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Abstract

This paper presents the design and implementation of DFQ (Distributed Fair Queue-
ing), a distributed system for defending a replicated set of HTTP servers against

application-level distributed denial of service (DDoS) attacks. By using a modifica-
tion of weighted fair queueing, all clients are guaranteed a fair share of the servers,
no matter how many or which servers they connect to. DFQ continues to provide fair
service even against malicious clients who are able to spoof additional IP addresses.
It is also capable of accommodating HTTP proxies, which regularly provide many
times more traffic than a single host. Such properties are desirable for package man-
agement servers and the like, whose responsiveness in the presence of flash crowds
and malicious attackers is paramount to the security of the overall system.
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Chapter 1

Introduction

Distributed denial-of-service (DDoS) attacks are an increasingly common problem on

the public internet. To launch a DDoS attack, the attacker usually uses thousands

of computers that they have previously compromised, most of which belong to un-

suspecting cable modem users and the like. When instructed, each of the computers

("zombies") in these "botnets" suddenly turn all of their bandwidth and processing

power on a single website or service, effectively denying all legitimate clients access

to that service.

Initially, DDoS attacks targeted the most obvious resource in the network - the

victim's network link. By simply flooding the target with packets, they could often

overwhelm the bandwidth of the server, causing it to be unable to service requests

as fast as they arrived. However, as defenses have evolved to counter these low-level

attacks[21, 23], attackers have shifted their focus. Increasingly, to attack complex

websites backed by database servers, they are crafting requests which attempt to

target the database, rather than the network connection[11, 16, 28, 30]. In essence,

this mode of operation shifts the bottleneck that they are attempting to exploit, to a

layer where it is harder to detect[18].

By carefully crafting legitimate HTTP requests, which are mostly indistinguish-

able from the requests of real clients, attackers can achieve the same denial-of-service

effects as before, at much lower bandwidth cost and chance of detection. These at-

tacks are known as application-level denial of service attacks.
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We wish to provide a way to protect a distributed set of replicated HTTP servers

from application-level DDoS attacks. In order to do so, we provide fair service to all

clients, taking into account the size of each client's requests. It is not sufficient that a

single server be fair, for clients may connect to multiple servers; we must ensure the

best fairness possible across the aggregate of all servers.

1.1 Power of attackers

In these attacks, we assume that the attackers are capable of crafting requests that are

sufficiently similar to legitimate requests that they are indistinguishable. That is, we

assume that the attacker has taken the time to remove the myriad of tell-tale signs

that simple pattern-detection software would be able to detect - invalid headers,

suspiciously fast inter-request arrival times, odd client names, etc.

Additionally, we assume the clients are capable of forging HTTP cookies, the

canonical method of tracking individual users. By forging cookies, they are able to

create new user profiles at will, evading most simple session tracking methods. A

smart attacker could use this to impersonate a client-side proxy, for instance (see

section 1.2).

An even more powerful tool that we must assume attackers have at their disposal

is the ability to forge the originating IP address of their connection - this is a com-

mon occurrence with network level DDoS attacks. However, source address spoofing

is considerably more difficult with application-level attacks; as most applications use

TCP, the spoofed IP must be able to complete the entire TCP handshake in order to

establish a connection. Thus, the spoofing computer must generally be able to inter-

cept packets destined to the address it was spoofing, which limits them to spoofing

IP addresses on the same physical link as them, which is generally the same subnet.

However, IP spoofing is a formidable tool. Combined with the ability to craft

arbitrary requests with arbitrary cookies, it allows a single compromised host on a

subnet to impersonate the entire subnet, if it so desires. This factor, combined with

the several thousands of hosts in the botnet that the attacker already has at their
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disposal, can yield a truly huge number of unique IPs with which to attack a host.

1.2 Internet Traffic Patterns

On the Internet, seeing abnormally high amounts of traffic from a single host is not

always a sign of an attack. In fact, there are a great number of IP addresses on the

Internet that legitimately send hundreds of times the bandwidth of a single client:

HTTP proxies. For instance, all of America On-Line's 13 million clients pass through

at most a few thousand machines, appearing to webservers as if they were requesting

pages at hundreds of times the normal rate.

