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Abstract

This thesis formulates an estimation framework for Simultaneous Localization and
Mapping (SLAM) that addresses the problem of scalability in large environments.
We describe an estimation-theoretic algorithm that achieves significant gains in com-
putational efficiency while maintaining consistent estimates for the vehicle pose and
the map of the environment.

We specifically address the feature-based SLAM problem in which the robot rep-
resents the environment as a collection of landmarks. The thesis takes a Bayesian
approach whereby we maintain a joint posterior over the vehicle pose and feature
states, conditioned upon measurement data. We model the distribution as Gaus-
sian and parametrize the posterior in the canonical form, in terms of the information
(inverse covariance) matrix. When sparse, this representation is amenable to compu-
tationally efficient Bayesian SLAM filtering. However, while a large majority of the
elements within the normalized information matrix are very small in magnitude, it is
fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability
benefits of a sparse parametrization by explicitly pruning these weak links in an effort
to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information
Filter (SEIF), which has laid much of the groundwork concerning the computational
benefits of the sparse canonical form. The thesis performs a detailed analysis of the
process by which the SEIF approximates the sparsity of the information matrix and
reveals key insights into the consequences of different sparsification strategies. We
demonstrate that the SEIF yields a sparse approximation to the posterior that is in-
consistent, suffering from exaggerated confidence estimates. This overconfidence has
detrimental effects on important aspects of the SLAM process and affects the higher
level goal of producing accurate maps for subsequent localization and path planning.

This thesis proposes an alternative scalable filter that maintains sparsity while
preserving the consistency of the distribution. We leverage insights into the natural
structure of the feature-based canonical parametrization and derive a method that
actively maintains an exactly sparse posterior. Our algorithm exploits the structure
of the parametrization to achieve gains in efficiency, with a computational cost that
scales linearly with the size of the map. Unlike similar techniques that sacrifice
consistency for improved scalability, our algorithm performs inference over a posterior
that is conservative relative to the nominal Gaussian distribution. Consequently, we



preserve the consistency of the pose and map estimates and avoid the effects of an
overconfident posterior.

We demonstrate our filter alongside the SEIF and the standard EKF both in sim-
ulation as well as on two real-world datasets. While we maintain the computational
advantages of an exactly sparse representation, the results show convincingly that
our method yields conservative estimates for the robot pose and map that are nearly
identical to those of the original Gaussian distribution as produced by the EKF, but
at much less computational expense.

The thesis concludes with an extension of our SLAM filter to a complex underwater
environment. We describe a systems-level framework for localization and mapping
relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped
with a forward-looking sonar. The approach utilizes our filter to fuse measurements
of vehicle attitude and motion from onboard sensors with data from sonar images of
the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a
ship hull.

Thesis Supervisor: John J. Leonard
Title: Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

Scientific advancements are both benefactors of improvements in robotic technology
as well as driving forces toward the development of more capable autonomous plat-
forms. This is particularly evident in the fields of interplanetary science and subsea
exploration. Recent discoveries in areas such as climate change, hydrothermal vent
biology, and deep space exploration are driving scientists to study environments that
are less and less accessible to humans, be they 5,000meters below the ocean surface
or on the surface of Mars. Traditionally, remotely operated vehicles have proven to be
a viable substitute, allowing people to interact with the environment from a surface
ship or a lab on land. Many open problems, such as those in ocean circulation model-
ing [20, 1] and planetary exploration [100], though, require a long-term presence that
makes it difficult, if not impossible to have a human constantly in the loop.

An integral component to oceanographic modeling and prediction is the persistent
observation of coastal and near-surface ocean processes. As part of the Autonomous
Ocean Sampling Network (AOSN) [20], for example, a team of scientists are develop-
ing models that can predict ocean upwelling and mixing as well as the distribution
of algae and other biological organisms within Monterey Bay. In developing these
models, researchers rely upon prolonged, continuous observations of various physical
oceanographic properties. While traditional sampling tools such as floats, satellites,
and moorings provide useful data, they are not capable of the persistent, adaptive
monitoring that is necessary to fully observe the different processes. Consequently,
the AOSN initiative is working towards the long-term presence of an ocean obser-
vation system that will combine traditional monitoring tools with autonomous vehi-
cles. These vehicles, such as the Dorado-class autonomous underwater vehicle (AUV)
shown in Figure 1-1(a), must be capable of sustained, intelligent sampling with little
or no human intervention.

