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Abstract

The use of capacitance measurement to determine the position of an elastically

supported plate, a method used in a variety of microelectromechanical sensors, is limited

by the phenomenon known as pull-in. The voltage used to sense the capacitance applies a

mechanical load, and if this voltage is too large, the measurement is seriously perturbed.

Recently, a dynamic differential capacitive sensing scheme was proposed that uses a sense

voltage much higher than the pull-in voltage. Short pulses that exceed the pull-in voltage

are applied differentially to a sense capacitor and reference capacitor. The voltage that

appears on their shared node during the sense pulse is proportional to the difference

between the two capacitances. Because the pulses are applied for only a very short time,

static pull-in does not occur. However, the pulses impart kinetic energy to the supported

plate, and after the pulses are removed, the mechanical system can undergo oscillatory

motion. This motion must be controlled in amplitude, and must be optimally damped so that

the next sense measurement can be made as quickly as possible.

This thesis investigates the electromechanical dynamics of both the sense procedure

and a proposed resistive damping method that permits effective damping even for devices

that must operate in vacuum, and hence, cannot depend on squeeze-film damping. Resistive

damping is a passive electronic method of damping mechanical oscillations, and is inher-

ently non-linear. A one-dimensional model of a thermomechanical radiant energy sensor is

used to illustrate the sensing and damping dynamics, and show how parameters for optimal

damping are found. Additionally, a limit on the sensitivity of the differential-sensing

scheme imposed by the resistive damping method is discussed. Experimental evidence of

resistive damping is presented and compared to theory.

Thesis Supervisor: Stephen D. Senturia

Weller Professor of Electrical Engineering and Computer Science
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CHAPTER 1

Introduction

Microelectromechanical sensors, such as accelerometers [1], pressure sensors [2,3], and

thermomechanical radiant energy sensors [4], commonly use methods of differential capac-

itive sensing to measure the change in position of an elastically supported plate that moves

in response to an applied stimulus. The voltage used to sense the capacitance can perturb

the system and as a result must be kept below the pull-in voltage [6], limiting the sensitivity

of the measurement. This limit is particularly important when the sensor has a low pull-in

voltage. Amantea [4] proposed a dynamic differential capacitive sensing scheme in which

short pulses that exceed the pull-in voltage are applied to a sense and reference capacitor.

Because the pulses are kept short, pull-in is avoided.

An approximate lumped element model which illustrates the sensing mechanism is

shown in Figure 2.2. The output is the voltage that appears on the sense plate. The sensi-

tivity to capacitive imbalance between Cs and CR is proportional to the applied voltage, and

can exceed the quasi-static limit set by pull in. However, the pulses impart kinetic energy

to the supported plate, and after the pulses are removed, the mechanical system can undergo

oscillatory motion. This motion must be controlled in amplitude, so that the plate does not

"crash" into the sense plate, and must be optimally damped so that the next sense

measurement can be made as quickly as possible. Resistive damping [5] is proposed as a

method of damping, but it places an additional limit on the sense voltage that can be

applied, thereby limiting the sensitivity.

This thesis studies the dynamics of the pulsed capacitive sensing technique when it is

used in conjunction with the resistive damping method. The objective is to determine how

to choose parameters that optimize the damping, and additionally, determine what

constraints resistive damping places on the pulsed capacitive sensing technique. Experi-

mental results are presented that demonstrate the viability of this damping method.

Chapter 1: Introduction



1.1 Thesis Outline

This section describes the thermomechanical radiant energy sensor that was the

motivation behind the work done for this thesis. Numerical examples throughout the thesis

are based on nominal values for this sensor. In Chapter 2, a lumped element model of the

sensing and damping schemes is introduced and used to derive a pair of coupled ordinary

differential equations describing the electromechanical system. Simulations based on these

equations are used to demonstrate the dynamics, chart out the design space, and determine

the parameters for optimum damping. Experimental results are presented in Chapter 3 to

demonstrate the viability of the damping mechanism. The experimental results are then

compared to simulation based on the theory in Chapter 2. Chapter 4 summarizes the

findings of this work, and presents an analysis of the merits and drawbacks of resistive

damping when it is used in a pulsed capacitive sensing scheme.

