor

dynamics will be derived. The mathematics involved in transforming the blade's de-

grees of freedom in the rotating frame to the rotor disk modes in the non-rotating

frame are presented in this section. A more formal treatment of multi-blade coordi-

nates is given in Johnson [11].

Using the discrete Fourier series, one can fit a periodic function at several discrete

points. In the case of a helicopter rotor, these points are the azimuthal blade locations.

Multi-blade coordinates use the N lowest Fourier coefficients to transform from rotor

blade degrees of freedom in the rotating frame to rotor disk modes in the fixed frame.

The total number of degrees of freedom are maintained, because there is a degree of

freedom for each of the N blades. For example, the flap angles of the rotor blades

are /1, 32, . . . N. The blade angles are transformed by the discrete Fourier series to

the fixed frame coefficients 0/, i, 1s, ... /d, which represent flapping modes of the



rotor disk. The fixed frame coefficients are

1N

0 = NE (), (B.1)
q=1

2 N

c- = N E 0( v) cos(ngv) , (n < N/2) (B.2)
q=

2 N

ns = / 3()q) sin(nVq) , (n < N/2) (B.3)
q=

d = (q)(-1) q , (N even). (B.4)
q=

The coefficients 3o, On, 3 ns, and Pd are the multi-blade coordinates, and ,q is the

azimuthal position of the qth blade (1 < q < N). The differential term /d exists only

when there are an even number of blades. For the purpose of this research, we will

retain only the first three multi-blade coordinates. The remaining differential terms

represent reactionless modes which cause no net hub force or moment. Therefore, the

MBC expansion of the flapping angle will be given by

/3() =/0o + Oc cos V + Ps sin 0 . (B.5)

It is also assumed that all of the rotor blades behave identically. Figure B-1 illustrates

the transformation from the rotating frame flapping angle, /, to the rotor disk modes,

0, 3 , and p/. The coning mode is represented by the collective coordinate o0.

The longitudinal and lateral tilt modes are represented by the cyclic coordinates /3

and p,, respectively. Two methods for performing the MBC transformation include

the substitution method and the summation operator method, which are discussed

below. The substitution method will be used to transform differential equations in

the rotating frame to MBC. In this work, the governing equations of motion in the

rotating frame will have constant coefficients. The MBC expansion for the degree of

freedom is substituted into the rotating frame equation. As an example, an equation

of the form

mm + kx = f (B.6)



: coning mode,-

130 • coning mode

3c : longitudinal tilt mode

:s lateral tilt mode

Figure B-1: MBC transformation from rigid flapping angle to rotor disk modes

will represent the dynamics of x in the rotating frame. Taking derivatives with respect

to non-dimensional time (0 = Qt), the degree of freedom x is expanded as

x = x 0 + xe cos O + x, sin V) , (B.7)

(B.8)Jx = o0 + :ic cos V + -s sin 0 - xc sin V + z, cos V ,

2 = io + e cos V) + is sinO - 2ic sin V + 22, cos 4 - zx cos 4 - x, sin 0 . (B.9)

Inserting these into Equation (B.6) and collecting coefficients of similar terms, the

I270ap--270



resulting equations of motion in MBC matrix form areM 0 o) i 0 0  0 o
0 m 0 X.C + 0 0 2m ic +

0 0 m S} ~ -2m 0 is

k 0 0 Xo fo
0 k- m 0 c = fc (B.10)
0 0 k-m X fs

In addition to the substitution method, summation operators will be used to

transform generalized forces on the blades to forces on the rotor disk modes. The

operators are

1N)o = -), (B.11)

q=1

2 N
()c = N -() cos( Oq), (B.12)

q=

2 N

( = N (-) sin(0) . (B.13)
q=1

In general, the rotating frame forces on the blades are periodic aerodynamic loads due

to the azimuthally varying velocity field. As an example, the summation operators

will be applied to a forcing term of the form

f = (1 + p sin 1) 2x. (B.14)

Using trigonometric identities and inserting the MBC expansion for x, Equation

(B.14) is rewritten as

f = 1+ 2 + 2±2p sin )- p2 Ccos 2 zx +

S 1(1+ 1 A2) COS + p sin 20 - 12 COss 30 +

p (1+ 3 A 2) sin - /- COs 20 - I2 sin 30 , . (B.15)



Assuming a three-bladed rotor (N = 3), the summation operators yield

1 1 1)
fo = (1 + ~2 ) - (IP2 cos 3)zx + (p - 4P2 sin 3)x , (B.16)

2 2 4
1 1

fc = (--j2 cos 3V4)xo + (+ 2 ) c- (p cos 3))xs , (B.17)
2 4

1 3
f, = (2p - -p2 sin 3)xo - (p cos 30)x, + (1 + -1

2 - p sin 30)x, . (B.18)
2 4

Neglecting the periodic coefficients, the MBC forcing vector is

fo (1 + /2) 0 P Xo

fc = 0 (1 + 1p2) 0 xe (B.19)
fs 2p 0 (1 + p ) xs

For an N-bladed rotor, only N/rev harmonic coefficients will appear in the forc-

ing terms when the summation operators are applied. As N increases, the periodic

coefficients are swept upward in frequency and become smaller in magnitude, leaving

the first collective and cyclic components to dominate the response. In general, these

N/rev periodic coefficients are on the order of pt2 and may be neglected yielding a

linear time invariant approximation for the rotor dynamics. This constant coefficient

approximation improves with decreasing advance ratio, p, and increasing number of

blades. For the limiting cases of a rotor in hover or a rotor with an infinite number

of blades, this constant coefficient model is exact.

Using the three degree of freedom MBC expansion of Equation (B.7), all inputs,

outputs, and state variables will contain terms with factors 1, cos ', and sin V. The

rotor controls will be expressed in terms of collective and cyclic inputs. The hub load

outputs will be the thrust, pitching moment, and rolling moment. Furthermore, any

internal state variables will have collective and cyclic components. Unless otherwise

noted, vector notation will be used to represent the MBC expansion. For example,

the MBC vector for the flapping angle is

= sc . (B.20)
OS
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Appendix C

Inflow Dynamics

This inflow model was also used by Garcia [7]. The following description is taken

directly from Reference 4, and is included here for completeness.