While many proxies add additional header information (canonically, an

X-Forwarded-For header) concerning the original host that they are proxying for,

this information cannot be relied on. Many proxies are proxies for private internal

networks - thus, the IP address communicated by the proxy has no external meaning.

More to the point, there is also no way to ensure that the proxy is not lying about

the hosts it claims to be proxying for, particularly when they are in private IP space.

We also note that the simultaneous arrival of hundreds of new sessions and IP

addresses is not necessarily a coordinated DDoS attack. Such simultaneous arrivals

happen with non-malicious clients during so-called "flash crowds." For instance, in

the "Slashdot effect," a widely-read website links to a website not nearly as well-

provisioned; in the space of minutes, many thousands of users may make requests

of the smaller website. In such cases, all of the clients are well-meaning, and should

indeed be served if possible. As such, sufficiently advanced attackers will masquerade

as a flash crowd.

1.3 Thesis

We present the design for DFQ (Distributed Fair Queueing), a distributed system of

HTTP front-ends to harden existing replicated servers against application-level DDoS

attacks. It is resistant to IP spoofing, as well as tolerant of existing proxies.
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For the purposes of this research, we make several simplifying assumptions. We

restrict ourselves to a model which protects generic webservers, which must be able

to run without modification; many complex websites have large amounts of custom

logic embedded into their servers, and altering this logic to support DFQ would be

complicated and error-prone.

We also assume that requests require varying amounts of server resources to pro-

cess; attackers may well attempt to generate requests that take longer to service.

Part of the prior assumption that requests will run on unmodified webservers is the

assumption that requests are atomic, and cannot be split into separate time slices in

any manner. That is, once a server has committed to servicing a request, it runs it

to completion.

A more limiting assumption is our assumption that the server is able to determine

the amount of work a request will require, merely by examining the incoming request.

This assumption is unfortunate; however, without support from the application, it is

unavoidable: in general, determining the running time of a request before it executes

is equivalent to solving the Halting Problem.

In addition, we assume that the service is comprised of multiple, functionally

identical webservers. A client may decide to connect to an arbitrary set of servers,

and does not care which servers it receives service from. A client is only guaranteed

to recieve service from one server; connections to overloaded servers may never be

serviced. Nonetheless, it is guaranteed a fair share of the total aggregate service in the

system. It is also assumed that servers cannot redirect connections to other servers,

nor answer requests asked of another server.

We also make the simplifying assumption that bandwidth between front-ends is

not likely to be constrained when the front-end is under load. Though the bandwidth

requirements between front-ends are relatively small, and could be further reduced, we

recognize this as a limitation of DFQ; more work remains to be done on the minimal

required information that distributed front-ends need to communicate in order to still

ensure global fairness.

Finally, since automatic detection of proxies is difficult or impossible, we presume
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that the algorithm has access to a traffic distribution, grouped by subnet, of request

rates from a period when the service is not under attack. In section 3.3, we briefly

address methods of gathering and maintaining such a traffic record, but, for the most

part, the exact details are outside the scope of this research.

Chapter 2 discusses prior work on the subject, both in DDoS prevention, as well

as queueing theory, which has notable similarities. Chapter 3 discusses the design

choices in depth, and offers correctness proofs for the distributed case. Chapter 4

provides results from simulations which show the system in action, and Chapter 5

summarizes and offers conclusions from the research.
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Chapter 2

Prior work

2.1 Fair queueing

The problem of fairly allocating service to a server, given requests from multiple

clients, is isomorphic to a queueing theory problem. Instead of fairly scheduling

variable-sized packets on multiple links onto one fixed-bandwidth outgoing link, the

scheduler must schedule variable-workload requests from multiple clients on one fixed-

capacity server.

In queueing theory, optimal scheduling for any centralized scheme is achieved

by approximating Generalized Processor Sharing (GPS). Routers themselves can-

not implement GPS directly, as this would involve simultaneously servicing multiple

queues at once, and interleaving output bit-by-bit. A protocol called Weighted Fair

Queueing[12] is a work-conserving scheduling algorithm that approximates GPS, with

a delay bound proven to be within one packet transmission time of that which would

be provided by GPS.