1.2 Motivation

The pulsed capacitive sensing scheme was originally proposed by Amantea [4] for use

in a thermomechanical radiant energy sensor. The sensor, shown schematically in Figures

1.1 and 1.2, consists of an elastically supported plate forming the top electrode of a

capacitor, a bi-material strip, and a thermally isolating support. When IR radiation is

focused onto the absorbing material on top of the plate, the plate heats up, and the resulting

thermal energy flows to the bi-material strip and causes a temperature rise. The bi-material

strip, made of two materials with mismatched thermal expansion coefficients, bends to

alleviate the resulting stress built up along it's length. This in turn causes the plate to rise,

changing a sense capacitance which is the measured quantity. The sensor must be fairly

well thermally isolated from the substrate for optimum sensitivity, hence the insulative

support. This requirement also forces the sensor to be operated under vacuum to prevent

convective, and conductive heat losses through the surrounding air.

The sensor is part of a thermal imager that operates at television frame rates of about

30 frames per second, which means the change in capacitance due to IR radiation must be

measured at least every 33ms. Thus, there is a minimum sampling rate restriction on the

type of sensing technique that is used.

Chapter 1: Introduction
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Figure 1.1: Top view of the thermomechanical radiant energy sensor.
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Figure 1.2: Side view of the thermomechanical radiant energy sensor.
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CHAPTER 2

Theory and Simulation

This chapter begins with a description of a one dimensional lumped element model of a

generic position sensor which forms the basis of the analysis in the rest of the chapter. The

limitations of existing differential sensing schemes are described, the pulsed capacitive

sensing technique is introduced, and the dynamics associated with this technique are

explained. The resistive damping method is presented. The effect of resistive damping on

the dynamics of the sensing technique and the resulting limitations placed on the sensor

sensitivity are analyzed. Finally, simulations are carried out using the thermomechanical

radiant energy sensor as an example to demonstrate a methodology to optimize a pulsed

capacitive sensor when resistive damping is used.

2.1 Lumped Element Sensor Model

The analysis in this chapter is based on a one-dimensional lumped element model of a

generic capacitive position sensor. The model assumes the position sensor consists of an

elastically supported plate that moves in response to an applied stimulus. This plate forms

one electrode of a sense capacitor C and this capacitance is sensed to detect any changes

in the plate's position. Figure 2.1 illustrates the sensor model. The elastically supported

plate is represented by a plate of mass m, and area A, suspended by a spring of stiffness K,

a nominal distance ho above a sense plate. The supported plate and sense plate form a

capacitor C that is a function of their separation x. The radiant energy sensor used in the

examples in this thesis has nominal lumped element parameter values given in Table 2.1.

Chapter 2: Theory and Simulation
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Cs -- Sense Capacitor

Figure 2.1: A l-D lumped element model of a capacitive position sensor.

Elastically Supported Plate

Sense Plate

Spring, K

Mass, m

xt

.. . .............
Reference Plate

V,

Cs -- Sense Capacitor
CR -- Reference Capacitor

Figure 2.2: A generic capacitive position sensor in a differential measurement scheme.
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2.2 Differential Capacitive Sensing

There are numerous techniques for measuring changes in the sense capacitance, the most

common of which use differential sensing where the sense capacitor is compared to a

reference capacitor, with the output proportional to the difference between the two capac-

itors[1,2,3]. Differential sensing has the advantage of providing a linear output for small

changes in the sense capacitance, with zero offset if the reference capacitor is chosen appro-

priately. However, the voltage or charge that is used to make a measurement also applies

an electrostatic load to the sensing element, and if the load is large enough, the

measurement is severely perturbed. This effectively places an upper limit on the sensitivity

of the sensor.

Figure 2.2 shows the generic sensor in a differential measurement scheme, where a

reference capacitor CR is introduced. DC sense voltages VS and VS are applied to the sense

capacitor and reference capacitor respectively. The voltage VG that appears on their shared

node is given by

VsC s + VsCR VsACs
V = = (2.1)

(Cs+ CR) (Cs+ CR)

if Ps and CR are chosen such that

VsCso = -VsCR (2.2)

where Cso is the nominal sense capacitance -oA/ho . Thus, the sensitivity of this sensing

technique scales with the sense voltage Vs, and mandates the use of as large a value as

possible.

2.2.1 Static Pull-in Limit

If Vs is larger than the static pull-in voltage [6]

8K0
VP= - (2.3)

27AF-
0

of the suspended plate, the electrostatic load causes the plate to collapse. Thus, VS has an

upper limit set by static pull-in. Most MEMS structures are designed so that this voltage is

sufficiently high for the sensitivity requirements of the particular sensor. However, this
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limit is a critical restriction for devices with low pull-in voltages, such as the thermome-

chanical radiant energy sensor that was the motivation behind this work. The radiant energy

sensor has a pull-in voltage of 68mV.