The inflow dynamics to be used in this model are based on that of Pitt and Peters

[17]. It is a linear unsteady theory derived from actuator disk theory, that relates

transient rotor loads to induced flow field response. The induced flow is expressed as

A = Ao + A f cos O + Aj sin , (C.1)

where A0, Ac, and As are the magnitudes of the uniform, fore-to-aft, and side-to-side

variations in induced flow, respectively. The induced flow distributions are related to

the perturbations in thrust, pitch moment, and roll moment by the linear first-order

relation

Ao

S [

Ao C
Ac CM}

aero

where the x-axis is positive aft, the y-axis is positive starboard, and the z-axis is

positive upward. (Note that the order and orientation of these loads differ slightly

from that of Pitt and Peters.) The L and M matrices have been solved in closed

form in Reference [17]. With appropriate modifications for the new orientation, the

(C.2)



L and .M matrices are

1
2

157r -sin ad

64 l+sin ad

0
0 -16

457r

0 0

157r 1-sin 064 l+sin ad
-4 sin ad 0
l+sin ad

0 4
l+sin ad

0
0
16

457

respectively, where ad is the angle of the rotor disk with respect to the free stream

velocity. The mass flow parameter for the steady lift case is

i2 + (f + Aj)(Af + 2Ai)
V =

p2 (A 1) 2
(C.5)

If the helicopter is in axial flight, the induced inflow ratio may be approximated by

momentum theory [11, pg.52] as

A + Ac 2 + T
2 2 2 (C.6)

where Ac is the vertical climb velocity. Note that in hover, Ac = 0, and

A CT= Fe2 ' (C.7)

If the helicopter is flying at some angle of incidence, then the induced inflow velocity

is governed by the equations
CT

Ai = tand + ,

A = /i tan ad + Ai ,

1
C =

Vp

128
757r

(C.3)

(C.4)

and

(C.8)

(C.9)



which may be solved iteratively. If an initial inflow is assumed, so that

Cr
A = t tan a + , (C.10)

the solution will converge after several iterations [11, pg. 61]. Pitt and Peters have

shown that in axial flight, the inflow gains are identical to those obtained from simple

momentum theory, and are independent of the radial lift distribution.
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Appendix D

Listing of Matlab Code

The following is a listing of the Matlab *.m files which construct the State Space

Rotor Model. These routines were originally written for Matlab Version 4.2. To

create the state space matrices A, B, C, and D simply type modalmodel at the

Matlab prompt.



% modalmodel.m

% This is the main program that runs the modal superpostion analysis.
inflag=1
d3flag=O
cgflag=l

h34property
SSRCboeing

modalspthr;

KLO=zeros(size(KLO));

modalintthr;

modalmat3thr;

modalstatethr2;

modalout2;



% h34property.m input file of H34 rotor model

m=[3.5700e-02

3.5800e-02

9.0000e-02

1.3000e-01

1.7000e-01

2.1000e-01

2.7000e-01

3.2500e-01

3.7500e-01

4.2500e-01

4.7500e-01

5.2500e-01

5.7500e-01

6.2500e-01

6.8000e-01

7.3000e-01

7.7000e-01

8.0500e-01

8.3750e-01

8.6250e-01

8.8750e-01

9.1250e-01

9.4000e-01

9.6000e-01

9.8000e-01

1.0000e+00

Icg=[3.5700e-02

3.5800e-02

9.0000e-02

1.3000e-01

1.7000e-01

2.1000e-01

2.7000e-01

3.2500e-01

3.7500e-01

4.2500e-01

4.7500e-01

5.2500e-01

5.7500e-01

6.2500e-01

6. 8000e-01

7.3000e-01

8.9997e+00

6.5701e+00

1.0304e+00

3.5417e-01

4. 0000e-01

4. 5318e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

5. 0000e-01

4.9999e-01

4.9999e-01

4. 9998e-01

4.9997e-01

5.0002e-01

4.9997e-01

4.9998e-01

6.1427e-01

8. 0000e-01

4.8455e-01

4.8455e-011];

1.0365e+02

4.1462e+01

6.8540e+00

2.5760e+00

4.2504e+00

5.2237e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00

5.7960e+00



7.7000e-01 5.7960e+00

8.0500e-01 5.7960e+00

8.3750e-01 5.7960e+00

8.6250e-01 5.7960e+00

8.8750e-01 5.7960e+00

9.1250e-01 5.7960e+00

9.4000e-01 5.7960e+00

9.6000e-01 9.4392e+00

9.8000e-01 8.3634e+00

1.0000e+00 8.3634e+001;

GJ=[3.5700e-02 1.1900e+08

3.5800e-02 1.1900e+08

9.0000e-02 5.8712e+07

1.3000e-01 2.4891e+07

1.7000e-01 2.0566e+07

2.1000e-01 1.8960e+07

2.7000e-01 1.8000e+07

3.2500e-01 1.8000e+07

3.7500e-01 1.8000e+07

4.2500e-01 1.8000e+07

4.7500e-01 1.8000e+07

5.2500e-01 1.8000e+07

5.7500e-01 1.8000e+07

6.2500e-01 1.8000e+07

6.8000e-01 1.8000e+07

7.3000e-01 1.8000e+07

7.7000e-01 1.8000e+07

8.0500e-01 1.8000e+07

8.3750e-01 1.8000e+07

8.6250e-01 1.8000e+07

8.8750e-01 1.8000e+07

9.1250e-01 1.8000e+07

9.4000e-01 1.8000e+07

9.6000e-01 1.8000e+07

9.8000e-01 1.8000e+07

1.0000e+00 1.8000e+071;

GJ(:,2)=GJ(:,2)*1.06; % places w_ 1 at 7.6/rev
%GJ(:,2)=GJ(:,2)*0.347; % places w_l1 at 4.5/rev
EI=[3.5700e-02 1.0000e14;

1.0000e+00 1.0000e14];
shear=[3.5700e-02 0;

1.0000e+00 01;

cg=[3.5700e-02 0;

1.0000e+00 01;

-===================servoflap size & location==================



rlbar = 0.6000; % inboard servoflap location
r2bar = 0.8000; % outboard servoflap location
%====================inputs-
a=6.3025;

alphad=90.0;

R=28*12;

omega_rpm=222;

omega=omega_rpm*2*pi/60

nomega=222;

rho=.002195;

cbar = 16.4/R;

ebar = 0.0357;

rcut = 0.210;

Btip = 1;

nbar = 0.5;

pbar = -0.082;

mu = 0

CTsig = 0.1;

Q = 4;

kth=0;

d3_deg=0;

d3=d3_deg*pi/180;

%lift curve slope

%rotor shaft angle (0 deg is edgewise flight)

% (90 deg is axial flight)

% rotor radius in inches

%rotor rotational velocity(RPM)

;%(radian/sec)

%rpm used for normalizing frequencies.