Similarly, the Mars Exploration Rover (MER) mission is faced with operating
a pair of vehicles in an uncertain environment with communication delays on the
order of tens of minutes. The MER mission relies on a large team of ground-based
personnel to carefully plan the rovers’ day-to-day operation, including their scientific
activities and low-level motion. This risk-averse strategy has arguably contributed to
the rovers’ surprising longevity but imposes significant operational costs and reduces
the scientific throughput. Recognizing this, the follow-up Mars Science Laboratory

19



20 Chapter 1. Introduction

(a) (b)

Figure 1-1: The image in (a) shows the launch of a Dorado-class AUV as part of
the Autonomous Ocean Sampling Network project [20]. The artistic rendering in (b)
depicts the Mars Science Laboratory vehicle, which is scheduled to launch in 2009.
Roughly two meters in length and weighing 800 kilograms, the rover is equipped with
an extensive scientific payload that includes a manipulator, several cameras, an X-ray
diffraction unit, and a mass spectrometer. The rover will operate with greater autonomy
than the MER vehicles, and is expected to traverse upward of 20 kilometers during the
first Martian year. The AUV photograph is courtesy of Todd Walsh c©2003 MBARI.
The MSL rendering is courtesy NASA/JPL-Caltech.

(MSL) Project [134] will rely less on ground control and more on vehicle autonomy
to plan longer paths and collect and analyze geological samples from the Martian
surface. An increased level of scientific and mobile autonomy will allow the vehicle,
shown in Figure 1-1(b), to cover as much as 20 kilometers over the course of a single
Martian year. As mentioned in a recent issue of the journal Science devoted to the
role of robotics in science, it is this need for robust, increasingly complex autonomous
capabilities that is driving the state of the art in robotics [10].

1.1 Key Capabilities for Autonomous Robotics

The Mars Science Laboratory Project and others like it require highly advanced ve-
hicles that are capable of sustained, long-term autonomous operation. This demand
is driving the frontier of robotics toward the development of efficient and consistent
algorithms that are suited to persistent autonomy in unknown, unstructured envi-
ronments. In the case of mobile robotics, three fundamental capabilities serve as
the critical building blocks for autonomous behavior [85]: mapping, localization, and
path planning. Put broadly, mapping refers to the robot’s ability to model its envi-
ronment. Depending on the application, this may be a coarse model that consists of a
set of key locations within the world, or it may be a highly detailed representation of
the environment. Path planning encompasses both the problem of choosing the best
route to take as well as the search for immediate, low-level control actions. In order
to perform either of these two tasks, the robot must know where it is in the world, to
localize itself based upon a combination of position and motion observations.
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SLAM

Localization Mapping

Path Planning ExplorationActive Localization

Figure 1-2: Localization, mapping, and path planning are fundamental components
of robot autonomy. The three are closely connected and the interdependencies define
key problems in artificial intelligence, including that of Simultaneous Localization and
Mapping (SLAM), the focus of this thesis. Adopted from [85, 123].

It is difficult to consider mapping, localization, or planning as separate problems
to be addressed independently. As the simple diagram in Figure 1-2 demonstrates,
there are important areas of overlap between the three. Operating in an unknown
environment, it is difficult to decouple motion planning from mapping. Both short
and long-term planning require a model of the robot’s surroundings. At the same
time, the vehicle must plan suitable paths in order to map undiscovered parts of
the environment and improve existing maps. This coupling defines the exploration
problem. Similarly, in the context of mapping, there is rarely a “black box” solution
to the localization problem. There is an inherent coupling between map building
and localization. The quality of the map depends on an accurate estimate of the
robot’s pose, yet localization strategies typically estimate the robot’s position based
upon a map of the environment. The most successful algorithms for autonomous
robotics are developed with the implicit recognition that these three problems are
highly dependent.

This thesis is primarily concerned with robotic mapping and localization capabil-
ities and, more specifically, algorithms that tackle these two problems concurrently.
Let us then take a closer look at these two problems in particular.

1.1.1 Mapping

A map of the robot’s environment is essential for a number of tasks, not the least
of which are path planning and localization. Standard motion planning algorithms
rely on representations of the environment in the search for motion plans that bring
the robot to a desired goal state [73]. The map provides the coarse structure of the
world that serves as the input to the global planner, which solves for an optimal
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route. In order to follow this global path, the local planner uses the map’s finer-scale
information, largely to avoid obstacles as the vehicle navigates the global plan.

Robots often operate in environments whose structure is unknown a priori. When
an initial map does exist, it is often incomplete. In general, the robot is required to
build either a coarse (topological) or fine (metric) map by fusing observations of its
surroundings with the help of location estimates. Consider, for example, AUVs that
are used by the scientific community to detect and locate hydrothermal vents on the
ocean floor. Prior to vehicle deployment, the team conducts a survey of the site with
a ship-based multibeam sonar, which yields a bathymetric (depth) map of the local
seabed. With water depths of several thousand meters, though, the spatial resolution
of the maps is, at best, on the order of tens of meters. The maps reveal large-scale
geological structure but are too coarse to identify vent locations and are insufficient
for planning the fine-scale motion of the AUV [142]. Instead, Yoerger et al. [142]
describe an adaptive mapping strategy whereby the AUV autonomously plans its
survey based upon hydrographic measurement data. More specifically, the AUV first
executes a series of coarse, preplanned tracklines that cover the site, using a network
of underwater beacons for localization. As the vehicle conducts the initial survey, it
generates a map that describes the likelihood of vent sites based upon hydrographic
measurement data. The algorithm then identifies promising features that it surveys
at a fine scale with a photographic camera and multibeam sonar. The authors have
applied this nested exploration strategy to locate and map hydrothermal vents at
different sites with the Autonomous Benthic Explorer (ABE) AUV.