2.3 Pulsed Capacitive Sensing

To boost sensitivity above the limit set by pull-in, Amantea proposed replacing the DC

sense voltages with two pulses, V and Vs, of magnitude greater than the pull-in voltage.

The sensitivity of this measurement scheme is determined by the size of the applied sense

pulses as the output voltage during the pulses is still given by Equation (2.1). Pull-in is

prevented by keeping the duration of the pulses to very short. This also insures that the

change in capacitance due to the electrostatic load applied by the pulses is negligible

compared to the change due to the measured stimulus during the pulses. However, signif-

icant kinetic energy is imparted to the supported plate during the pulses, and after the pulses

are removed, the mechanical system can undergo oscillatory motion. This motion must be

controlled in amplitude so that the plate does not "crash" into the sense plate, and must be

optimally damped so that the next sense measurement can be made as quickly as possible.

2.3.1 Dynamics

We first consider the dynamics of the plate without any damping. The kinetic energy

imparted to the supported plate during a pulse of width to can be calculated under the

assumption that the movement of the plate is negligible during the pulse. This is true if the

duration of the pulse is kept short. The spring force is negligible as it is proportional to

displacement, thus, only the electrostatic force FE acts on the plate and is given by

1E A Vs2 1_0
A V 2

FE 2 (2.4)
2 x2 2 h02

where E0 is the permittivity of vacuum, A is the plate area, Vs is the pulse height, and ho is

the nominal gap height. Following from this, the displacement d of the plate during the

measurement is

10A V 2t2
d - (2.5)

4 hom
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and it's kinetic energy KE is

le 2Vto
KE

8 h04m
(2.6)

Note that the kinetic energy is a strong function of the size of the sense voltage V,. The

system behavior after the end of the pulse is that of an undamped oscillating mass-spring

system. Referring to Figure 2.3, the maximum allowed VS is calculated by setting the

amplitude of the oscillation equal to the gap height ho so that the position x is always greater

than zero, preventing the "crash" of the supported plate into the sense plate.

3
2oohomV

VS, max F tcoA to
(2.7)

where wo is the resonant frequency of the supported plate. VS,max for the radiant energy

sensor is 3.OV for a pulse width of 0. 1 ts.. This is significantly higher than the sensor's pull-

in voltage of 68mV.

xt

Figure 23: Free mechanical oscillations result after the plate is set in

motion. The amplitude of these oscillations must be less than ho to

prevent "crashing" the sensor.
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2.4 Damping

In order to make another measurement the amplitude of the residual oscillations must be

damped below the resolution of the sensor. This means that the time taken to damp oscil-

lations determines the sampling rate of the sensor. Thus, the damping method plays a

critical role in determining the sampling rate of pulsed capacitive sensors.

2.4.1 Squeeze Film Damping

It is possible to use compressible squeezed-film damping (CSQFD) [7] to damp the

mechanical oscillations, and in fact this would actually allow us to increase VS above the

limit in Equation (2.7). This is because the motion of the supported plate is damped

throughout the motion, hence the maximum amplitude of oscillation for a given sense pulse

is lower than the undamped case. However, in situations where the sensing technique must

be applied in vacuum, CSQFD is not possible and an alternative damping method must be

used. The use of CSQFD damping is not investigated in this thesis.

2.4.2 Resistive Damping

Resistive damping is a method that damps the mechanical oscillations in the elastically

supported plate even in vacuum. It is achieved by introducing a damping resistor RD to
which a DC voltage VD is applied after the end of the sense pulse, as illustrated in Figure

2.4. It turns out that the damping produced by this resistor is highly nonlinear. This is seen

by considering the direction of the electrostatic force on the supported plate relative to the

direction of its motion. When the plate is moving up, the electrostatic force acts to retard

the motion, whereas it accelerates the motion when the plate is moving down. In a linearly

damped system, the damping force always acts to retard the motion. From an energy point

of view this method works by transferring kinetic energy to electrostatic energy in the

capacitors, and then dissipating this energy through joule heating in the resistor.

Chapter 2: Theory and Simulation



Elastically Supported Plate

SResistive Dam ping

Sense Plate Cs

Reference Plate
RD

V D

Figure 2.4: Resistive damping scheme consisting of a DC voltage source and a damping resistor.

Now consider the voltage at the sense plate VG as the supported plate oscillates

Q(t)
VG = (2.8)

CS(t) + CR

where Q(t) is the charge on the sense plate. The motion of the plate changes the total capac-

itance, which in turn raises or lowers VG about the damping voltage VD. From Figure 2.5,

it is evident that when VG rises above VD, the capacitors discharge, and when it falls below

VD, the capacitors charge up. The resulting current flowing back and forth through the

resistor dissipates energy.