%density of air

%blade chord, c/R
%hinge offset

%root cutout
%tip loss factor

%normalized lift coeff. of servoflap; Re=4,080,000.

%normalized moment coeff. of servoflap, Cm-eta/a;

%advance ratio

%blade loading

%number of blades

%pitch link stiffness (lbf-in/rad)

delta3 hinge angle in degrees

% in rad.



% modalspthr.m Finite element model

% This program uses technic of modal superpostion to find modal mass
% and modal stiffness matrices.

% create spanwise station vector which covers all
% points given in blade properties.
r=m(: , );

r=unify(r,Icg);

r=unify(r,EI);

r=unify(r, GJ);

r=unify(r,cg);

r=unify(r,shear);

% create property vectors for m, Icg, EI, GJ, shear, Cg, based on r.
m=prop2r(m,r);

Icg=prop2r(Icg,r);

EI=prop2r(EI,r);

GJ=prop2r(GJ,r);

shear=prop2r(shear,r);

Cg=prop2r(cg,r);

[z,t] =size(r);

%=== =====find number of elements across span====

temp=0;
for i=l:z-1

if r(i)==r(i+1)

temp=temp+1;
end

end

N=z-temp-1; %number of elements across span
o=========================ther stuff-----------------

Kp=tan(d3);

h=(r(2:z)-r(1:z-1)); %[ND]
e=(Cg-shear)*cgflag; % [in]
nm=9; %number of modes

%== =====convert properties to desired units.

GJ=GJ*12; [slug-in/(sec^2) -in^21

EI=EI*12; %[slug-in/(sec^2) -in^21

mass=m/32.2; %[slug/(in span)]

Icg=Icg/32.2; %[slug-in^2/(in span)]

kth=kth*12; %[slug-in/(sec^2) -in]

%======================Locke Number==========================

for i=l:z-1

masslump(i)=(mass(i)+mass(i+l))*0.5*h(i)*R;

end



rlump=R*(r(1:z-1)+r(2:z))/2;
Ib=sum(masslump'.*rlump.*rlump)/144; %slug-ft^2

gamma = rho*a*cbar*(R/12)^5/Ib;

-===============Values calculated from input===================

alpha = alphad*pi/180; % [radians]
mus= mu^2; % mu squared
cbars = cbar^2; % cbar squared
sigma = Q*cbar/pi; % solidity
Cthrust = sigma*CTsig; % thrust coefficient

-======================== velocity ratios

if (alphad==90) % Axial Flight

vbar = mu; % free stream velocity ratio

lamf = vbar; % free stream inflow ratio
if (vbar==O) % Hover Case

lami = sqrt(Cthrust/2); % induced velocity ratio
lam = lamf + lami;

else % Axial Vertical Flight

lami = vbar/2 +sqrt((vbar/2)^2+Cthrust/2);
lam = lamf + lami;

end;

else % Forward Flight

vbar = mu/cos(alpha); % free stream velocity ratio
lamf = mu*tan(alpha); % free stream inflow ratio
lamold = lamf + Cthrust/(2*sqrt(mus+Cthrust/2));
error = 1;

% iterate to find inflow
while abs(error) > .00001

lami = Cthrust/(2*sqrt(mus+lamold^2));
lam = lamf + lami;

error = lam -lamold;

lamold = lam;

end
end

-===============find tension, T(r), across span==================
T(z)=O;
for i=z-l:-1:1

T(i)=T(i+l)+(mass(i+1)+mass(i))*0.5*r(i)*R^2*omega^2*h(i);
end

T=T';
-==============Non Dimensionalizing the entries=============

Ib=Ib*144; %slug-in^2

masss=mass*R^3/Ib;

Icgg=Icg*R/Ib;

ee=e/R;
GJJ=GJ/(Ib*R*omega^2);



EII=EI/(Ib*R*omega^2);

TT=T*R/(Ib*omega^2);

kthh=kth/(Ib*omega^2);

-==============Do Finite Element Code==========================

BK=zeros(N*3+3,N*3+3); %Big K!

BM=BK; %Big M!
j=1;

for i=l:z-1

if r(i) ~= r(i+1)

rr(j)=r(i);

ml=masss(i);

m2=masss(i+l);

Il=Icgg(i);

I2=Icgg(i+l);

gjl=GJJ(i);

gj2=GJJ(i+l);

eil=EII(i);

ei2=EII(i+l);

eel=ee(i);

ee2=ee(i+l);

tenl=TT(i);

ten2=TT(i+l);

hhr=h(i);

FE_subexact(ml,m2,I,I2,gjl,gj2,eil,ei2,eel,ee2,tenl,ten2,hhr);

K=ans(1:6,1:6);

M=ans(7:12,1:6);

Ktemp=zeros(size(BK));

Ktemp(3*(j-l)+1:3*(j-l)+6,3*(j-l)+1:3*(j-1)+6)=K;

BK=BK+Ktemp;

Mtemp=zeros(size(BM));

Mtemp(3*(j-l)+1:3*(j-1)+6,3*(j-l)+1:3*(j-1)+6)=M;

BM=BM+Mtemp;

j=j+i;
end

end

rr(j)=r(z);

hh=(rr(2:N+1)-rr(l:N))';

clear Il 12 gjl gj2 eel ee2 eil ei2 tenl ten2 mi m2 cg

clear masss Icgg EII GJJ ee TT

cg=e*cgflag;

% add boundary conditions

% deflection at r(l) is zero;==>remove row/column 2

BKt(1,l)=BK(1,1);



BMt(1,1)=BM(1,1);

BKt(1,2:3*N+2)=BK(1,3:3*N+3);

BKt(2:3*N+2,1)=BK(3:3*N+3,1);

BMt(1,2:3*N+2)=BM(1,3:3*N+3);

BMt(2:3*N+2,1)=BM(3:3*N+3,1);

BKt(2:3*N+2,2:3*N+2)=BK(3:3*N+3,3:3*N+3);

