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Abstract

The application of a technique to instantaneously image and continuously monitor
the abundance, spatial distribution, and behavior of fish populations over thousands
of square kilometers using Ocean Acoustic Waveguide Remote Sensing (OAWRS) is
demonstrated with data from its first implementation in a 2003 field experiment off the
US Continental Shelf south of Long Island, NY. Conventional methods for monitoring
fish populations rely on highly-localized, point measurements made from slow-moving
research vessels that survey along widely spaced line transects to cover the vast ocean
environments that fish inhabit and so significantly under-sample fish populations in
time and space. This leads to incomplete, ambiguous and highly-aliased records of fish
abundance and behavior. In contrast, OAWRS surveys at a rate roughly one million
times greater than that of conventional fish-finding methods. Within a minute and
a half, OAWRS images the ocean environment over more than ten thousand square
kilometers, an area similar to the state of Massachusetts. This is possible because
OAWRS exploits the natural capacity of the continental-shelf environment to act
as a waveguide where sound waves are efficiently propagated over long ranges (tens
of kilometers) via trapped modes that suffer only cylindrical spreading loss rather
than the spherical spreading loss suffered in the short-range (hundreds of meters),
waterborne propagation paths employed by conventional fish-finding sonar (CFFS).

In this thesis, a method is developed for estimating the instantaneous population
density and abundance of fish populations from wide-area OAWRS imagery. The
OAWRS population density estimates are calibrated with simultaneous local CFFS
measurements, and are used to estimate the expected scattering cross section of an
individual fish at OAWRS frequencies so that population density may be estimated
in regions where CFFS measurements were not made. It is shown that the OAWRS
population density estimates have uncertainties of less than 25% at each pixel or spa-
tial resolution cell, for statistically stationary populations. Instantaneous abundance
estimates then have much lower uncertainties when OAWRS population density is
integrated over tens to hundreds of independent spatial resolution cells by the law of
large numbers. A number of discoveries are also documented about the instantaneous



horizontal structural characteristics, temporal evolution, short-term volatile behavior
and propagation of information in very large fish shoals containing tens of millions
of fish and spanning several kilometers in spatial extent. The OAWRS approach
should enable new abilities in the study and assessment of fish populations and their
behavioral dynamics.

Thesis Supervisor: Nicholas C. Makris
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Fish populations typically comprise a significant percentage of biomass in productive

marine ecosystems, and play an essential role in inter-trophic energy transport within

complex marine food webs [21, 39]. The dietary importance of fish also extends

to human populations since fish account for "roughly 40% of the protein consumed

by nearly two-thirds of the world's population" [80]. In addition to their ecological

importance, fish play an equally vital role economically. The fishing industry helps

to sustain the economies of coastal countries around the world, especially in the

developing world, with roughly 60% of the total world catch from waters under the

jurisdiction of developing countries alone.[13].

In recent years, there has been substantial evidence that the oceans' wild fish

stocks are undergoing rapid decline [28, 72, 25] and exploitation world-wide. In 2005,

the UN reported that roughly 52% of the ocean's fish stocks were fully-exploited

and approaching their maximum stustainable production limit [43]. In light of the

ecological and economic importance of fish populations and their recent decline, it has

become increasingly important for marine fisheries to be able to accurately estimate

abundance, as well as monitor trends in abundance and behavior for sustainable ocean

resource management.



1.2 Historical Background: Acoustic Methods for

Monitoring Fish Populations

In the atmosphere, electromagnetic waves have been widely utilized for remote imag-

ing objects and acquiring information about the environment with very fine temporal

and spatial resolution. The application of remote-sensing technologies to facilitate

ecosystem monitoring and conservation of terrestrial animals have been demonstrated

with the use of doppler-weather based radar. Radar-based systems in the atmosphere

have been integral in monitoring biodiversity, migratory patterns and abundance dis-

tribution of avian populations.

In water, sound waves provide the only efficient means of exploring and investigat-

ing ocean environments since these waves can propagate to ranges orders of magnitude

beyond the attenuation limits of electromagnetic waves used in the atmosphere. This

makes the application of active sonar systems useful for imaging, detecting, and classi-

fying targets of interest, such as seafloor morphology, man-made objects, and marine

life in an underwater environment.

Standard acoustic methods [89, 95, 91, 5, 70, 69, 87] used for surveying and mon-

itoring fish populations often produce abundance and behavioral records that are

ambiguous, incomplete and have high uncertainty [79, 31, 70, 44, 26, 20]. This is

because these methods rely on highly-localized measurements that are restricted to

the immediate vicinity (tens to hundreds of meters in range) of slow-moving research

vessels [91, 5, 89, 70, 69]. During a typical annual fish survey by the National Oceano-

graphic and Atmospheric Agency (NOAA), such vessels spend rougly 3-4 weeks to

survey continental-shelf scale environments via lawn-mower type, line transects that

are spaced roughly 30 to 45 km apart. The limited temporal and spatial coverage of

conventional systems often lead to a gross undersampling, in time and space, of the

vast ocean environments that fish typically occupy.

The application of active sonar techniques to remotely detect, image, and classify

aquatic organisms is still less than a century old. The field of fisheries acoustics

continues to evolve rapidly with advancements in sonar technology, behavioral ecology,



and data-integration techniques. The very first biological application of acoustics to

detect fish in a closed-tank environment was done by Kimura in 1929 [53]. Shortly

after Kimura's laboratory experiments, researchers and fishermen demonstrated the

utility of echosounder technology to locate wild fish populations and qualitatively

visualize vertical distributions, abundance, and fish behavior, [91, 5, 6, 93, 90], with

the earliest use of echosounder technology to detect fish occuring in the 1930s, when

Ronald Balls used an echosounder fitted on his herring drifter to determine where

to set his nets [5, 6]. During the 1940s, researchers in the University of California's

Division of War Research (UCDWR) noted a mid-water layer scattering agent, which

was later called the "deep scattering layer" [16, 19, 81]. After bathypelagic fish with

gas-filled swimbladders were proposed to be the cause of this "deep scattering layer"

Marshall [68], the frequency response of these fish was studied to identify resonance

[46, 27, 2, 4, 3, 67]. A good historical review of the large literature on the ability of

bladder fish to scatter sound can be found in Refs. [46, 27] and [96]. In all the above

experiments, the range at which the fish were imaged were still on the order of the

local water depths (a few hundred meters or less).

We now follow from Jagannathan et al, "Ocean Acoustic Waveguide Remote Sens-

ing (OAWRS) of Marine Ecosystems" [37], to review long range acoustic techniques

to image fish populations. In 1971 when Weston and Revie used a fixed single-beam

sonar in a monostatic setting to image underwater returns over long ranges (>10

km) within a narrow angular sector [97]. Weston and Revie observed temporal vari-

ations believed to be consistent with fish migrations, but lacked independent data to

confirm this. In 1973, Rusby et al. generated synthetic aperture images of the con-

tinental shelf environment with a towed, single-beam sidescan sonar (G.L.O.R.I.A.)

[36]. Each synthetic aperture image required hours of surveying, which led to high

spatio-temporal undersampling and aliasing. They described features as possible fish

groups "only when the shape of the groups remain[ed] sufficiently distinctive from run

to run," which would bias the analysis towards highly static population distributions.

They then guided a fishing vessel to the location of such a feature, where the vessel

made a large fish catch. In these and other earlier long range experiments [24, 76],



independent confirmation of fish was not available by simultaneous measurements.

Independent confirmation of long-range acoustic fish detection by simultaneous

local measurements appears were first demonstrated by Makris et al in a field experi-

ment conducted on the New Jersey Continental Shelf during April-May, 2003 [32, 66].

This field experiment utilized a long-range, bistatic remote-sensing system to rapidly

image wide-areas of the ocean environment, spanning thousands of square kilometers,

over 360-degree annular sectors at a minute intervals. In earlier work at very short

ranges on the order of the water depth, roughly 300 m, and so with conventional

direct-path rather than waveguide propagation and sensing, Isaacs and Schwartzlose

used a U.S. Navy mine hunting sonar operating on the southern California continental

shelf to detect strong scatterers over 360-degree sectors which they confirmed to be

fish with local trawls [50].

Makris et al used a horizontal array that formed simultaneous beams over a 360

degree horizontal azimuth, enabling them to conduct OAWRS surveys of marine life

instantaneously over wide areas, tens of thousands of square kilometers [32]. With

regular and rapid temporal image updates, they were able to work in a true Eulerian

reference frame and map fish distributions without aliasing in space or time. This

approach overcame the fundamental problem of sparse spatio-temporal sampling and

high aliasing in sidescan (synthetic aperture) and vertical beam sonar surveys of

dynamic biological distributions. Tens of thousands of simultaneous measurements

by a local, conventional echosounding sonar during the 2003 experiment confirmed

the presence of fish within the areas of strong scattering in the long-range imagery.

Simultaneous measurements are necessary for confirmation because fish are ubiquitous

in continental shelf environments and can easily be found accidentally in a region

causing strong acoustic returns. Non-simultaneous correlations can then easily be

coincidental or spurious, as can correlations at only a single or very small number of

spatial locations. This lesson was learned with geologic features of the sub-bottom,

which are also ubiquitous in many continental shelf environments, and often have

spurious spatial correlation with acoustic returns caused by other mechanisms [35].

The remote-sensing approach utilized by Makris et al tremendously augments the



areal surveying capacity of conventional fish monitoring techniques since it operates

with an areal sampling rate tens of thousands to a million times greater than that

of methods currently in practice [32]. The surveying capabilities of OAWRS can

now address the long-established need [39, 38, 40, 25] for synoptic-sensing systems

to facilitate the assessment of an ecosystem's health and development by providing

valuable information about the current state and behavior of key ecosystem compo-

nents. Continuous monitoring with OAWRS enables the production of unaliased [88]

wide-area movies that detail the spatial and temporal distributions of fish population.

These wide area movies can reveal behavioral patterns that may enable better mod-

eling and prediction of ecosystem dynamics and future health, including recruitment,

productivity, mortality, and sustainability. For example, trends might be revealed

in preferred geographic location, horizontal migratory patterns, life-cycle behavior

such as spawning, foraging, wintering and group behavioral responses exhibited by

variations in shoal morphology. These trends can then be correlated with physical

and biological factors including diurnal dynamics, oceanographic or geologic features,

such as fronts, currents, bathymetry, variations in climate over time, the location

of primary food sources, predators and human activity such as fishing, shipping, oil

exploration, and pollution.

1.3 Thesis Organization

In this thesis, we describe the first demonstration of Ocean Acoustic Waveguide

Remote Sensing (OAWRS) to instantaneously image and continuously monitor fish

populations during Makris et al's 2003 survey on the New Jersey Continental Shelf

[32, 66].

First, we present a detailed synopsis of the 2003 field experiment, including rele-

vant background, the experimental design, and the experimental implementation in

Chap. 2.

In Chap.3, a full-field, bi-static scattering model, based on a sonar equation ap-

proach, is used to analyze the scattered field from groups of fish, as observed by



OAWRS and Conventional Fish-Finding Sonar (CFFS) in 2003. This scattering model

is used in conjunction with simultaneous measurements by the low-frequency, bi-static

OAWRS system and the high-frequency, conventional echosounding sonar to empiri-

cally calibrate for the expected target strength of an individual fish at the OAWRS

operating frequencies ( 400-1400Hz). The empirically-derived target strength is re-

lated to the scattering cross-section of the individual fish, and can be used as a scaling

factor to convert OAWRS-measured acoustic intensity to actual metrics of areal pop-

ulation density. A classification scheme is developed and presented, as part of the

target strength calibration procedure, to address the issues that arise when combin-

ing data from independent sonar platforms with significantly different temporal and

spatial resolutions. This classification scheme encompass real-world OAWRS-CFFS

simultaneous sampling geometries from the 2003 field experiment and is helpful in

identifying optimal scenarios which minimize errors in expected target strength esti-

mation at the low, OAWRS operating frequencies. Here, we show that target strength

estimation errors, and consequently areal population density errors, are reduced to

less than 25% per pixel, or 1 dB per pixel, in areas where both OAWRS and CFFS

simultaneously sample large, effectively stationary populations. Such stationary pop-

ulations are also shown to exhibit statistical and morphological similarity which could

be indicative of homogeneity of species composition.

In Chap.4, we demonstrate how the instantaneous areal population density can

be estimated from OAWRS imagery by compensating for : (i) the two-way transmis-

sion loss, (ii) source power, (iii) the estimated target strength, and (iv) the spatially

-varying footprint of the OAWRS system. From OAWRS areal population density

imagery, a number of fundamental scientific discoveries have been revealed about the

instantaneous horizontal structural characteristics, temporal evolution and propaga-

tion of information in very large fish shoals.

Finally, the implications of using the OAWRS approach for surveying fish popu-

lations are discussed in Chap. 5, including guidelines and improvements for future

surveys that utilize OAWRS and conventional fish-finding methods to study marine

populations.



Chapter 2

Main Acoustic Experiment 2003:

Co-Registration of Fish

Populations with simultaneous

measurements of an OAWRS

system and a Conventional Fish

Finding Sonar

In this chapter, we present the key findings of the Main Acoustic Experiment (MAE03)

of the ONR-sponsored Geoclutter Program, conducted from April 28-May 15, 2003

[32, 66]. This field experiment was conducted in an area of the New Jersey continental

shelf, approximately 200km south of Long Island, NY, which is also commonly re-

ferred to as the Mid-Atlantic Bight and the New Jersey Strataform. During MAE03,

a long-range, bistatic remote sensing system was used to instantaneously image and

continuously monitor very large fish shoals over a roughly three week period. A US

National-Marine-Fisheries-standard echosounder was employed in order to provide si-

multaneous ground-truth of these shoaling populations identified by strong scattering



regions within the long-range imagery. This high-frequency, conventional fish finding

sonar (CFFS) also provided in-situ measurements of the local population density and

target strength of individual fish contained within these large shoals. The synoptic

measurements by the long-range system and the highly localized measurements by

the CFFS system were used to demonstrate that shoaling fish populations are in-

deed the dominant cause of ambiguous, false returns within long-range, active sonar

systems operating in littoral environments. In Sec. 2.1, we provide a detailed descrip-

tion of the design and implementation of the MAE03 field experiment. We describe

both the measurement capacities of the long-range, bistatic OAWRS system and the

high-frequency CFFS system, in Sec. 2.2 and Sec. 2.3 respectively.

2.1 Main Acoustic Experiment 2003

During April 27-May 2 2001, the Acoustic Reconnaissance Experiement (ARE01) was

conducted on the New Jersey Continental Shelf roughly 200 km south of Long Island,

NY in the area known as the ONR Strataform site. The primary objective of this first

experiment was to investigate the primary physical mechanisms that cause acoustic

"clutter" in the output of long-range active sonar systems operating in shallow water

environments [65, 35, 82]. The term "clutter" is often used to define any set of

unidentified or ambiguous acoustic returns that stand significantly above the diffuse

and temporally decaying background reverberation level[65, 35, 82]. Such clutter

features can cause a problem in active sonar systems operating in continental shelf

environments, since clutter can often be confused with or mask returns from intended

targets. During ARE01, a long-range bistatic system rapidly imaged wide areas,

spanning thousands of square kilometers, within 50 seconds. Roughly 3000 pings

were transmitted during ARE01, with an average of 10 to 100 localized, clutter-like

features registered during each wide-area image. This yielded approximately 30,000

clutter-like events that could be confused with an intended target over the course of

the entire experiment [65, 35, 82].

Three primary findings of the 2001 reconaissance experiement were:



* A statistical analysis of persistent clutter within areas of fine-resolution geophys-

ical surveys show a random correlation with ubiquituous geological features,

such as ancient buried river channels [35, 82, 23].

* Prominent clutter returns were observed to evolve in time and space, making any

apparent co-registration with buried river channels spurious and coincidental.

The dynamic nature of the clutter returns were also inconsistent with what

would be expected from stationary features, such as seafloor and sub-bottom

geology. However, limited at-sea time made it impossible to unambiguously

explore the dynamicity and spatio-temporal variability in the clutter returns. [65,

35, 82]

* Large fish groups with packing densities on the order of 1 fish/m 2 are commonly

observed and known to occupy the AREO1 experimental site [74, 75, 73, 82].

Previously, full-field scattering model has been used to show that such fish

groupings can stand above the background reverberation [82, 35]. However,

during ARE01, no simultaneous measurements with a local fish-finder or bot-

tom trawl were available to ground-truth the observed clutter returns with fish

populations.

The Main Acoustic Experiment, conducted in 2003 in the same geographic location

as ARE01, was designed as a follow-up to the 2001 reconnaisance experiment. The

MAE03 field experiment was designed to be a controlled experiment that employed

two independent, simultaneously-operated sonar systems, in order to:

* Determine the dominant cause of false alarms or clutter in long-range active

systems operating in continental shelf environments.

* Determine the spatio-temporal variability scales of prominent OAWRS returns

over the 3-week experimental period.

* Correlate and ground-truth prominent OAWRS returns with in-situ measure-

ments by a simultaneously operated CFFS system.



More time was available during MAE03 to repeat tracks in the vicinity of clut-

ter features previously observed during ARE01. For example, multiple tracks were

repeated over consecutive days to study both the spatial and temporal evolution of

strong scatterers in relation to static geologic features. Meanwhile, the simultane-

ously operated fish-finding sonar made multiple transects through strong scattering

regions identified by the long-range system in order to co-register returns with fish

populations. Wide-area movies were generated in order to provide a qualitative co-

registration of the temporal and spatial variability of the clutter returns with geology

and the CFFS-measured fish populations. Several, moored passive reflectors, with

known target strength, were also deployed at each experimental site in order to min-

imize charting errors and provide ground-truth for full-field, waveguide scattering

models[92, 66]. Without apriori knowledge of the target locations, these targets are

indistinguishable from clutter arising from environmental scatterers. A schematic

illustration of MAE03 experimentalis shown in Fig. 2-1. In the following sections,

we discuss the surveying capabilities and the measured data acquired by both the

OAWRS and CFFS systems during MAE03.

2.2 The Ocean Acoustic Waveguide Remote Sens-

ing System

A long-range OAWRS system used during MAE03, similar to the bi-static system used

during ARE01, was comprised of a moored source array and towed horizontal receiver

array, as shown in 2-2. This OAWRS system was used to rapidly insonify continental-

shelf scale areas and create real-time wide-area imagery of the ocean environment

every 50 seconds. The moored vertical source array, deployed by the UNOL Endeavor,

was used to transmit short Is, linear frequency modulated (LFM) waveforms at three

primary operating frequencies: 390-440 Hz (WXI), 875-975 Hz (WMA) and 1250-

1400 Hz (WMB). The lowest operating frequency band, WX1, was transmitted alone,

while the higher frequency bands (WMA and WMB) were transmitted simultaneously



to investigate frequency-dependence of the scattered returns. The UNOL Oceanus

towed the reciver array at a speed of roughly 2m/s along 10km long tracks of varying

orientation. The receiver array used for the MAE03 experiment is a 277m, 396-

channel nested acoustic array (FORA), divided into five acoustic apertures with a

large frequency range from 50-3750Hz. Depth and gyroscopic sensors imbedded into

the array which provides heading, pitch, roll and depth of the array. Of the 396

channels, one is dedicated to monitor self-noise and another monitors the output of

the receiver's desensitized hydrophone. The source and receiver locations, as well as

the time of source transmission are known. Low frequency (hundreds of Hz to a few

kHz) active sonars are especially useful for rapidly probing wide areas in the ocean

because such sound waves are capable of propagating over long ranges with little

attenuation, and so can act as an "underwater" eye for synoptic imaging of wide

environments. In the remaining paragraphs, we follow the description of the OAWRS

system in Ref. [33, 32].

One of the advantages of the OAWRS system, is that it exploits the natural

capacity of the continental shelf to act as a 2-D waveguide, as illustrated in the

cartoon schematic in 2-2. A waveguide is a bounded medium that efficiently channels

propagating waves [77, 8]. In free space, the intensity (power per unit area) of waves

propagating from a point source to a distant receiver is inversely proportional to the

square of the range from the source to the receiver. Source power is geometrically

spread over spherical areas that increase with the square of this range. In a waveguide,

spreading loss is determined by the geometry of the bounded medium. In a one-

dimensional tube of constant cross-section, source power no longer spreads as range

increases beyond the tube diameter, so that the mean sound intensity over the cross-

section stays fixed. As a medium for acoustic waves, the ocean is bounded by the air

above and the seafloor below. For ranges much greater than the ocean depth, where

OAWRS is particularly useful, loss in mean intensity due to geometric spreading

occurs over cylindrical areas, increasing in direct proportion to range if ocean depth

is constant or nearly constant, as it typically is. Conventional fish finding sonar

operates over ranges less than or on the order of the local ocean depth, and so is



typically governed by the spherical spreading loss encountered in free-space. OAWRS

also uses lower frequency waves that suffer far less attenuation from absorption and

scattering [61, 82, 35, 11] in the medium than the waves used by CFFS [8, 69].

To form an instantaneous OAWRS image, the vertical source array sends a short

broadband transmission of sound out omni-directionally in horizontal azimuth. As

they travel, the sound waves reflect from the sea surface and bottom to form standing

waves in depth that are called waveguide modes. These are analogous to the normal

modes of a vibrating guitar string, where the entire vertical water column of the ocean

acts like the plucked string. As the modes propagate horizontally outward from the

source, they interact with and scatter from environmental features along the way.

Scattered returns from environmental features are then continuously received by a

horizontally towed line array. The scattered returns are then charted in horizontal

range and bearing by temporal matched filtering and beamforming [61, 35, 17, 52]

using the known propagation speeds of acoustic modes in the ocean as determined

from local XBT sound speed measurements [66]. A Hanning spatial window function

was applied during beamforming to reduce sidelobe leakage, where the first sidelobe

level is down 30 dB from the main lobe.

The resulting image is an instantaneous snapshot of the ocean environment over

the two-way travel times of the signal returns spanning 360 degrees in azimuth.OAWRS

range resolution is fixed at the mean sound speed, c = 1475 m/s, divided by twice the

signal bandwidth, or roughly 15 m for the 390-440Hz band before averaging. Theory,

modeling, and our field measurements using calibrated targets with known positions

show that ranging error of OAWRS is negligible since it is on the order of the 30

m range resolution of our image pixels after averaging [55], and as a consequence of

modal propagation, is insensitive to the depth of scatterers or environmental features

in the waveguide. OAWRS azimuthal resolution in radians varies as the acoustic

wavelength, A, divided by the projected array length LcosO, where L is the full array

length and the azimuth angle 0 is zero at broadside, which is normal to the array

axis. At endfire, parallel to the array axis, the resolution becomes roughly 2i-A/L

radians. The array length,L, varies for each OAWRS operating band and L is: 94.5m



at 390-440Hz, 47.25m at 875-975, and 23.625m at 1250-1400Hz. For each transmis-

sion band, the instantaneous 2D OAWRS imagery of acoustic intensity is averaged to

a 30-m resolution when mapped into Cartesian space. For the LFM transmission at

390-440 Hz, we spatially average the instantaneous imagery over 2 adjacent, indepen-

dent 15-m range resolution cells. This reduces the standard deviation per pixel by

sqrt2. Further reduction of instantaneous fluctuations induced by signal-dependent

noise or speckle, transmission scintillation and other random waveguide processes can

be achieved by making use of temporal averaging of the 2D acoustic intensity maps

over consecutive transmissions. During MAE03, the acoustic intensity images were

averaged over five consecutive pings to further reduce the standard deviation per pixel

by the square root of the number of independent samples, or v'i. The temporal win-

dow used for the averaging was chosen to be smaller than the time-scales of various

ocean processes in order to ensure unaliased imagery by the Nyquist sampling criteria

and preserve the instantaneity of each image.