This work was expanded in [8], in a modification known as Worst-Case Fair

Weighted Fair Queueing (WF2Q), which additionally guarantees that packets will

not be serviced more than one packet size before GPS would schedule them. This was

further expanded in [7]; DFQ uses their virtual clock model for its implementation of

weighted fair queueing.

The hierarchical aspects of [7] are also notable, as they examine the implications
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of violating some assumptions of standard weighted fair queueing - aspects which

DFQ's subnet decomposition (detailed in section 3.2) also violates. However, due to

a greater focus on running time performance, they draw different conclusions.

Ours is not the first work to consider using weighted fair queueing for the problem

of scheduling load on back-end servers; [9] is notable for having a similar problem

space. However, they do not attempt to use it to solve any of the problems imposed

by malicious attackers.

2.2 DDoS prevention

Link-level DDoS prevention is a well-studied topic. Solutions range from server-side

solutions, either via detecting and blocking traffic[4, 10, 20] or over-provisioning the

link[26], to edge-network solutions [23, 21]. However, these kinds of solutions do not

attempt to detect or address application-level attacks.

Though application-level DDoS prevention is not as well-studied, ours is by no

means the first system to tackle the problem. [32] uses "trust tickets" encoded in

HTTP cookies to de-prioritize requests from malicious clients, but the exact method of

determining who the malicious clients are is left under-specified. [37] and [27] attempt

to detect attackers automatically, using semi-Markov Models and statistical analysis

respectively, both of which can be defeated by a sufficiently dedicated attacker, and

do not address variable request workloads. Several systems make the attackers pay

in some currency, be it CPU or memory[1, 5, 6, 13, 14, 17, 19, 35], or bandwidth[34].

16



Chapter 3

System design

DFQ is composed of a number of unmodified HTTP servers for a replicated service;

each server sits behind a front-end. Clients can connect to arbitrary front-ends, as

well as arbitrary numbers of proxies (Figure 3-1). In order to maintain fairness, each

front-end runs a modified version of weighted fair queueing, which ensures that the

aggregate over all servers is fair, and copes with proxies and IP spoofing.

3.1 Distributed fair queueing

While weighted fair queueing has many favorable properties, by itself it is insufficient

to -counter DDoS attacks. Specifically, being fair at a single server is not sufficient;

the aggregate of all servers must be fair. To do this, we must communicate service

Clients

--- Front-ends

Hit server

--- S e rv e r s

Figure 3-1: Overall design of DFQ
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Clients

\1/2 1/2 0 1/2 1/2

Servers b
Figure 3-2: An example of a bipartite connectivity graph, with 5 clients and 3 servers.

The weightings (service rates) which maximize the minimum client allocation for this

particular set of connections are given.

information between front-ends.

Each front-end maintains a connection to a "hitserver," whose sole purpose is to

re-distribute information about new requests to all front-ends. Each front-end reports

to the hitserver when a client makes a new request, when a new request is forwarded

to the back-end server, or when a request is completed. The hitserver, in turn, relays

this information to every other front-end in the system.

In the context of the distributed system, we define a "fair system" as one that

maximizes the minimum service allocation, over all possible service allocations. We

assume that clients connect to whichever server or servers they wish, and that the

servers are incapable of adjusting the connections once made. Put differently, the

system takes as input a bipartite graph of clients and servers, and must choose edge

weights (service rates) so as to maximize the total weight that the minimum rate client

gets (see Figures 3-2, 3-3). Additionally, we wish the servers to be work-conserving,

meaning that they are only idle if they have no requests to serve. Thus, servers also

have the additional constraint that the sum of their edge weights must equal one.

To accomplish this goal, we must charge clients for service which they have received

at other servers. Standard WF 2Q+, from [7], defines simulated times at which packets

would begin and end service, were the packets served in a bit-by-bit round robin.