The charge on the sense plate oscillates about its static value of VD(C S + CR) and this

oscillation is out of phase with the motion of the plate. Therefore the force on the plate,
which is proportional to the square of the charge, is also out of phase with the motion of the

plate, as shown in Figure 2.6. This means that the retarding force during the upward motion

of the plate is greater than the accelerating force during the downward motion of plate --

the plate is retarded more than it is accelerated every cycle.

2.4.3 Damping Resistor

The size of the resistor plays an important part in this damping phenomenon. It is found,
through simulation, that optimum damping is achieved when

1
RC, - (2.9)

where 0 is the angular frequency, and CT is the total capacitance seen by the resistor. That

is, the RC time constant of the electrical circuit has to match the period of oscillation

divided by 2nt.

Chapter 2: Theory and Simulation
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Figure 2.5: Voltage on the sense plate during damping. The voltage falls

below and rises above the damping voltage of 40mV, charging and

discharging the sense node, respectively.
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Figure 2.6: Graph of gap height and force during damping. Damping force is

maximum during the upward motion of the plate, and minimum during the

downward motion of the plate.
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2.4.4 Damping Voltage

The DC voltage source VD effectively acts as a source of charge for this damping

mechanism. If the resistor was connected to ground, no damping would occur as the charge,
and hence the electrostatic force, on the elastically supported plate would be zero. When

VD is increased, damping improves because the damping forces are larger, but VD intro-

duces limitations on the size of the sense pulse Vs .

For a given damping voltage, if the amplitude of mechanical oscillation is too large, the

plate moves into a region where the non-linear electrostatic force overwhelms the spring

force and causes the supported plate to collapse. This phenomenon is known as dynamic

pull-in [8,9]. For a particular damping voltage, Vs must be kept below the value at which

dynamic pull-in occurs which is below the limit given by Equation (2.7). Therefore, sensi-

tivity is reduced.

Dynamic pull-in is best described by looking at the potential energy (Figure 2.7) of the

supported plate in the limit RD is small.

1 2 1 oA2D
U(Ax) - KAx - - (2.10)

2 2(ho - Ax)

Ax is the displacement from the supported plate's nominal position. Initially, the plate is at

its equilibrium position Axmin, but if it is given enough of a push to overcome the energy

barrier AU to the right, it enters a region where the net force is in the same direction as its

motion causing the plate to accelerate until it crashes into the sense plate. The size of the

push, which is the kinetic energy imparted by the sense pulse, determines whether pull-in

takes place. The fact that dynamic pull-in can occur during the damping portion of the

measurement cycle imposes a further restriction on the maximum sense voltage Vs,ma, and

hence an additional sensitivity limit. As the damping voltage VD increases toward the static

pull-in voltage Vpi, which is the point at which the energy barrier AU disappears (Figure

2.8), we see that the sense voltage Vs,ma must go to zero to prevent dynamic pull-in. When

the resistor RD is non-zero the voltage VG changes with time, and numerical simulation is

required to determine the voltage relationship between VD and Vs, m .
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Figure 2.7: Potential Energy functions for Dynamic Pull-in and Static Pull-in. AU

is a measure of the "energy barrier" that must be overcome for dynamic pull-in
to take place. AXMIN is the stable equilibrium position. Static pull-in occurs

when AU is zero, when no stable equilibrium exists.
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Figure 2.8: Potential energy functions for various damping voltages. The

potential energy barrier decreases as VD approaches the static-pull in voltage.

Chapter 2: Theory and Simulation

I I



2.5 Simulations

The 1-D model of the sensor is described by a pair of coupled ordinary differential

equations, the first describing the motion of the elastically supported plate, and the second

describing the charge flow through the resistor.

d2 1 0A V
m 2 K(ho -x)- 2 2 (2.11)
dt x

dQ VD - VG Vd Q
dt RD Rd RdC (2.12)

where

VG = oA( + (2.13)

m is the effective mass of the supported plate, x is the position of the supported plate, t is

the time, K is the effective spring constant, ho is the nominal gap height, h is the static gap

height, o0 is the permittivity of vacuum, A is the area of the plate, and Q is the charge on

the sense plate. Note that the reference capacitor is chosen to match the static value of the

sense capacitance coA/h.

MATLABTM scripts were written to integrate these equations in time to determine the

motion of the plate and flow of charge. Nominal values for the thermomechanical radiant

energy sensor were used for all the simulations.