During the 2003 OAWRS experiment, measurements of the mean acoustic inten-

sity after one-way transmission from the source to receiver, as well as two-way returns

from the seafloor, show no sign of modal interference structure, such as peaks and

nulls from coherent interference. Rather a uniform decay with range is observed,

indicating a lack of modal interference, which corresponds to a highly predictable

and uniformly mixed acoustic structure over depth. This is expected for a number

of reasons. Environmental scatterers such as seafloor inhomogeneities and fish are

distributed randomly within the sonar resolution footprint and so decorrelate modes

in the acoustic field [82, 64], which then obeys circular complex Gaussian Random

field (CCGRF) statistics [61, 45, 59, 60, 18], by the central limit theorem. The in-

tensity of a CCGRF is characterized by signal-dependent noise known as speckle

noise [45, 59, 60]. The ocean is also active, with internal waves, eddies and turbu-

lence. These cause small sound-speed changes in time and space that typically cause

acoustic modes to decorrelate, which again leads to CCGRF fluctuations at the re-

ceiver by the central limit theorem [60, 18]. The one-way acoustic field measurements

during our 2003 OAWRS experiment followed CCGRF statistics over time, which is



consistent with the observed lack of modal interference structure in range. These

observations and the consequential lack of modal interference structure in depth were

verified by simulations where sound speed variations measured during our experi-

ment were input to statistical models for waveguide propagation in the continental

shelf [35, 41, 10, 29, 30]. (Even without randomness in the medium, broadband

transmissions, such as ours, also lack the delicate modal-interference nulls found in

deterministic single frequency transmission.)

An illustrative example of OAWRS 2D acoustic intensity maps are shown in Fig.

2-3. This image shows the diffuse background reverberation level as well as strong

scattered returns from the passive reflectors and submerged targets. For each trans-

mission, the signal first measured by the receiver array correspond to the direct arrival

from the source to the receiver array. This is shown by the forward scatter region

(elliptical region with SPL>90dB re luPa) between the source and receiver in Fig.

2-3. The diffuse background reverberation scattered from rough patches in the ocean

environment arrive after the direct arrival from the source. In ambient beams, those

beams that exhibit no strong scattering occurs after the direct arrival,the mean in-

tensity decays with range due to spreading and absorption in the environment.

The horizontal line-array has left-right ambiguity about the line passing through

the source and receiver. For bistatic geometries, ambiguity occurs about an ellipse

with a major axis that passes through the source and receiver, while monostatic

geometries are ambiguously charted symmetrically about the receiver array axis. In

order to break the left-right ambiguity, we can compare the scattering events from

images obtained from tracks with different orientations as shown by comparing the

two figures in Fig. 2-3. The real scattering regions (TI, T2, R1 and R2 of Fig. 2-

3 remains in the same geographic region and is more invariant to array orientation

changes. This method to break left-right ambiguity have also been employed in

[62, 11, 82, 35, 65].
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Figure 2-1: During MAE03, a bi-static OAWRS system was used to rapidly image
wide-areas with minute updates. The bi-static system was comprised of a moored
vertical source array and a horizontal linear receiver array towed along a 10km-long
track. Calibrated passive reflectors (targets) were dispersed in the survey region to
minimize charting errors and validate waveguide scattering models. A hull-mounted
conventional echosounder was simultaneously operated within the OAWRS survey
area to provide ground-truth of OAWRS-imaged fish populations, as well as in-situ
measurements of local fish density and individual target strength within groupings.
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Figure 2-2: The OAWRS system used for the 2003 survey of the New Jersey Conti-
nental Shelf was comprised of a moored source and a towed, linear horizontal array.
The 2003 OAWRS survey areas are shown in reference to the US East Coast Con-
tinental Shelf roughly 200 km south of Long Island, NY. The three OAWRS survey
areas for a 40s transmission interval are deliminated by the colored dashed circles
(Site 1 = Yellow, Site 2 = Red, Site 3 = Green), with the colored rectangles indi-
cating the location of the moored source at the three sites. For a 80s transmission
interval, the survey area can be increased as shown by the white dashed circle. The
OAWRS system exploits the natural capacity of the continental shelf to act as a 2-D
waveguide. The vertical source array sends a short broadband transmission of sound
out omni-directionally in horizontal azimuth. As they travel, the sound waves reflect
from the sea surface and bottom to form standing waves in depth that are called
waveguide modes. As the modes propagate horizontally outward from the source,
they interact with and scatter from environmental features along the way. Scattered
returns from environmental features are then continuously received by a horizontally
towed line array.
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Figure 2-3: An illustrative example of 2D OAWRS acoustic intensity maps from the first and second track on May 2, 2003 at
Site 1. These images were created from is, broadband (390-440Hz) LFM transmissions. A horizontal line array has left-right
ambiguity about the array axis. For a bistatic geometry, such as that shown here, ambiguity occurs about an ellipse with a
major asis that passes through the source and receiver. Two prominent and discrete scattering events > 20dB above the diffuse
background co-register with the known location of the calibrated targets (black circles denoted by T1 and T2). Note that
distortion in the mapping of the ambiguous returns can be seen by the difference in spatial extents between the real targets

(TI and T2) and their ambiguous counterparts (T1' and T2') in both images. Similarly, we also highlight two large regions of
prominent scattering (R1 and R2). Comparison of the two images breaks the receiver array's left-right ambiguity. In the second
image, we notice that the ambiguous counterparts (Al and A2) of R1 and R2, shift with the change in receiver orientation. The

real scattering region remains in the same vicinity as R1 and R2 in the first figure. The 80 and 100m isobaths are shown for

geographic reference to aid in the comparison of the two figures. The origin of both images is the OAWRS Source location (blue

star) 390 16.17'N, 720 51.78'W. The blue dashed line corresponds to the array heading direction for the current ping, while the
magenta line corresponds to the track not in use. The black star corresponds to the receiver location along the track line during
the particular transmission. The black arrows indicate the broadside (perpendicular to the array) and endfire (parallel to the

array) axes. Ship noise from the receiver ship in the endfire direction can be seen in both figures, while additional noise from
other ships (saturated beams off endfire) can be seen clearly in the second figure.
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2.3 Conventional Fish Finding Sonar (CFFS) Sys-

tem: EK500

During MAE03, a high-frequency, echosounder was simultaneously operated to mea-

sure the scattered intensity from groups of fish. Typical scientific echosounders

utilized for fisheries applications operate at frequencies ranging from roughly 20-

500kHz and are able to measure the local depth distribution of fish at any instant by

echosounding within a narrow, downward-directed beam along the line transect of a

slow-moving research vessel [91, 5, 6, 70, 89, 47] .

In US waters, the National Marine fisheries Service often conduct seasonal CFFS

surveys in order to monitor abundance and biodiversity trends within productive

ecosystems [87]. These surveys often comprise a series of lawn-mower type patterns

through large, continental-shelf scale environments over the course of a few weeks

to a month. During such surveys, biological samplings by trawls are usually made

in conjunction with the hydroacoustic measurements to aid in species identification.

The limited areal coverage of the CFFS system, ship-time, and human resources

make it impossible to achieve the very high spatial and temporal resolution necessary

to accurately estimate abundance indices of wild fish populations. The resulting

abundance records are incomplete and aliased in space and time. Statistical methods

are often employed to extrapolate abundance in areas where no measurements are

available. This can lead to either over- or underestimation of population if sampled

populations are nonrepresentative of the fish typically inhabiting a geographic region.

The echosounder used during MAE03 was a SIMRAD EK500, which is comprable

to the scientific echosounder sonars utilized by the National Marine Fisheries Ser-

vice during their annual surveys in US waters. The EK500 sent out a short burst

of sounds at two-second intervals to insonify a conical volume of the ocean confined

to the immediate area under the tow ship for each single transmission, as illustrated

by the schematic in Fig. 2-4. The transmitted pulse propagates through the water

and encounters various targets, such as bubbles at the surface and groups of fish, or

the seabed. These targets reflect the sound back to the receiver and the backscat-



tered echo can be charted in depth by dividing the two-way travel-time by twice the

mean sound speed in the water column. By concatenating the depth profiles from

consecutive CFFS transmissions, the in-situ volumetric depth distribution of fish can

be plotted along the line transect sampled by the research vessel, as shown in the

time-depth profile Fig. 2-4.

For the particular depth profile shown in Fig. 2-4, the fish shoals typically col-

lect in roughly 10m layers one to two meters off the ocean bottom. The continuous,

extending shoaling regions are on the order of 1-3 km in along-transect range extent

and are roughly homogenously distributed in depth. Many of the larger, continous

shoals observed by CFFS during MAE03 are often found extending km-long ranges

in homogenously distributed in depth layers between 10-20m approximately 1-5m off

the bottom. The smaller groupings, indicated by spikey features in the transect pro-

file, are distributed differently in depth and sometime separated from the continuous

shoals. Such groupings could be indicative of a different species of fish to those in

more continuous shoals.

Unlike OAWRS, CFFS does not rely on the capacity of the continental environ-

ment to behave like an ocean waveguide and, instead, employ waterborne propagation

paths that are limited to much shorter ranges, on the order of the local water depth.

These waterborne paths suffer much greater geometric spreading losses since they

experience free-space, spherical spreading loss as opposed to the cylindrical spreading

loss of the trapped wave-guide modes employed by OAWRS. Also, the much higher

frequencies utilized by CFFS cause the propagating sound to undergo greater atten-

uation loss than that of the OAWRS operating frequencies.
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As noted in Ref. [32], CFFS surveys habitats at rates in the vicinity of 0.2

km 2/hour, which are similar to those of capture trawl vessels. The CFFS system

deployed during MAE03 had a beamwidth of 6.80 which results in an approximately

100 m 2 circular footprint in typical continental shelf water depths of 80m for each 2s-

transmission. The research vessel operated at speeds between 3-5m/s during MAE03

to reduce additional ship noise that could contaminate the imagery generated by

the simultaneously operating OAWRS system. During reseach surveys, CFFS tow-

ship speeds often travel between 8-12 knots (roughly 4-6m/s). Survey rates can

increase by roughly an order of magnitude when standard multi-beam or side-scan

technology [70, 26, 24]. Multi-beam and side-scan systems experience difficulties at

ranges beyond a few water depths, since they also exploits local, linear, waterborne

propagation paths. At ranges an order of magnitude greater than the local water

depth, waveguide scattering models need to be used to handle multiple reflection

from the ocean boundaries.

The measured CFFS scattered intensity, S, can be converted into metrics of

volumetric density by dividing the scattered intensity by the expected scattering

cross-section of an individual fish at the CFFS operating frequency [89, 95]. Time

series of areal population density (purple time series in Fig. 2-4) and areal scattered

density (blue time series in Fig. 2-4) can be obtained by integrating the volume

density and volumetric scattering density over depth.
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The EK500 was equipped to measure the target strength, or logrithmic quanitity

of the scattering cross-section, of an individual fish. Night-time in-situ measurements

of individual target strength were made by the CFFS sonar in the same geographic

vicinity of the fish populations imaged by OAWRS during daylight hours. Simulta-

neous measurements of individual target strength could not be made during the day

since most of the fish groupings were tightly consolidated near the bottom. At night,

the fish lift off the bottom and are more dispersed throughout the water column. This

makes it easier to single scatterers in the vicinity or at the periphery of fish groupings.

2.4 Simultaneous Measurements by CFFS to Ground-

Truth Fish Populations Imaged by OAWRS

The OAWRS system operates in an Eulerian reference frame by allowing for the

rapidly imaging and monitoring of thousands of square kilometers at minute inter-

vals. In contrast, CFFS operates in a Lagrangian reference frame by making point

measurements along the line transect of the slow-moving research vessel. During a

single transmission, CFFS is capable of surveying one-millionth of the area surveyed

by OAWRS. In order to ground-truth the strong scattering regions in the OAWRS

imagery as fish, we co-register fish populations sampled by CFFS at the exact time-

space location in the corresponding OAWRS imagery. These exact time-space location

where CFFS simultaneously registers fish populations are discussed further in Chap.

3 in the context of empirically calibrating the target strength for an individual fish at

OAWRS operating frequencies. On May 14 and May 15, real-time communication be-

tween the OAWRS receiver ship and the CFFS ship helped to direct the CFFS survey

efforts to regions of large shoaling activity. These days yielded the best co-registration

between both systems and demonstrate how a synoptic system like OAWRS can help

to direct simultaneously operating in-situ platforms to concentrate localized sampling

and at-sea resources to better characterize representative populations within a large

geographic vicinity. The limited swath of the CFFS sonar about the line transect



make it easy to graze or miss entire populations as we will show in the following

section.

High correlation was found between locations of strong scattering in the OAWRS

acoustic intensity imagery and dense clustering of fish found with CFFS. Addition-

ally, regions without strong scattering in the OAWRS imagery were also found to be

absent of significant fish populations. Co-registration of returns by both systems were

observed repeatedly over the entire experiment at Sites 1 and 2. At Site 3, there were

no simultaneous CFFS measurements during the OAWRS survey period. A chrono-

logical synopsis of fish activity observations by OAWRS and CFFS during daylight

hours during MAE03 is presented in the following section. Overnight CFFS measure-

ments of individual fish target strength at 38kHz are presented and summarized in

Chap. 3 as well as in Appendix D.

Fish were also shown to be the dominant physical mechanism of long-range acous-

tic clutter for low-frequency active sonars operating in littoral environments with

very benign bathymetric relief [23, 66, 32]. Fish populations always found within the

vicinity (less than Ikm) of highly repeatable (repeatable more than 25% of the day)

strong scattering regions in the OAWRS imagery. Highly repeatable strong scattering

regions imaged by OAWRS were shown to be independent of sub-bottom morphol-

ogy. This finding is consistent with the conclusion shown earlier by Ratilal et al in

Ref. [35]. In contrast, the probability of OAWRS finding strong scatterin regions

in CFFS-confirmed, fish-inhabited areas were much higher than the probability of

OAWRS measuring strong scattering anywhere in the survey area.





Chapter 3

Method for Empirically Estimating

Fish Target Strength for OAWRS

system based on simulataneous

CFFS measurements during the

Main Acoustic Experiment 2003

3.1 Introduction

At-sea trials which employ echosounder technology to qualitatively visualize the in-

situ vertical distribution of fish have been in practice as early as 1935 [91, 93, 90,

5, 6]. However, acoustics techniques for quantitatively estimating fish population

abundance were not explored until the late 1950s. The earliest attempts at abundance

estimation were initially based on simplistic principles of echo-counting, or counting

individual echoes from scattered fish [94, 71] and then on echo-integration methods

which rely on summing the echo amplitudes from a collective of fish [49]. The earlier

development of echo-integration technique was attributed to Ingvar Hoff and was

formally detailed by Dragesund and Olsen [15]. In 1966, as an addendum to the



echo-amplitude integration technique, Scherbino and Truskanov [86] suggested that

a more correct approach is to integrate the echo-intensity as opposed to the echo

amplitude. The integrated echo-intensity could then be scaled by the expected target

strength of an individual fish to estimate abundance indices. This modified echo-

integration technique remains the fundamental principle behind conventional echo-

sounding methods and an established standard for modern hydroacoustic fish stock

assessment [89, 69].

In acoustic-biomass estimation, the target strength (TS) of an individual scatterer

is necessary to scale measures of acoustic intensity to absolute levels of population

abundance [89, 14]. The target strength is the logrithmic quantity of the backscatter-

ing cross-section of the intended target and provides a measure of the proportion of

the incident energy that is backscattered by the target. In the earliest days, calibra-

tion methods were imprecise and the target strength of the fish uncertain. Extensive

laboratory and at-sea acoustic experiments (involving suspended, immobilized fish;

caged fish in a laboratory tank; and wild fish in their natural environment) have been

conducted from the 1970s to the present to directly measure and indirectly estimate

the mean target strength of several species of fish and various marine organisms at the

higher frequencies that conventional fisheries sonars typically operate (38-400kHz).

A comprehensive summary of such published experimental methods and predictive,

data-calibrated TS models is detailed in Chapter 6 of [89].

With the advent of dual-beam and split-beam conventional echosounder systems,

it is now possible to make in-situ measurements of the individual target strength of

fish in their natural environment [89]. The empirical TS values are used by marine

fisheries to scale the measures of backscattered intensity obtained during yearly sur-

veys to estimate the abundance of commercially viable species sampled during yearly

hydroacoustic surveys [89]. However, these measurements made with conventional

echosounders can only sample small ocean volumes at any one instant. The small

areal coverage of these systems, limited to a swath along the ship transect (typically

10m) and the slow moving speed of the ship (typically 5-10 knots), make it difficult

to track and detect large shoaling populations within the continental-shelf scale areas



they survey. When making in-situ measurements of TS, it is also often difficult to

isolate and track single scatterers within densely packed fish populations. Most of the

measurements are made during the night when fish are known to disperse through-

out the water column. Consequently, it could be problematic to sample scatterers

representative of the population when there is a heterogeneous mix of species within

populations.

The direct measures of individual TS are used in conjunction with capture trawl

data to develop and verify theoretical models for predicting individual target strengths

[89, 69, 57]. These models are based on the species-dependent, physiological properties

of fish and have been calibrated with data obtained at the high operating frequencies

of that conventional echosounders.

Inspite of extensive measures at high frequencies (38-400 kHz), there are few

instances of published experimental measures or estimates of TS in the low frequency

range (<2kHz). In 1996, Nero and Huster conducted an experiment in the Gulf

of Alaska using explosive sources and a horizontal line array to image what was

believed to be Pacific Salmon at ranges of 4 km [76]. Experimental data from nine

frequency bands between 70 to 1000 Hz were used estimate the target strength of an

individual fish and compared with established swimbladder models [57]. During this

sea-trial, there was no independent confirmation of the scatterers or calibration of the

individual target strength with a simultaneously operated local system. In 2001, Nero

and Jech used two independent sonar platforms, a mid-frequency, broadband towed

sonar operating in the 1.5-5kHz band and a local high frequency echosounder (12, 38,

and 120 Hz), to investigate swim-bladder resonance for pre-spawning Atlantic Herring

in the Gulf of Maine [85]. Backscattering data from both systems were combined with

in-situ pelagic trawl sampling and compared to Love's length-TS relationship and a

low frequency swimbladder model [57, 58].

During April-May of 2003, an OAWRS system operating in the 390-1400 Hz band

was used to instantaneously image and continuously monitor fish populations on the

New Jersey Continental Shelf approximately 200 km south of Long Island, NY [66].

A conventional echosounder was employed to simultaneously ground-truth significant



fish populations surveyed by OAWRS and to provide local measures of areal density

within large shoaling regions and scattered schools.

Since OAWRS is able to insonify areas spanning thousands of square kilometers

with minute-to-minute updates, it provides rapid synoptic snapshots of fish 2D spatial

distribution, population dynamics and behavior that can be used to efficiently guide

the highly-localized survey efforts of a simultaneously operated CFFS system. Hun-

dreds of simultaneous local measurements of areal fish density by CFFS within the

OAWRS-imaged populationd were used in conjunction with the long-range acoustic

intensity data to empirically estimate the mean TS at the three OAWRS operating

frequency bands: 390-440 Hz, 875-975 Hz, and 1250-400 Hz.

In the following chapter, we formulate the TS estimation from the incoherent scat-

tering from a spatial distribution of fish and follow with a discussion of the measured

and modelled parameters that are necessary for the TS estimation. Then, a classifica-

tion scheme of different CFFS-OAWRS sampling scenarios is discussed based on the

spatial morphology of the co-incidentally sampled fish populations. Finally, we assess

the consistency and discuss the accuracy of the estimated TS using specific examples

of real-world sampling scenarios from MAE03 for the three OAWRS operating bands.

3.2 Incoherent scattering from a spatial distribu-

tion of fish

The incoherent scattered field from a spatial distribution of small, random inhomo-

geneities, such as fish, can be modelled using a sonar equation approach. Analogous

to the radar equation, the sonar equation is the most widely used analytical tool in

applications of active sonar and primarily employed to estimate a target's scattering

properties and the limiting range of detection [95, 12, 51, 9, 54, 17] Targets that obey

the sonar equation in a waveguide include all acoustically compact scatterers whose

physical extents are much smaller than the acoustic wavelength. The use of the sonar

equation implicitly assumes that (i) the propagation and scattering effects are inde-



pendent and completely factorable from each other and (ii) that a linear combination

of incoherent quantities (target strength, transmission loss, and source level) can ap-

proximately account for the sound pressure level at the receiver.It is important to

emphasize that the sonar equation is only valid when the propagation and scattering

dependencies are approximately separable [82, 63, 64, 95, 12]. For extended targets,

in an ocean-waveguide, a full-field scattering model such as those described in Refs.

[82, 63, 64, 83] are necessary to accurately describe the scattered field.

3.2.1 The Scattered Field from a Random Distribution of

Fish within an OAWRS Resolution Footprint

The scattered field received within an OAWRS resolution footprint is random due

to both waveguide fluctuations [60, 41, 10] and randomness in fish distributions,

and scattering properties [83]. A statistical approach is then necessary to analyze the

OAWRS returns. Note, Ratilal and Makris formally derivethe full-field, 3-D scattering

from a random distribution of scatterers within a differential volume in Ref. [64, 83].

Let us first define a coordinate system where the origin is placed at source, the

coordinates of the source to be defined by ro = (0, 0), the receiver coordinates by

r = (x, y), and the coordinates of the centroid of the distribution of scatterers by

rt = (xt, yt), as shown in the schematic in Fig. 3-1. Following directly from Appendix

2 in Ref. [83] and assuming propogation loss does not vary significantly over the

fish layer, we can write the expected square magnitude of the field scattered from

a distribution of fish within an OAWRS resolution footprint centered at horizontal

location, rt, as:

( Is(rjro, f) 2= Q(f)12 (47r) 4 (NA k--- ) ( G(rojrt, f) 2 G(rt r,f) 2 )dAt
k At

(3.1)

since the mean field will be negligible and scattering from the fish group will be

incoherent [64]. In Eq. 3.1, Q(f) is the normalized source spectrum at frequency f,



G is the Green function describing the waveguide propagation to and from rt,and NA

is the number of fish per unit area within the OAWRS resolution footprint.
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Figure 3-1: A schematic of the 2D, top-down geometry used to model the scattering
from a random distribution of fish with an OAWRS resolution footprint.

3.2.2 Generating OAWRS 2D Areal Scattering Strength Maps

The scattering strength is the logrithmic quantity that describes the scattering den-

sity at a particular operating frequency. As discussed in Chap. 2, the CFFS system

directly measures the volumetric scattering strength at 38 kHz in range and depth

along the line transect. The CFFS areal scattering strength can be computed by inte-

grating the volumetric scattering strength over depth for each measurement location

along the line transect.

For an OAWRS system, the areal scattering strength within an OAWRS resolution

footprint can be expressed by from the logrithimic form of the sonar equation in Eq.

3.1, as



SPL = SL - TLA + TS + 10 loglo(NA)

where SPL is the received sound pressure level at the receiver, SL is the OAWRS

source power, TLA is the two-way transmission loss to rt convolved with the beampat-

tern of the OAWRS receiver array, TS is the target strength of an individual fish at a

particular frequency, and NA is the fish number density within an OAWRS resolution

footprint. The OAWRS source power is described by

SL = 10 loglo( Q(f) 2 df) (3.3)

where Q(f) is the normalized source spectrum for a particular OAWRS operating

frequency band. The term TLA is written as

TLA(f) = 10loglo((47)4j ( G(ro rt, f)12 G(rt r, f) 2 )dAt) (3.4)

For the New Jersey Continental Shelf environment, we find that the depth-averaged

transmission loss computed at the center frequency of each OAWRS operating band is

a good approximation of the broadband transmission loss, as described in Appendix

A. Finally, the target strength, TS of an individual fish at a particular frequency, f

is given by

(|S(f)2)TS(f) = 10 loglo( k2 ) (3.5)

In Eq. 3.2, TS is the target strength for the mean scatter function of an individual

fish at the OAWRS operating frequency. From 3.2, we identify the quantity, SS, to

be the scattering strength for the OAWRS resolution footprint.