It then schedules the packets in the order in which they would complete service

under GPS. For every request which is served remotely, we simulate having served it

locally by delaying the expected start and finish times of the top-most request in the

18



Clients

1/2

Servers

Figure 3-3: The same connectivity graph as Figure 3-2,
that all clients now receive the same total allocation.

with one edge added. Note

S The set of all servers
C, The set of all clients with a connection to server s
c'c,s The fraction of time that client c is eligible for local service at server s

c, , The fraction of time that server s spends serving client c
R, The total rate which client c is receiving service; R, = EZes 0,,,
T The current virtual clock time
L The set of local sessions
Qj The queue for session i i

Si The start time for first request in Qt
F The finish time for first request in Qj
R, The local rate for queue i, as a fraction < 1; EI Ri = 1

WiI Work of the Nth request in Qt

Table 3.1: Notations used in this section
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SELECT-REQUEST

1 T <- max(T, minjeL(Sj))
2 i <- argmin F1 where (j E L, S < T)
3 req <- first request in Qj
4 if jQij > 1
5 then S-- F
6 F <-- S + (W 1Rj
7 T - T +W
8 report req to hitserver

Figure 3-4: SELECT-REQUEST pseudocode; called by FINISHED-REQUEST or NEW-

REQUEST when it must select a new request for the front-end's server to process

next.

REMOTE-SELECT- REQUEST(req)

1 i <- req.sessionid

2 if i E L
3 then Si <- Si + (req.work /R )

4 F <-- F + (req.work /Rj)

Figure 3-5: REMOTE-SELECT-REQUEST pseudocode; called when the front-end is

notified by the hitserver that a request has been selected by one of the other front-

ends.

appropriate queue by the amount of work done remotely.

Figure 3-4 shows the pseudocode for selecting which request to service next. This

code is identical to the WF2 Q+ code from [7], with the sole addition of notifying the

hitserver of the algorithm's choice (line 8). In standard WF2 Q+, Ri is known as the

"guaranteed rate" for a link, and an immutable property of the link. In DFQ, the

rate is variable, and determined by the number of simultaneous connections from the

subnet; section 3.2 discusses this in more detail.

Figure 3-5 lists the pseudocode for charging local sessions for remote service. When

a remote front-end selects a request, it notifies the hitserver (line 8 of Figure 3-4).

The hitserver, in turn, relays this information to all other front-ends in the system,

which call REMOTE-SELECT-REQUEST. If the request in question was for a queue

which also exists locally, then the starting (line 3) and finishing (line 4) times are

20



a,, 2/3

Pi~s= 2/s

kai, =~ 1/3 P±=A
k~ts

Client i Client j

Figure 3-6: Pictorial representation of time that queues are eligible for local service,
for the rightmost server in Figure 3-3.

delayed by and amount equal to the time that the request would have taken to serve

locally under GPS. Note that Ri is the same across all servers for any i (see section

3.2), guaranteeing that the local delay is the same length as it was remotely.

This delay ensures that the rate at which a queue is delayed is proportional to

the rate at which it is receiving service at all other servers, as shown in Figure 3-6.

Thus, the system holds the following properties:

a , (3.1)

/i,3 = ai's (3.2)

A third property of the system is that delays are allowed to accrue faster than the

rate at which the local clock ticks. Doing so, however, implies that the queue will

not receive local service. Conversely, if a queue is receiving local service, the sum of

the local and remote service delays must be less than all queues which do not receive

local service:

min ap,q > max Z ap,q (3.3)
peG5 , IpeC 8 ,
aP, 5s" \qES / Qp,> qES /aip'S=0 ap's> (

In order to prove that the above scheme maximizes the minimum amount of

service, as constrained by the connections which are already in place, we must prove

21



that for all i, Ri cannot be increased without reducing Rj for some j which shares a

server s with i, where Rj < Ri. That is, we wish to prove it impossible to find:

Rj > Ri

',3j > 0

That is, a client j which gets more service than i., but who has non-zero service

from server s which could be passed to j. From equation 3.1. assuming ay., > 0, then:

/gj,s

aj,s

1

... which is independent of j. That is, all clients receiving non-zero service from a

server s are guaranteed to have the same global service rate. This proves impossible

that Rj > Ri if Ojs > 0 and /i, > 0. Due to equation 3.3, is not possible that

Rj > Ri if 3 j,, > 0 and Oi,s = 0. Together, these are sufficient to prove the system is,

in aggregate, max min fair.