2.5.1 Optimization

The objective of optimizing a pulsed-capacitive sensor is to maximize sensitivity for a

given minimum sampling rate. In a pulsed-capacitive sensor, the minimum sampling rate

is equal to the time it takes to damp residual mechanical oscillations below the resolution

of the sensor. When resistive damping is used, damping is optimized by judiciously

choosing the damping resistance RD and damping voltage VD. However, because of

dynamic pull-in (discussed in Section [2.4.4]), the sensitivity and damping time cannot be

optimized independently. Increasing VD to reduce the damping time means that Vs, max must

be reduced to prevent dynamic pull-in. A methodology to optimize a pulsed-capacitive

sensor that uses resistive damping is presented.
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As the damping problem is non-linear in nature, and no analytical solution to problem

is found, optimization is performed numerically. However, the heuristic arguments

presented in the previous sections are used to narrow the range over which numerical

simulation is performed.

The criterion used to quantify damping is chosen to be the time taken for the residual

mechanical oscillations to "settle" below an amplitude that is determined by resolution of

the sensor.

Optimization is demonstrated using the thermomechanical radiant energy sensor as an

example. The requirements for the minimum resolution and damping time are 0.1nm and

10ms respectively. The sense pulse width was fixed at 0.1 gs.

The first step is to optimize the resistance. In Figure 2.9 the damping time is plotted

against resistance for different damping voltages. Damping time decreases with damping

voltage, and is minimized for particular values of damping resistance. The damping time is

minimized close to the value of resistance predicted by Equation (2.9) over the range of

damping voltages shown in the figure. The total capacitance CTwas equal to the sum of the

nominal sense capacitance Cso and the reference capacitance CR, and the natural

mechanical resonant frequency om was used for m. The damping time is insensitive to the

damping resistance around the minima. Referring to Figure 2.9, this implies that RD may

be chosen independently of VD without significant error in the optimization. The next step,
therefore, is to keep RD fixed at the optimum value and optimize VD and Vs . The

assumption is made that the sense voltage does not affect the optimization of RD.

For a particular VD, the maximum sense voltage Vs,ma is uniquely determined by the

dynamic pull-in limit. In Figure 2.10 Vs,ma is plotted as a function of VD. Figure 2.10 also

shows the damping time for the pair VD, Vs,ma (VD). That is, it shows the time taken to

damp oscillations with damping voltage VD, when Vs,m, is applied.

The damping voltage is chosen to meet the minimum damping time criteria using

Figure 2.10. The corresponding maximum (and hence, optimum) sense voltage is then

simply read off the plot. Thus, for the radiant energy sensor, the optimum sense voltage is

2.62V at a damping voltage of 45mV.
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Figure 2.9: Damping time as a function of damping resistance and damping voltage.

Note that the damping time is minimized around the value at which the RC time

constant equal to the period of oscillation divided by 2xr. Additionally, damping time is

relatively insensitive to the resistance around the minimum.

70 3.0

Sense Voltage
60 28

S50 - ----- - "2.6 "

- 30 -2.2E

S20 -- ....... 2.0
Damping Time

10 1.8

0 1.6
0 10 20 30 40 50 60 70

Damping Voltage (mV)

Figure 2.10: Damping time and sense voltage as a function of damping voltage. The arrows

represent a route to optimizing the sense voltage, given a sampling time, or equivalently,

damping time constraint.
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2.5.2 Static Displacement

Figure 2.11 shows the position of the elastically supported plate over time as it is

damped. The plate settles to a value less than the nominal gap height ho.

At the end of a damping cycle, capacitors CS and CR are charged to a voltage VD (Figure

2.12), and the resulting electrostatic load on the elastically supported plate causes a static

displacement from the nominal gap ho reducing the static gap height to h. Thus, the static

value of sense capacitance is greater than the nominal value of sense capacitance. Referring

to Equation (2.1) the smaller static gap height means that the reference capacitor CR must

be chosen to match the static sense capacitance £oA/h and not the nominal sense capacitance

eoA/h o (Cso). Otherwise, the output of the differential sensing scheme would be non-zero

when no stimulus is applied to the sensor (assuming the sense pulses are balanced). The

normalized static gap height h/h o is plotted against the damping voltage in Figure 2.13. If

VD is above the static pull-in voltage Vpj, the system is unstable and the supported plate

collapses. Therefore, the damping voltage must be below VP-.