SS = TS + 10 loglo(NA) (3.6)

(3.2)



In order to generate the instantaneous OAWRS areal scattering strength maps for

each OAWRS frequency band, we compensate the measured OAWRS acoustic inten-

sity imagery for the two-way transmission loss, the spatially-varying footprint of the

OAWRS system and OAWRS source power. The intermediate steps to generate the

OAWRS scattering strength maps are illustrated in Fig. 3-2 (A-E). The sound pres-

sure level is directly measured by the OAWRS system. The transmission loss from

the source and receiver were computed numerically using the parabolic equation, a

standard method for modelling the Green's function in a range-dependent ocean envi-

ronment. Known environmental and OAWRS system parameters, including measured

sound speed profiles, high-resolution bathymetry, source position, receiver position,

receiver heading, frequency, and array dimensions, were used in the propagation mod-

elling. As noted in Ref. [32], the 2003 OAWRS measurements of the mean acoustic

intensity after one-way transmission from the source to receiver, as well as two-way

returns from the seafloor, show no sign of modal interference structure (i.e. peaks

and nulls from coherent interference). Rather a uniform decay with range was ob-

served, indicating a lack of modal interference, which is typically associated with a

highly predictable and uniformly mixed acoustic structure over depth. The uniformly

mixed acoustic structure over depth makes it possible to approximate the two-way

propagation with the depth-averaged transmission loss at the center frequency of the

OAWRS operating band to within 1 dB error. The OAWRS source level for all three

operating bands were calibrated using data from a desensitized phone on the receiver

array. Further discussion of the procedure for generating the OAWRS 2D scattering

strength maps can be found in Appendix A.

3.3 OAWRS TS Estimation

The OAWRS target strength empirically estimated for a representative individual fish

at various OAWRS operating frequencies from data measured by two independent

platforms with different spatial and temporal resolutions.

In order to estimate for the target strength at the OAWRS operating frequencies,



we need to equate the along-transect areal number density measured by CFFS and

the areal number density at the same time-space location within the OAWRS 2D

imagery. In order to avoid any spurious estimation of the OAWRS target strength

in regions absent of fish or insignificant fish populations, we need to first identify

time-space locations where both CFFS and OAWRS simultaneously co-register fish

populations, as shown in Fig. 3-3.

Fish populations observed by CFFS are distinctly identified in corresponding

CFFS echograms as continuous, consolidated groups with trace lengths, or along-

transect extents, on the order of tens of meters to a few kilometers. These fish

groupings are commonly found to layers ranging from 5 to 35 m thick, roughly 5 to

10 meters above the ocean bottom. In a few instances, fish layers of 10-20 meters

thick were also observed suspended in the middle of the water column.

Within consolidated fish groupings, there is often at least an order of magnitude

difference in volumetric density between the diffuse background layer and significant

fish populations observed by CFFS. The diffuse background level observed by CFFS

is often made up of patchy, very low scattering volume densities (< 0.001fish/m2),

which are typically associated with plankton clouds, euphasids, and single fish that

are sparsely distributed in the water column. The continuous fish populations in the

CFFS echograms are found have corresponding areal densities greater than roughly

0.2 fish/m 2, which is consistent with the shoaling density established in Ref. [32].

Following from the shoaling density established in Ref. [32], we choose a critical

density threshold of NAfish >= 0.2fish/m 2 to segment continuous CFFS-measured

populations for the OAWRS TS estimation.

Once the segments of interest are are identified for the estimation, we can procede

by equating the along-transect areal number density measured by CFFS within a

particular segment to the corresponding areal number density within the OAWRS 2D

imagery. Reviewing from Chap. 2,the areal scattering strength for the CFFS system

can be written as,

SSc = TSc + 10 loglo(NAc) (3.7)



where TSc is the expected target strength at the CFFS operating frequency and

nAc is the areal number density within the CFFS sampled populations. The CFFS

scattering strength and target strength are quantities directly measured by the CFFS

system. A similar expression for the OAWRS scattering strength is given by Eq. 3.6.

The OAWRS scattering strength over the entire OAWRS survey area is computed as

discussed previously.

By equating the areal number density, NA = NAc, the expression for OAWRS TS

can be written as,

TS = SS - SSc + TSc. (3.8)

In Fig. 3-3 we observe a large shoaling population simultaneously observed by

OAWRS and CFFS. Also highlighted in Fig. 3-3, is the segmented region of interest

used for the OAWRS TS estimation (deliminated by the black contour in the OAWRS

scattering strength map and the CFFS echogram). Although OAWRS is able to image

wide areas within a 50s-interval, the corresponding CFFS measurements during the

same time interval are few and confined to a small subset of the OAWRS survey area

(red circle in Fig. 3-3). In Eq. 3.8, SS and SSc are the OAWRS and CFFS areal scat-

tering strength time series vectors that correspond to the CFFS transect within the

segment of interest. These time series are constructed by concatenating consecutive

CFFS scattering strength measurements and the corresponding OAWRS scattering

strength measures within the segment of interest, as demonstrated by Figure 3-4 and

(C). The OAWRS TS is estimated within each segment of interest only at time-space

locations where CFFS measures fish densities above NAfish = 0.2 fish/m 2 . These

time-space locations are highlighted in color for the the CFFS scattering strength

(red), OAWRS scattering strength (blue), and OAWRS target strength (green) time

series in Fig. 3-4.



3.4 Classification Scheme for OAWRS TS Estima-

tion

When combining data from independent sonar platforms to assess fish population, the

differences in temporal and spatial sampling capabilities need to be considered when

calibrating one system with the other(s). During MAE03, the bi-static OAWRS sys-

tem was able to imaging an area spanning roughly 3600 km2 , while the CFFS system

was only able survey an area spanning roughly 2000 m 2 in the same OAWRS 50s trans-

mission interval. This corresponds to a survey area less than a hundred-thousandth

of a percent than that of OAWRS. Due to the contrast in spatial resolution, it is

difficult to ensure that both systems simultaneously sample statistically-similar, ef-

fectively stationary fish populations.

The OAWRS TS estimation is accurate for sampling scenarios where both systems

sample statistically stationary populations. This is an implicit assumption made when

equating the number density measured by CFFS to the number density contained

within the OAWRS areal resolution footprint, NAc = NA. If the fish populations

are not statistically stationary within either system's resolution window, corrections

must be made.

During MAE03, simultaneous measurements from both the conventional and OAWRS

systems show excellent co-registration of extended shoaling populations and small

scattered schools for identical time-space points along the conventional line transect.

Once the segments of interest are identified and the OAWRS TS is estimated by equat-

ing the along-transect areal number density measured by CFFS within a particular

segment as discussed previously, we can proceed to categorize each sampling scenario

into stationary and non-stationary cases with respect to the type of fish grouping

observed, such as within a shoaling region or within small, scattered schools. The

classification scheme is summarized below.

* Statistically Stationary Populations within an OAWRS Shoaling Re-

gion



Illustrated in Fig.3-6, is the case where both OAWRS and CFFS observe ex-

tended, statistically stationary populations within a large shoaling region. To

reduce the variance of the estimated OAWRS TS within Case 1 segments, the

estimated OAWRS TS time series is averaged over independent samples. For

a stationary process, the variance is reduced in inverse proportion to the the

number of independent samples averaged over [60, 45]. For the OAWRS TS es-

timation, an independent sample is defined by the number of individual points

that comprise one temporal coherence length within the OAWRS TS time se-

ries. The coherence length per segment is found by taking the auto-correlation

of the longest continuous section of the estimated OAWRS TS time series and

computing the number of singular estimation points contained within one e-

folding length of the auto-correlation function. For example, if a segment has

a standard deviation of 5 dB and a temporal coherence length of roughly 4

estimation points, 25 independent samples or 100 individual estimation points

are necessary to reduce the segment standard deviation to 1 dB, following Ref.

[60].

The extended nature of the CFFS-sampled populations in Case 1 scenarios af-

ford hundreds of continuous ground-truth sample points which allows for the

use of stationary averaging to minimize the variance of the OAWRS TS esti-

mate. This makes Case 1 scenarios optimal for OAWRS TS estimation. When

available, the estimated OAWRS TS from Case 1 scenarios should be used as a

baseline for comparing TS estimates obtained from other sampling scenarios.

* Statistically Non-Stationary Populations within an OAWRS Shoaling

Region

The second case corresponds to non-stationary populations contained within

a large shoaling region. For such scenarios, CFFS typically observes discrete

non-stationary populations extending roughly tens to hundreds of meters in

along-transect extent contained within alarge, continuous OAWRS shoaling re-

gion. Variance of the OAWRS TS estimate remain high within these regions



since smaller sample sizes prohibit the use of stationary averaging to reduce the

variability in OAWRS TS estimate. Three sub-cases of Case 2 sampling are

illustrated in Figs. 3-7A-C. In Case 2A, CFFS samples low density regions of

the shoal. In Case 2B, CFFS cuts through discrete high density regions within

the shoal. In Case 3, CFFS samples in and out of the periphery region of a

large shoal.

* Statistically Non-Stationary Populations within Small Scattered Groups

The last case in the classification scheme corresponds to discrete, non-stationary

scattered schooling populations that are observed by both CFFS and OAWRS,

shown in Figure 3-7D. Similar to Case 2 sampling, variance of the OAWRS TS

estimate remain high within these regions since smaller sample sizes prohibit the

use of stationary averaging to reduce the variability in OAWRS TS estimate.

3.5 Accuracy of OAWRS TS Estimation

The optimal sampling scenario is when OAWRS and CFFS sample large populations

that are statistically stationary and identically distributed as in Case 1, where no

correction for the areal mismatch between OAWRS and CFFS resolution footprints

is necessary in OAWRS TS estimation. For Case 2 and Case 3 scenarios, the areal

resolution mismatch could lead to biases resulting in either an overestimation or an

underestimation of the OAWRS TS.

Overestimation of OAWRS TS can arise in Case 2 and Case 3 scenarios when the

effective number density averaged over the OAWRS areal footprint is much greater

than that measured locally by the CFFS system, or NA > NAc, as in Fig. 3-9.

Overestimation of TS will yield an underestimation of the population contribution

if these TS values are extrapolated to other regions where OAWRS data is available

but CFFS data is not.
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Optimal OAWRS TS Estimation: Statistically Stationary and Identically Distributed Fish
Populations within Overlapping OAWRS and CFFS resolution Windows
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Figure 3-8: The optimal CFFS-OAWRS sampling scenario occurs when CFFS and
OAWRS simultaneously sample statistically stationary, identically-distributed fish
populations and results in most accurate estimate of OAWRS TS. This typically
occurs during Case 1 sampling scenarios.
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An underestimation of OAWRS TS often arises when the fish populations sampled

by the CFFS system do not fully occupy the corresponding OAWRS areal resolution

cell. For such sampling scenarios, the CFFS-sampled population density is greater

than OAWRS population density density results. Scenarios leading to an underesti-

mation of OAWRS TS are illustrated in Fig. 3-9. For populations measured at the

boundary of the large shoals (Case 2C) and small, scattered schools (Case 3), where

the corresponding OAWRS footprints are expected to be much larger than the actual

area occupied by the fish population, an order of magnitude overestimation of areal

fish population density can occur. For such sampling scenarios, it is necessary to

apply corrections as described Appendix D.

Since these corrections are highly dependent on the spatially-varying OAWRS

footprint, CFFS sampling geometry, and the along transect extent of the CFFS-

measured population, it is difficult to apply a universal correction to the data. These

corrections can be applied on a case-by-case basis, but are most helpful when trying

to set lower bounds for the expected OAWRS TS and gauging consistency with the

baseline TS established by Case 1 scenarios.

3.6 Results

During MAE03, OAWRS linear frequency modulated signals of is duration were

transmitted for three different frequency bands spanning roughly 400 to 1400 Hz

were transmitted. The 390-440 Hz, or WX1, band was used as the primary waveform

throughout the duration of the 2003 experiment. It was transmitted on 13 of the 15

experimental days. Most of the OAWRS-CFFS time-space coregistrations of fish were

measured using this frequency band were from Site 2. Simultaneous measurements

by OAWRS and CFFS from 4 experimental days (May 7, 8, 14 and May 15) at Site

2 were used to estimate OAWRS TS at 415 Hz.

In addition to the primary waveform, OAWRS also simultaneously transmitted

two waveforms in the 875-975 Hz (WMA) and 1250-1400 Hz (WMB) band on 5

experimental days (April 29; May 4, 9,14 and 15). OAWRS TS estimation was done



for these higher frequency bands on two days, May 9 and May 15, at Site 2 where

CFFS co-registered significant fish populations within the OAWRS imagery.

In this section, OAWRS TS estimation for the 2003 experiment are summarized.

Here, we present the analysis of the OAWRS target strength estimation data at

415 Hz for Case 1 scenarios. Detailed analyses of the other cases from MAEO03 can

be found in Appendix B. In Appendix B, we show the (i) OAWRS 2D scattering

strength maps to highlight the horizontal morphology of the segment populations,

(ii) corresponding range-depth profiles of the volumetric fish density measured by

CFFS along the segment transect, and (iii) time series of CFFS Scattering Strength,

OAWRS Scattering Strength, and the estimated OAWRS TS. Tables summarizing

the OAWRS resolution parameters, the CFFS characterization of the fish populations

and the means and standard deviations of the OAWRS Estimation variables for each

segment are presented in Appendix B and C as well.

During MAE03, Case 1 sampling scenarios typically occur when both the OAWRS

and CFFS observe groupings that continuously extend over several hundred meters

to a few kilometers within a contiguous OAWRS shoaling region. For such cases, the

spatial continuity of the populations within the CFFS sampled segment affords tens to

hundreds of identical time-space co-registration points for the OAWRS TS estimation.

These large sample sizes enable variance reduction by stationary averaging of OAWRS

TS.

Very large fish shoals, spanning several kilometers were imaged by OAWRS on

May 14 and May 15. CFFS was able to make multiple transects through these large,

contiguous populations with the guidance from OAWRS imagery to produce hundreds

of continuous time-space co-registration points for the OAWRS TS estimation. The

OAWRS TS estimates for 6 specific examples are plotted in Fig. 3-10 and summarized

in Table 3.1, where details of variance reduction are found.

The expected OAWRS TS, found by a global average over all estimation points

contained within each segment, is computed to be -40 dB re 1m2 at the 415 Hz. Prior

to stationary averaging, the standard deviation of the six segments range between

roughly 1 to 5 dB. Stationary averaging is implemented in order to further reduce
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the variance in each segment. For all segments, the standard deviation is reduced to

roughly 1 dB or less.



Example Day Track Segment Time Number of Coherence Independent < TSo > aTSo aOTS
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m 2  (before (after
Points) Cells) averaging) averaging)

1 14-May 252-1 H 12:17 343 4 85 -39.7 4.1 0.4
2 14-May 251-2 C 14:03 416 7 59 -40.1 4.5 0.6
3 15-May 252-2 A 10:08 24 2 12 -40.3 1.5 0.4
4 15-May 252-2 Q 11:19 12 2 6 -40.3 1.2 0.5
5 15-May 254-1 E 12:20 10 4 2 -39.8 1.6 1.1
6 15-May 254-1 G 13:19 35 2 17 39.8 1.8 0.4

Table 3.1: Table summarizing the estimated OAWRS TS and standard deviation, as well as the standard deviation per segment
after applying stationary averaging over independent coherent cells. Stationary averaging can reduced the sample standard
deviation by the square root of the number of samples of independent samples or coherence cells. The number of independent
coherent cells per segment is calculated by dividing the number of time-space measurements (column 5) by the coherence length

S of the OAWRS TS time series (column 9). For most examples, the standard deviation is reduced to less than 1 dB after
stationary averaging.



The horizontal shoal morphology, as imaged by the OAWRS system, for each of

the 6 segments described in Table 3-1 is shown in Figs. 3-11to 3-13. These very large

shoals instantaneously imaged by OAWRS can extend tens of kilometers in range

and cross-range extent. It takes the CFFS system many minutes to traverse the

segment,so the segment transect (rectangular region) is shown on a representative

OAWRS scattering strength image. The CFFS range-depth profile of volumetric fish

density measured along corresponding segment transect is also shown for comparison.

The fish populations within each Case 1 segment typically extend in 10-30m depth

layers off the ocean bottom and exhibit statistical stationarity of the fish populations

over hundreds of meters to kilometer scales. This stationarity is consistent with that

observed in the corresponding OAWRS imagery.

By examining the OAWRS scattering strength images and the corresponding

OAWRS TS time series in Figs. 3-11-3-13, examples, we observe consistency be-

tween mean OAWRS TS on the same day through the same OAWRS shoaling region.

For instance, in Example 1 and 2 (Segments H and C in Fig. 3-11 respectively) CFFS

makes multiple transects through the same shoal imaged by OAWRS, and exhibit one

of the most favorable sampling scenarios for estimating OAWRS TS. These segments

also comprise two independent samplings of the same shoal showing high statistical

stationarity. More specifically, these segments are separated by a roughly two hour

interval and follow non-overlapping spatial trajectories, yet we find statistical sta-

tionarity in the corresponding range-depth profile of volumetric density measured by

CFFS, as well as in the time series of CFFS scattering strength, OAWRS scattering

strength, and OAWRS estimated TS. This also means that the estimated OAWRS

TS time series have effectively the same means and standard deviations. This large

shoal imaged on May 14 extends over tens of OAWRS resolution cells in range and

cross-range such that the segments sampled by CFFS are well contained within the

OAWRS shoaling region. The large spatial area occupied by the entire shoal as shown

by the OAWRS 2D scattering maps, the consistency within the corresponding time

series, and the similarity of volumetric population distribution as measured by CFFS

suggest that those populations sampled in Example 1 and Example 2 are similarly



distributed fish species comprising the same shoal.

On May 15, a large consolidated shoal was imaged by OAWRS in roughly the

same geographic vicinity of that on the previous day. During the second and third

track on May 15 (roughly 10:00-12:30 EDT), CFFS zig-zags through this large shoal.

Three independent samplings of this particular shoal were made at approximately

10:08 EDT, 11:20 EDT, and 12:21 EDT through non-overlapping CFFS trajectories,

as shown in Example 3 and 4 of Fig. 3-12 and Example 5 of Fig. 3-13. As on May 14,

we find statistical stationarity in the corresponding range-depth profile of volumetric

density measured by CFFS, as well as in the time series of CFFS scattering strength,

OAWRS scattering strength, and OAWRS estimated TS, for all three independent

samplings of the large shoal. Later in the day, at approximately 13:20 EDT, CFFS

transects through a northern shoal roughly 6km to the east of the OAWRS source,

as shown in Example 6 of Fig. 3-13 (Segment G). From the corresponding CFFS

echogram of this segment, we observe a statistical stationarity of the fish population

over hundreds of meters and roughly uniformly distribution of volumetric density over

depth in corresponding CFFS echogram. This stationarity is also consistent with that

observed in the corresponding in the time series of CFFS scattering strength, OAWRS

scattering strength, and OAWRS estimated TS.
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Figure 3-11: Site 2, Casel, May 14, Example segments 1 and 2.The OAWRS TS is
estimated in locations where CFFS measures fish densities greater than 0.2fish/m 2,
highlighted in color for each time series. The CFFS segment (rectangular contour) is
overlain onto a representative OAWRS scattering strength image. The range-depth
profiles of CFFS volumetric density for each segment is also shown.
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Case 1, Example 3
May 15, Track 252-2
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Figure 3-12: Site 2, Casel, May 15 Track 252-1, Example segments 3 and 4. The

OAWRS TS is estimated in locations where CFFS measures fish densities greater than
0.2fish/m 2 , highlighted in color for each time series. The CFFS segment (rectangular
contour) is overlain onto a representative OAWRS scattering strength image. The
range-depth profiles of CFFS volumetric density for each segment is also shown.
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Case 1, Example 5
May 15, Track 254-1, Segment E
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During MAE 03, there were 28 segments from four experiment days at Site 2

in which CFFS observed discrete, clumpy fish populations extending rougly tens of

meters through low density, patchy regions of large, continuous OAWRS shoals (Case

2A). These OAWRS shoaling regions exhibit 2D horizontal contiguity over kilometer

scales as previously observed in the Case 1 examples. The OAWRS estimation for the

Case 2A examples are plotted and summarized in Fig. 3-10 (green data points). The

mean estimated OAWRS target strength per segment are consistently lower than

the calculated Case 1 global mean TS (-40 dB re 1m2 at 415 Hz). The estimated

OAWRS TS per segment are combined to compute a global mean for the Case 2A

segments . The global mean for the Case 2A segments is found to be roughly -43 dB

re 1m2 at the center frequency of 415 Hz. Since the fish groupings measured by CFFS

in Case 2A sampling scenarios are continuous over short distances (tens of meters),

there are a lower number of identical time-space co-registration points to compute

the OAWRS TS estimation. This low number of estimation points also yields a lower

number of independent coherent cells within each segment. Most of the segments

contain 1-2 independent coherent cells, which are insufficient to significantly reduce

the variability per segment. For these segments, the standard deviation remains

before (gray envelope) and after stationary averaging (black error bars) per segment

in Fig. 3-10 (green data points).

Case 2B sampling scenarios occur when CFFS transects through dense populations

centers of large, contiguous shoals. For the Case 2B examples, the global mean

OAWRS TS is found to be roughly -36 dB re im 2. The mean estimated OAWRS TS

per segment is shown to be consistently between 2-4 dB higher than the Case 1 mean

of -40 dB in Fig. 3-10 (red data points). This is likely an overestimate in TS due to

the scenario shown in Fig.3-9A. As with the Case 2A sampling scenarios, the limited

number of continuous time-space corregistration points lead to an insufficient number

of independent coherent cells to reduce the variability within each segment, and so

the standard deviation per segment remained relatively unchanged after stationary

averaging.

For large, contiguous OAWRS shoals, the last case examined corresponds to sam-



pling scenarios where CFFS traverses through the boundary or periphery region of

larger, kilometer scale shoals, or Case 2C. Like the other Case 2 examples, CFFS

measures small, singular groupings or a series of discrete clumps tens to a hundred

meters in extent, resting in 5-10m layers off the ocean bottom. The mean estimated

OAWRS TS per individual segments are typically between 5 to 15 dB lower than

the Case 1 mean of -40 dB. When combining the estimated OAWRS TS values per

segment, the global mean for the Case 2C examples is roughly -47 dB re lm 2 (gray

dashed line in Fig. 3-10, blue diamonds), which is likely an underestimate of the kind

shown in Fig.3-9B.

Finally, the last case examined corresponds to the sampling scenario where both

OAWRS and CFFS simultaneously measure small, scattered populations or schools,

or Case 3. These populations typically are observed as discrete, clumps of fish with

along-transect range extens of tens of meters in the corresponding CFFS range-depth

profiles. The small Case 3 populations can occur as compact, scattered schools or

as satellite schooling populations comprising the background population surrounding

larger shoals. The mean estimated OAWRS TS per individual segments for Case 3

scenarios is typically between 6-15dB lower than the Case 1 mean of -40 dB. When

combining the estimated OAWRS TS values per segment, the global mean for the

Case 3 examples is roughly -48 dB re lm2 (gray dashed line in Fig. 3-10, orange

diamond data points). This is likely another instance of an underestimate of the kind

described in Fig.3-9B.