1.1.2 Localization

The ability to operate in a priori unknown environments plays an integral role in
achieving robot autonomy. In the case of the hydrothermal vent surveys, the AUV
relies upon an estimate of its pose in order to reference measurement data and build
a map of the site. The quality of this map depends directly on the accuracy of the
vehicle’s estimate of its position relative to the vent field. In addition to mapping,
localization plays a critical role in other core aspects of autonomy, including path
planning and exploration.

Standard localization methods utilize on-board sensors that observe vehicle ve-
locities and accelerations in conjunction with attitude and heading measurements to
integrate position over time [11]. Well-equipped AUVs such as ABE, for example,
have access to three-axis linear velocity data along with angular rates and accelera-
tions. Errors in the sensor data, however, give rise to dead-reckoned position estimate
errors that grow unbounded with time, typically on the order of one percent of dis-
tance traveled [11]. Localization algorithms bound this drift by taking advantage
of external infrastructure, such as a global positioning system (GPS), that provides
periodic absolute position fixes. Underwater, though, GPS is not available due to
the rapid attenuation of electromagnetic signals. ABE and other underwater vehicles
estimate their position based upon acoustic time-of-flight measurements to a set of
beacons. Known as long baseline (LBL), this navigation strategy mimics the func-
tionality of GPS and yields accurate 3D position data at the cost of setting up the
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(a) (b)

Figure 1-3: (a) The Hovering Autonomous Underwater Vehicle (HAUV) [21] is de-
signed to be a highly stable, highly maneuverable platform for the inspection of under-
water structures, including ship hulls. The vehicle is equipped with a high resolution
imaging sonar that serves as the primary sensor for surveys. (b) The vehicle searching
a ship for mine-like targets mounted to the hull.

as-needed beacon infrastructure.

GPS is available in most outdoor settings and requires relatively little infrastruc-
ture (i.e. a receiver) on the user end. It suffers from relatively few faults, namely
those that result from multipath interference or signal loss due to tree or building
coverage. LBL navigation and similar variants, on the other hand, require the de-
ployment and calibration of the acoustic beacon network before they can be used
for localization. Secondly, vehicles that are reliant on LBL are confined to operate
near the fixed network. These constraints are tolerable with longer-term operations
that focus on a specific site, such as the hydrothermal vent survey, but they make
rapid, dynamic deployments difficult. Consider the problem of inspecting ship hulls
for anomalies as part of regular maintenance or for explosive ordinances in the case
of military security. Manual, in-service surveys are often conducted by hand (liter-
ally) due to poor visibility and can be time-consuming with ships as large as 70m in
length, as well as hazardous to the divers. As a result, there is an increasing demand
for on-site, autonomous inspection with AUVs equipped with a camera or sonar that
can quickly map features of interest on the hull. Figure 1-3(b) shows an image of one
such vehicle, the Hovering Autonomous Underwater Vehicle (HAUV)1, during the
survey of a barge for mine-like objects. The main goal of autonomous inspection is to
conduct quick, thorough surveys of the hull that yield accurate feature maps. While
LBL navigation can contribute to the coverage and accuracy goals, the infrastructure
constraints prevent rapid, on-site surveys. Furthermore, compared with deep water,
near-bottom deployments, LBL performance in shallow water harbors degrades sig-
nificantly due to interference and multipath induced by surface effects and the ship’s
hull.

1The images depict the successor to the original HAUV prototype, which we refer to as the
HAUV1B.
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1.1.3 Simultaneous Localization and Mapping

One alternative is to forgo the beacon array and instead rely upon the static structure
of the hull or seafloor, in the case of bathymetric surveys, to provide absolute points
of reference. Given an initial map of the environment that captures this structure, the
robot can take advantage of observations provided by exteroceptive sensors, such as
cameras, sonar, or laser range finders, in order to localize itself within the map. Map-
based localization is relatively straightforward and is accurate, subject to the quality
of the map and the sensors. This approach offers a viable option in some indoor
or ground-based environments where architectural plans exist or initial surveys can
be performed to generate a suitable map. Oftentimes, though, there is no a priori
metric map of the environment that is both complete and accurate. Most architectural
drawings of offices, for example, describe only the two-dimensional building structure
and do not capture “dynamic” features, such as desks and chairs. In comparison,
detailed bathymetric maps exist only for a small fraction of the seafloor. Of those that
are available, most result from ship-mounted multibeam sonar surveys, which provide
the greatest spatial coverage at the expense of resolution. As with the hydrothermal
vent deployments, this resolution is far too coarse for map-based localization at most
ocean depths.