3.2 Subnet-level aggregation

DFQ is also resistant to IP spoofing, subject to the constraints described in section

1.1. In the case of TCP, the three-way handshake serves to verify that the client is

capable of receiving packets addressed to the IP address that it originally claimed to

be. Note that this does not entirely prevent spoofing - if the spoofed IP address is

on the same physical link as the real IP address, a careful attacker will be able to

observe the response packet anyways. Thus, their spoofing is limited to IP addresses

22



on the same physical link.

By assuming that no physical link layer will contain more than 255 distinct hosts

(a "Class C" network), DFQ can remove the advantage of spoofing. Instead of aggre-

gating sessions by originating IP address, we instead aggregate them by originating

class C subnet. Thus, a host which establishes two sessions, from two IP addresses

on the same subnet, gains nothing over a host which establishes two sessions from

the same computer; in both cases, the bandwidth allocated to them by the front-end

is the same.

This scheme is in some ways similar to hierarchical fair queueing, as described

in [7]. Much like in H-WF2 Q+, the addition of a, new queue may drastically change

the allocation of rates in pre-existing queues. This means that the relative finish

times of existing queues may be affected by future packet arrivals, which complicates

the algorithm. This violates the simplifying assumption that allows WF2 Q to be

implemented in 9(log N) time.

H-WF 2Q+ solves this problem, as its name implies, using a hierarchical arrange-

ment of WF 2Q+ servers. DFQ is less concerned with efficiency, since the processing

times that it deals with are much longer. As such, we have opted to incur the O(N)

overhead of updating the start and finish time of all pre-existing queues when the sit-

uation demands it - an option discussed in [7], but dismissed because of performance

implications. DFQ does this recalculation whenever a queue is added or removed. We

do enforce that a single cookie may only be used at a single subnet, so as to not have

to possibly recalculate subnet allocation on every new request. This is sufficient to

deal with the case of dynamic proxies, such as AOL uses, which often redirects each

request through a random AOL proxy.

Figure 3-7 shows the code for NEW-REQUEST, which is run when a front-end

receives a new request from a client. Lines 1-6 are according to standard WF2 Q+;

the request is added to the appropriate queue, and if the queue is new, the start and

finish times of the first packet in the queue are updated. Lines 7-13 step through each

local session which existed before. We calculate the time remaining after the current

virtual clock time for each session, and rescale that for the new rate, adjusting start

23



NEw-REQUEST(req)

1 i +- req.sessionid
2 add i to L
3 push Qi, req
4 if Qi = req
5 then Si +-max(T, Fi)
6 Fi- S + req.work /Ri
7 forj E L,j #i
8 do if S3 < T
9 then left +- (F - T) * (R, as if req had not arrived)

10 F +-- T + left /R3
11 else delay <-- (Si - T) * (Rj as if req had not arrived)

12 Sj <- T + delay /R,
13 Fj - Si + (W47)/Rj

14 T <- max(T, miniEL(S))
15 if no request currently running on back-end server

16 then SELECT-REQUEST

Figure 3-7: NEw-REQUEST pseudocode; called whenever a client sends a request to

the front-end.

and finish times as necessary.

A similar process is undergone for when a client finishes a request, as it could

affect the rates of other clients on the same subnet. Figure 3-8 lists the pseudocode

for FINISHED-REQUEST, when a request finishes - either when a back-end server

services it, or the client voluntarily closes the connection. This code contains a nearly

identical loop to NEw-REQUEST, on lines 5-11, which similarly adjusts the start and

finish times for the new rates.