When the fish do not fully occupy the OAWRS areal footprint, vacancies within

OAWRS footprint become important and can bias the OAWRS TS estimation by

lowering the effective population density. This is due to the areal mismatch between

both CFFS and OAWRS. A correction factor can be determined as the ratio of the

expected area occupied by the CFFS-sampled fish population to the area occupied

by the corresponding OAWRS resolution footprints. Careful analysis of CFFS and

OAWRS imagery is necessary to determine this correction factor. After applying the

correction factor, the corrected mean for the Case 2C and Case 3 scenarios are within

less than 1 dB of the calibrated mean found in the Case 1 scenarios. The correction



factors for each Case 2C and Case 3 scenarios are described by the accompanying

tables in Appendix B.
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instance where CFFS traverses through the diffuse, patchy region of a shoal, 6 in-

stances where CFFS traverses through the periphery of a large shoal, and 3 instances

where CFFS traverses through small, scattered fish schools. On May 15, there were

only 3 instances in which CFFS traverses through small scattered schools. The results

at these higher frequencies are presented in Fig. 3-14.

From Fig. 3-15, we note that the optimal scenario for estimating the OAWRS

target strength corresponds to the Case 1 scenario. When we include all the data at

415Hz for each of the sampling scenarios, the mean OAWRS target strength is -39.7

dB re im with a standard deviation of 5 dB. This includes the corrected data for

the Case 2C and Case 3 scenarios. The variability in the estimated OAWRS target

strength can be reduced significantly when we restrict the analysis to Case 1 scenarios.

To generate the red histogram in Fig. 3-15, we combine data from all Case 1 scenarios

in Figs. 3-11 through 3-13. We apply stationary averaging over one coherent length

per segment, as described in Table 3-1. This yields a total of roughly 180 independent

Case 1 samples. The resulting histogram of the estimates per independent Case 1

sample is shown by the black histogram in Fig. 3-15. The mean after stationary

averaging of the Case 1 scenarios is similar to the mean computed with all of the 415

Hz data. However, the standard deviation is reduced to 0.3 dB or less than a 10%

error in estimated OAWRS TS. At the higher frequencies, the variability remains high

due to insufficient samples to employ stationary averaging. By including data from

non-stationary sampling scenarios, we introduce additional noise and variability into

the OAWRS target strength estimation. For future experiments, sampling scenarios

at-sea should be designed to concentrate on collecting data from multiple transects

through large shoaling regions. Errors in estimated OAWRS target strength are

smallest within large extended, stationary shoaling regions simultaneously sampled

by CFFS and OAWRS.
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Chapter 4

Fish Population and Behavior

Revealed by Instantaneous

Continental-Shelf Scale Imaging

We will now review work from N.C.Makris, P. Ratilal, D. Symonds, S. Jagannathan,

S. Lee, R. Nero, "Fish population and behavior revealed by instantaneous continental-

shelf scale imaging," Science, Volume 311, 660-663 (February 3,2006). As mentioned

previously, continental shelf environments have been monitored with highly localized

line-transect methods from slow-moving research vessels. These methods significantly

undersample fish populations in time and space, leaving an incomplete and ambiguous

record of abundance and behavior. We have shown previously in Chap.2 and Chap.3,

that fish populations in continental shelf environments can be instantaneously imaged

over thousands of square kilometers and continuously monitored by a remote sensing

technique in which the ocean acts as an acoustic waveguide. Once we estimate the

OAWRS target strength, we can directly estimate the OAWRS 2D areal population

density distribution (Fig. 4-1) from the OAWRS scattering strength maps.

For an OAWRS 2D areal density image, the shoals are automatically segmented

using a density threshold of 0.2 fish/m 2, of the fish shoaling density. Once the shoals

are segmented, the area can be numerically computed by the area bounded by the

shoal contours and the population can be determined by integrating the density over



the shoal area. Additionally, the center of density can be computed per ping and the

velocity of the centroid can be tracked as a function of time. The relative speed is

computed by tracking the difference in speed between two or more shoal centroids.

Using the OAWRS 2D areal density maps and such morphological and dynamics

information, we will show how this novel remote-sensing technique can be used to

reveal information about the instantaneous horizontal structural characteristics and

behavior of very large fish shoals, containing tens of millions of fish and stretching for

many kilometers.

The synoptic spatial sampling and fine temporal resolution of OAWRS makes

it possible to continuously monitor fish population dynamics, behavior, and abun-

dance, with minute-to-minute updates over thousands of square kilometers, produc-

ing records without aliasing [88, 33] in time and space. Key observations by OAWRS

in 2003 include (i) instantaneous horizontal structural characteristics, (ii) temporal

evolution, and (iii) the propagation of information in very large fish shoals, containing

tens of millions of fish and extending for many kilometers. All of these observations

were made from distances that were typically greater than 10 km from the shoal

boundaries and with sound that was at least three orders of magnitude less intense

than conventional fish-finding sonar.



Areal Population Density Inversion

dB Deph Averaged One Way
mri TL roum Receiver

u-55

M Bo Way attWeighted by Bue
m-W" Beem Patern crte Ar -7S

I
75

7 0

i "um (ln)
SPLM. y 14, 83325 EDT

LF: 396-4M Hz

70I75
65

owsO.u n

-80

SdB SLrllrng SrngthRe laP.

P

170I5
dB

1.40

PO 5

5I60
0 3 6 9 12

I S
-so

95

100

105

OWRS Fsh DeMty

N. SS+TS

02

.01

o.o1

S.oo01

*SL = 217.8 dB, TS = -40 dB re Im

Areal fish density maps can be generated by scaling the OAWRS Scattering Strength by the calibrated target
strength from an individual fish. The calibrated OAWRS target strength at 415Hz for this example is -40 dB re im.

Depth Averaged Oe Way
Tir=o Source

Figure 4-1:

S65 0 3 5

FzIWW~

mm

--- o . . . . .. ..- - U



Figure 4-2: Two instantaneous areal density images of fish shoals near the continental
shelf edge obtained by ocean acoustic waveguide remote sensing (OAWRS) at (A)
09:32 EDT, 14 May 2003, and (B) 08:38 EDT, 15 May 2003, each acquired within 40
s. nuA is shown in color. The moored source (the white star) is the coordinate origin
in all figures at 39.0563N, 73.0365W. The towed horizontal receiving array (the white
diamond) has 2.6 azimuthal resolution at array broadside. The range resolution is 30
m after averaging. The forward propagation of sound masks imaging inside the gray
ellipse surrounding the source and receiver. The positive vertical axis points north.
Depth contours are indicated by dashed lines. In (A) and (B), the continental shelf
edge begins at roughly the 100-m contour.

Typical realizations of the instantaneous horizontal structure of very large fish

shoals, comprising perhaps the largest massing of animals ever instantaneously imaged

in nature, are shown in A and B of Fig. 4-2. We found population centers of various

size, interconnected by a network of "fish bridges" at various scales. These made

the shoal shown in Fig. 4-2A a contiguous entity that stretched for over 10 km. A

similar situation is seen in the very large southern and smaller northern shoal of Fig.

4-2B. All shoals exhibit large internal vacuoles and hourglass patterns previously

observed only in fish groups that were many orders of magnitude smaller in area

[44, 79, 78] . The shoals are often very sharply bounded on the seaward side by

a specific bathymetric contour of the continental shelf edge, as in Fig. 4-2A. This

geophysical boundary apparently organizes the shoal horizontally as a social entity

and may also be a navigational landmark for distant migrations [84, 56]. Although



we found all large shoals between roughly the 80- to 100-m bathymetric contour, fish

assemblages changed dramatically over time in any given region, as shown in Fig.

4-2 from one morning (A) to the next (B). The overall background population, for

example, increases significantly from Fig. 4-2 A to B, with a dense distribution of very

small groups of fish appearing between the very large southern shoal and the smaller

northern one. Under some circumstances, these may provide the building blocks for

the fish bridges that bind a shoal together. Annual trawl surveys conducted earlier in

the season and historically [87], as well as our visual and behavioral observations at

sea, indicate that Atlantic herring, scup, hake, and black sea bass are likely species

candidates in the large shoals. An detailed analysis of the 2003 annual spring data is

discussed further in the Appendix section of this thesis.
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Figure 4-3: Spatial frequency spectra, based on scores of instantaneous OAWRS
images of VA, for cases where a large shoal is present and only small scattered fish
groups are present. A consistent spectral power law of spatial frequency to the -1.46
is observed

The instantaneous horizontal spatial distribution of fish over wide areas follows a

fractal or power-law spectral process, as quantitatively shown in Fig. 4-3. To generate

the spatial power spectrum, the 2-D Fourier transform of an instantaneous OAWRS

areal fish density image was computed. Squared magnitudes of 2-D transforms of 10

consecutive OAWRS images, over an 8 minute period, were combined by standard

periodigram averaging to obtain an estimate of the 2-D spectrum of areal population

density. This estimated spectrum corresponds to the Fourier transform of the 2-



D autocorrelation function of areal fish population density, normalized so that the

correlation at zero-spatial lag, which is the integral of the 2-D spectrum, is the second

statistical moment of areal population density. Apart from expected asymmetries

arising from variations in the range and cross-range resolution of our imaging system,

the resulting 2-D spectra showed uniform azimuthal dependence in wavenumber which

was repeatable throughout all our observations of the shoals and scattered fish groups

regardless of their orientation with respect to our measurement system. The radial

wavenumber dependence of the spectrum was then estimated by averaging within

a roughly 200 azimuthal wavenumber spread where the resolution of our imaging

system is highest. Two periods were chosen, one at 16:19 EST of May 14 with a very

large shoal present and the other at 21:30 EST of May 9 with only small scattered

groups present. The 2-D spectrum was then multiplied by radial wavenumber and

normalized so that the I-D integral over spatial frequency, or radial wavenumber, of

either curve plotted in Fig. 4-3 yields the mean of the square of areal fish density over

the survey area. The power laws shown were obtained by least squares fits. These

results are very stable. They were repeated 4 times at uniform intervals: on May 14

from 9:34 EST to 17:02 EST, leading a mean power law of -1.55 with a 0.04 standard

deviation, and on May 9, from 17:10 EST to 17:50 EST leading to a mean power law

of -1.46 with a 0.03 standard deviation.

Instantaneous structural similarity then exists at all scales observed, from tens of

meters to tens of kilometers, and suggests that similar underlying behavioral mech-

anisms may be responsible for structures at all scales. This supports the qualitative

argument for a fractal process in [44] but not the disjoint clustering of population

centers that is perhaps implied there. The power law is invariant to the size of the

largest fish group present, and so remains constant if an area contains a very large

shoal or only much smaller scattered groups of fish, as shown in Fig. 4-3. Our ob-

servations that very large shoals are structurally similar to much smaller fish groups

must be a consequence of the power law. Knowledge of this power law now enables

more accurate statistical predictions of the instantaneous spatial distribution of fish

populations over wide areas.
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Figure 4-4: A comparison of OAWRS with conventional fish-finding sonar (CFFS).
(A to D) A sequence of instantaneous OAWRS areal density (fish/m 2) images taken
roughly 10 min apart, starting at 11:59:05 EDT on 14 May 2003, is shown. The
corresponding CFFS transect is overlain in light blue, with the CFFS position for the
given OAWRS image indicated by a circle. The white dashed line is the 100-m depth
contour. (E) Range-depth profile of fish volumetric density (fish/m 3 ) measured by
CFFS along the transect shown in (A) to (D). White bars (in the lower black region
below the sea floor) correspond to typical time-space points a, /, and -y, where both
systems co-register dense fish groups [(A) to (C)]; the gray bar corresponds to point
6 in (D), where neither system registers dense fish groups.
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Simultaneous measurements from both the conventional and the waveguide remote-

sensing systems show excellent agreement in fish population density at identical time-

space points along the conventional line transect (light blue line in Fig. 4-4, A to D),

but only the waveguide technology senses two-dimensional (2D) horizontal structure

and temporal change. Both systems reveal dense populations of fish at time-space

points a, j, and y, and neither system registers fish at 6 beyond the shoal's seaward

edge. The sharp and extensive 2D horizontal boundary of the shoal seen with the

waveguide technology along the shelf edge in Figs. 4-2A and 4-4, A to D, is too

transitory to be inferred from or practically measured with conventional line-transect

methods, even from a series of transects. Nor can the conventional system detect

or recognize the network of interconnecting bridges between population centers that

waveguide technology has shown to be part of the fundamental structure of shoals.

For example, the large but transitory bridge connecting the northern and southern

wings of the shoal in Fig. 4-4, A to D, gives it a classic hourglass pattern, never

previously observed over such a large scale. This is missed by the conventional line-

transect method (Fig. 4-4E), which provides no evidence that fish in the 7 group are

actually well connected to those previously imaged in the f group or occasionally in

the a group as well.
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Figure 4-5: Evolution of a fish shoal from morning to evening from OAWRS imagery and a time series on 14 May 2003. (A
to D) Four instantaneous OAWRS images or snapshots illustrating morning consolidation and afternoon fragmentation of the
shoal. The color bar is the same as in 4-2. Vertical arrows indicate snapshot times. (E) A time series of population within
the area shown in (A) to (D) for nuA within each of the thresholds specified. Gaps in the time series are due to towed-array
turns. (F) Area occupied by a consolidated shoal or its two largest fragments for VA > Ushoal = 0.2fish/rn2 . (G) The internal
coherence area is the area within 1/e of the 2D autocorrelation peak of instantaneous OAWRS fish density within the shoal or
fragment. The centroids of two particular population centers within the shoal are indicated by the circle and the triangle in (A)
to (D). (H) Relative speeds between the centroids of the two population centers shown in (A) to (D), with mean (blue circle)
and standard deviation (bars) shown for each track.
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We noticed a daily pattern in shoal behavior that involved considerable horizontal

migration and thus differed substantially from the day-to-night vertical migrations

previously observed with downward-directed sonar in line transects [1, 7]. The pat-

tern, observed consistently on days where we could monitor large shoals over all

daylight hours, began with the horizontal consolidation of shoals in the morning, typ-

ically organized by a sharp seaward edge extending for kilometers along a bathymetric

contour of the continental shelf edge. Rapid fragmentation and dispersal followed by

mid-afternoon, well before sunset when vertical migration began, as shown in Fig. 4-5,

A to D, between 14:20 and 15:00 eastern daylight time (EDT). Fragmentation pre-

dictably began with faulting at the bridges between population centers. The bridges

were apparently not sufficiently strong to withstand the internal or external pressures

to diverge that acted on the shoal's internal population centers.
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Figure 4-6: Autocorrelation function of the population time series, with red horizon-

tal line indicating the e-folding times (A) and Frequency power spectrum with the

frequency to the -2 dependence for the shoal population time series (blue curve in

Fig. 4-5

To describe this behavior quantitatively, time series of changing fish population

(Fig. 4-5E) were computed at very high sample rates (50-s intervals) from imagery

acquired with the waveguide technology over the hundreds of square kilometers im-

mediately encompassing the shoal. We find that total fish population (gray curve

of Fig. 4-5E) decomposes into the sum of a temporally stable (brown curve of Fig.

4-5E) and a temporally unstable (blue curve of Fig. 4-5E) time series. The same



areal fish density (vA) threshold (0.2 fish/m2) that separates the temporally stable

from the unstable population is also extremely effective in spatially segmenting large

shoals from smaller background groups in our instantaneous wide-area images (Figs.

4-2; 4-4, A to D; and 4-5, A to D). The stable component comprises the widely scat-

tered fish groups that would form the observable background scene in the absence of

a large shoal. The temporally unstable component effectively characterizes the dra-

matically dynamic spatial-temporal fluctuations of the large shoal. We believe that

fluctuations in total population are primarily due to convergences and divergences in

VA values above and below another threshold [minimum detectable fish density (vo) =

0.01 fish/m2] where seafloor scattering mechanisms begin to become important and

mask fish imaging [61, 35, 60, 64, 82] . They may also arise from fish groups entering

and leaving the survey box.

Time series enable us to introduce the concept of an autocorrelation [45] time

scale to quantitatively characterize major temporal fluctuations in shoal population.

This time scale was computed by taking the autocorrelation function of the total

population time series for each track on May 14. The time scale corresponds to the

e-folding length from the peak of the autocorrelation function at zero-time lag. We

find that the autocorrelation time scale ranges between 5 and 10 minutes. Note that

the time scales of major population change are much longer than the OAWRS 50-

second transmission interval; making the OAWRS system capable of capturing such

fluctuations without temporal aliasing.

Shoal population (blue curve in Fig. 4-5E) can fluctuate dramatically in these

short time scales, by 20% or a few million fish. These fluctuations are consistent with

the roughly 1 m/s speed at which fish in a shoal typically swim [48, 34, 24], as seen

from the corresponding areal changes in Fig. 4-5F. The frequency spectrum of shoal

population (Fig. 4-6B) shows no remarkable periodicity, but like the spatial spec-

trum follows a consistent power-law process that now enables quantitative statistical

predictions of temporal behavior over wide areas and short time scales.

Shoal fragmentation and dispersal also occur very rapidly, as shown in Fig. 4-5E,

where total population plummets in a 30-min period beginning at 14:20 EDT. More



than 10 million fish disperse to below the vo threshold or leave the survey box. The

remaining shoal fragments contain less than half the original shoal population. This

and other remotely observed depopulation events were episodic, with peak dispersal

rates reaching up to 0.5 million fish/min. Indeed, very large fish shoals were often

lost from the view of our conventional line-transect survey system but not from the

simultaneous view of our remote-sensing system based on waveguide technology.

Structural similarity can be reexamined in a time-space context by comparing

time series of a shoal's outer area (Fig. 4-5F) to its characteristic internal area of

coherence (Fig. 4-5G), which is the area within which population density is relatively

constant. The coherence area of Fig. 4-5G is found by taking the 2-D fish density

autocorrelation function of a particular shoal or shoal segment and computing the

area bound by the contour within one e-folding length from the peak at zero-lag.This

coherence area is a quantitative way of describing the extent of concentrated centers

within the shoal. It is also the area within which the population density should

not vary significantly and can be used to determine the number independent cells or

populations within a shoal.

The ratio of the shoal's outer area to its internal coherence area gives an estimate

of the number of "degrees of freedom", the independent coherence cells [45, 10, 41,

82, 60] or primary population centers within the shoal or within its largest shoal

fragment. The fact that this ratio remains relatively constant over time even after the

shoal undergoes severe fragmentation and dispersal is further evidence of structural

similarity at all spatial scales, even during such dramatic events, which is consistent

with fish assembly and reassembly models [22]. Fluctuations in the shoal's outer area

tend to span only a small percentage of the total area. This is true for the inner area

only during periods when the shoal is not undergoing fragmentation. Otherwise, the

inner area fluctuates rapidly, reflecting an internal turbulence that probably initiates

fragmentation in shoals.

The waveguide technology has also revealed the internal motion and migration

patterns within very large fish shoals, during time spans ranging from less than 1

min to days, as shown in the imagery sequence of Fig. 4-4, A to D. Fundamental



questions that depend on knowing "the degree of coordination in the movements"

between fish populations that were previously "nearly impossible to detect" [70] can

now be addressed. We show that even when very large shoals are highly consolidated,

densely packed, and structurally similar to small groups of fish, they do not exhibit

synchronized motion over short time scales, as much smaller groups often do [79, 78].

The many interconnected population centers within a very large shoal have centroids

that undergo local positional oscillations in the horizontal, over time scales on the

order of minutes, which have no correlation with each other. This is illustrated by the

image sequence of Fig. 4-4, A to D, where velocity vectors for two centroids within

the very large shoal are effectively uncorrelated in time and space.
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Figure 4-7: Histogram of all relative speeds between shoal centers.
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Figure 4-8: Flow chart of the post-processing analysis for the 2003 survey of the New Jersey Continental Shelf. This flowchart
summarizes the measuring capabilities of the OAWRS and CFFS systems and how the measurements from both systems were
used to estimate fish population and reveal fish behavior over continental-shelf scale areas.



Chapter 5

Conclusion

In this thesis, we reviewed the first demonstration of OAWRS to instantaneously

image and continuously monitor population and behavior of shoaling fish populations

during April- May 2003 off the US Continental Shelf south of Long Island, NY. With

a single transmission, OAWRS is able to survey an area with diameter of roughly 60

km in less than 40 s and 120 km in less than 80 s depending on the ping repetition

rate. This single-ping areal coverage is on the order of a typical US east coast state

such as Connecticut or New Jersey. It is effectively instantaneous because the entire

region is surveyed within a time scale much smaller than the time it takes fish to

traverse a single OAWRS resolution cell.

With proper calibration within statistically stationary populations, OAWRS can

make very accurate population density estimates. For example, over regions where

fish populations are statistically stationary in measured OAWRS scattering strength

and measured CFFS scattering strength, OAWRS 2003 instantaneous population den-

sity estimates had uncertainties of less than 1 dB (or 25%) at each pixel or spatial

resolution cell [32, 33]. These population density estimates depend on the expected

scattering cross section of an individual fish, which is empirically calibrated for using

thousands of local measurements of population density by CFFS. Given stationary

samples, instantaneous abundance estimates should have uncertainties of much less

than 25% by the law of large numbers [42, 32, 33]. This should hold within larger

shoaling regions where OAWRS population density is integrated over tens to hun-



dreds of independent OAWRS resolution cells or samples of a roughly homogenous

or stationary population. Large shoaling regions often make the dominant contribu-

tion to total population and estimation error, but this error becomes easier to model

through the central limit theorem [42, 32, 33].



Appendix A

Materials and Methods for

Generating OAWRS 2D Scattering

Strength Maps

In this section, we detail the procedure for computing the 2D areal maps of two-

way transmission loss and OAWRS scattering strength as shown in the illustrative

example in Fig. 3-2. We briefly discuss the source level calibration used to obtain

daily estimates of the expected intensity for the different OAWRS operating bands,

as well as spatio-temporal averaging of the OAWRS measured acoustic intensity to

further reduce fluctuations in the data for the OAWRS target strength calibration.

for in source power modelled parameters and actual measurement data to obtain the

calibrated OAWRS TS.

A.1 TL Modelling at OAWRS operating frequen-

cies

In this section, we present an illustrative example for modelling the range-dependent,

waveguide Green's funtion in the New Jersey Continental Shelf environment. For

this illustrative example, we describe the environmental and source-receiver geom-



etry parameters that are inputs to the parabolic equation modelling. Additionally,

we show that the one-way transmission loss from the source and to the receiver

can be approximated by the depth-averaged, center-frequency one-way transmission

loss for this particular environment since the measured sound speed structure during

MAE03 did not support significant channeling. For other environments where upper-

water column channeling could be an issue, the choice of depth-averaging layer and

frequency-averaging band can contribute significantly to the accurate modelling of

the transmission loss.

Environmental and OAWRS Geometry Parameters

A number of environmental and OAWRS geometry inputs are necessary to model

the transmission loss. These parameters were either measured simultaneously during

the OAWRS 2003 survey or come from historical measurements. Previous geophys-

ical surveys in the vicinity of the 2003 survey area provide characterization of the

bathymetry, sub-bottom morphology, and sediment composition ??. Typical water

depths range between 70-100m at primary OAWRS survey sites (Site 1 and 2), as

shown in Fig. A-i. Although the water depths at Site 3 were roughly twice that at

Site 1 and 2, only one experimental day was dedicated surveying this location. The

seafloor has an extremely benign slope, typically less than 10, as can be seen in Fig.

4 of [82]. Historical bottom core samples identify the bottom sediment composition

as a mixture of sand and silt with density of 1.9g/cm 3 , attenuation coeffiecient of 0.8

dB/A and mean sound speed of 1700 m/s [82].