Simultaneous Localization and Mapping (SLAM) offers a solution to the
problem of unencumbered navigation in a priori unknown environments. The SLAM
formulation to the problem is based upon two coupled ideas: (1) given a model of
the world, the robot can accurately estimate its pose by registering sensor data rela-
tive to the map, and (2) the robot can build a map of the environment if it has an
estimate for its location. Simultaneous Localization and Mapping (SLAM)2 builds a
map of the environment online while concurrently estimating its location based upon
the map. More specifically, by building a map online while using inertial and velocity
measurement data to predict vehicle motion, the robot utilizes observations of the en-
vironment to localize itself within the map and thereby bound error growth. SLAM is
a classic chicken-and-egg problem in which an accurate estimate for the robot’s pose is
necessary to build a map based upon sensor data, while accurate localization depends
on the same map to estimate pose. The coupling between mapping and localization
is further complicated by uncertainty in the vehicle motion and measurement models,
and by noise that corrupts sensor data. Many successful SLAM algorithms address
these issues by formulating the problem in a probabilistic manner, tracking the joint
distribution over the vehicle pose and map. This approach to the problem offers a
principled means of explicitly accounting for the coupling between map building and
navigation.

SLAM is an approach to localization and mapping that dates back to the seminal
work of Chatila and Laumond [17], along with that of Smith, Self, and Cheese-
man [120], among others. Over the last two decades, SLAM has emerged as a central
problem in robotics. The community has paid a great deal of attention to the prob-
lem, advancing the state of the art in various aspects of SLAM. These include the

2Simultaneous Localization and Mapping (SLAM) is also referred to as Concurrent Mapping and
Localization (CML) within the literature.
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core formulation of the SLAM problem, both with regards to the original Gaussian
model of the distribution [76, 14, 107, 28, 52, 129, 113, 45] as well as Monte Carlo
representations [98, 29, 93, 54, 50] of the posterior. There have also been signifi-
cant contributions in the areas of both 2D [125, 16, 82] and 3D [25, 34, 104] world
modeling, which extend SLAM from simple, man-made office-like environments to
complex, unstructured domains. Exemplifying this progress is a long list of successful
applications of SLAM within indoor [126, 12], outdoor [2, 52, 68, 104], and underwa-
ter [140, 106, 34] environments of increasing size.

The robotics community has made a great deal of progress towards a better un-
derstanding of the SLAM problem. Despite these contributions, though, a number of
key outstanding issues remain. Foremost among them is the problem of scalability to
increasingly larger maps. As SLAM is applied in larger domains, there is the need for
a map representation of the environment together with a model for the coupling be-
tween the map and vehicle pose that combine to yield robust map and pose estimates
in a computationally efficient manner. In addition to the relatively new problem of
scalability are unresolved issues that date back to some of the first work in SLAM.
These include robust data association and the problem of dynamic environments.

A well-known open problem in localization and mapping is that of dealing with
dynamic environments. The majority of SLAM algorithms explicitly assume that
the environment is static in order to simplify map estimation. In reality, though,
many environments change over time as people move about, the position of furniture
changes, and doors open and close. With a static map model, these changes give rise
to seeming discrepancies in the robot’s observations of the world. Algorithms often
treat this variation as measurement noise and reject the observation as erroneous when
the difference is significant. This strategy is robust to a limited degree of change in
the environment, but significant variation will cause the map and pose estimates to
diverge. In the context of mobile robot localization, Fox et al. [43] utilize a pair of
filters to detect measurements that correspond to dynamic objects based upon an a
priori known map of the environment. The authors then perform Markov localization
based upon observations of static elements. Wang and Thorpe [135] describe a SLAM
framework that employs a separate dynamic object tracking algorithm to identify
observations of non-stationary objects. These measurements do not contribute to the
SLAM process but are used by the object tracker, which also leverages the SLAM
vehicle pose estimate. An alternative approach is to drop the static map assumption
and explicitly track dynamic elements within the environment. This approach requires
a motion model for the dynamic map elements in order to predict their pose as it
changes over time. Secondly, they must account for a varying number of dynamic
features as objects appear and disappear from the environment (e.g. as people enter
and leave a room). Montemerlo et al. [95] consider the problem of tracking people in
an office-like environment. They adopt a Brownian motion model for each person and
update the number of people within their map based upon the Minimum Description
Length metric. The algorithm employs a Monte Carlo filter to track the robot pose
and a second Monte Carlo filter for the people.