BMt(2:3*N+2,2:3*N+2)=BM(3:3*N+3,3:3*N+3);

clear BM BK

BK=BKt;
BM=BMt;

% Effect of delta3 hinge and pitch link stiffness

D=[cos(d3) sin(d3)];

BK([3 51,[3 5])=BK([3 5],[3 5])+D'*kthh*D;

========eigen values, then natural frequencies===============

mMK=inv(BM) *BK;
[V,wksl=eig(mMK);
wks=diag(wks);

[wk,t]=sort(sqrt(wks));
V=V(:,t);
wk=wk(1:nm);

clear K M Ktemp Mtemp BMt BKt mMK wks t mode modet modew modeb

-============mode shapes=====================================

for i=l:nm

modet(1,i)=V(1,i);

modet(2:N+1,i)=V(3:3:3*N+2,i);

modew(l,i)=0;

modew(2:N+l,i)=V(4:3:3*N+2,i);

modeb(1,i)=V(2,i);

modeb(2:N+1,i)=V(5:3:3*N+2,i);

modet(: ,i)=modet(:,i);

modew(:,i)=modew(:,i);

end

moder=1*ones(N+1,1);

mode(1,:)=modet(1,:);

mode(2,:)=modeb(1,:);

mode(3:3:3*N+2,:)=modet(2:N+1,:);

mode(4:3:3*N+2,:)=modew(2:N+1,:);

mode(5:3:3*N+2,:)=modeb(2:N+1,:);

modex=zeros(3*N+2,nm+1);

modex(1,1)=moder (1);
modex(3:3:3*N+2,1)=moder(2:N+1,1);

modex(1:3*N+2,2:nm+) =mode;

clear mode



mode=modex;
clear modex

%===========Modal Mass/Stiffness Matrices====
clear Mbar Kbar
Mbar=mode '*BM*mode;
Kbar=mode ' *BK*mode;

clear BM BK V kthh hhr;

MOO=Mbar (1,1);
MOL=Mbar (1,2:nm+1);
MLO=Mbar(2:nm+1,1);

MLL=Mbar(2:nm+1,2:nm+1);

KOO=Kbar (1, 1);
KOL=Kbar(1,2:nm+1);
KLO=Kbar(2:nm+1,1);
KLL=Kbar(2:nm+1, 2:nm+1);
clear Kbar Mbar



% modalintthr.m does trapazoidal integrations

% (Garcia's trapint-way to do integrations)

% This program uses technic of modal superposition to find the

% modal forces and modal moments and all the other variables

X using Trapazoidal integrations.

%% STRUCTURAL INTEGRATIONS %%

numpts=(1-ebar)*1000+1;

dr = (1-ebar)/(numpts-1);

sumvec = [.5 ones(1,(numpts-2)) .5];

rbar=ebar*ones(numpts,1)+(-ebar)*(0: (numpts-1))'/(numpts-1);

% spread the properties across the span ---> more spanwise stations

for i=l:nm

twist(:,i)=span(modet(:,i),rr,numpts,ebar);

flap(:,i)=span(modew(:,i),rr,numpts,ebar);

slope(:,i)=span(modeb(:,i),rr,numpts,ebar);

end

rtwist=span(moder, rr, numpts,ebar);

massvec=span(mass,r,numpts,ebar);

cgvec=span(cg, r,numpts,ebar);

for m=1:nm

madds(m)=sumvec*(massvec.*cgvec.*twist(:,m)-massvec.*flap(:,m)*R);

madds(m)=madds(m)*dr*R^2*a*sigma/(gamma*Ib);

end

mtrdds=sumvec*(massvec.*cgvec.*rtwist)*dr*R'2*a*sigma/(gamma*Ib);

UI AERODYNAMIC INTEGRATIONS %%

rcutind = (rcut - ebar)*numpts/(l-ebar) + 1;
Bind = (Btip - ebar)*numpts/(l-ebar);

sumveca = [.5 sumvec(rcutind+1:Bind-1) .5];

rbara=rbar(rcutind:Bind);

artwist=rtwist(rcutind:Bind);

for m=1:nm

aflap=flap(rcutind:Bind,m);

atwist=twist(rcutind:Bind,m);

aslope=slope(rcutind:Bind,m);

for n=1:nm

twista=twist(rcutind:Bind,n);

flapa=flap(rcutind:Bind,n);

slopea=slope(rcutind:Bind,n);

AO(m,n)=sumveca*(twista.*aflap)*dr*gamma/2;



Al(m,n)=sumveca*(rbara.*twista.*aflap)*dr*gamma/2;

A2(m,n)=sumveca*(rbara.*rbara.*twista.*aflap)*dr*gamma/2;

BO(m,n)=-sumveca*(slopea.*aflap)*dr*gamma/2;

B1(m,n)=-sumveca*(rbara.*slopea.*aflap)*dr*gamma/2;

CO(m,n)=-sumveca*(flapa.*aflap)*dr*gamma/2;

Ci(m,n)=-sumveca*(rbara.*flapa.*aflap)*dr*gamma/2;

MO(m,n)=-sumveca(atwist.*twist*twista)*dr*(cbar/4)2*gamma;

Ml(m,n)=-sumveca*(rbara.*atwist.*twista)*dr*(cbar/4) 2*gamma;
end

NO(m)=-sumveca*(atwist. *artwist)*dr*(cbar/4) 2*gamma;

Ni(m)=-sumveca*(rbara.*atwist.*artwist)*dr*(cbar/4) 2*gamma;
DO(m)=sumveca*(aflap)*dr*gamma/2;

Dl(m)=sumveca*(rbara.*aflap)*dr*gamma/2;

D2(m)=sumveca*(rbara.*rbara.*aflap)*dr*gamma/2;

SO(m)=sumveca*(artwist.*aflap)*dr*gamma/2;

Sl(m)=sumveca*(rbara.*artwist.*aflap)*dr*gamma/2;

S2(m)=sumveca*(rbara.*rbara.*artwist.*aflap)*dr*gamma/2;

GO(m)=sumveca*(atwist)*dr*a*sigma;

G (m)=sumveca*(rbara.*atwist)*dr*a*sigma;

G2(m)=sumveca*(rbara.*rbara.*atwist)*dr*a*sigma;

HO(m)=-sumveca*(aslope)*dr*sigma*a;

Hi(m)=-sumveca*(rbara.*aslope)*dr*sigma*a;