During the OAWRS 2003 survey, XBT's on the receiver ship were used to measure

the sound speed profiles at the beginning and end of each track. The measured sound

speed profiles were averaged to compute a daily mean sound speed structure, as

shown in Fig. A-2. Daily measures of OAWRS source depth, receiver depth and

receiver array orientation were recorded throughout the 2003 field experiment. The

source depth was recorded at the beginning of each day during morning deployment.

Adjustments to the source depth were also recorded. The source depths used for the

modelling were taken from p. 43 of Ref(Cruise Report). Pressure sensors embedded



in the OAWRS receiver array depth recorded the receiver depth at the center of

the array for each OAWRS transmission. The mean receiver depth for each OAWRS

frequency band was used for the transmission loss modelling since the depth variations

were typically less than 3m over an entire experimental day, as illustrated in Fig. A-3

and Fig. A-4. Gyroscope sensors, also embedded in the receiver array, recorded the

array heading for each transmission and array orientation fluctuations were found to

vary between 1-2' during the duration of an OAWRS track. The exact array heading

per transmission is used when weighting the two-way transmission loss maps by the

beam-pattern of the OAWRS receiver array.

Areal Transmission Loss Maps at OAWRS operating frequencies

In this section, we present various scenarios for computing the one-way transmission

loss from the OAWRS source array and from the OAWRS reveiver array at the three

OAWRS operating frequency bands: 390-440Hz, 875-975Hz, and 1250-1400Hz. The

center-frequncy, transmission loss profile computed with the average, measured sound

speed profile is compared with the: (i) broad-band transmission loss computed with

the mean sound speed profile one-way transmission loss and (ii) the average trans-

mission loss computed using Monte Carlo simulations that have varying sound speed

profiles as a function of range ( every 250 m). The Monte Carlo simulation approach

is similar to that used by Andrews et al in [29] when modelling the one-way transmis-

sion loss to estimate the expected source intensity. The center-frequency, one-way,

depth-averaged transmission loss computed using the mean sound speed profile for

each experimental day was found to be a good approximation (to within 1dB) to the

broad-band, transmission loss averaged over the water column computed via Monte

Carlo simulations. The one-way transmission loss from the source and receiver posi-

tions are computed over the 360-degree radials (with the angular separation between

radials equal to the broadside resolution of the array), spanning the area surveyed by

OAWRS, for each transmission. The two-way transmission loss is then weighted by

the beampattern of the array to account for the spatially-varying OAWRS resolution

footprint.



A.2 OAWRS SL Calibration

The temporally and spatially varying nature of the ocean environment causes acousti-

cally transmitted signals to get randomized. A statistical approach that incorporates

fluctuations in the source transmission due to medium uncertainties is necessary to

accurately model the scattered field from the ocean environment.

Although daily measurements of the on-axis source level were made at-sea during

routine transmissions at 400 Hz and 950 Hz [66], there were no measurements of

the source level at the highest transmission band (1250-1400). Additionally, the at-

sea measurements were taken roughly once or twice per experiment day and were

not taken frequent enough to quantify fluctuation trends in source intensity and

accurately estimate the average source intensity for each waveform transmitted on

each experiment day.

To verify the sparse measures of SL and to obtain source levels for the highest

frequency band, broadband measurements of the acoustic intensity of the direct arrival

by a desensitized phone on the receiving array were used to calibrate for the expected

source level at each transmitted frequency band per experiment day. The match

filtered data are compared to the expected TL output from a parabolic equation

model that accounts for bathymetric variations. A maximum likelihood estimator is

implemeted to provide a global inversion of the data for the expected source level

for each experimental day [29]. Roughly 200-600 independent measurements of the

direct arrival were used to compute the daily average of the source intensity.

A.3 OAWRS Measurementsof Acoustic Intensity

First, the endfire noise from the OAWRS receiver ship, as well as ship noise from other

vessels operating in the vicinity are removed from the OAWRS instantaneous acoustic

intensity maps. Then the instantaneous acoustic maps are incoherently averaged in

time over five consecutive single ping transmissions to reduce the variability over time.

Each individual acoustic intensity map generated from the 390-440 Hz transmission



band (1-5 in the sequence) is also spatially average in range over two adjacent range

cells, yielding a pixel resolution equal to 30m. The standard deviation per spatial

pixel due to waveguide randomness and acoustic signal fluctuations are expected then

to reduced by ' for the low frequency data set.



Bathymetry of OAWRS 2003 Survey Area
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Figure A-1: The bathymetry on the New Jersey continental Shelf is shown with the
black circles delimiting the three different areas surveyed by OAWRS in 2003. Both
Site 1 and Site 2 sample water with typical water depths ranging between 70-100m.
The Site 3 survey area encompasses in deeper waters along the continental shelf slope,
with typical water depths exceeding 150m.
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Figure A-2: Summary of the measured sound speed profiles for each experimental
day. The daily mean (black dashed line), computed by averaging the measured sound

speed profiles, is also shown.
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APR 29, 390-440Hz:
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Figure A-3: Summary of the array depth at the center of the OAWRS receiver array
for all WX1 (390-440Hz) transmissions on each experimental day. The mean (black
line) and standard deviations (gray line) are also shown and reported. The daily
standard deviation of the receiver depth ws typically less 3m.
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Figure A-4: Summary of the array depth at the center of the OAWRS receiver array
for the simultaneous WMA (875-975Hz) and WMB (1250-1400Hz) transmissions on
each experimental day. The mean (black line) and standard deviations (gray line)
are also shown and reported. The daily standard deviation of the receiver depth was
typically less 3m.
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One-way TL from OAWRS Source Array, 415 Hz,
Source Depth = 42.4 m, Calculated using the Mean SSP
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One-way TL from Point Receiver, 415 Hz,
Receiver Depth = 42.5 m, Calculated using the Mean SSP
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One-way TL from OAWRS Source Array, 925 Hz
Source Depth = 43.6 m, Calculated using the Mean SSP
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One-way TL from Point Receiver, 925 Hz
Receiver Depth = 42.5 m, Calculated using the Mean SSP

100

120

0

20

0 2 4 6 8 10 12 14 16 18
Range (km)

One-way TL from Point Receiver, 875-975 Hz
Receiver Depth = 42.5 m, Calculated using the Mean SSP

20 22

100

120

0 2 4 6 8 10 12 14 16 18 20
Range (km)

One-way TL from Point Receiver, 875-975 Hz, Receiver Depth = 42.5 m
Averaged over 20 Monte Carlo Simulations(SSP randomization every 250m)

0

100

120

0 2 4 6 8 10 12 14 16 18 20 22
Range (km)

Figure A-9:

101

TL dB
re lm

-4u

-50

-60

-70

-80

-90

_1 nn-- v



One-way TL from OAWRS Source Array, 1325 Hz
Source Depth = 43.6 m, Calculated using the Mean SSP
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One-way TL from Point Receiver, 1325 Hz
Receiver Depth = 42.5 m, Calculated using the Mean SSP
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Center Frequency (415 Hz),
Depth-Averaged

One-way TL from OAWRS

Center Frequency (415 Hz),
Depth-Averaged

One-way TL from OAWRS
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Figure A-12: Example of the OAWRS one and two-way transmission loss maps.
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Figure A-13: Comparison of OAWRS acoustic intensity imagery before and after
removing ship noise from the OAWRS receiver ship in the endfire direction and other
ships operating in the vicinity of the OAWRS survey site.
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Figure A-14: Illustrative example of acoustic intensity temporal averaging. The 2D
OAWRS acoustic intensity maps (390-440Hz) are incoherently averaged in time over
five consecutive single ping transmissions to reduce the variability. Each individual
acoustic intensity map (1-5 in the sequence) are also spatially average in range over
two adjacent range cells, yielding a pixel resolution equal to 30m. The standard devi-
ation per spatial pixel due to waveguide randomness and acoustic signal fluctuations
are expected then to reduced by 1V1_"
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Appendix B

Discussion of OAWRS TS

Estimation Examples for

Non-Stationary OAWRS-CFFS

Sampling Scenarios

During the MAE03, the OAWRS transmitted linear frequency modulated signals of

is duration for three different frequency bands spanning roughly 400 to 1400 Hz.

Here, present the analysis for the remaining, non-stationary sampling scenarios for

the 390-440 Hz, 875-975 Hz, and 1250-1400 Hz OAWRS operating bands that were

not discussed previously in the main text. For each sampling scenario, specific exam-

ples from MAE03 include: (i) OAWRS 2D scattering strength maps to highlight the

horizontal morphology of the segment populations, (ii) corresponding range-depth

profiles of the volumetric fish density measured by CFFS along the segment transect,

and (iii) time series of CFFS Scattering Strength, OAWRS Scattering Strength, and

the calibrated OAWRS TS.
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B.1 390-440 Hz (WX1) Regime

B.1.1 Case 2A: Non-Stationary Populations within Low Den-

sity Regions of an OAWRS shoal

During MAE 03, there were 28 examples from four experiment days at Site 2 in which

CFFS observed discrete, fish populations extending tens of meters within the low

density, patchy regions of large, contiguous OAWRS shoals. These OAWRS shoaling

regions exhibit 2D horizontal contiguity over kilometer scales as previously observed

in the Case 1 Examples. The OAWRS TS estimation for the Case 2A examples

were previously plotted in Fig. 3-10 (green data points) and are here described in

Table B.7. The 2D OAWRS scattering strength images and range-depth profiles

of volumetric fish density, highlighting the CFFS sampling segment, as well as the

corresponding scattering strength time series, and calibrated OAWRS TS time series

for each specific case are shown in Figs B-1-B-8.
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Example Day Track Segment Time Number of Coherence Independent < TSo > UTSo OTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m
2  

(before (after
Points) Cells) averaging) averaging)

1 7-May 141A-2 E 12:03 13 9 1 -49 7.7 7.7
2 7-May 141A-2 F 12:06 6 6 1 -39.6 2.7 2.7
3 8-May 201-2 E 14:18 14 1 14 -42.9 3.8 1
4 14-May 252-1 D 12:00 3 3 1 -44 0.4 0.4
5 14-May 252-1 E 12:04 4 3 1 -42.2 1.4 1.4
6 14-May 252-1 F 12:06 3 3 1 -42.9 0.6 0.6
7 14-May 251-2 A 13:46 1 1 1 -41 0 0
8 14-May 251-2 B 13:49 16 8 2 -41.6 4.4 3.1
9 14-May 253-1 H 16:41 3 3 1 -42.9 0.9 0.9

10 15-May 251-4 B 7:54 12 5 2 -44.8 4.5 3.2

11 15-May 251-4 H 8:13 4 1 4 -43.8 1.2 0.6
12 15-May 251-4 I 8:15 3 1 3 -43.6 4.2 2.4
13 15-May 251-4 J 8:16 2 2 1 -43.9 1 1
14 15-May 251-4 M 8:22 2 2 1 -45.9 3.2 3.2

15 15-May 251-4 Q 8:40 1 1 1 -46.3 0 0
16 15-May 251-4 R 8:44 7 4 1 -45.4 2 2
17 15-May 251-4 T 8:46 4 2 2 -42.9 3.7 2.6
18 15-May 251-4 U 8:49 8 4 2 -43.5 2.6 1.8
19 15-May 251-4 W 8:52 3 3 1 -44 1.3 1.3
20 15-May 251-4 Y 8:59 5 1 5 -44.7 1.6 0.7
21 15-May 252-2 D 10:18 7 2 3 -43.8 4.1 2.4
22 15-May 254-1 A 12:08 2 2 1 -41.2 1.2 1.2
23 15-May 254-1 D 12:13 12 5 2 -39 3 2.1
24 15-May 254-1 E 12:20 10 4 2 -39.8 1.6 1.1
25 15-May 251-5 A 16:21 14 7 2 -41.4 3.2 2.3
26 15-May 251-5 B 16:58 2 2 1 -41.8 5.3 5.3
27 15-May 252-2 S 10:59 9 5 1 -47.1 6.8 6.8
28 15-May 252-2 T 11:02 2 1 2 -40.9 0.5 0.5

Table B.1: Table summarizing the calibrated OAWRS TS and standard deviation, as well as the standard deviation per segment
after applying stationary averaging over independent coherent cells.



From Fig. 3-10 and Table B.1, we note that the mean calibrated OAWRS TS per

segment are consistently lower than the calculated Case 1 global mean TS (-40 dB re

im 2at415Hz). The calibrated OAWRS TS per segment are combined to compute a

global mean for the Case 2A segments . The global mean for the Case 2A segments

is found to be -43 dB re 1m2 at the center frequency of 415 Hz.

Since the fish groupings measured by CFFS in Case 2A sampling scenarios are

continuous over short distances (tens of meters), there are a lower number of identical

time-space co-registration points to compute the OAWRS TS calibration. This low

number of calibration points also yields lower number of independent coherent cells

within each segment. Most of the segments contain 1-2 independent coherent cells,

which are insufficient to significantly reduce the variability per segment. For most

examples, the standard deviation per segment remains constant before (gray envelope)

and after stationary averaging (black error bars) per segment in Fig. 3-10.

The OAWRS calibrated TS is consistently underestimated for these Case 2A sam-

pling scenarios. These segments demonstrate underestimation scenarios where the

CFFS sampled number density is higher than the effective number density over the

corresponding OAWRS footprints, as illustrated in Fig. 3-9B. The -3dB discrepancy

suggests that CFFS is sampling densities that are 50% higher than that of the effec-

tive density of the corresponding OAWRS footprints. When the populations sampled

by CFFS are not statistically stationary, identically distributed over and do not fully

occupy the OAWRS resolution footprint, such underestimations of OAWRS TS are

likely to occur.

These low density, patchy regions often act as the adhesive which keeps the shoal

intact and make up the intricate network of 2D bridges or dendrites that connect

population centers within the shoal. From the range-depth profiles of volumetric fish

density per segment, the CFFS-sampled fish populations can appear as a singular

clump (i.e. Example 1) or a series of discrete clumps (i.e. Example 25). However,

it impossible to determine whether CFFS is in fact traversing through discrete fish

populations or through boundaries or vacuoles associated with larger, more contiguous

populations. This is due to the limted across-transect swath (roughly 10m) of the
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CFFS system. There is no way of accurately extrapolating what the 2D horizontal

structure of the fish population from the CFFS range-depth profiles. The OAWRS

system is able to resolve separations or vacuoles within fish populations greater than

30m in the range direction, since the range resolution is 15m for the 390-440 Hz

transmission and the instantaneous imagery is averaged over 2 adjacent range cells.

The OAWRS system cannot resolve separations in the cross-range direction that are

smaller than the cross-range resolution at the point of observation. For example,

the OAWRS cross-range resolution of OAWRS is highly dependent on the geographic

location with respect to the receiver array and is typically 500m in the broadside

(perpendicular to the receiver) at a a range of 10km from the receiver.

The spacing of the fish populations (roughly 50-100m) suggest that there are

vacancies within the fish population contained within the corresponding OAWRS

footprint that could effect the TS estimation. The presence of small vacuoles within

contiguous populations can result in a lower fish density within the corresponding

OAWRS footprint than the CFFS-sampled region since the entire OAWRS footprint

is not occupied by fish. For these Case 2A examples, the vacant spaces between

fish populations in along-transect range are rougly that of the extent of these fish

populations. If these populations are representative of the spatial distribution of fish

in OAWRS range and cross-range direction, it is not unlikely that only 60% of the

area within corresponding OAWRS footprints are occupied by fish and the other 40%

accounted for by vacancies. This is one plausible explanation of underestimation of

OAWRS TS by 3dB from the established Case 1 mean of -40 dB.
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Case 2A, Example 4
May 14, Track 252-1

Segment D
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Case 2A, Example 7
May 14, Track 251-2
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Case 2A, Example 10
May 15, Track 251-4
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Case 2A, Example 14
May 15, Track 251-4
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Case 2A, Example 18
May 15, Track 251-4

Segment U
8:49 EDT

E

I.6

-- U)

S -12
O

-3

-6

-9

-12

-15

Case 2A, Example 19
May 15, Track 251-4

Segment W
8:52 EDT

Case 2A, Example 20
May 15, Track 251-4

Segment Y
8:59 EDT

-3

-6

-9

-12

-15

6 9 12 15 18

Eastings from
OAWRS Source (km)

6 9 12 15 18

CFFS Transect Range (km)
0 0.1 0.2 0.3 0.4 0 0.05 0.1 0.15 0 0.05 Fishim3

60 60 60 - 1

70 70 70 02
0.05

8080 80 0.0
_J I0.01

90
100

110

120

:49 :50

<SSc> = -37.6, asc 
= 2.61

100 100

110 110

120 120

<SSC> = -40, asse = 126

0.001

0

<SSc> = -37.4, asse = 1.5

-40
-WC

:49 :50

<SSo> - 46.7, sso = 2.15

:53

<SSo> , -48., asso 0.0145 <SSo> - 472, SSo - 1.08

:49 :50 :53

<TSo> = -43.5, aTso 257 <TSo> = -4
4 , aTSo 

= 12 7
<TSo> = -44.7, aTSo = 1.59

:49 :50

Eastern Daylight Time
(min from 8:00)

:53

Eastern Daylight Time
(min from 8:00)

Eastern Daylight Time
(8:59)
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Case 2A, Example 21
May 15, Track 252-1
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Case 2A, Example 24
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B.1.2 Case 2B: Non-Stationary Populations within High Den-

sity Regions in an OAWRS Shoal

Like the Case 2A sampling scenarios, the following segment examples occur when

CFFS sample populations that appear as discrete groupings extending tens to a hun-

dred meters in along-transect range within a contiguous OAWRS shoaling region.

However, these segment examples demonstrate instances in which CFFS transects

through dense populations centers of large, contiguous shoals. These dense nuclei

comprise those regions of highest scattering density within the shoal.
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Example Day Track Segment Time Number of Coherence Independent < TSo > O'TSo TSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m
2  

(before (after
Points) Cells) averaging) averaging)

1 8-May 201-2 D 14:17 5 1 5 -36.2 3.4 3.4
2 14-May 252-1 G 12:08 13 2 6 -38.4 2.8 1.1
3 15-May 252-2 G 10:40 2 2 1 -38.3 1.5 1.5
4 15-May 252-2 H 10:42 4 3 1 -33.3 2.3 2.3
5 15-May 252-2 I 10:44 3 1 3 -34.5 2.4 2.4
6 15-May 252-2 J 10:45 1 1 1 -32.5
7 15-May 251-5 C 17:00 12 5 2 -36.8 4.5 3.2
8 15-May 252-2 K 10:52 11 1 11 -35.7 1.6 1.6
9 15-May 252-2 P 11:18 6 2 3 -36.5 0.8 0.5

10 15-May 254-1 D 12:17 12 2 6 -39 3 2.1
11 15-May 254-1 H 13:22 52 2 26 -35.8 2.6 0.5

Table B.2: Table summarizing the calibrated OAWRS TS and standard deviation, as well as the standard deviation per segment
after applying stationary averaging over independent coherent cells.



For the Case 2B examples, the global mean OAWRS TS is found to be -36dBrelm 2.

An overestimation of OAWRS TS occurs when the CFFS sampled density is lower

than that of the density contained within the corresponding OAWRS footprints. The

4 dB overestimation suggests that CFFS-sampled density is a sixth of the effective

density within the corresponding OAWRS footprints. This could occur within high

density regions of a shoal if CFFS misses some of the fish contained within the cor-

responding OAWRS footprint, as illustrated in Fig. 3-9A.
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Case 2B, Example 5
May 15, Track 252-2
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B.1.3 Case 2C: Non-Stationary Populations at the Bound-

aries of an OAWRS Shoal

For large, contiguous OAWRS shoals, the last case examined correspond to sampling

scenarios where CFFS traverses through the boundary or periphery region of larger,

kilometer scale shoals (Case 2C). Like the other Case 2 examples, CFFS measures

small, singular groupings or a series of discrete clumps tens to a hundred meters in

extent, resting in 5-10m layers off the ocean bottom.
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Example Day Track Segment Time Number of Coherence Independent < TSo > O'TSo TSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m
2  (before (after

Points) Cells) averaging) averaging)

1 7-May 141A-2 I 12:19 3 2 1 -45.2 2.0 2.0

2 7-May 141A-2 K 12:23 4 4 1 -45.5 2.7 2.7

3 8-May 201-3 A 17:22 6 1 6 -49.7 3.4 3.4
4 8-May 202-4 B 19:33 17 7 2 -47.5 4.0 2.8

5 14-May 252-1 I 12:27 21 2 10 -49.8 2.7 0.8
6 14-May 252-1 K 12:49 4 2 2 -55.8 2.9 2.1
7 14-May 252-1 L 12:50 14 1 14 -48.7 4.9 4.9

8 14-May 253-1 I 16:45 2 2 1 -55.1 2.0 2.0
9 14-May 253-1 J 17:04 4 1 4 -51.8 2.0 2.0

10 14-May 253-1 L 17:12 2 2 1 -53.0 0.5 0.5
11 15-May 251-4 G 8:08 4 1 4 -54.1 3.6 3.6
12 15-May 251-4 K 8:17 2 1 2 -52.4 0.3 0.3

13 15-May 251-4 X 8:54 9 3 3 -49.4 2.6 1.5

14 15-May 251-4 Z 9:01 6 1 6 -48.8 4.4 4.4

15 15-May 251-4 a 9:03 15 7 2 -51.7 3.3 2.4

16 15-May 252-2 E 10:33 16 2 8 -45.5 2.7 1.0

17 15-May 252-2 N 11:09 2 2 1 -46.0 0.7 0.7
18 15-May 254-1 C 12:13 4 1 4 -51.5 2.4 2.4

19 15-May 254-1 F 13:19 20 2 10 -43.2 3 0.9

Table B.3: Table summarizing the calibrated OAWRS TS and standard deviation, as well as the standard deviation per segment
after applying stationary averaging over independent coherent cells.



Example Day Track Segment Uncorrected T Corrected
< TSo > (dB) < TSo >

1 7-May 141A-2 I -45.2 9.8 -35.4
2 7-May 141A-2 K -45.5 7.1 -38.4
3 8-May 201-3 A -49.7 14.4 -35.3
4 8-May 202-4 B -47.5 2.0 -45.5
5 14-May 252-1 I -49.8 8.4 -41.4
6 14-May 252-1 K -55.8 14.4 -41.4
7 14-May 252-1 L -48.7 9.4 -39.3
8 14-May 253-1 I -55.1 15.2 -39.9
9 14-May 253-1 J -51.8 15.0 -36.8

10 14-May 253-1 L -53.0 12.7 -40.3
11 15-May 251-4 G -54.1 14.2 -39.9
12 15-May 251-4 K -52.4 12.4 -40.0
13 15-May 251-4 X -49.4 9.6 -39.8
14 15-May 251-4 Z -48.8 11.6 -37.2
15 15-May 251-4 a -51.7 9.0 -42.7
16 15-May 252-2 E -45.5 6.1 -39.4
17 15-May 252-2 N -46.0 7.4 -38.6
18 15-May 254-1 C -51.5 13.5 -38.0
19 15-May 254-1 F -43.2 3.5 -39.7

Table B.4: Table summarizing the adjusted mean OAWRS TS after applying the areal correction for the Case 2C Examples.



The mean calibrated OAWRS TS per individual segments are typically between

5 to 10dB lower than the baseline (column 7 of Table B.3 and the blue diamond

markers in Fig.