Data association plays an integral role in most SLAM algorithms, which for cor-
rectness must arrange that exteroceptive sensor measurements are correctly matched
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to their corresponding map elements. Algorithms typically treat this correspondence
as a hard constraint and are not robust to errors since they cannot undo the effects
of incorrect data association. One exception is the FastSLAM algorithm [93], which
effectively tracks multiple hypothesis over data association and, as a result, is robust
to errors [53]. Traditionally, data association considers measurements on an indi-
vidual basis and chooses the maximum likelihood map correspondence, ignoring the
mutual consistency among these pairings. This approach is prone to errors and can
cause the robot location and map estimates to diverge, particularly when revisiting
regions of the map that have not been observed for some time (loop closing). Neira
and Tardós [103] propose an improved technique that considers the joint likelihood
over the set of correspondences. This approach yields fewer errors but must search
over a space of correspondences that is exponential in the number of measurements.
Alternatively, Olson, Walter, Teller, and Leonard [112] propose an algorithm that for-
mulates the set of possible data association hypotheses as an adjacency graph whereby
they treat the problem as one of graph partitioning. They analyze the spectral prop-
erties of the corresponding adjacency matrix to identify the largest set of compatible
correspondences in polynomial time. Meanwhile, Cox and Leonard [18] describe a
multi-hypothesis tracking algorithm that concurrently maintains several correspon-
dence estimates in the form of a hypothesis tree. The method employs Bayesian
techniques to evaluate the likelihood associated with each data association hypothe-
sis. This likelihood effectively serves as a soft correspondence constraint and allows
the SLAM filter to assess the accuracy of each assignment over multiple time steps.
This approach also has limitations, namely the need to maintain multiple hypotheses
that, depending on the underlying filter, can be computationally demanding. While
not explicitly a multi-hypothesis implementation, Feder et al. [38] and Leonard et al.
[78] track a delayed-state estimate over vehicle pose that similarly allows them to
postpone data association decisions. More recently, Newman and Ho [105] describe
a framework for data association that combines a delayed-state representation with
salient optical image features that are independent of the vehicle pose and map esti-
mates. The combined benefits of the delayed-state filter and the image filters provide
robust loop closure that the authors demonstrate in a 3D outdoor environment [104].

The robotics community has long recognized data association and the modeling of
dynamic environments as key problems in localization and mapping. More recently, as
SLAM is applied to a greater number of domains and larger environments, other issues
arise. Key among them is the problem of scalability, as many SLAM filters impose
computational and memory costs that make them intractable for large environments.
This limitation has given rise to a number of algorithms that reduce the complexity of
localization and mapping in an attempt to scale to larger environments. Among the
different strategies are algorithms that break the environment into a set of smaller,
more manageable maps [76, 51, 139, 77, 12]. These appropriately-named submap
algorithms greatly reduce the effects of map size on the computational cost but are
thought to suffer from slower convergence speed [77].

Recently, novel strategies have emerged that offer the promise of scalability through
an alternative model for the SLAM distribution. Specifically, Frese and Hirzinger [46]
and Thrun et al. [130] make key insights into the canonical (information) parametriza-
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tion of the Gaussian distribution. Their analysis reveals that the graphical model that
describes the feature-based SLAM posterior is almost sparse.3 Thrun et al. show that,
in the case that the parametrization is truly sparse, SLAM filtering is nearly constant
time, irrespective of the size of the map. They then present the seminal Sparse Ex-
tended Information Filter (SEIF), which explicitly enforces a sparse parametrization
to perform efficient, scalable SLAM. However, we show later that the method by
which they achieve an exactly sparse representation induces an inconsistent posterior
distribution. In the same vein, Paskin [113] provides similar insights into the structure
of the corresponding probabilistic graphical model. He describes the Thin Junction
Tree Filter (TJTF), which achieves linear complexity by maintaining a sparse graph
structure. Leveraging his earlier work in the canonical formulation to SLAM [46],
Frese [45] similarly approximates the distribution with a sparse graphical model. His
Treemap filter enforces a tree structure for the graphical model and is capable of local-
ization and mapping that is logarithmic in the size of the map. Alternatively, Eustice,
Singh, and Leonard [34] derive the Exactly Sparse Delayed-State Filter (ESDSF) that
maintains a canonical model for the distribution over the vehicle’s pose history. The
authors show that this delayed-state representation exhibits a parametrization that
is naturally sparse. The ESDSF exploits this structure to perform SLAM in near
constant time without having to rely upon additional approximations for the distri-
bution. In order to achieve an exactly sparse representation, though, the ESDSF
must maintain a distribution over the entire pose history. Consequently, the state
grows linearly with time irrespective of the size of the environment. In the case of
sustained, long-term operation within a fixed area, this is an undesirable effect.