0.54

0.52

0.50

0.48

0.46

0.44

0.42 .J- .. .. - -I . . . A I I i

0 0.5 1 1.5 2
Tim e (m s)

Figure 2.11: Graph of gap height during damping. The plate settles to a height less than the

nominal gap height ho.
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Figure 2.12: The voltage on the sense plate settles to the damping votlage VD.
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Figure 2.13: Normalized gap height plotted against the normalized damping voltage. The pull-in

instability occurs when the plate is displaced by one third of the nominal gap height.
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CHAPTER 3

Experimental Results

In this chapter, experimental verification of resistive damping is presented and its depen-

dence on the damping resistance is demonstrated. In the experiments, an aluminum

diaphragm is used to represent the elastically supported capacitive plate of a microelectro-

mechanical position sensor. The diaphragm is excited into mechanical oscillation using a

voltage pulse, and the oscillations are then damped resistively.

3.1 Setup

The micro-machined aluminum diaphragm used for the measurements was fabricated by

Texas Instruments [11], and is shown in Figure 3.1. It has a diameter of 600[tm, a resonant

frequency of 240kHz, a pull-in voltage of 11.8V, and a gap height of 1.49gpm. It forms the

top plate of a capacitor Cs which is placed in the current integration circuit shown in Figure

3.2. The idea is to use the displacement current d(CV)/dt through the diaphragm capacitor

to measure mechanical oscillations in the diaphragm. For small amplitude displacements,
the output voltage is proportional to the displacement (Appendix A). Switch A permits a

resistor to be inserted between the voltage source and the diaphragm so that the effects of

resistive damping can be measured. The entire circuit is placed in a vacuum bell jar and

experiments are performed under vacuum, at a pressure of about 0.01 mbar to eliminate the

effects of squeeze film damping (see Figure 3.3).
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Figure 3.1: Photograph of the Texas Instruments surface micromachined aluminum circular

diaphragm. The diaphragm on the top right is used in all the measurements. It has a diameter of

600gm, a thickness of 0.45gm, and is suspended 1.49gm above a ground plane. The diaphragm on

the top left is pulled in.
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Figure 3.2: Integrator used to measure capacitive changes in Cs.
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Figure 3.3: The plot above shows the output of the opamp after the diaphragm is set in motion

with a voltage pulse when resistive damping is not used. Any damping is assumed to be the

result of intrinsic mechanical damping of the resonator, or possibly CSQFD from residual gas.

This experiment verifies that at a pressure of about 0.0lmbar, there is only a small damping

effect on the diaphragm over the time period of interest (-lms).
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The circuit in Figure 3.2 uses an AD745 (20MHz unity gain bandwidth) opamp with a

reference capacitor of 40pf. A smaller capacitor can be used to improve the gain of this

circuit, but will compromise its bandwidth. With the switch closed, and a DC bias applied,

any change in the diaphragm capacitance causes current to flow. The charge that flows is

equal to ACs(t)VD, and this appears as a voltage ACs(t)VD/CR at the output of the opamp.

The output of the opamp is therefore proportional to the changes in charge on the sense

plate.

3.2 Measurement

Applying a voltage pulse at VD, when switch A is closed, imparts kinetic energy to the

diaphragm which begins to oscillate. When switch A is opened, the resistor RD falls

between the voltage source and the diaphragm, with the DC bias acting as a damping-

voltage. The results for well chosen values of damping voltage and resistance is shown in

Figure 3.4.
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Figure 3.4: Opamp output during damping.
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3.2.1 Damping as a Function of Resistance

For small amplitudes, the motion of the elastically supported plate is approximately a

damped sinusoid given by

x(t) = Ae-t sin(2ift+))+h (3.1)

where A is the amplitude of motion, T is the damping time constant, f is the frequency of

oscillation, 4 is a phase constant, and h is the gap height. Additionally, it is shown in

Appendix 1 that the damping time constant t in Equation (3.1) is equal to the damping time

constant of the charge oscillations on the capacitor. Now, because the output of the opamp

is proportional to the changes in the charge t can be determined by fitting a damped

sinusoid to the output of the opamp and extracting the damping time constant.

Figure 3.5 shows the measured relationship between the damping time constant and resis-

tance at a fixed damping voltage. The damping time constant is minimized for a particular

value of resistance which is consistent with Equation (2.9), repeated here

1
RDCT = 0 (3.2)

coo

where RD is the damping resistance, CT is the total capacitance (including parasitic) seen

by the resistor, and wo is the natural resonant frequency. Measured values for CT and wo

are 40pf and 1500krad/sec, respectively. The optimum value of RD predicted from

Equation (3.2) isl7kQ, close to the measured optimum of 25k2. Figure 3.5 also shows

simulation results based on the theory presented in Chapter 2. All simulations were

performed using a circuit simulator based on SPICE3 [12].
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Figure 3.5: Comparison of simulated and measured damping time constants.
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CHAPTER 4

Summary and Conclusions

Pulsed capacitive sensors allow the use of sense voltages significantly higher than the static

pull-in voltage in a differential capacitive measurement. This is particularly beneficial in

microelectromechanical capacitive sensors that are limited in their sensitivity by the insta-

bility known as pull-in. As the sensitivity of differential measurement schemes is propor-

tional to the sense voltage, a higher sense voltage improves the sensitivity of a

measurement.