When the fish do not fully occupy the OAWRS areal footprint, vacancies within

OAWRS footprint become important and can bias the OAWRS TS calibration by

lowering the effective population density. This is due to the areal mismatch between

both CFFS and OAWRS. A correction factor, T, is calculated based on the ratio of the

expected area occupied by the CFFS-sampled fish population to the area occupied

by the corresponding OAWRS resolution footprints. After applying the correction

factor, the corrected global mean for the Case 2C segments is found to be roughly

-40 dB re 1m 2 at 415 Hz and is consistent with the Case 1 mean.
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Case 2C, Example 5
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Case 2C, Example 8
May 14, Track 253-1
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Case 2C, Example 11
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Figure B-14: Site 2, Case 2C
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Case 2C, Example 15
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Figure B-15: Site 2, Case 2C
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B.1.4 Case 3: Non-Stationary Populations within Small, Scat-

tered Schools

Finally, the last case examined corresponds to the sampling scenario where both

OAWRS and CFFS simultaneously measure small, scattered populations or schools.

These populations typically extend hundreds of meters within the 2D OAWRS im-

agery and are observed as discrete, groupings extending tens of meters in the cor-

responding CFFS range-depth profiles. The small Case 3 populations can occur as

compact, scattered schools or as satellite schooling populations comprising the back-

ground population surrounding larger shoals, as shown in the 2D OAWRS scattering

strength maps corresponding to Examples 1 and 2 of Fig. B-16 respectively.
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Example Day Track Segment Time Number of Coherence Independent < TSo > oTSo aTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent lm 2  (before (after
Points) Cells) averaging) averaging)

1 7-May 141D-1 F 10:27 4 1 4 -54.2 5.8 5.8
2 14-May 252-1 A 11:34 1 1 1 -49.1 0.0 0.0
3 14-May 252-1 C 11:47 4 4 1 -53.1 0.7 0.7
4 14-May 253-1 B 16:13 34 3 11 -50.8 5.4 1.6
5 14-May 253-1 D 16:19 3 3 1 -51.9 1.1 1.1
6 14-May 253-1 F 16:26 2 2 1 -41.4 1.8 1.8
7 14-May 253-1 K 17:04 7 1 7 -48.0 4.4 4.4
8 15-May 251-4 L 8:19 2 1 2 -52.0 2.6 2.6
9 15-May 251-4 P 8:36 3 3 1 -49.6 0.6 0.6
10 15-May 251-4 c 9:05 3 1 3 -48.3 2.3 2.3
11 15-May 252-2 B 10:13 5 1 5 -48.2 5.3 5.3
12 14-May 253-1 G 16:39 46 5 9 -45.9 3.8 1.3

Table B.5: Table summarizing the calibrated OAWRS TS and standard deviation, as well as the standard deviation per segment
after applying stationary averaging over independent coherent cells.



Table B.6: Table summarizing the adjusted
areal correction for the Case 3 Examples.

mean OAWRS TS after applying the

The mean estimated OAWRS TS for all Case 3 segments are typically between

8-15dB lower than the Case 1 mean of -40 dB (column 9 of Table B.5 and the orange

diamond markers in Fig.

A correction factor, similar to that of Case 2C, is found to account for the mis-

match between the CFFS-sampled density and the effective density of the correspond-

ing OAWRS footprint and the global mean after applying the correction is roughly

-40 dB re 1m 2 at 415 Hz and is consistent with the Case 1 mean.
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Example Day Track Segment Uncorrected T Corrected
< TSo > (dB) < TSo >

1 7-May 141D-1 F -54.2 14.3 -39.9
2 14-May 252-1 A -49.1 8.4 -40.7
3 14-May 252-1 C -53.1 11.4 -41.7
4 14-May 253-1 B -50.8 0.8 -50.0
5 14-May 253-1 D -51.9 6.3 -45.6
6 14-May 253-1 F -41.4 8.2 -33.2
7 14-May 253-1 K -48.0 10.1 -37.9
8 15-May 251-4 L -52.0 12.2 -39.8
9 15-May 251-4 P -49.6 9.7 -39.9

10 15-May 251-4 c -48.3 13.4 -34.9
11 15-May 252-2 B -48.2 11.5 -36.7
12 14-May 253-1 G -45.9 6.1 -39.8
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Case 3, Example 4
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Figure B-17: Site 2, Case 2C
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Case 3, Example 8
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B.2 875-975 Hz (WMA) Regime

B.2.1 Case 2A: Non-Stationary Populations within Low Den-

sity Regions of an OAWRS shoal

Unlike the measurements at the lower frequency band (390-440 Hz), there were only

four tracks from 2 days that afforded co-registration with OAWRS imaged fish pop-

ulations. On May 9, there was one instance where CFFS traverses through the low

density, patchy region of a shoal roughly 5km by 2km in major-minor axis extent

approximately 6km southeast of the moored OAWRS source, as shown in the 2D

OAWRS scattering map of Fig. B-19. The corresponding CFFS range-depth profile

shows a small, compact population roughly 40m in along-transect length occupying a

7m depth layer 2m from the ocean bottom. For this population, the mean calibrated

TS was found to be -34 dB re 1m2 at the center frequency of 925 Hz.

Example Day Track Segment Time Number of Coherence Independent < TSo > 4OTSo aTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m2  (before (after
Points) Cells) averaging) averaging)

1 9-May 202-6 A 12:36 10 2 5 -34.3 3.4 1.5

Table B.7: Table summarizing the calibrated OAWRS TS and standard deviation, as
well as the standard deviation per segment after applying stationary averaging over
independent coherent cells.

140



Case 2A, Example I
May 9 WMA, Track 202-6
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B.2.2 Case 2C: Non-Stationary Populations at the Bound-

aries of an OAWRS Shoal

Six examples are presented from the three tracks on May 9, where CFFS traverses

through the periphery of OAWRS shoaling regions and measure discrete fish popu-

lations extending tens to a hundred meters in along-transect extent. The shoaling

regions imaged at the high frequencies, however, are not as extensive as those consol-

idated shoals from May 14 and May 15 imaged with the 390-440 Hz waveform. The

global mean before applying a correction factor is roughly -40dB re 1m 2 at 925 Hz.

After applying a correction factor, the corrected global mean is found to be roughly

-32dB re 1m2 at 925 Hz.

Example Day Track Segment Time Number of Coherence Independent < TSo > JTSo aTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent lm 2  (before (after
Points) Cells) averaging) averaging)

1 9-May 202-5 H 8:17 2 2 1 -38.5 2.7 2.7
2 9-May 202-5 I 8:19 25 25 1 -38.2 3.6 3.6
3 9-May 201-4 C 9:58 32 4 8 -41.7 5.4 1.9
4 9-May 202-6 B 12:40 9 1 9 -38.4 3.4 3.4
5 9-May 202-6 C 12:42 16 1 16 -39.5 4.6 4.6
6 9-May 202-6 D 12:44 10 3 3 -38.5 4.1 2.4

Table B.8: Table summarizing the calibrated OAWRS TS and standard deviation, as
well as the standard deviation per segment after applying stationary averaging over
independent coherent cells.

Table B.9: Table summarizing the adjusted
areal correction for the Case 2C Examples.

mean OAWRS TS after applying the
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Example Day Track Segment Uncorrected 7 Corrected
< TSo > (dB) < TSo >

1 9-May 202-5 H -38.5 13.4 -25.1
2 9-May 202-5 I -38.2 5.6 -32.6
3 9-May 201-4 C -41.7 5.3 -36.4
4 9-May 202-6 B -38.4 10.1 -28.3
5 9-May 202-6 C -39.5 8.1 -31.4
6 9-May 202-6 D -38.5 8.3 -30.2



Case 2C, Example 1
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Case 2C, Example 4
May 9 WMA, Track 202-6
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B.2.3 Case 3: Non-Stationary Populations within Small, Scat-

tered Schools

On May 9 and May 15, there were three instances each where CFFS traverses through

small scattered schools. The global mean before applying a correction factor is roughly

-38 dB re lm2 at 925 Hz on May 9 and -40 dB on May 15. After applying a correction

factor, the corrected global mean is found to be -28dB re lm 2 at 925 Hz on May 9

and -38 dB for the May 15 schools. The corrected global mean on May 9 is consistent

with the Case 2C values.

Example Day Track Segment Time Number of Coherence Independent < TSo > aTSo TSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m2  (before (after
Points) Cells) averaging) averaging)

1 9-May 202-5 L 8:42 1 1 1 -40.5 0.0 0.0
2 9-May 202-5 M 8:44 5 4 1 -36.5 2.7 2.7
3 9-May 201-4 B 9:54 2 2 1 -42.0 0.7 0.7
4 15-May 252-3 A 14:55 57 5 11 -38.9 4.4 1.3
5 15-May 252-3 B 15:00 2 2 1 -43.6 1.5 1.5
6 15-May 252-3 C 15:03 55 5 11 -42.0 2.5 0.8

Table B.10: Table summarizing the calibrated OAWRS TS and standard deviation,
as well as the standard deviation per segment after applying stationary averaging
over independent coherent cells.

Example Day Track Segment Uncorrected 7 Corrected
< TSo > (dB) < TSo >

1 9-May 202-5 L -40.5 13.8 -26.7
2 9-May 202-5 M -36.5 9.0 -27.5
3 9-May 201-4 B -42.0 10.3 -31.7
4 15-May 252-3 A -38.9 1.2 -37.7
5 15-May 252-3 B -43.6 13.3 -30.3
6 15-May 252-3 C -42.0 2.7 -39.3

Table B.11: Table summarizing the adjusted mean OAWRS TS after applying the
areal correction for the Case 2C Examples.
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Case 3, Example I
May 9 WMA, Track 202-5

Segment L
8:42 EDT

Case 3, Example 2
May 9 WMA, Track 202-5

Segment M
8:44 EDT

-3

-6

Case 3, Example 3
May 9 WMA, Track 201-4

Segment B Scattering
9:54 EDT Strength

-3 0 3 6

dB re lm2

I
I

-O

-35

-40

0 3 6 0 3 6
Eastings from

OAWRS Source (km)

CFFS Transect Range (km)
0 0.05 0.1 0.15

60

70

= 8o

00o

100

:43

0 0.05 0.1 0.15 02
60

70

:45

-20

-40

L 8L.
el-

:43
S <SS , -46.3, asso 0

0 -20

:43
<TSo> - -40.5, rs - 00 C, -60

:43

0 -

:43
Eastern Daylignt Time

(min from 8:00)

:45
<SSo> -39.6, asso a 1.87

-20

4:

-60

40
:45

<TSo> -365, czTS° 2.65

-20

-40

-60

:45
Eastern Daylight Time

(min from 8:00)

:55
<SSC> -38, assc = 0.731

-20

-40

-60

40
:55

<SSo> -442, asso 0

-20

-40

60

40
:55

<TSo> -42, aTSo 0.731

-20

-40

-60

:55
Eastern Daylight Time

(min from 9:00)
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Case 3, Example 4
May 15 WMA, Track 252-3
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B.3 1250-1400 Hz (WMB)

B.3.1 Case 2A: Non-Stationary Populations within Low Den-

sity Regions of an OAWRS shoal

On May 9, there was one instance where CFFS traverses through the diffuse, patchy

region of a shoal roughly 5km by 2km in major-minor axis extent approximately 6km

southeast of the moored OAWRS source, as shown in the 2D OAWRS scattering map

of Fig. B-19. The corresponding CFFS range-depth profile shows a small, compact

population roughly 40m in along-transect length occupying a 7m depth layer 2m from

the ocean bottom. For this population, the mean calibrated TS was found to be -33

dB re lm 2 at the center frequency of 1325 Hz.

Example Day Track Segment Time Number of Coherence Independent < TSo > aTSo aTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent lm 2  (before (after
Points) Cells) averaging) averaging)

1 9-May 202-6 A 12:36 10 2 5 -32.8 3.1 1.4

Table B.12: Table summarizing the calibrated OAWRS TS and standard deviation,
as well as the standard deviation per segment after applying stationary averaging
over independent coherent cells.
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Case 2A, Example 1
May 9 WMB, Track 202-6
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B.3.2 Case 2C: Non-Stationary Populations at the Bound-

aries of an OAWRS Shoal

The global mean before applying a correction factor is -37dB re lm 2 at 1325 Hz.

After applying a correction factor, the corrected global mean is found to be roughly

-29dB re lm 2 at 1325 Hz.

Example Day Track Segment Time Number of Coherence Independent < TSo > 0
TSo  TSo

(EDT) Estimation Length Samples dB re dB dB
Points (Estimation (Coherent 1m 2  (before (after

Points) Cells) averaging) averaging)
1 9-May 202-5 H 8:17 2 2 1 -39.80 2.7 2.7
2 9-May 202-5 I 8:19 25 25 1 -37.90 3.0 3.0
3 9-May 201-4 C 9:58 32 4 8 -38.70 5.2 1.8
4 9-May 202-6 B 12:40 9 1 9 -38.00 3.8 3.8
5 9-May 202-6 C 12:42 16 1 16 -35.30 5.3 5.3
6 9-May 202-6 D 12:44 10 3 3 -33.90 4.2 2.4

'Table B.13: Table summarizing the calibrated
as well as the standard deviation per segment
over independent coherent cells.

OAWRS TS and standard deviation,
after applying stationary averaging

Example Day Track Segment Uncorrected 7 Corrected
< TSo > (dB) < TSo >

1 9-May 202-5 H -39.80 14.6 -25.2
2 9-May 202-5 I -37.90 7.0 -30.9
3 9-May 201-4 C -38.70 6.7 -32.0
4 9-May 202-6 B -38.00 11.1 -26.9
5 9-May 202-6 C -35.30 9.2 -26.1
6 9-May 202-6 D -33.90 9.5 -24.4

Table B.14: Table summarizing the adjusted mean OAWRS TS after applying the
areal correction for the Case 2C Examples.
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Case 2C, Example 1
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B.3.3 Case 3: Non-Stationary Populations within Small, Scat-

tered Schools

On May 9 and May 15, there were three instances each where CFFS traverses through

small scattered schools. The global mean before applying a correction factor is -38

dB re lm 2 at 1325 Hz on May 9 and -37dB on May 15. After applying a correction

factor, the corrected global mean is found to be -27 dB re lm 2 at 1325 Hz on May 9

and -33 dB for the May 15 schools.

Example Day Track Segment Time Number of Coherence Independent < TSo > OTSo OTSo
(EDT) Estimation Length Samples dB re dB dB

Points (Estimation (Coherent 1m2  (before (after
Points) Cells) averaging) averaging)

1 9-May 202-5 L 8:42 1 1 1 -38.00 0.0 0.0
2 9-May 202-5 M 8:44 5 4 1 -38.20 2.3 2.3
3 9-May 201-4 B 9:54 2 2 1 -40.30 0.7 0.7
4 15-May 252-3 A 14:55 57 5 11 -37.60 3.6 1.1
5 15-May 252-3 B 15:00 2 2 1 -39.40 1.5 1.5
6 15-May 252-3 C 15:03 55 5 11 -36.40 2.9 0.9

Table B.15: Table summarizing the calibrated OAWRS TS and standard deviation,
as well as the standard deviation per segment after applying stationary averaging
over independent coherent cells.

Example Day Track Segment Uncorrected 7 Corrected
< TSo > (dB) < TSo >

1 9-May 202-5 L -38.00 14.8 -23.2
2 9-May 202-5 M -38.20 10.6 -27.6
3 9-May 201-4 B -40.30 11.5 -28.8
4 15-May 252-3 A -37.60 2.6 -35.0
5 15-May 252-3 B -39.40 14.7 -24.7
6 15-May 252-3 C -36.40 4.1 -32.3

Table B.16: Table summarizing the adjusted mean OAWRS TS after applying the
areal correction for the Case 2C Examples.
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Appendix C

OAWRS TS Summary Tables
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Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (rn

2
)

(m) (deg) (m)
1 7-May 141A-2 E 3287 38 209 15 1 3135
2 7-May 141A-2 F 2915 28 164 15 1 2460
3 8-May 201-2 E 10251 39 657 15 1 9855
4 14-May 252-1 D 13503 7 676 15 2 20280
5 14-May 252-1 E 14421 5 720 15 3 32400
6 14-May 252-1 F 14739 3 734 15 4 44040
7 14-May 251-2 A 13957 5 697 15 2 20910
8 14-May 251-2 B 14253 6 713 15 4 42780
9 14-May 253-1 H 15815 17 820 15 4 49200

10 15-May 251-4 B 20994 32 1228 15 9 165780
11 15-May 251-4 H 17303 18 904 15 1 13560
12 15-May 251-4 I 16954 15 875 15 1 13125
13 15-May 251-4 J 16724 14 856 15 2 25680
14 15-May 251-4 M 15493 9 780 15 2 23400
15 15-May 251-4 Q 14376 10 726 15 2 21780
16 15-May 251-4 R 15228 11 771 15 5 57825
17 15-May 251-4 T 15985 11 811 15 3 36495
18 15-May 251-4 U 16589 12 843 15 7 88515
19 15-May 251-4 W 17422 15 896 15 4 53760
20 15-May 251-4 Y 19016 16 982 15 4 58920
21 15-May 252-2 D 20204 11 1025 15 5 76875
22 15-May 254-1 A 17135 40 1110 15 1 16650
23 15-May 254-1 D 16172 38 1020 15 1 15300
24 15-May 254-1 E 16002 39 1027 15 4 61620
25 15-May 251-5 A 10756 45 752 15 5 56400
26 15-May 251-5 B 7597 22 409 15 2 12270

Table C.1: Table summarizing the OAWRS Resolution Parameters for the Case 2A Segments, 390-440 Hz (WX1)



Longest
Continuous

Along-Transect
Extent (m)

Estimated
Area Occupied

by fish
(m2)

Example

Table C.2: Table summarizing the CFFS Characterization of the Case 2A Segments, 390-440 Hz (WX1)

Date

7-May
7-May
8-May
14-May
14-May
14-May
14-May
14-May
14-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May

Segment
Bottom
Depth

Transect
Trajectory

Angle*
(deg)

Cross
Range

Projection
(m)

Range
Projection

(km)

Track

141A-2
141A-2
201-2
252-1
252-1
252-1
251-2
251-2
253-1
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
252-2
254-1
254-1
254-1
251-5
251-5

2945
1885
9543
1885
1885
4241
1060
4241
2945
18408

265
265

1885
1885
736

6627
2386
11781
2945
2945
5773
736

2945
106029
7540
736

Mean
Fish

Density
fish/m 2

)
25.12
0.81
0.66
0.33
0.35
0.3

1.05
1.38
0.33
0.93
0.51
1.66
0.38
0.29
0.25
1.2

0.55
0.59
0.34
0.62
0.78
0.27
0.35
0.3

0.85
0.72

Depth
Extent

(m)

57-80
55-70
72-80
80-85
82-85
79-85
82-85
77-86
90-92

110-115
92-100
92-100
97-100
90-95
85-90
81-91
90-95
90-98

94-100
95-110
97-101
93-97
87-92
83-89
75-80
82-86



Example Date

7-May
7-May
8-May
14-May
14-May
14-May
14-May
14-May
14-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May
15-May

Track

141A-2
141A-2
201-2
252-1
252-1
252-1
251-2
251-2
253-1
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
251-4
252-2
254-1
254-1
254-1
251-5
251-5

Segment Number of
Estimation

< TSc >
dB re
-35.5
-35.5
-35.9
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3
-35.3

arTSc
(dB)

1.2
1.2

1.45
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64

< SSc >
dB re
-21.5
-36.4
-37.7
-40.1
-39.9
-40.5
-35.1
-33.9
-40.1
-35.6
-38.2
-33.1
-39.5
-40.7
-41.3
-34.5
-37.9
-37.6
-40

-37.4
-36.4
-41

-39.8
-40.5
-36

-36.7

Table C.3: Table summarizing the Statistical Parameters of Estimation
(WX1)

7SSc
(dB)

< SSo >
dB re
-45.4
-41.7
-42.7
-48.8
-46.8
-48.1
-40.7
-43.8
-47.8
-48.4
-54.1
-44.4
-48.3
-51

-52.2
-45.3
-47.5
-46.7
-48.9
-47.2
-47

-47.1
-43.8
-45.2
-44.4
-46

Variabilities of

OSS o
(dB)

< TSo >
dB re

-49
-39.6
-42.9
-44

-42.2
-42.9
-41

-41.6
-42.9
-44.8
-43.8
-43.6
-43.9
-45.9
-46.3
-45.4
-42.9
-43.5
-44

-44.7
-43.8
-41.2
-39

-39.8
-41.4
-41.8

O"TSo
(dB)

(dBTS
(dB)
7.7
2.7

1
0.4
1.4
0.6

0
3.1
0.9
3.2
0.6
2.4
1

3.2
0
2

2.6
1.8
1.3
0.7
2.4
1.2
2.1
1.1
2.3
5.3

the Case 2A Segments, 390-440 Hz

--- ~- ----- --~- ----



Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m2)

(m) (deg) (m)
1 8-May 201-2 D 10051 38 634 15 2 19020
2 14-May 252-1 G 15118 3 753 15 3 33885
3 15-May 252-2 G 19329 11 980 15 2 29400
4 15-May 252-2 H 19039 10 960 15 4 57600
5 15-May 252-2 I 18813 12 956 15 2 28680
6 15-May 252-2 J 18490 13 944 15 2 28320
7 15-May 251-5 C 7990 18 419 15 2 12570

Table C.4: Table summarizing the OAWRS Resolution Parameters for the Case 2B Segments, 390-440 Hz (WX1)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/rnm2) Extent (m) (deg) (m) (,m

2
)

1 8-May 201-2 D 0.66 80-81 81 30 90 0 30 1060
2 14-May 252-1 G 0.44 80-85 86 100 18 95 31 11781
3 15-May 252-2 G 0.59 90-95 95 30 44 22 21 1797
4 15-May 252-2 H 0.42 87-91 91 70 45 49 49 5773
5 15-May 252-2 I 0.47 85-90 90 32 44 23 22 1206
6 15-May 252-2 J 0.32 85-87 87 22 43 16 15 570
7 15-May 251-5 C 0.65 80-85 85 70 13 68 16 10132

Table C.5: Table summarizing the CFFS Characterization of the Case 2B Segments, 390-440 Hz (WX1)



Example Date Track Segment Number of < TS C > 'TSc < SSc > aSSc < SSo > osso < TSo > O'TSo O'TSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 8-May 201-2 D 5 -35.9 1.45 -37.7 3.37 -39.9 0.0 -36.2 3.4 3.4
2 14-May 252-1 G 13 -35.3 0.64 -38.9 2.19 -43 0.9 -38.4 2.8 1.1
3 15-May 252-2 G 2 -35.3 0.64 -37.6 1.49 -40.9 0.0 -38.3 1.5 1.5
4 15-May 252-2 H 4 -35.3 0.64 -39.1 1.29 -37.4 1.8 -33.3 2.3 2.3
5 15-May 252-2 I 3 -35.3 0.64 -38.6 2.52 -38.4 0.1 -34.5 2.4 2.4
6 15-May 252-2 J 1 -35.3 0.64 -40.3 0 -37.5 0.0 -32.5 0.0 0.0
7 15-May 251-5 C 12 -35.3 0.64 -37.2 2.8 -40.7 3.0 -36.8 4.5 3.2

Table C.6: Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2B Segments, 390-440 Hz
(WX1)



Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m

2
)

(m) (deg) (m)
1 7-May 141A-2 I 3626 6 181 15 2 5430
2 7-May 141A-2 K 4223 12 215 15 3 9675
3 8-May 201-3 A 14445 24 787 15 2 23610
4 8-May 202-4 B 5832 48 437 15 3 19665
5 14-May 252-1 I 19150 2 953 15 16 228720
6 14-May 252-1 K 19366 3 964 15 2 28920
7 14-May 252-1 L 19068 4 950 15 4 57000
8 14-May 253-1 I 15364 20 814 15 2 24420
9 14-May 253-1 J 18109 28 1016 15 3 45720