With the exception of the ESDSF, the problem with these canonical filters is
that the feature-based SLAM parametrization is not sparse. As we discuss later in
the thesis, the canonical representation for feature-based SLAM is naturally dense.
Consequently, the SEIF, TJTF, and Treemap must approximate the posterior with a
distribution that is sparse by pruning the graphical model or modifying the canonical
form. The key issue is how to approximate the distribution with a sparse canonical
parametrization.

1.2 Contributions of this Thesis

SLAM has grown to be a fundamental problem of interest in the robotics commu-
nity. This interest has helped to answer a number of key questions related to SLAM,
but, in the process, raised new questions that remain unresolved. This thesis seeks
to address one of these problems, namely that of scaling Simultaneous Localization
and Mapping (SLAM) to large environments. Leveraging the insights that Frese
et al. [46], Paskin [113] and Thrun et al. [130] have made regarding the information
parametrization, we consider the canonical representation of the Gaussian SLAM dis-
tribution as a consistent means to achieve computational and memory efficiency. The
main contributions of the thesis are twofold. We first present a thorough analysis of

3We refer to a representation as almost sparse if it is well-approximated by an exactly sparse
form.
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the canonical formulation to feature-based SLAM and shed light on the consequences
of approximating the distribution as sparse. Based on this analysis, we present a new
estimation-theoretic algorithm that maintains exact sparsity in a principled manner.
We then describe the application of the algorithm for a challenging underwater re-
search problem – mapping the underside of ship hulls at close range with a narrow
field-of-view acoustic camera.

1.2.1 Analysis

The first contribution of the thesis is an in-depth investigation of the canonical
parametrization of the Gaussian SLAM distribution. We describe the core aspects
of Bayesian SLAM filtering with this model in the context of the fundamental steps
of conditioning and marginalization. The derivation reveals important characteristics
of the canonical SLAM posterior, notably the means by which the parametrization
naturally becomes dense. This discussion lays the groundwork for our sparsification
analysis and the subsequent description of our filtering strategy.

The thesis offers a thorough analysis of sparse approximations to the canonical
SLAM distribution. We focus, in particular, on the Sparse Extended Information
Filter (SEIF) and shed insight into the SEIF sparsification strategy. We explore, in-
depth, the approximation employed by the SEIF and show that it relies on a specific
premise that results in a posterior that is inconsistent. In particular, we reveal that
the SEIF induces global estimates for the robot pose and map that are overconfident.
However, empirical evidence suggests that the SEIF sparsification strategy preserves
the local consistency of the map. We demonstrate the consequences of SEIF sparsi-
fication in detail through both a controlled linear Gaussian (LG) simulation as well
as a real-world nonlinear dataset.

1.2.2 Algorithm

The analysis of the SEIF sparsification strategy motivates the need for a sparse for-
mulation to the posterior that retains consistency. The main contribution of the
thesis is the Exactly Sparse Extended Information Filter (ESEIF). The ESEIF is
a scalable SLAM filter based in the information form that maintains sparsity while
preserving the consistency of the pose and map estimates. The thesis describes an in-
tegral component of the ESEIF: a method for controlling the density of the canonical
parametrization whereby we track a modified version of the SLAM posterior, essen-
tially by ignoring a small fraction of temporal measurements. In this manner, our
Exactly Sparse Extended Information Filter (ESEIF) performs inference over a model
that is conservative relative to the standard Gaussian distribution. We compare the
performance of our algorithm to the standard Extended Kalman Filter (EKF) with
a controlled linear Gaussian (LG) simulation and confirm that the ESEIF preserves
the consistency of the map and pose estimates. We also demonstrate the SEIF along-
side the gold-standard EKF on a pair of benchmark nonlinear datasets. The results
convincingly show that our method yields conservative estimates for the robot pose
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and map that are nearly identical to those produced by the EKF, yet at much less
computational expense.

1.2.3 Underwater Application

The final contribution of the thesis is the application of the ESEIF to underwater
localization and mapping. We consider the problem of ship hull mapping with an au-
tonomous underwater vehicle (AUV) equipped with a forward-looking sonar. We treat
the sonar as an acoustic camera and describe the imaging geometry that underlies the
corresponding camera model. The acoustic image data is fused with measurements
of the relative position of the ship hull to generate an observation of features on the
hull surface. We incorporate this measurement data within the ESEIF and use the
vehicle’s suite of onboard velocity and attitude sensors to track the six degrees of
freedom (DOF) vehicle pose and three-dimensional map of a ship hull.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2: SLAM: A State Estimation Problem
This chapter serves as an introduction to the probabilistic interpretation of the
SLAM problem and describes the application of Bayes filters that form the ba-
sis of estimation-theoretic solutions. We introduce the common formulations
to localization and mapping and discuss the current state of the art in SLAM.
The thesis subsequently focuses on the canonical parametrization of the Gaus-
sian and describes the information form of the Bayesian filter. We conclude
the chapter with a discussion on the unique characteristics of the canonical
representation as they pertain to scalability.