JO(m)=-sumveca*(aflap)*dr*sigma*a;

Jl(m)=-sumveca*(rbara.*aflap)*dr*sigma*a;

end

FO=sumveca*(artwist)*dr*sigma*a;

Fl=sumveca*(rbara.*artwist)*dr*sigma*a;

F2=sumveca*(rbara.*rbara.*artwist)*dr*sigma*a;

%% SERVO FLAP INTEGRATIONS %%

rlindx=round((rlbar-ebar) *1000+1);

r2indx=round((r2bar-ebar) *1000+);

% check if outboard flap location is in tip loss region

if r2indx > Bind,

r2indx = Bind;

end

sfrbar= rbar(rlindx:r2indx,l);

sfnumpts = r2indx-rlindx+l;

sfsumvec = [.5 ones(l,(sfnumpts-2)) .51;
sfrtwist=rtwist(rlindx:r2indx);

for m=l:nm

sfflap=flap(rlindx:r2indx,m);

sftwist=twist(rlindx:r2indx,m);

EO(m)=sfsumvec*(sfflap)*dr*nbar*gamma/2;



El(m)=sfsumvec*(sfrbar.*sfflap)*dr*nbar*gamma/2;

E2(m)=sfsumvec*(sfrbar.*sfrbar.*sfflap)*dr*nbar*gamma/2;

LO(m)=sfsumvec*(sftwist)*dr*cbar*pbar*gamma/2;

Ll(m)=sfsumvec*(sfrbar.*sftwist)*dr*cbar*pbar*gamma/2;

L2(m)=sfsumvec*(sfrbar.*sfrbar.*sftwist)*dr*cbar*pbar*gamma/2;

end

KO=sfsumvec*(ones(size(sfrbar)))*dr*nbar*a*sigma;

Kl=sfsumvec*(sfrbar)*dr*nbar*a*sigma;

K2=sfsumvec*(sfrbar.*sfrbar)*dr*nbar*a*sigma;

clear numpts r1indx r2indx sfrbar sfnumpts sfsumvec sfrtwist

clear aflap sfflap flapa aslope slopea sftwist atwist twista

clear massvec sfsumvec sumvec sumveca flap twist slope



. modalmat3thr.m construction of all matrices

% This program builds all the necessary matrices
% that are required for modal superpostion analysis.

% matrix names

% D = Delta:structural matrices by finite element model
% L = modal force due to lifting
% M = modal force due to moment
% G = gamma:modified aerodynamics matrices(minus inertia)

X P = phi: inertia terms
X Ps= Psi: terms from finite element code

U/ Initialize all the matrices U/

Dadd=zeros(3*nm, 3nm);
D_ad=zeros(3*nm,3*nm);
D_a=zeros(3*nm,3*nm);
L_a=zeros(3*nm,3*nm);
L_ad=zeros(3*nm,3*nm);
L_thr=zeros(3*nm,3);
L_1=zeros(3*nm,3);
L_e=zeros(3*nm,3);
M_e=zeros(3*nm,3);
M_a=zeros(3*nm,3*nm);
M_ad=zeros(3*nm,3*nm);
M_thr=zeros(3*nm,3);
M_thrd=zeros(3*nm,3);
G_a=zeros(3,3*nm);
Gad=zeros(3,3*nm);
G_1=zeros(3,3);
G_e=zeros(3,3);
Gthr=zeros(3,3);
P_add=zeros(3,3*nm);
P_ad=zeros(3,3*nm);
P_a=zeros(3,3*nm);
P_thr=zeros(3,3);
P_thrd=zeros(3,3);
P_thrdd=zeros(3,3);
Psthrdd=zeros(3*nm,3);
Ps_thrd=zeros(3*nm,3);
Ps_thr=zeros(3*nm,3);



D-add(l:nml:nm)=MLL;

D-add(nm+1:2*nm.,nm+1:2*nm)=MLL;

D-add(2*nm+1:3*nm,2*nm+1:3*nm)=MLL;

D-ad(nm+1:2*nm,2*nm+1:3*nm)=2*MLL;

D-ad(2*nm+1:3*nm.,nm+1:2*nm)=-2*MLL;

D-a(l:nm.,l:nm)=KLL;

D-a(nm+1:2*nmnm+1:2*nm)=KLL-MLL;

D-a(2*nm+1:3*nm.,2*nm+1:3*nm)=KLL-MLL;

Ps-thrdd(l:nml)=MLO;

Ps-thrdd(nm+1:2*nm,2)=MLO;

Ps-thrdd(2*nm+1:3*nm,3)=MLO;

Ps-thrd(nm+1:2*nm,3)=2*MLO;

Ps-thrd(2*nm+1:3*nm,2)=-2*MLO;

Ps-thr(l:nml)=KLO;

Ps-thr(nm+1:2*nm,2)=(KLO-MLO);

Ps-thr(2*nm+1:3*nm,3)=(KLO-MLO);

for m=l:nm

L-thr(ml)=S2(m)+mus*SO(m)/2;

L-thr(m,3)=mu*Sl(m);

L-thr(nm+m.,2)=S2(m)+mus*SO(m)/4;

L-thr(2*nm+ml)=2*mu*Sl(m);

L-thr(2*nm+m,3)=S2(m)+0.75*mus*SO(m);

for n=l:nm

L-a(mn)=A2(m.,n)+mus*AO(mn)/2;

L-a(mn+nm)=0.5*mu*(Bl(mn)-CO(mn));

L-a(m,2*nm+n)=mu*Al(mn);

L-a(nm+mn)=mu*Bl(mn);

L-a(nm+m.,nm+n)=A2(m.,n)+mus*AO(mn)/4;

L-a(nm+m,2*nm+n)=mus*BO(mn)/4+Cl(mn);

L-a(2*nm+mn)=2*mu*Al(mn);

L-a(2*nm+mnm+n)=mus*BO(mn)/4-Cl(m.,n);

L-a(2*nm+m.,2*nm+n)=A2(m.,n)+0.75*mus*AO(mn);

L- ad (m, n) =C 1 (m., n) ;
L-ad(m,2*nm+n)=mu*CO(m.,n)/2;

L-ad(nm+mnm+n)=Cl(mn);

L-ad(2*nm+mn)=mu*CO(mn);

L-ad(2*nm+m,2*nm+n)=Cl(mn);

M-a(mnm+n)=-mu*MO(mn)/2;