10 14-May 253-1 L 20316 28 1149 15 4 68940
11 15-May 251-4 G 17656 19 929 15 2 27870
12 15-May 251-4 K 16499 14 844 15 1 12660
13 15-May 251-4 X 18021 16 933 15 4 55980
14 15-May 251-4 Z 19653 16 1018 30 1 30540
15 15-May 251-4 a 20048 16 1038 15 5 77850
16 15-May 252-2 E 20739 9 1043 15 6 93870
17 15-May 252-2 N 15496 19 816 15 2 24480
18 15-May 254-1 C 16593 39 1067 15 1 16005

Table C.7: Table summarizing the OAWRS Resolution Parameters for the Case 2C Segments, 390-440 Hz (WX1)



Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m 2

) Extent (m) (deg) (m) (m 2
)

1 7-May 141A-2 I 0.28 79-81 81 22 16 6 21 570
2 7-May 141A-2 K 0.65 80-82 82 40 13 9 39 1885
3 8-May 201-3 A 1.02 75-77 78 27 2 1 27 859
4 8-May 202-4 B 1.55 71-80 80 90 61 79 44 12488
5 14-May 252-1 I 0.83 87-100 100 300 40 193 230 33134
6 14-May 252-1 K 1.74 87-95 95 30 33 16 25 1060
7 14-May 252-1 L 1.38 40-92 93 70 36 41 57 6509
8 14-May 253-1 I 0.71 89-90 90 25 11 5 25 736
9 14-May 253-1 J 0.95 85-98 98 35 13 8 34 1443
10 14-May 253-1 L 0.36 100-105 105 50 13 11 49 3682
11 15-May 251-4 G 3.09 95-103 103 30 55 25 17 1060
12 15-May 251-4 K 0.55 92-100 100 25 56 21 14 736
13 15-May 251-4 X 0.83 100-110 110 60 7 7 60 6126
14 15-May 251-4 Z 1.45 110-112 112 30 8 4 30 1060
15 15-May 251-4 a 1.66 105-113 113 65 5 6 70 9808
16 15-May 252-2 E 0.55 95-102 102 100 37 60 80 23002
17 15-May 252-2 N 0.28 75-80 82 25 17 7 24 4418
18 15-May 254-1 C 1.20 88-94 94 35 82 35 5 1443

Table C.8: Table summarizing the CFFS Characterization of the Case 2C Segments, 390-440 Hz (WX1)



Example Date Track Segment Number of < TSc > aTSc < SSc > 7SSc < SSo > aSSo < TSo > UTSo UTSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 7-May 141A-2 I 3 -35.5 1.2 -41.0 1.2 -50.4 3.1 -45.2 2.0 2.0

2 7-May 141A-2 K 4 -35.5 1.2 -37.4 2.4 -48.4 1.7 -45.5 2.7 2.7

3 8-May 201-3 A 6 -35.9 1.5 -35.8 3.3 -51.8 0.4 -49.7 3.4 3.4

4 8-May 202-4 B 17 -35.9 1.5 -34.0 3.0 -48.2 1.8 -47.5 4.0 2.8

5 14-May 252-1 I 21 -35.3 0.6 -36.1 3.4 -51.7 2.9 -49.8 2.7 0.8

6 14-May 252-1 K 4 -35.3 0.6 -32.9 2.9 -54.8 0.0 -55.8 2.9 2.1

7 14-May 252-1 L 14 -35.3 0.6 -33.9 5.3 -52.7 1.3 -48.7 4.9 4.9

8 14-May 253-1 I 2 -35.3 0.6 -36.8 2.0 -57.0 0.0 -55.1 2.0 2.0

9 14-May 253-1 J 4 -35.3 0.6 -35.5 2.0 -52.6 0.8 -51.8 2.0 2.0

10 14-May 253-1 L 2 -35.3 0.6 -39.7 0.5 -57.4 0.0 -53.0 0.5 0.5

11 15-May 251-4 G 4 -35.3 0.6 -30.4 3.9 -51.4 0.6 -54.1 3.6 3.6

12 15-May 251-4 K 2 -35.3 0.6 -37.9 0.3 -54.9 0.0 -52.4 0.3 0.3

13 15-May 251-4 X 9 -35.3 0.6 -36.1 2.5 -51.4 1.1 -49.4 2.6 1.5

14 15-May 251-4 Z 6 -35.3 0.6 -33.7 4.4 -50.6 1.2 -48.8 4.4 4.4

15 15-May 251-4 a 15 -35.3 0.6 -33.1 3.5 -51.1 3.0 -51.7 3.3 2.4

16 15-May 252-2 E 16 -35.3 0.6 -37.9 2.3 -49.2 1.7 -45.5 2.7 1.0

17 15-May 252-2 N 2 -35.3 0.6 -40.8 0.6 -51.4 1.3 -46.0 0.7 0.7

18 15-May 254-1 C 4 -35.3 0.6 -34.5 2.5 -51.8 1.1 -51.5 2.4 2.4

Table C.9: Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2C Segments, 390-440 Hz

(WX1)



Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m 2 )

(m) (deg) (m)
1 7-May 141D-1 F 7442 37 462 15 2 13860
2 14-May 252-1 A 14591 5 728 15 3 32760
3 14-May 252-1 C 13169 5 658 15 2 19740
4 14-May 253-1 B 19077 2 949 15 5 71175
5 14-May 253-1 D 19367 3 964 15 1 14460
6 14-May 253-1 F 18635 7 933 15 4 55980
7 14-May 253-1 K 18394 28 1036 15 4 62160
8 15-May 251-4 L 16228 11 822 15 1 12330
9 15-May 251-4 P 13679 10 691 15 2 20730

10 15-May 251-4 c 20584 17 1074 15 1 16110
11 15-May 252-2 B 19354 15 997 15 4 59820

Table C.10: Table summarizing the OAWRS Resolution Parameters for the Case 3 Segments, 390-440 Hz (WX1)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m 2

) Extent (m) (deg) (m) (m 2
)

1 7-May 141D-1 F 2.82 71-81 84 21 5 2 21 520
2 14-May 252-1 A 0.32 90-92 94 60 54 49 35 4712
3 14-May 252-1 C 0.55 85-87 87 35 59 30 18 1443
4 14-May 253-1 B 1.41 90-100 100 420 81 415 66 58905
5 14-May 253-1 D 0.34 100-102 102 50 79 49 10 3416
6 14-May 253-1 F 0.34 98-102 102 60 8 8 59 8482
7 14-May 253-1 K 1.55 95-99 99 60 16 17 58 6126
8 15-May 251-4 L 0.81 90-97 97 25 54 20 15 736
9 15-May 251-4 P 0.23 85-90 90 25 13 6 24 2209
10 15-May 251-4 c 0.52 110-112 112 25 87 25 1 736
11 15-May 252-2 B 1.02 90-97 97 60 9 9 59 4241

Table C.11: Table summarizing the CFFS Characterization of the Case 3 Segments, 390-440 Hz (WX1)



Table C.12: Table summarizing
(WX1)

the Statistical Parameters of Estimation Variabilities of the Case 3 Segments, 390-440 Hz

Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m 2 )

(m) (deg) (m)
1 9-May 202-6 A 8694 26 433 7.5 4 12990

Table C.13: Table summarizing the OAWRS Resolution Parameters for the Case 2A Segments, 875-975 Hz (WMA)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m 2

) Extent (m) (deg) (m) (m 2
)

1 9-May 202-6 A 1.78 72-80 81 40 45 28 28 1885

Table C.14: Table summarizing the CFFS Characterization of the Case 2A Segments, 875-975 Hz (WMA)

Example Date Track Segment Number of < TSc > 0'TSc < SSc > assc < SSo > osso < TSO > OTSo aTSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 7-May 141A-2 I 3 -35.5 1.2 -31 4.9 -54.2 1.07 -54.2 5.8 5.8
2 7-May 141A-2 K 4 -35.3 0.6 -40.3 0.0 -54.1 0 -49.1 0.0 0.0
3 8-May 201-3 A 6 -35.3 0.6 -37.9 1.5 -55.8 1.28 -53.1 0.7 0.7
4 8-May 202-4 B 17 -35.3 0.6 -33.8 4.3 -53.2 2.35 -50.8 5.4 1.6
5 14-May 252-1 I 21 -35.3 0.6 -40 0.8 -56.7 0.341 -51.9 1.1 1.1
6 14-May 252-1 K 4 -35.3 0.6 -40 1.8 -46.5 0 -41.4 1.8 1.8
7 14-May 252-1 L 14 -35.3 0.6 -33.4 4.3 -49.9 1.43 -48.0 4.4 4.4
8 14-May 253-1 I 2 -35.3 0.6 -36.2 2.6 -52.4 0.301 -52.0 2.6 2.6
9 14-May 253-1 J 4 -35.3 0.6 -41.7 0.5 -55.9 1.07 -49.6 0.6 0.6
10 14-May 253-1 L 2 -35.3 0.6 -38.1 2.3 -51.9 0 -48.3 2.3 2.3
11 15-May 251-4 G 4 -35.3 0.6 -35.2 4.5 -51.9 1.86 -48.2 5.3 5.3



Example Date Track Segment Number of < TSc > aTSC < SSC > ussc < SSo > asso < TSO > oTSo aTSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 9-May 202-6 A 10 -35.90 1.5 -33.4 3.7 -34.1 0.8 -34.3 3.4 1.5

Table C.15:
(WMA)

Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2A Segments, 875-975 Hz

Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m

2
)

(m) (deg) (m)
1 9-May 202-5 H 17736 21 846 7.5 5 31725
2 9-May 202-5 I 17228 23 838 7.5 17 106845
3 9-May 201-4 C 11477 32 605 7.5 42 190575
4 9-May 202-6 B 9504 29 485 7.5 3 10913
5 9-May 202-6 C 9794 30 507 7.5 5 19013
6 9-May 202-6 D 10074 32 532 7.5 5 19950

Table C.16: Table summarizing the OAWRS Resolution Parameters for the Case 2C Segments, 875-975 Hz (WMA)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m 2

) Extent (m) (deg) (m) (m
2
)

1 9-May 202-5 H 0.41 80-82 82 35 17 10 33 1443
2 9-May 202-5 I 0.74 75-83 83 125 16 34 120 29452
3 9-May 201-4 C 2.82 65-82 83 350 28 164 309 55960
4 9-May 202-6 B 2.51 67-77 82 30 50 23 19 1060
5 9-May 202-6 C 3.55 65-80 82 50 48 37 33 2945
6 9-May 202-6 D 1.00 80-82 82 50 49 38 33 2945

Table C.17: Table summarizing the CFFS Characterization of the Case 2C Segments, 875-975 Hz (WMA)



Table C.18:
(WMA)

Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2C Segments, 875-975 Hz

Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (mn

2
)

(m) (deg) (m)
1 9-May 202-5 L 13539 35 775 7.5 6 34875
2 9-May 202-5 M 13239 41 777 7.5 9 52447.5
3 9-May 201-4 B 12711 35 689 7.5 5 25837.5
4 15-May 252-3 A 12450 45 782 7.5 41 240465
5 15-May 252-3 B 12413 42 749 7.5 4 22470
6 15-May 252-3 C 12642 46 810 7.5 82 498150

Table C.19: Table summarizing the OAWRS Resolution Parameters for the Case 3 Segments, 875-975 Hz (WMA)

Example Date Track Segment Number of < TS c > OTSC < SS C > o-SSC < SSo > osso < TSo > OaTSo aTS
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 9-May 202-5 H 2 -35.9 1.5 -39.8 2.7 -43.2 0.0 -38.5 2.7 2.7
2 9-May 202-5 I 25 -35.9 1.5 -37.2 2.5 -41.0 2.3 -38.2 3.6 3.6
3 9-May 201-4 C 32 -35.9 1.5 -31.4 3.7 -38.6 4.6 -41.7 5.4 1.9
4 9-May 202-6 B 9 -35.9 1.5 -31.9 3.5 -36.7 0.1 -38.4 3.4 3.4
5 9-May 202-6 C 16 -35.9 1.5 -30.4 4.6 -38.3 0.1 -39.5 4.6 4.6
6 9-May 202-6 D 10 -35.9 1.5 -35.9 3.8 -39.5 4.6 -38.5 4.1 2.4



Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/rn2

) Extent (m) (deg) (m) (m
2
)

1 9-May 202-5 L 0.26 82-85 85 40 18 12 38 1443
2 9-May 202-5 M 0.59 82-85 85 75 26 33 67 6627

3 9-May 201-4 B 0.62 83-87 87 35 29 17 31 2386
4 15-May 252-3 A 0.65 75-82 83 625 61 547 303 182605

5 15-May 252-3 B 0.45 80-82 83 30 5 3 30 1060
6 15-May 252-3 C 0.71 70-81 83 625 11 119 614 269490

Table C.20: Table summarizing the CFFS Characterization of the Case 3 Segments, 875-975 Hz (WMA)

Example Date Track Segment Number of < TSC > 0TSC  < SSc > aSSc < SSO > asso < TSO > 'TS 0o TSo

Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)
1 9-May 202-5 L 1 -35.90 1.5 -41.70 0.0 -46.30 0.0 -40.5 0.0 0.0
2 9-May 202-5 M 5 -35.90 1.5 -38.20 2.2 -39.60 1.9 -36.5 2.7 2.7
3 9-May 201-4 B 2 -35.90 1.5 -38.00 0.7 -44.20 0.0 -42.0 0.7 0.7
4 15-May 252-3 A 57 -35.30 0.6 -37.20 2.3 -42.30 3.2 -38.9 4.4 1.3
5 15-May 252-3 B 2 -35.30 0.6 -38.80 1.5 -47.30 0.0 -43.6 1.5 1.5
6 15-May 252-3 C 55 -35.30 0.6 -36.80 2.4 -44.70 1.1 -42.0 2.5 0.8

Table C.21: Table summarizing the Statistical Parameters of Estimation Variabilities of the
(WMA)

Case 3 Segments, 875-975 Hz



Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m

2
)

(m) (deg) (m)
1 9-May 202-6 A 8694 26 604 5 5 15100

Table C.22: Table summarizing the OAWRS Resolution Parameters for the Case 2A Segments, 1250-1400 Hz (WMB)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m

2
) Extent (m) (deg) (m) (mr

2
)

1 9-May 202-6 A 1.78 72-80 81 40 45 28 28 1885

Table C.23: Table summarizing the CFFS Characterization of the Case 2A Segments, 1250-1400 Hz (WMB)

Example Date Track Segment Number of < TSc > TSC < SSc> SSc < SSO> aSSo < TSo > CTSo TSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 9-May 202-6 A 10 -35.9 1.5 -33.4 3.7 -32.4 1.8 -32.80 3.1 1.4

Table C.24: Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2A Segments, 1250-1400 Hz
(WMB)



Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m 2 )

(m) (deg) (m)
1 9-May 202-5 H 17736 21 1181 5 7 41335
2 9-May 202-5 I 17228 23 1170 5 25 146250
3 9-May 201-4 C 11477 32 845 5 62 261950
4 9-May 202-6 B 9504 29 677 5 4 13540
5 9-May 202-6 C 9794 30 708 5 7 24780
6 9-May 202-6 D 10074 32 743 5 7 26005

Table C.25: Table summarizing the OAWRS Resolution Parameters for the Case 2C Segments, 1250-1400 Hz (WMB)

Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/nm2 ) Extent (m) (deg) (m) (m 2

)
1 9-May 202-5 H 0.41 80-82 82 35 17 10 33 1443
2 9-May 202-5 I 0.74 75-83 83 125 16 34 120 29452
3 9-May 201-4 C 2.82 65-82 83 350 28 164 309 55960
4 9-May 202-6 B 2.51 67-77 82 30 50 23 19 1060
5 9-May 202-6 C 3.55 65-80 82 50 48 37 33 2945
6 9-May 202-6 D 1.00 80-82 82 50 49 38 33 2945

Table C.26: Table summarizing the CFFS Characterization of the Case 2C Segments, 1250-1400 Hz (WMB)



Example Date Track Segment Number of < TSc > aTSc < SSC > assc < SSo > asso < TSo > 4TSo CTs 0
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 9-May 202-5 H 2 -35.9 1.5 -39.8 2.7 -44.60 0.00 -39.80 2.7 2.7
2 9-May 202-5 I 25 -35.9 1.5 -37.2 2.5 -40.50 1.76 -37.90 3.0 3.0
3 9-May 201-4 C 32 -35.9 1.5 -31.4 3.7 -36.50 3.36 -38.70 5.2 1.8
4 9-May 202-6 B 9 -35.9 1.5 -31.9 3.5 -36.60 0.80 -38.00 3.8 3.8
5 9-May 202-6 C 16 -35.9 1.5 -30.4 4.6 -33.80 3.58 -35.30 5.3 5.3
6 9-May 202-6 D 10 -35.9 1.5 -35.9 3.8 -36.80 0.98 -33.90 4.2 2.4

Table C.27: Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 2C Segments, 1250-1400 Hz
(WMB)

Range Angle Mean OAWRS Number of Area of
from from Cross Range Corresponding Corresponding

Example Date Time Segment OAWRS OAWRS Range Resolution Resolution Footprints
Reciever Broadside Resolution (m) Footprints (m

2
)

(m) (deg) (m)
1 9-May 202-5 L 13539 39 1082 5 8 43280
2 9-May 202-5 M 13239 41 1085 5 14 75950
3 9-May 201-4 B 12711 35 962 5 7 33670
4 15-May 252-3 A 12450 45 1092 5 61 333060
5 15-May 252-3 B 12413 42 1046 5 6 31380
6 15-May 252-3 C 12642 46 1131 5 123 695565

Table C.28: Table summarizing the OAWRS Resolution Parameters for the Case 3 Segments, 1250-1400 Hz (WMB)



Mean Depth Bottom Longest Transect Cross Range Estimated
Example Date Track Segment Fish Extent Depth Continuous Trajectory Range Projection Area Occupied

Density (m) Along-Transect Angle* Projection (km) by fish
fish/m 2

) Extent (m) (deg) (m) (m 2
)

1 9-May 202-5 L 0.26 82-85 85 40 18 12 38 1443
2 9-May 202-5 M 0.59 82-85 85 75 26 33 67 6627
3 9-May 201-4 B 0.62 83-87 87 35 29 17 31 2386
4 15-May 252-3 A 0.65 75-82 83 625 61 547 303 182605
5 15-May 252-3 B 0.45 80-82 83 30 5 3 30 1060
6 15-May 252-3 C 0.71 70-81 83 625 11 119 614 269490

Table C.29: Table summarizing the CFFS Characterization of the Case 3 Segments, 1250-1400 Hz (WMB)



Example Date Track Segment Number of < TSc > LTSC < SSc > aSSc < SSo > asso < TSo > aTSo CTSo
Estimation dB re (dB) dB re (dB) dB re (dB) dB re (dB) (dB)

1 9-May 202-5 L 1 -35.90 1.5 -41.70 0.0 -43.80 0.0 -38.00 0.0 0.0
2 9-May 202-5 M 5 -35.90 1.5 -38.20 2.2 -41.40 0.9 -38.20 2.3 2.3
3 9-May 201-4 B 2 -35.90 1.5 -38.00 0.7 -42.50 0.0 -40.30 0.7 0.7
4 15-May 252-3 A 57 -35.30 0.6 -37.20 2.3 -41.00 2.2 -37.60 3.6 1.1
5 15-May 252-3 B 2 -35.30 0.6 -38.80 1.5 -43.10 0.0 -39.40 1.5 1.5
6 15-May 252-3 C 55 -35.30 0.6 -36.80 2.4 -39.40 1.4 -36.40 2.9 0.9

Table C.30: Table summarizing the Statistical Parameters of Estimation Variabilities of the Case 3 Segments, 1250-1400 Hz

(WMB)
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Appendix D

Procedure for Calculating the

Areal Correction Factor,

For scenarios where the CFFS-measured populations do not fully occupy the corre-

sponding OAWRS footprint, such as Case 2C and 3, a more accurate estimate of the

OAWRS TS can be made by accounting for the resolution mismatch between the

OAWRS and CFFS system. For such cases, CFFS measures the minimum number

of fish contained within the corresponding OAWRS resolution footprints. We can re-

write the OAWRS target strength in terms of the number of fish and the estimated

area occupied by the fish measured by CFFS as

SSo = TSo + 10 loglo(N) - 10 loglo(Ao) (D.1)

SSc = TSc + 10 loglo(Nc) - 10 loglo(Ac) (D.2)

Ac

TSo = SSo - SSc + TSc - 10 log 0l Ao (D.3)

TSo = SSo - SSc + TSc + (D.4)

where Ac is the estimated area occupied by the fish surveyed by CFFS , Ao is

the area of the corresponding OAWRS resolution footprints that contain the segment

of interest, and T = -10 log10 , is the the correction factor to adjust the mean
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OAWRS TS.

In order to practically apply this correction factor 7T, some reasonable assumptions

are made to approximate the actual area occupied by the fish population as measured

by CFFS. This will determine the area of the corresponding resolution cells necessary

to contain these measured population. For Case 2C and Case 3, where the mea-

sured populations are expected to occupy areas less than the corresponding OAWRS

footprints, the correction factor can be written as a function of the spatially varying

footprint of the OAWRS system, the trajectory of the CFFS system through the fish

population, and the along-transect extents of the CFFS-measured population.

Though fish population heights can be determined directly from vertical extents of

the corresponding echograms, estimating the horizontal dimensions are more compli-

cated since CFFS often makes singular pass along a line transect within a population.

The distance from the transect from the center of a population is unknown, but is

unlikely that the transect crosses the middle of the population [89]. Consequently,

the observed length of the population in the echogram trace will be less than the true

diameter of the school. Though large, shoaling populations have been shown to have

irregular horizontal cross-sections [44], we assume here that these smaller populations

(<100m in along-transect extent), occupy circular areas in horizontal cross-section.

For a particular fish grouping, a survey track is equally likely to cross any part

of fish population. The expected area occupied by a fish population is described in

Appendix 5A of Ref. [89] and is given by Ac = 37r12/8, where 1 is the length of the

fish population. If more than one fish grouping occurs within the segment echogram,

the total area occupied by the CFFS-measured populations is the a sum of the areas

of each of the contributing groupings.

The correction factor 7 is highly dependent on the corresponding areal resolution

footprint At of the bistatic OAWRS system. The OAWRS resolution footprint varies

spatially as function of operating frequency, the azimuthal angle, and the range from

the receiver there range.
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Areal Resolution Conrrection to handle Scenarios that Typically Result in an
Underestimation of OAWRS TS: Case 2C and Case 3

S Crremnndin CFFS Seament

Figure D-1: Schematic detailing how we compute the correction factor, 7.

CFFS Measures the Minimum Number of Fish Contained
within the Corresponding OAWRS Resoluion Footprints

SS =TS +10log 0o(N)+101og 0o(Ao)

SSc = TSc + Ologo (Nc) +1Ologo (AC)

Correction Factor, r

a

I



At = Ar(rAO)

In Eq. D.5, Ar is the range resolution of the OAWRS system, r is the range

of the the resolution cell from the receiver, and A(0) is the angular resolution of

the system at an angle 0 from broadside or perpendicular to the receiver axis. The

angular resolution can be written as:

A
AO = cos (D.6)

L cos 0

where A is the acoustic wavelength, L cos 6 is the projected array length, 0 is

the azimuth angle or steering angle from broadside, r is the directivity weighting

factor associated with the taper function. For steering angles from broadside 0 =

0 (perpendicular to the array) to a transitional angle Ot near endfire (parallel to

the array), Eqn. D.6 is a valid approximation of the azimuthal resolution. As 0

approaches Ot, ambiguous beamwidths tend to reach values approximately equal to

that at endfire. At endfire, or parallel to the array axis, ambiguous beams completely

merge yielding an approximate beamwidth described by

A00= 2.6 (D.7)

A receiving array with a uniform taper function has a weighting factor 7q = 1. We

apply a Hanning spatial window function during beamforming to reduce the sidelobe

levels, such that the first sidelobe is down 30dB from the main lobe. The weighting

factor for a Hanning window is eta = 1.3. To improve the range resolution and

the signal-to-additive noise ration, the LFM data for the various OAWRS operating

frequency bands were match filtered with replicas of the source waveforms to give an

effective range resolution Ar f B where c = 1500 m/s is the mean sound speed of

the medium and B is the waveform bandwidth.