Pulsed capacitive sensing is an inherently dynamic technique that samples changes in

capacitance over time. The maximum sampling rate is determined by the method used to

damp mechanical oscillations that result from a measurement. Thus, the method used to

damp oscillations is a critical component of this measurement technique.

Compressible squeeze film damping (CSQFD) is possible for sensors that do not

operate in vacuum, and can improve the sensitivity and sampling rate of a pulsed-capacitive

sensor from what is possible in vacuum. However, there are sensors that must operate in

vacuum, and for these sensors resistive damping is shown to be an effective damping

method. This damping method is not limited in its use to pulsed-capacitive sensors and can

be extended to applications involving elastically supported capacitive structures, such as

pressure sensors and accelerometers. The use of CSQFD and the extension of resistive

damping to other applications are interesting topics for further investigation.

The resistor and DC damping voltage used in resistive damping must be optimized

numerically. However, some heuristic arguments are presented to aid in the optimization

process. The resistance is optimized around the value at which the RC time constant of the

electrical circuit matches the period of mechanical oscillation divided by 21r. The damping

voltage is then chosen to satisfy the minimum sampling rate criterion of the particular

sensor.
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Resistive damping introduces a limitation on the sensitivity of a pulsed capacitive

sensor because of the effect of dynamic pull-in that can potentially "crash" the sensor. It

limits the maximum sense voltage that can be applied. Resistive damping also increases the

static value of the sense capacitance, and this must be considered when choosing an appro-

priate reference capacitor in a differential capacitive measurement scheme.

Ultimately, the figure of merit of any sensing technique is the signal to noise ratio and

not the raw sensitivity. The signal to noise ratio was not investigated in this thesis;

however, it is an important consideration. Reducing the measurement pulse-width

increases the bandwidth of the measured signal and implies a higher noise contribution

from the sensing electronics. The trade-offs between pulse-width, pulse-height, and the

signal to noise ratio are topics for further investigation.

Chapter 4: Summary and Conclusions



References

[1] J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, "Characterization of a Highly
Symmetrical Miniature Capacitive Triaxial Accelerometer," Proceedings of Trans-
ducers' 97, Volume 2, pp. 1177-1180, Chicago, June 16-19, 1997.

[2] Carlos H. Mastrangelo, Xia Zhang, and William C. Tang, "Surface-Micromachined
Capacitive Differential Pressure Sensor with Lithographically Defined Silicon Dia-
phragm," Journal of Microelectromechanical Systems, Vol. 5, No. 2, pp. 98-105, June
1996.

[3] Joseph T. Kung, and Hae-Seung Lee, "An Integrated Air-Gap-Capacitor Pressure Sen-
sor and Digital Readout with Sub-100 Attofarad Resolution," Journal of Microelec-
tromechanical Systems, Vol. 1, No. 3, pp. 121-129, September 1992.

[4] R. Amantea, C.M. Knoedler, F.P.Pantuso, V.K Patel, D.J.Sauer, & J.R. Tower, "An
Uncooled IR Imager with 5mKelvin NEDT", 1997 IRIS Specialty Group Meeting on
Passive Sensors, Tucson, AZ, 1997.

[5] M. Varghese, R. Amantea, D. Sauer, Stephen D. Senturia, "Resistive Damping of
Pulse-Sensed Capacitive Position Sensors," Proceedings of Transducers' 97, Volume
2, pp. 1121-1124, Chicago, June 16-19, 1997.

[6] P.M. Osterberg, R.K. Gupta, J.R. Gilbert, S.D. Senturia, "Quantitative Models for the
Measurement of Residual Stress, Poisson's Ratio and Young's Modulus using Elec-
trostatic Pull-in of Beams and Diaphragms," Proceedings of the 1994 Solid-State
Sensor and Actuator Workshop, pp. 184-188, Hilton Head, SC, June 1994.

[7] James B. Starr, "Squeeze-film Damping in Solid-State Accelerometers," Tech. Digest,
IEEE Solid State Sensor and Actuator Workshop, pp. 44-47, Hilton Head Island, SC,
June 1990.