M-a(nm+m,2*nm+n)=Ml(mn);

M-a(2*nm+mnm+n)=-Ml(mn);

M-ad(mn)=Ml(mn);

M-ad(m.,2*nm+n)=mu*MO(mn)/2;



M-ad(nm+mnm+n)=Ml(mn);

M-ad(2*nm+mn)=mu*MO(mn);

M-ad(2*nm+m,2*nm+n)=Ml(m.,n);

end

M-thr(m.,2)=-mu*NO(m)/2;

M-thr(nm+m,3)=Nl(m);

M-thr(2*nm+m,2)=-Nl(m);

M-thrd W, 1) =N 1 (m) ;
M-thrd(m,3)=mu*NO(m)/2;

M-thrd(nm+m,2)=Nl(m);

M-thrd(2*nm+ml)=mu*NO(m);

M-thrd(2*nm+m.,3)=Nl(m);

L-e(ml)=E2(m)+mus*EO(m)/2;

L-e(m,3)=mu*El(m);

L-e(nm+m,2)=E2(m)+mus*EO(m)/4;

L-e(2*nm+m ' 1)=2*mu*El(m);

L-e(2*nm+m.,3)=E2(m)+0.75*mus*EO(m);

L- 1 (m, 1) =-D 1 (m) ;
L-l(m,3)=-mu*Dl(m)/2;

L-l(nm+m,2)=-D2(m);

L-1(2*nm+ml)=-mu*DO(m);

L-1(2*nm+m.,3)=-D2(m);

M-e(ml)=L2(m)+mus*LO(m)/2;

M-e(m,3)=mu*Ll(m);

M-e(nm+m,2)=L2(m)+mus*LO(m)/4;

M-e(2*nm+ml)=2*mu*Ll(m);

M-e(2*nm+m,3)=L2(m)+0.75*mus*LO(m);

G-a(lm)=G2(m)/2+mus*GO(m)/4;

G-a(l.nm+m)=mu*(Hl(m)-JO(m))/4;

G-a(1,2*nm+m)=mu*Gl(m)/2;

G-a(2.,m)=-ebar*mu*Hl(m)/4;

G-a(2,nm+m)=-ebar*(G2(m)/4+mus*GO(m)/16);

G-a(2,2*nm+m)=-ebar*(Jl(m)/4+mus*HO(m)/16);

G-a(3,m)=ebar*mu*Gl(m)/2;

G-a(3,nm+m)=ebar*(mus*HO(m)/16-Jl(m)/4);

G-a(3,2*nm+m)=ebar*(G2(m)/4+3*mus*GO(m)/16);

end

G-1=[ -Fl/2 0 -mu*Fl/4;

0 ebar*F2/4 0;

-ebar*mu*FO/4 0 -ebar*F2/41;



G_e=[K2/2+mus*KO/4 0 mu*Kl/2;

0 -ebar*K2/4-ebar*mus*KO/16 0;

ebar*mu*K1/2 0 ebar*K2/4+3*ebar*mus*KO/16];

G_thr=[F2/2+mus*FO/4 0 mu*F1/2;

0 -ebar*F2/4-ebar*mus*FO/16 0;
ebar*mu*F1/2 0 ebar*F2/4+3*ebar*mus*FO/161;

P_thr=[0 0 0;
0 ebar*mtrdds/2 0;

0 0 -ebar*mtrdds/21;

P_thrd=[0 0 0;
0 0 -ebar*mtrdds;

0 -ebar*mtrdds 01;

P_thrdd=[mtrdds 0 0;

0 -ebar*mtrdds/2 0;

0 0 ebar*mtrdds/2];

for m=1:nm
G_ad(1 ,m)=J(m)/2;
G_ad(1,2*nm+m)=mu*JO(m)/4;
G_ad(2,nm+m)=-ebar*Jl (m)/4;

G_ad(3,m)=ebar*mu*JO(m)/4;

G_ad(3,2*nm+m)=ebar*J (m)/4;

P_add(1,m)=madds(m);

P_add(2,nm+m)=-ebar*madds(m)/2;

P_add(3,2*nm+m)=ebar*madds(m)/2;
P_ad(2,2*nm+m)=-ebar*madds(m);

P_ad(3,nm+m)=-ebar*madds(m);

P_a(2,nm+m)=ebar*madds(m)/2;

P_a(3,2*nm+m)=-ebar*madds(m)/2;
end

% =============== Pitt and Peters Inflow Matrices

vpeters = (mus+(lamf+lami)*(lamf+2*lami))/sqrt(mus+(lamf+lami) 2);
if(alphad == 90)

L_in = [(.5/vpeters) 0 0;0 (-2/vpeters) 0;0 0 (2/vpeters)];
else

L_in = (1/vpeters)*[.5 ...
sign(mu)*((15*pi/64)*sqrt((1-sin(alpha))/(l+sin(alpha)))) 0;
sign(mu)*((15*pi/64)*sqrt((1-sin(alpha)))) .
((-4*sin(alpha))/(l+sin(alpha))) 0;
0 0 (4/(l+sin(alpha)))];



end

Linv = inv(Lin);

M_in = [(128/(75*pi)) 0 0; 0 (-16/(45*pi)) 0; 0 0 (16/(45*pi))];
Minv = inflag*inv(M_in);



% modalstatethr2.m

% define state space with notations generated

% in modalmat.

Dinv=inv(D_add);

A=[zeros(3*nm) eye(3*nm) zeros(3*nm,3) zeros(3*nm,3) zeros(3*nm,3);

Dinv*(L_a+M_a-D_a) Dinv*(L_ad+M_ad-D_ad) Dinv*L_1 ...

Dinv*(L_thr*1+Mthr-Ps_thr) Dinv*(M_thrd-Ps_thrd)*1;

zeros(3,3*nm) zeros(3,3*nm) -Minv*Linv zeros(3,3) zeros(3,3);

zeros(3,3*nm) zeros(3,3*nm) zeros(3,3) zeros(3,3) eye(3);

zeros(3,3*nm) zeros(3,3*nm) zeros(3,3) zeros(3,3) zeros(3,3);];

B=[zeros(3*nm,3) zeros(3*nm,3);

Dinv*(-Ps_thrdd)*1 Dinv*(L_e+M_e);

zeros(3,3) zeros(3,3);

zeros(3,3) zeros(3,3);

eye(3) zeros(3,3)1;

C=[(G_a+Pa+P_addDinv(L_a+M_a-D_a)) ...