Chapter 3: Sparsification via Enforced Conditional Independence
The canonical parametrization of feature-based SLAM is naturally dense. Al-
gorithms that leverage a sparse representation must approximate the posterior
with a sparse distribution. This chapter explores the implication of such ap-
proximations on the probabilistic relationships among the robot and map. We
present an in-depth analysis of the sparsification strategy employed by the SEIF
and demonstrate that the approximation yields an inconsistent posterior.

Chapter 4: Exactly Sparse Extended Information Filters
In light of our discussion on the consequences of sparsification, we offer an alter-
native strategy for controlling the structure of the canonical form. This chapter
presents the Exactly Sparse Extended Information Filter (ESEIF), an efficient
extension of the Bayesian information filter that maintains exact sparsity while
preserving consistency. We describe algorithm in detail, including the spar-
sification rule, as well as efficient inference strategies as they relate to mean
estimation and data association. The chapter concludes with an analysis of the
ESEIF in a LG simulation, as well as on a pair of nonlinear datasets.
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Chapter 5: ESEIF for an Underwater Vehicle with an Imaging Sonar In this
chapter, we consider the problem of underwater localization and mapping with
an AUV equipped with an acoustic imaging sonar. We apply the ESEIF to
perform SLAM on a ship hull, based upon features detected within the acoustic
imagery.

Chapter 6: Conclusion
The thesis concludes by establishing our contributions in the context of funda-
mental problems in the area of SLAM. We discuss the key assumptions that
we have made in deriving the ESEIF, as well as the algorithm’s possible failure
modes. The chapter then presents directions for future research with regards
to both improvements to the ESEIF algorithm, as well as its integration with
other aspects of robotics.

Appendix A: Implementation Details
The first addendum describes the details of the filter implementations in simu-
lation, as well as real-world datasets, which we refer to throughout the thesis.

Appendix B: Acoustic Imaging Sonar
This second addendum describes the imaging geometry that underlies the HAUV
sonar. We present a measurement model that approximates the sonar as an
affine imaging acoustic camera.
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SLAM: A State Estimation
Problem

This chapter addresses the estimation theoretic view of the Simultaneous Localization
and Mapping (SLAM) problem. We first present the general probabilistic interpre-
tation of the state estimator that is common to most SLAM algorithms. Subsequent
sections are devoted to distinguishing between the different SLAM implementations.
We present a coarse-to-fine analysis, as we first discuss a few alternative representa-
tions for the map. We then look at the various characterizations of the probability
distributions and how they go about maintaining this estimator. For each, the dis-
cussion elaborates on several particular algorithms, so as to highlight the state of the
art in SLAM.

2.1 SLAM Problem Formulation

As we discussed in the previous chapter, the SLAM problem is fundamentally rather
simple. The robot moves about in an unknown environment, making observations
of the world around it. Odometry and velocity measurements provide an estimate
of the vehicle’s motion. Due to the noise that corrupts this data, the error in the
estimated pose drifts with time. SLAM algorithms bound this error by concurrently
building a local map against which they reference observations of the environment
to localize the vehicle. This leads to the well-known chicken-and-egg problem that
characterizes SLAM. The accuracy of the map depends upon how well the robot’s
position is known while the pose, itself, is estimated based upon this map.

Simultaneous Localization and Mapping (SLAM) can be viewed as a state estima-
tion problem. Simply put, the goal is to improve an estimate for the robot pose and
map (the state) over time based upon noisy sensor readings. Most successful SLAM
algorithms have been developed with this formulation in mind and take an estimation
theoretic approach to address the SLAM problem. What distinguishes one approach
from another is how they implement the state estimator. For example, what is the
best way to parametrize the map? How do we sufficiently capture the uncertainty
in the state that arises as a result of noisy data? What is the best way to track
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the robot pose and map estimates over time? We present an overview of SLAM and
offer answers to some of these questions. For a more detailed discussion on SLAM
in the context of probabilistic robotics, the reader is referred to the text by Thrun,
Burgard, and Fox [128]. Additionally, Durrant-Whyte and Bailey [32, 3] provide an
informative review of the history of the SLAM problem, along with a discussion on
the state of the art.

2.1.1 State Representation

Simultaneous Localization and Mapping (SLAM) maintains an estimate for the robot’s
pose and the map as the robot navigates in the world. As such, the state space in-
cludes the robot pose, x, along with a representation for the map, M.

Let us denote by x(t) ∈ R
p the continuous-time state of the robot at time, t.