[8] R. K. Gupta, E. S. Hung, Y.-J. Yang, G. K. Ananthasuresh, and S. D. Senturia, "Pull-in
Dynamics of Electrostatically-Actuated Beams," Proceedings of the 1996 Solid-State
Sensor and Actuator Workshop, Late News Session, pp. 3-6, Hilton Head, SC, June
3-6, 1996.

[9] Raj K. Gupta and Stephen D. Senturia, "Pull-in Time Dynamics as a Measure of Abso-
lute Pressure," MEMS '97, pp. 290-293, Nagoya, Japan, January 26-30, 1997.

[10] W. McC. Siebert, "Circuits, Signals, and Systems," McGraw Hill Book Company,
pp. 175-176, 1986.

[11] P.A. Congdon, T.-H. Lin, Texas Instruments Inc. personal communication.

[12] IsSpice4, Intusoft, San Pedro, CA.

References



APPENDIX A

Small Signal Analysis

An analytic approximation to the resistive damping problem is obtained under the condi-

tions of small deflections and small charge fluctuations around their respective static

values. At the end of a damping cycle, the elastically supported plate is at rest, and no

current is flowing through the resistor. Under these static conditions, the voltage across the

sense capacitor is VD giving a charge VDI(A/h) on the supported plate, where h is the static

gap height. The charge applies an electrostatic load on the plate making h less than the

nominal gap height h0 of the sensor.

Linearizing Equations (2.10) and (2.11) around the static position h and static charge

on the sense plate VD/(OA/h), we obtain

d2 s VD
m-Ax= - + Ax + Aq (A.1)

dt2 (CS + CR)h2 (Cs + CR)h

d D CR VD 1
-Aq _ Ax - Aq (A.2)

dt RDh RD(CS+C R)h (Cs + CR)RD

where Ax and Aq are the perturbations of position and charge respectively, Cs is the static

sense capacitance, CR is the reference capacitance, RD is the damping resistance, and VD
is the damping voltage. Under initial conditions, of Ax=0, Aq=O, and dAx/dt = v, where v is

a velocity, these equations can be solved using the Laplace transform.

my s + (Cs + CR)R D  (.
AX(s) = (A.3)

3 2 2 1 2
S + (Cs + CR)RDS  (C + CR)RD S

where

2 1 DS
OS = m K- h2 (A.4)

and
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EFF mK- (CS + CR) h2]jJ (A.5)

os and OEFF are identified as the frequencies of oscillation when the damping resistor is

very small, and very large respectively. Finally,

2
mOEFFAX(S)

AQ(s) = (A.6)
R(S+ (C +CR)RD)

Note that AX(s) and AQ(s) have identical denominators and therefore have the same poles.

Without explicitly solving for the Ax and Aq in the time domain the general form of the

physical variables can be deduced. First, we determine if the system is stable by applying

the Routh test [10] to determine if all the poles of the system are in the left half plane. The

poles of the system are given by the roots of the denominator of Equation (A.3). According

to the Routh test, the necessary and sufficient conditions for the roots of a cubic equation,

s3 + OCs2 +ps+y, to lie in the left half plane are oa, 3, y > 0 and P>y/la. Examining Equation

(1.3) we identify

1
= (A.7)

(Cs+CR)RD

2
P = (EFF (A.8)

1 2
Y 2 (A.9)

(Cs + CR)RD (A.9)

The first condition ca, 3, y > 0 holds as long as o 2EFF and 2S are greater than zero.

Inspection of Equation (A.4) shows that 0 2s is positive as long as K > CsV2 / h2. This is

true if VD is less than the pull-in voltage VpI. Using Equation (2.5) it can be shown that

CsVD2/h 2 is just equal to K at pull-in. Inspection of Equation (A.5) shows that o2EFF is

greater than o2s because CR(CR + CS) is less than 1. Therefore o2EFF is also positive.

Appendix A: Small Signal Analysis



For the second condition f>y/a to hold true

1 2

2 (CS+CR)RD 
o S

(EFF > (A.10)

(Cs + CR)RD

Expanding Wo2EFF and o02 and re-arranging the in-equality, the condition simplifies to

CR
< 1 (A.11)(Cs + CR)

which must be true as Cs and CR are both positive. Summarizing the results of the two tests,
as long as VD is less than the pull-in voltage the system is stable. This implies that Ax(t) and

Aq(t) decay in time. Now, Equation (A.6) shows that the AQ(s) and AX(s) have the same

poles, therefore, Aq(t) and Ax(t) must have the same decay time constants.
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