(G_ad+P_ad+P_add*Dinv(L_ad+M_ad-Dad)) ...

G_1+P_add*Dinv*L_1 ...

(G_thr+P_thr)+P_add*Dinv*(L_thr*+M_thr-Psthr) ...

P_thrd+P_add*Dinv*(M_thrd-Ps_thrd)];

D=[P_thrdd G_e]+P_add*Dinv*[-Ps_thrdd (L_e+M_e)];

%% Modified Aerodyanamics (minus inertial terms) %%

B1=[zeros(3*nm,3);zeros(3*nm,3);Minv;zeros(3,3);zeros(3,3)1;

Ca=[G_a G_ad G_1 G_thr zeros(3,3)1;

Da= [zeros (3,3) G_e];

% Convert radians to degrees

rpd = pi/180;

dpr = 180/pi;

Ar2d = ones(size(A));
Br2d = ones(size(B));
Blr2d = ones(size(Bl));
Cr2d = ones(size(C));
Dr2d = ones(size(D));



Ar2d(1:6*nm,6*nm+1:6*nm+3) = dpr*ones(6*nm,3);
Ar2d(6*nm+4:6*nm+9,6*nm+1:6*nm+3) = dpr*ones(6,3);
Ar2d(6*nm+1:6*nm+3,1:6*nm) = rpd*ones(3,6*nm);
Ar2d(6*nm+1:6*nm+3,6*nm+4:6*nm+9) = rpd*ones(3,6);
Br2d(6*nm+1:6*nm+3,1:6) = rpd*ones(3,6);
Cr2d(1:3,1:6*nm) = rpd*ones(3,6*nm);
Cr2d(1:3,6*nm+4:6*nm+9) = rpd*ones(3,6);
Dr2d(1:3,1:6) = rpd*ones(3,6);

A = Ar2d.*A;

B = Br2d.*B;

C = Cr2d.*C;

D = Dr2d.*D;

Ca = Cr2d.*Ca;

Da = Dr2d.*Da;

/0------- --------------------- ====

% Include Options
% By zeroing out unwanted dynamics

% No Inflow

if(inflag == 0);

A(1:6*nm+9,6*nm+1:6*nm+3) = zeros(6*nm+9,3);
A(6*nm+1:6*nm+3,1:6*nm+9) = zeros(3,6*nm+9);
B(6*nm+1:6*nm+3,1:6) = zeros(3,6);
C(1:3,6*nm+1:6*nm+3) = zeros(3,3);

else;

% Close aerodynamic loop

A = A+Bl*Ca;

B = B + Bl*Da;

C = C;
D = D;

end;

%--------------------- - - -
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% modalout2.m

% set up transfer functions

% INPUTS: 1 collective root pitch

% 2 cosine root pitch

% 3 sine root pitch
% 4 collective servo-flap
% 5 cosine servo-flap
% 6 sine servo-flap
% OUTPUTS: collective tip pitch angle
% Ct/sigma

Cmtip = zeros(3,6*nm+9);
for i=1:nm

Cmtip(1,i) = modet(N+1,i);
Cmtip(2,nm+i)=modet(N+1,i);

Cmtip(3,2*nm+i)=modet(N+1,i);

end

Cmtip(1:3,6*nm+4:6*nm+6)=eye(3);

Dmtip = zeros(3,6);

[numl,denl]=ss2tf(A,B,C,D,1);

%[num2,den2]=ss2tf(A,B,C,D,2);

%[num3,den3]=ss2tf(A,B,C,D,3);

[num4,den4]=ss2tf(A,B,C,D,4);

S[num5,den5]=ss2tf(A,B,C,D,5);
. [num6, den6]=ss2tf(A,B,C,D,6);

[ntipth,dtipth]=ss2tf(A,B,Cmtip,Dmtip,1);

[ntipeta,dtipeta]=ss2tf(A,B,Cmtip,Dmtip,4);

% differentiate root pitch input
numl = [num1 zeros(3,2)] ;

%num2 = [num2 zeros(3,2)];

%num3 = [num3 zeros(3,2)];

ntipth = [ntipth zeros(3,2)];

dpr = 180/pi;

num11=numl(1,:); .(CT)/collective root pitch

.num21=num2(1,:); %(CT)/cosine root pitch

.num31=num3(1,:); %(CT)/sine root pitch

num41=num4(1,:); .(CT)/collective servo-flap

%num51=num5(1,:); %(CT)/cosine servoflap
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%num61=num6(1,:); %(CT)/sine servo_flap

%Remember to devide sigma to get CT/sigma response

ntipth=ntipth(1,:); %blade tip angle/collective root pitch
ntipeta=ntipeta(l,:); %blade tip angle/collective servo-flap
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% FE_subexact.m subroutine for finite element code

% This function reads in values of m, Icg, GJ, EI, e, Tension and h

% then build matrix [M] and [K].

%q={theta(i), theta(i+1), w(i), beta(i),w(i+l), beta(i+1)}'

% where
% theta=torsional angle

% w=flapping deflection

% beta=beta=flapping angle

, i=left side of element

% i+1=right side of element

% Beware of Units

% GJ=slug-in/(sec^2) - in^2 {force inch square}

/ EI= same as GJ

% h=length of element, in inches or meters
% e=distance between cg and shear axis, [inch]

% m=mass of element [slug/in span]

% Icg=moment of inertia at cg [slug-in^2/in span]

oFE_subexact(ml,m2,I1,I2,gji,gj2,eil,ei2,el,e2,tl,t2,h)

function [answer]=FE_subexact(ml,m2,I1,12,gjl,gj2,eil,ei2,el,e2,tl,t2,h);

K=zeros(6,6);

M=zeros(6,6);

% Coefficients for linear properties for element between 0 & h
% property=A*x+B

% Below properties, gj,tension,ei are for K matrix only.
ag=gj2-gjl;

bg=gjl;
at=t2-tl;

bt=tI;

ae=ei2-eil;

be=eil;

b=h;

K(1:2,1:2)=[1 -1;-1 1]*(ag/2+bg)/h;

K(3:6,3:6)=[6*ae+12*be (2*ae+6*be)*b -6*ae-12*be (4*ae+6*be)*b;
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(2*ae+6*be)*b (ae+4*be)*b^2 (-2*ae-6*be)*b (ae+2*be)*b^2;