3.3 Proxy prioritization

As discussed in section 1.2, the situation is further complicated by the presence of

proxy servers. These appear to be single IP addresses which source many times the

amount of traffic as any other client. DFQ addresses this problem by using historical

information about the request rates of each class C subnet. Such a historical traffic

record could be generated by examining past webserver logs from periods when the

24



FINISHED-R EQUEST(req)

1 i <- req.sesszonid
2 remove req from Qj

3 if Qi = 0
4 then delete i fron

5 for j E L,j
6 do ifS
7 t
8
9 e

10
11
12 if there are non-empi

13 then SELECT-RE
14 else T +- 0
15 for j E all s
16 do S,
17 F

L

S< T
hen left +- (F - T) * (R 3 as if req had not finished)

F <-- T + left R
Ise delay <- (Sj - T) * (Rj as if req had not finished)

Si - T + delay /Rj
F < S3 + (W) I R3

ty queues
QUEST

essions which have existed
-0
-0

Figure 3-8: FINISHED-REQUEST pseudocode; called when the front-end's server fin-

ishes the request it was given.
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NEw-REQUEST(req) FINISHED-REQUEST(req)

1 i <- req.sessionid 1 i <- req.sessionid

2 add i to M 2 remove req from Qi
3 push Qi, req 3 if Qi = 0

4 then delete i from M

NEw- REMOTE- REQUEST(req)

1 NEw-REQUEST(req) FINISHED-REMOTE-REQUEST(req)

1 FINISHED-REQUEST(req)

Figure 3-9: Pseudocode needed to maintain Il, the set of all sessions in the system.

This code is run alongside that in Figures 3-7 and 3-8.

service was not under attack, and regularly updated to detect and adjust for consistent

over- or under-allocation. However, the exact method of gathering this historical

information, as well as decisions about how and when to update it, are complex and

beyond the scope of this research; for our purposes, we will simply assume that such

a profile is provided as input to the algorithm.

We then use this historical profile in order to inform the weightings provided

to the Weighted Fair Queueing implementation. Specifically, the historical request

rate for the subnet is divided by the number of sessions (in the set of all servers)

originating from that subnet. This number is additionally capped by the historical

average request rate over all subnets. Figure 3-9 shows the pseudocode needed to

maintain a set M of all active sessions in the system. Using this, Figure 3-10 iterates

through all of the sessions in the system, and determines the number of sessions

which originate from the same subnet as the request. Because each front-end has

total information, a result of the RATE function is thus identical across all servers,

for any given session.

This method ensures that a subnet which is weighted at ten times the normal

traffic rate will allow ten concurrent sessions to connect without penalizing them.

Should the 11th connect, however, all sessions from that subnet will receive only L

of normal rate. Additionally, if but a single session is active from the subnet, it will

receive only the standard traffic rate, not ten times the normal rate.

26



RATE(req)

1 subnet +- first 3 parts of req. ip

2 concurrent +- 0
3 for i E M
4 do j +- first request in Qj
5 if first 3 parts of j. ip = subnet
6 then concurrent +- concurrent + 1
7 rate +- global average request rate, from historical profile
8 subnet-rate +- (average request rate of subnet, from historical profile)/concurrent
9 return min(rate, subnet-rate)

Figure 3-10: RATE pseudocode; this code defines Ri, based on the first request in Qj,
which is passed as input.

Should an attacker have control of a host behind a proxy or NAT, it is possible

for them to create extra sessions, and in so doing take over any unused bandwidth

which the proxy has. That is, in the case of the proxy in the example above, if only

five sessions were active, an attacker could trivially create an additional five sessions

- and in so doing, procure five times the bandwidth that they would be able to

procure from one host in most other subnets. However, this attack does not damage

other clients any more than if the subnet were completely filled with non-malicious

attackers.
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Chapter 4

Implementation and validation

DFQ was implemented as a number of modules in Perl, comprising about 4000 lines

of code and API documentation. The scheduling front-end was implemented using

a single-threaded event-driven model, with a pluggable scheduler. Multiple different

scheduling implementations were tried before arriving at the scheme described in

chapter 3. For instance, we attempted a number of variations of deficit round robin

queueing; though this leads to a more clear model for charging local clients for remote

service, it does not have nearly as desirable scheduling bounds, and is harder to reason

about correctness.