Table D.1 compares the OAWRS areal resolution footprint for the three OAWRS

operating frequency bands. The area of the resolution cells occupied the fish school

in the OAWRS system is equal to the product of the average cross-range resolution at
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Waveform Bandwidth L in m Ac (m) Ar (m) AOO=o rAOO=o (m) A0G9-

WX1 390-440 94.5 3.6 15 2.80 495 290 5060
WM11A 875-975 47.25 1.6 7.5 2.60 453 280 4890
WM11B 1250-1400 23.625 1.1 5 2.70 480 320 5690

Table D.1: Table comparing the range resolution and the cross-range resolution (at
the center frequency) at broadside and endfire at a range of 10km from the OAWRS
receiver.

location of the CFFS fish grouping measurement and number of range cells spanned

by the along-transect extent projected in the OAWRS range direction, Ao = -rAO).
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Appendix E

Appendix: Analysis of the

NOAA/NEFSC Annual Spring

Trawl in the New Jersey

Continental Shelf March-April

2003

During the OAWRS 2003 survey of the New Jersey Continental, both OAWRS and

CFFS simultaneously measured shoaling fish populations. Unfortunately, simulta-

neous trawls were not available during this field experiment to directly identify the

species composition and length frequency of the fish within the observed shoals. In

this appendix, we analyze biological samples from 24 relevant stations during the

2003 National Oceanographic and Atmospheric Agency (NOAA) annual spring bot-

tom trawl of the US East Coast (reference bottom trawl and Mike Jech personal

communication) in order to identify candidate species and fish length classes that

could have comprised the major constituent of the OAWRS 2003 shoals. The biologi-

cal samples from the NOAA survey were collected within the same geographic vicinity

one month prior to the OAWRS survey. Note that a similar analysis was done by
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Nero and Love to identify possible biological scatterers that could have contributed to

strong scattering regions in the same geographic region during the Acoustic Clutter

Reconnaissance Experiment and Boundary Characterization Experiment in April-

May 2001, where simultaneous measures by independent trawls were also unavailable

[74]. Nero and Love concentrated their analysis to the continental shelf environment

bounded by the 50m and 200m bathymetric contours in an area roughly bounded by

37.50N, 750W; 40 0N,75oW; 400 N, 71.5 0W; and 37.5 0N, 71.5 0W. Stations chosen for

this analysis are chosed within this same area of interest.

The Northeast Fisheries Science Center (NEFSC), a branch of NOAA Fisheries,

conducts annual spring bottom trawl surveys to sample coastal and continental-shelf

marine populations inhabiting the US East Coast (between Cape Cod, MA and Cape

Hatteras, NC). The NOAA ship Delaware II conducted the 2003 survey from March

5, 2003 - April 27, 2003; spending March 3-March 27 between the latitudes of interest

for this analysis. Both trawl samplings and measurements from a national-fisheries-

standard, 38kHz echosounder were made of the sampled fish populations.

We collate species information from the trawl stations shown in E-1 and iden-

tify the most abundant demersal and pelagic fish species found at these stations,

as shown in the pie charts in E-1. Abundant pelagic (open water),swimbladder-

bearing species include: Atlantic Herring and other herring-like species (alewife,

American shad, blueback herring). Abundant demersal, or bottom-dwelling, species

include: hake (spotted, white, silver, red), scup and black sea bass. The only abun-

dant pelagic, non-swimbladder-bearing species is butterfish, while Atlantic mackerel

and spiny dogfish constitute the most abundant demersal, non-swimbladder-bearing

species. Swimbladder-berring species contain an air-filled organ for buoyancy reg-

ulation. Swimbladder-bearing fish are expected to dominate the scattering within

fish shoals of mixed compositions since this air-filled organ acts as a strong reflector

of sound. Atlantic herring comprises the major composition of swimbladder-bearing

species in the geographic vicinity since it accounts for roughly 30% of the cumulative

catch at the stations. Black sea bass and scup each contribute 23% and 25% respec-

tively, while hake and other herring make up the remaining 22% of the total catch.
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NEFSC(NOAA) Annual Spring Bottom Trawl Survey
March-April 2003

Longitude( W)
All Stations All Stations

Candidate Swimbladder Species Non-Swimbladder Species
Total Catch: 2181 Total Catch: 6835

12%

SAtlantic Herring
- Other Herring
-77 Hake

S Scup
m Black Sea Bass

OsU7

butternsh
Atlantic Mackerel

SSpiny Dogfish

Figure E-1: The areas surveyed by OAWRS during MAE03 are delimited (broken-
lined circles). Regions of very large fish shoals observed at Site 2 (red circle) on May
14 and May 15, 2003 by OAWRS were found between the 80-100m contour southeast
of the Site 2 source (red square). The 2003 NEFSC Spring Bottom Trawl Sampling
Stations used in this analysis are labeled and marked (black circles). The choice of
stations are consistent with the same geographic bounding box used for a similar
analysis done by Nero and Love in 2001 [74]. Catches were compiled from each
of the stations to identify from the most abundant swimbladder-bearing and non-
swimbladder-bearing fish species found in the region of interest. The percentage of
catch for swimbladder-bearing fish (colored pie chart) and non-swimbladder-bearing
fish (grayscale pie cart) are also shown. Bathymetric contours are also shown for
geographic reference. 185
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Percentage of Swimbladder-Bearing Catch for Each Trawl Sampling Stations on the
New Jersey Continental Shelf during the NEFSC Annual Spring Trawl (March-April 2003)

Station 1
Total Catch: 27

Station 2
Total Catch: 2

Station 3
Total Catch: 28

Station 4
Total Catch: 16

Station 5 Station 6
Total Catch: 54 Total Catch: 2

Station 60
Total Catch: 51

Station 101
Total Catch: 159

Station 105
Total Catch: 503

-do(

Station 109
Total Catch: 20

Station 61
Total Catch: 23

Station 102
Total Catch: 3

Station 106
Total Catch: 51

Station 110
Total Catch: 15

Station 62
Total Catch: 26

Station 103
Total Catch: 309

Station 107
0 Total Catch: 70

Station 111
Total Catch: 32

Pelagic Species Demersal Species
Atlantic Herring Hake

Other Herring Scup
S Black Sea Bass

Figure E-2: Percentage of catch corresponding to the most abundant swimbladder
bearing species for each station of interest
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Percentage of Non Swimbladder-Bearing Fish for Each Trawl Sampling Stations on the
New Jersey Continental Shelf during the NEFSC Annual Spring Trawl (March-April 2003)
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Figure E-3: Percentage of catch corresponding to the most abundant swimbladder

bearing species for each station of interest

187

seo

b
1 | 1 )

!



Catch percentages for abundant swimbladder and non-swimbladder fish species at

each trawl station are summarized inE-2 and E-3, respectively.

Histograms summarizing the length frequency distribution for swimbladder and

non-swimbladder bearing species from all trawl stations are shown in ?? and ??, re-

spectively. The compiled length frequency associated with the sweimbladder-bearing

species exhibits a bi-modal distribution due to the smaller length contributions from

scup and larger length contributions from Atlantic herring, other herring, hake, and

black sea bass. Though the mean length for swimbladder-bearing fish is found to

be 24 cm with a standard deviation of 5.8 cm, the herring, black sea bass, and

hake have slightly larger means ranging between 24-27 cm. The compiled length fre-

quency associated with the non-swimbladder-bearing species is also bi-modal, with

smaller lengths associated with butterfish and Atlantic mackerel and the much larger

lengths associated with dogfish. The length frequency distribution per station for

swimbladder-bearing fish and nonswimbladder-bearing fish are also shown in E-6

through E-15.

The need for simultaneous trawl sampling during hydroacoustic surveys of marine

populations is pertinent in order pin species composition of the sampled scatterers.

It is likely that the scattering within the OAWRS-imaged shoals in 2003 were dom-

inated by swimbladder-bearing fish with length ranges between 24-27 cm. Atlantic

herring are expected to be the dominant species contribution of these shoals since

they comprise the majority of the trawl catch. The km-long extents of the shoals in

the simultaneous CFFS echograms are also point to Atlantic herring as the dominant

contribution, since the other demersal species are not known to shoal so extensively.

Also, black sea bass, scup, alewife and blueback herring are expected to begin seasonal

migration to inshore coastal waters during the time of the OAWRS 2003 survey. It is

possible that hake of similar length could have intermingled with the herring schools,

since fish of similar length class are known to shoal together. However, Atlantic

herring are known to exercise phenotypical selection when shoaling and typically

tend to associate with other herring-like fish. The homogeneity of the OAWRS 2003

echograms indicate a uniformity of scattering do not indicate contamination by other
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larger interspersed species. The presence of larger fish species would also contradict

the stationarity of the 2003 OAWRS and CFFS scattering measurements.

Percentage of Swimbladder-Bearing Catch for Each Trawl Sampling Stations on the
New Jersey Continental Shelf during the NEFSC Annual Spring Trawl (March-April 2003)

Station 1
Total Catch: 27

Station 2
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M Black Sea Bass

Figure E-4: Cumulative fork length frequency distribution corresponding to the most
abundant swimbladder bearing species compiled from all stations.
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Percentage of Non Swimbladder-Bearing Fish for Each Trawl Sampling Stations on the
New Jersey Continental Shelf during the NEFSC Annual Spring Trawl (March-April 2003)

Station I Station 2 Station 3 Station 4
Total Catch: 317 Total Catch: 99 Total Catch: 44 Total Catch: 9
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Figure E-5: Cumulative fork length frequency distribution corresponding to the most
abundant non swimbladder-bearing species compiled from all stations.
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Figure E-6: Stations 1-4: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-7: Stations 5-8: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-8: Stations 9-12: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-9: Stations 13-16: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-10: Stations 17-20: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-11: Stations 21-24: Fork length frequency distribution corresponding to swimbladder-bearing species for each station.
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Figure E-12: Fork length frequency distribution corresponding to non-swimbladder-
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Figure E-13: Fork length frequency distribution corresponding to non-swimbladder-
bearing species for each station.
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Figure E-14: Fork length frequency distribution corresponding to non-swimbladder-
bearing species for each station.
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2-1 During MAE03, a bi-static OAWRS system was used to rapidly image

wide-areas with minute updates. The bi-static system was comprised

of a moored vertical source array and a horizontal linear receiver array

towed along a 10km-long track. Calibrated passive reflectors (targets)

were dispersed in the survey region to minimize charting errors and

validate waveguide scattering models. A hull-mounted conventional

echosounder was simultaneously operated within the OAWRS survey

area to provide ground-truth of OAWRS-imaged fish populations, as

well as in-situ measurements of local fish density and individual target

strength within groupings. ................... ..... 25
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2-2 The OAWRS system used for the 2003 survey of the New Jersey Con-

tinental Shelf was comprised of a moored source and a towed, linear

horizontal array. The 2003 OAWRS survey areas are shown in refer-

ence to the US East Coast Continental Shelf roughly 200 km south

of Long Island, NY. The three OAWRS survey areas for a 40s trans-

mission interval are deliminated by the colored dashed circles (Site 1

= Yellow, Site 2 = Red, Site 3 = Green), with the colored rectangles

indicating the location of the moored source at the three sites. For a

80s transmission interval, the survey area can be increased as shown

by the white dashed circle. The OAWRS system exploits the natural

capacity of the continental shelf to act as a 2-D waveguide. The ver-

tical source array sends a short broadband transmission of sound out

omni-directionally in horizontal azimuth. As they travel, the sound

waves reflect from the sea surface and bottom to form standing waves

in depth that are called waveguide modes. As the modes propagate

horizontally outward from the source, they interact with and scatter

from environmental features along the way. Scattered returns from en-

vironmental features are then continuously received by a horizontally

towed line array. ................... .......... 26
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2-3 An illustrative example of 2D OAWRS acoustic intensity maps from

the first and second track on May 2, 2003 at Site 1. These images were

created from Is, broadband (390-440Hz) LFM transmissions. A hori-

zontal line array has left-right ambiguity about the array axis. For a

bistatic geometry, such as that shown here, ambiguity occurs about an

ellipse with a major asis that passes through the source and receiver.

Two prominent and discrete scattering events > 20dB above the diffuse

background co-register with the known location of the calibrated tar-

gets (black circles denoted by T1 and T2). Note that distortion in the

mapping of the ambiguous returns can be seen by the difference in spa-

tial extents between the real targets (T1 and T2) and their ambiguous

counterparts (TI' and T2') in both images. Similarly, we also highlight

two large regions of prominent scattering (R1 and R2). Comparison of

the two images breaks the receiver array's left-right ambiguity. In the

second image, we notice that the ambiguous counterparts (Al and A2)

of R1 and R2, shift with the change in receiver orientation. The real

scattering region remains in the same vicinity as R1 and R2 in the first

figure. The 80 and 100m isobaths are shown for geographic reference

to aid in the comparison of the two figures. The origin of both images

is the OAWRS Source location (blue star) 390 16.17'N, 720 51.78'W.

The blue dashed line corresponds to the array heading direction for

the current ping, while the magenta line corresponds to the track not

in use. The black star corresponds to the receiver location along the

track line during the particular transmission. The black arrows indi-

cate the broadside (perpendicular to the array) and endfire (parallel

to the array) axes. Ship noise from the receiver ship in the endfire

direction can be seen in both figures, while additional noise from other

ships (saturated beams off endfire) can be seen clearly in the second

figure. ................. ................ 27
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2-4 The US research vessel UNOL Henlopen simultaneously operated a

high-frequency, echosounder through the region 2003 OAWRS survey

region. Fish groupings contained within the very narrow, downward-

directed beam were measured at 2-sec transmission intervals. The

depth of the scatterered returns for each ping can be found by di-

viding the two-way travel time by twice the mean sound speed in the

water column. The scattered intensity can be converted into metrics of

volumetric density by compensating for the expected target strength

of an individual fishat the CFFS operating frequency. The expected

target strength used for this example was TS = -35.3 dB re Im. The

areal scattering strength time series (gray line in B) can be found by in-

tegrating the volumetric scattering strength over depth. The blue line

in B highlight fish populations shown in A. For this example, typical

areal densities are roughly between 0.1-0.25 fish/m 2 . . . . . . . . . . . . 30

2-5 Example summarizing CFFS night-time measures of individual target

strength at 38 kHz during the night and early morning hours of May 14

and May 15,2003. The overnight CFFS survey transects are overlain
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and the first transmission on May 15 (7:45 EDT). . ........ . . 32

2-6 Examples of two representative transects taken during the night of

Mayl4-Mayl5,2003 where CFFS made measurements of the target

strength of an individual fish at 38 kHz. Histograms of the unaver-

aged (blue) and averaged (green)CFFS target strength corresponding

to these transects are presented. Continuous measurements over ex-

tended fish groupings are averaged over 20 samples, or over roughly

150 meters, to produce the green histogram. . .......... . . 33

3-1 A schematic of the 2D, top-down geometry used to model the scattering

from a random distribution of fish with an OAWRS resolution footprint. 42
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3-2 Instantaneous OAWRS scattering strength maps (E) can be derived by

compensating for the two-way transmission loss from the source and

the receiver weighted by the spatially-varying footprint of the OAWRS

system (C) and OAWRS Source power. The source level used for this

example is 217.9 dB re 1pPa, calibrated from hundreds of independent

samples. The center-frequency, depth-averaged one-way transmission

loss maps from the OAWRS source array (A) and the receiver (B) prior

to weighting by the beam pattern of the OAWRS array are also shown.

The one-way transmission loss maps were computed via parabolic equa-

tion modelling, using a center frequency of 415Hz, and were averaged

over the entire water column. ................... ... 50

3-3 The OAWRS target strength is estimated in regions where both CFFS

and OAWRS simultaneously co-register fish populations. Regions ab-

sent of fish or insignificant fish populations are excluded to avoid spu-

rious estimation. The black rectangular region in the OAWRS scat-

tering strength image corresponds to the segment of interest. The

corresponding segment within the CFFS echogram of volumetric fish

density is bounded by the two solid black lines. For this particular

OAWRS scattering strength image, the red circle corresponds to the

exact time-space instant surveyed by CFFS during the OAWRS trans-

mission.The same time-space location is also indicated in the echogram

by the dashed red line. ................... ....... 51
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3-4 The CFFS scattering strength time series contains all measures of

CFFS scattering strength within a particular segment of interest. The

OAWRS scattering strength time series is constructed by concatenat-

ing the OAWRS scattering strength measurements corresponding to

the exact time-space locations measured by CFFS within each consecu-

tive OAWRS transmission interval (i.e. intervals 1 through N shown in

the corresponding OAWRS scattering strength images). The OAWRS

TS is estimated only in locations where CFFS measures fish densities

greater than 0.2 fish/m 2 . The time instants in which CFFS measures

fish densities greater than 0.2 fish/m 2 are highlighted for the time se-

ries of CFFS scattering strength (blue), OAWRS scattering strength

(red), and the OAWRS TS time series (green). The OAWRS TS time

series is computed using the OAWRS and CFFS scattering strength

time series, as well as the mean TS measured by CFFS at 38 kHz.

For this particular day, the mean CFFS TS was -35.3 dB re im. The

CFFS fish density along the segment transect is also shown in the pur-

ple time series, while the OAWRS fish density is also plotted in black

by assuming a mean OAWRS TS of -40 dB re im. . ........... 52
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OAWRS shoaling region (B), at the boundary of an OAWRS shoaling
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fish populations and results in most accurate estimate of OAWRS TS.

This typically occurs during Case 1 sampling scenarios. ........ . 55
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3-10 Summary of OAWRS TS Estimation at 415 Hz for available OAWRS-

CFFS sampling scenarios.For each case, the mean estimated OAWRS

TS per example segment is plotted (colored circles). The gray shaded

regions indicate +/- one standard deviation from the mean prior to

stationary averaging, while the black error bars indicate +/- one stan-

dard deviation from the mean TS after applying stationary averaging.

Note, for Case 2C and Case 3, +/- one standard deviation are shown

from the mean estimated OAWRS target strength after correcting for

the areal resolution mismatch between CFFS and OAWRS. The over-

all mean OAWRS TS for each case (black dashed lines) combines the

data from each example segment for each sampling scenario. For Case

2C and Case 3, the uncorrected mean per example (blue and orange

diamonds) and the uncorrected mean per case (gray dashed lines) are

also shown. ................... ............ .. 59

3-11 Site 2, Casel, May 14, Example segments 1 and 2.The OAWRS TS is

estimated in locations where CFFS measures fish densities greater than

0.2fish/m 2 , highlighted in color for each time series. The CFFS seg-

ment (rectangular contour) is overlain onto a representative OAWRS

scattering strength image. The range-depth profiles of CFFS volumet-

ric density for each segment is also shown. . ............... 64

3-12 Site 2, Casel, May 15 Track 252-1, Example segments 3 and 4. The

OAWRS TS is estimated in locations where CFFS measures fish den-

sities greater than 0.2fish/m 2, highlighted in color for each time series.

The CFFS segment (rectangular contour) is overlain onto a represen-

tative OAWRS scattering strength image. The range-depth profiles of

CFFS volumetric density for each segment is also shown. ....... . 65
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3-13 Site 2, Casel, May 15 Track 254-1, Example segments 5 and 6. The

OAWRS TS is estimated in locations where CFFS measures fish den-

sities greater than 0.2fish/m 2, highlighted in color for each time series.

The CFFS segment (rectangular contour) is overlain onto a represen-

tative OAWRS scattering strength image. The range-depth profiles of

CFFS volumetric density for each segment is also shown. ....... . 66
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available OAWRS-CFFS sampling scenarios. . .............. 69

3-15 Case 1 scenarios afford the optimal scenario for estimating the OAWRS

target strength. Including data from other sampling scenarios can

only introduce variability, or additional noise, in the estimation. For

the corrected and uncorrected 415 Hz histogram corresponding to all

cases (blue and green respectively), there were 1400 individual co-
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taining roughly 180 independent samples. The statistics for the 415

Hz Case 1 averaged histogram (black) was computed from 180 inde-

pendent samples. For the 925 and 1325 data set, there were roughly

180 individual co-registration points (roughly 60 independent samples)

where the OAWRS TS was computed. . ................. 71
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4-2 Two instantaneous areal density images of fish shoals near the conti-

nental shelf edge obtained by ocean acoustic waveguide remote sensing

(OAWRS) at (A) 09:32 EDT, 14 May 2003, and (B) 08:38 EDT, 15

May 2003, each acquired within 40 s. nuA is shown in color. The

moored source (the white star) is the coordinate origin in all figures at

39.0563N, 73.0365W. The towed horizontal receiving array (the white

diamond) has 2.6 azimuthal resolution at array broadside. The range

resolution is 30 m after averaging. The forward propagation of sound

masks imaging inside the gray ellipse surrounding the source and re-

ceiver. The positive vertical axis points north. Depth contours are

indicated by dashed lines. In (A) and (B), the continental shelf edge

begins at roughly the 100-m contour. ....... ........... . 76

4-3 Spatial frequency spectra, based on scores of instantaneous OAWRS

images of VA, for cases where a large shoal is present and only small

scattered fish groups are present. A consistent spectral power law of

spatial frequency to the -1.46 is observed ............. ... 77

4-4 A comparison of OAWRS with conventional fish-finding sonar (CFFS).

(A to D) A sequence of instantaneous OAWRS areal density (fish/m 2)

images taken roughly 10 min apart, starting at 11:59:05 EDT on 14

May 2003, is shown. The corresponding CFFS transect is overlain

in light blue, with the CFFS position for the given OAWRS image

indicated by a circle. The white dashed line is the 100-m depth contour.

(E) Range-depth profile of fish volumetric density (fish/m 3 ) measured

by CFFS along the transect shown in (A) to (D). White bars (in the

lower black region below the sea floor) correspond to typical time-space

points a, 3, and 7, where both systems co-register dense fish groups

[(A) to (C)]; the gray bar corresponds to point 6 in (D), where neither

system registers dense fish groups. ................... . 79

209



4-5 Evolution of a fish shoal from morning to evening from OAWRS im-

agery and a time series on 14 May 2003. (A to D) Four instantaneous

OAWRS images or snapshots illustrating morning consolidation and

afternoon fragmentation of the shoal. The color bar is the same as in

4-2. Vertical arrows indicate snapshot times. (E) A time series of pop-

ulation within the area shown in (A) to (D) for nuA within each of the

thresholds specified. Gaps in the time series are due to towed-array

turns. (F) Area occupied by a consolidated shoal or its two largest

fragments for VA > Vshoal = 0.2fish/m2. (G) The internal coherence

area is the area within 1/e of the 2D autocorrelation peak of instanta-

neous OAWRS fish density within the shoal or fragment. The centroids

of two particular population centers within the shoal are indicated by

the circle and the triangle in (A) to (D). (H) Relative speeds between

the centroids of the two population centers shown in (A) to (D), with

mean (blue circle) and standard deviation (bars) shown for each track. 81

4-6 Autocorrelation function of the population time series, with red hor-

izontal line indicating the e-folding times (A) and Frequency power

spectrum with the frequency to the -2 dependence for the shoal popu-
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4-8 Flow chart of the post-processing analysis for the 2003 survey of the
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