-6*ae-12*be (-2*ae-6*be)*b 6*ae+12*be (-4*ae-6*be)*b;

(4*ae+6*be)*b (ae+2*be)*b^2 (-4*ae-6*be)*b (3*ae+4*be)*b^2]/(h^3);

Tension=[36*at+72*bt (6*at+6*bt)*b -36*at-72*bt (6*bt)*b;

(6*at+6*bt)*b (2*at+8*bt)*b^2 (-6*at-6*bt)*b (-at-2*bt)*b^2;

-36*at-72*bt (-6*at-6*bt)*b 36*at+72*bt (-6*bt)*b;

(6*bt)*b (-at-2*bt)*b^2 (-6*bt)*b (6*at+8*bt)*b^2]/(60*h);

K(3:6,3:6)=K(3:6,3:6)+Tension;

% Below properties,m,I,e are for M matrix only.

am=m2-ml;

bm=ml;

ai=I2-I1;

bi=Il;

ae=e2-el;

be=el;

%Icg+me^2= d3*(x/h)^3+d2*(x/h)^2+dl*(x/h)+dO

d3=am*ae^2;

d2=ae^2*bm+2*am*ae*be;

dl=ai+am*be^2+2*ae*be*bm;

dO=bi+bm*be^2;

M(1:2,1:2)=[l*d3+2*d2+5*dl+20*dO 2*d3+3*d2+5*dl+10*dO;

2*d3+3*d2+5*dl+10*dO 10*d3+12*d2+15*dl+20*dO]*h/60;

% me=g2*(x/h)^2+gl*(x/h)+gO;
g2=am*ae;

gl=am*be+ae*bm;

gO=bm*be;

M(3:6,1:2)=[13*g2+35*gl+147*gO 15*g2+28*gl+63*gO;

(3*g2+7*gl+21*gO)*b (4*g2+7*gl+14*gO)*b;

22*g2+35*gl+63*gO 90*g2+112*gl+147*gO;

(-4*g2-7*gl-14*gO)*b (-10*g2-14*gl-21*gO)*b]*h/420;

M(1:2,3:6)=M(3:6,1:2)';

a=am;

%b=bm;

M(3:6,3:6)=[36*a+156*bm (7*a+22*bm)*h 27*a+54*bm (-6*a-13*bm)*h;

(7*a+22*bm)*h (1.5*a+4*bm)*h^2 (7*a+13*bm)*h (-1.5*a-3*bm)*h^2;

27*a+54*bm (7*a+13*bm)*h 120*a+156*bm (-15*a-22*bm)*h;

(-6*a-13*bm)*h (-1.5*a-3*bm)*h^2 (-15*a-22*bm)*h (2.5*a+4*bm)*h^2]*h/420;
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% Now, K and M are in the form of

% theta(i),theta(i+1), w(i), beta(i), w(i+l), beta(i+1)

% Do row/column switching to achieve

% theta(i),w(i), beta(i), theta(i+1), w(i+l), beta(i+1)

%====>move 2nd row/column in between 4th and 5th.

Mtemp=M;

Mtemp(:,2:3)=M(:,3:4);

Mtemp(: ,4)=M(: ,2);

M=Mtemp;

Mtemp(2:3,:)=M(3:4,:);

Mtemp(4,:)=M(2,:);

M=Mtemp;

Ktemp=K;

Ktemp(:,2:3)=K(:,3:4);

Ktemp(:,4)=K(:,2);

K=Ktemp;

Ktemp(2:3, :)=K(3:4,:);

Ktemp(4,:)=K(2,:);

K=Ktemp;

answer=[K;M] ;
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. unify.m subroutine to create spanwise statetion vector, r.
% used in modalspthr.m

% this program combines two sets of spanwise distance vectors
% namely r and V. R=span length.

function [answer]=unify(r,V)
cntr=1;

cntv=1;
i=1;
[m,n]=size(r);
while cntr <= m

if r(cntr,l) > V(cntv,1)
rr(i,1)=V(cntv,1);
cntv=cntv+1;
i=i+1;

elseif r(cntr,l) == V(cntv,l)

rr(i,1)=r(cntr,1);
cntr=cntr+1;
cntv=cntv+1;
i=i+l;

else
rr(i,1)=r(cntr,1);
cntr=cntr+1;
i=i+1;

end
end
answer=rr;
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% prop2r.m subroutine to make all properties have same length

% used in modalspthr.m

% This program expands a certain property to a desired

% spanwise locations.

function [answer]=prop2r(f,r)

X(1,1)=f(1,2)

cntr=2;

n=2;

[m,t]=size(r);

while cntr <= m

if r(cntr,1) < f(n,1)

slope=(f(n,2)-f(n-1,2))/(f(n,1)-f(n-1,1));

C=(f(n-1,2)*f(n,1)-f(n,2)*f(n-1,1))/(f(n,1)-f(n-1,1));

X(cntr,1)=slope*r(cntr,1)+C;

cntr=cntr+1;

else

X(cntr,1)=f(n,2);

cntr=cntr+1;

n=n+1;

end

end

answer=X;
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0 span.m mki

X this routine converts a spanwise distribution into a discretized

X vector for use with the numerical integration, modalintthr.m

function [spanout] = span(spanin,rspan,numpts,ebar)
% spanin is the span varying property
% rspan is the radial station.
% radial station vector starts from inboard and goes out

[m,n] = size(spanin);
spanout = zeros(numpts,1);

ki = round(((rspan(1)-ebar)/(l-ebar))*numpts)+1;
k2 = round(((rspan(2)-ebar)/(l-ebar))*numpts);

temp=round((k2-kl)/2+kl);
for j = kl:temp;

spanout(j) = spanin(1);
end
for j = temp+l:k2

spanout(j) = 0.5*(spanin(1)+spanin(2));
end
for i = 2:m-1;

ki = k2+1;
k2 = round(((rspan(i+l)-ebar)/(l-ebar))*numpts);
temp=round((k2-kl)/2+kl);
for j = kl:temp;

spanout(j) = spanin(i);
end
for j=temp+l:k2

spanout(j) = (spanin(i)+spanin(i+l))/2;
end

end
%temp=round((numpts-(k2+1))/2);

for j = k2+1:numpts;

spanout(j) = spanin(m);
end
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