Figure 4-1 presents a test layout. We ran a 125 second test, during which clients 1

and 2 were continually submitting requests. Client 3 was active in the time between

25-75 seconds, and client 4 was active between 50-100 seconds. Additionally, clients

2 and 4 originate from the same IP subnet. For the purposes of testing, the back-end

HTTP server was modeled as a single-threaded server which, instead of actively doing

1 2 3 4
Clients

Servers

Figure 4-1: Connectivity graph for testing; clients are shown at the top, servers at

the bottom.
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Figure 4-2: Results of a FIFO scheduler.

work, contained statements to pause for an appropriate number of seconds.

For comparison, the results using a simple FIFO scheduler are seen in Figure 4-2.

This scheduler does not communicate any information between front-ends, nor does it

attempt to achieve fairness between the two servers. Note that client 3 receives twice

the service as clients 1 and 2 when it joins, due to being connected to two servers, as

does client 4 when it joins later. For the middle portion of the test, the subnet which

clients 2 and 4 belong to is receiving half of the service in the system - and, indeed,

would continue to do so even if the clients were from the exact same IP address. This

is clearly not fair.

We note a 5% performance loss for all requests, observable by the rates in Figure

4-2 always being slightly below the predicted values. Given that the system was

running at a total aggregate rate of eight requests per second, this equates to an

overhead of 0.00625 seconds per request in this test. Given that the implementation

is untuned, and written in an interpreted language not particularly known for its

speed, this is quite an acceptable overhead.

The same situation, with DFQ instead, is shown in Figure 4-3. Client 3 receives

no more service than the other two clients in the system when it connects. When

client 4 joins, it divides the service previously allocated to client 2. This property is
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Figure 4-3: Results of DFQ scheduling

maintained when client 3 leaves the system at 75 seconds. All of this true, despite

clients 3 and 4 making requests of both servers. Figures 4-4 and 4-5 show the service

rates at server 1 and 2 respectively. Note that while client 4 makes requests to both

servers, it only receives service from server 2. While odd, this is according to the

original specifications laid out in section 1.3.

We also note a 5% performance loss, similar to the degradation experienced by

the FIFO scheduler. That is, the additional complexity of the system has a negligible

impact on the efficiency of the system.

31

-4

I



5/6

2/3 -
5)

1/2

1/3 Client 3 Client 3
joins leaves

1/6

Client I
Client 3 --

0
0 25 50 75 100 125

Time (seconds)

Figure 4-4: Service under DFQ at server 1
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Figure 4-5: Service under DFQ at server 2
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Chapter 5

Conclusions

We have presented the algorithm and implementation of a distributed, proxy-aware

scheduling front-end, dubbed DFQ (Distributed Fair Queueing). It is capable of fairly

scheduling clients which open connections to multiple replicated servers, even in the

face of malicious enemies capable of spoofing IP addresses. Given these properties, it

is capable of defending a distributed set of replicated HTTP servers from application-

level DDoS attacks.

As not much work has been found regarding distributed fair scheduling, we find

the results to be interesting. However, their utility is limited by the number of slightly

odd properties which evolve; namely, that no single request has a bounded service

interval if requests from the same client are already being served elsewhere.

This property, however, is not detrimental if the requests are idempotent. Thus,

a possible application is any in which multiple servers are capable of servicing the

request, and the client has many more requests to make than there are servers. Specifi-

cally, in the case of package management servers, which are responsible for distributing

up-to-date packages to many clients at once, every server contains all of the packages.

A client capable of connecting to multiple servers to request a large set of packages

can be assured that they will never overload a single server, and, indeed, is guar-

anteed no more than their fair share. Protecting such servers from DDoS attack is

particularly important, as such an attack could lengthen the vulnerability of other

systems by denying them access to security patches.
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In conclusion, distributed fair scheduling is an interesting topic, which merits

further research, particularly as it pertains to DDoS prevention. DFQ proves the

feasibility of implementing such a system, as well as uncovering several areas for

further research.
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