The state vector describes the vehicle pose, i.e. its position and orientation, and may
also include linear and angular velocities. The pose space for vehicles that operate
in a planar world such as an office environment is x(t) ∈ R

3, which includes its
(x, y) Cartesian position along with the orientation, θ. Others such as autonomous
underwater vehicles (AUVs) and aerial vehicles operate in three-space and require a
six element pose vector, x(t) ∈ R

6 to describe their six degrees of freedom (DOF).
Typically, the state includes the (x, y, z) position of the center of mass (COM), along
with an Euler angle representation for orientation, (φ, θ, ψ).

The variable, M, denotes the parametrization of the map that describes the salient
statistics of the environment. The two types of maps common to SLAM are topological
and metric. Topological maps [72] consider the environment to be a collection of
“distinct places” that may include intersections, doorways, and offices in an indoor
environment. A topological framework represents the map as a graph in which the
distinct places form the nodes and the edges denote connections, such as hallways,
between these places. Metric maps, for which this thesis is concerned, explicitly
represent the geometrical properties of the environment, typically in the context of
Euclidean space.

The two standard metric map representations are occupancy grids and feature-
based maps. Occupancy grid maps [96] discretize the world into a set of grid cells.
Each cell is associated with a position and a binary label where 1 corresponds to the
cell being occupied and 0 signifies that it is empty. The map is then a collection of
cells, M = {m1,m2, . . . ,mn}, where each mi represents the position of the ith cell
and its binary label. The space of possible maps is then exponential in the total
number of grid cells. Feature-based maps [74, 75], on the other hand, describe the
world as a collection of geometric primitives, such as lines and points. The parameters
that model each landmark form the continuous-valued state, mi, and together define
the map as the set M = {m1,m2, . . . ,mn}.

2.1.2 Robot Motion Model

We model the vehicle dynamics with rigid body equations of motion. The time invari-
ant, continuous-time state space model is, in its general form, a nonlinear function of
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the vehicle state and control input, u(t),

ẋ(t) = f (x(t),u(t)) . (2.1)

The simplest form of (2.1) is a kinematic, first-order motion model for which the
control inputs are either odometry or velocity. The constant-velocity model assumes
zero acceleration and considers the vehicle state to be the pose and body-frame ve-
locities. For example, the constant velocity model of a planar wheeled robot is given
in Example 2.1.

Example 2.1 (Continuous-time Motion)
Consider a wheeled robot that operates in a planar environment. We define a
body-fixed reference frame with the x axis pointing forward and the y axis to the
left as shown in the figure. The state vector, x(t) = [x(t) y(t) θ(t)]⊤, denotes the
position and orientation in the world frame. The kinematics constrain the vehicle
to move forward and to turn, but, assuming no slippage, not move laterally. The
control inputs, u(t) = [v(t) r(t)]⊤, are the body-frame forward velocity, v(t), and
rotation rate, r(t). The continuous-time, constant-velocity dynamical model is

xw

yw

xv

yv

θ(t)

v(t)

r(t)
(x(t), y(t))

ẋ(t) = f(x(t),u(t))




ẋ(t)
ẏ(t)

θ̇(t)



 =





v(t) cos (θ(t))
v(t) sin (θ(t))

r(t)



 (2.2)

We can model the robot dynamics only to a limited degree of accuracy. There
will be some degree of error in the estimated system parameters; the velocity mea-
surements are not exact; the wheels will slip depending on the ground surface; etc.
These factors give rise to a model such as that in (2.1) that does not completely
describe reality. A modified dynamics model explicitly accounts for the structured
and unstructured uncertainties with the addition of a noise term, w(t). This term
may denote external perturbations to the system, as well as modeling (parameter)
errors, and is not observable. With its inclusion in the dynamics, the actual system
is said to behave according to the model,

ẋ(t) = f (x(t),u(t),w(t)) . (2.3)

While the vehicle state evolves continuously in time, sensing events, including
environment observations and measurements of vehicle velocity, occur at discrete time
steps. For the sake of implementation, we consider a discrete-time representation for
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the vehicle state. Assuming a uniform sampling period of ∆T , tk = k · ∆T denotes
the kth time step and xk = x(tk) the corresponding robot state. We convert the
continuous-time equations of motion (2.3) to a discrete-time representation (2.4) that
describes the evolution of the discrete-time state,1

xt+1 = f (xt,ut+1,wt) . (2.4)

Note that vector function f(·) in the difference equation is not the same as that in
the continuous-time model in 2.3.

Appendix A provides detailed examples of both the continuous-time and discrete-
time motion models for different robotic platforms considered in the thesis. We
present the motion models for three-DOF wheeled vehicles as well as a full three-
dimensional, six-DOF underwater robot. A thorough discussion of the dynamics that
govern land-based vehicles can be found in Borenstein et al. [11] and Siegwart et
al. [119]. Fossen [42], meanwhile, is an excellent reference for underwater vehicle
dynamical models.

2.1.3 Measurement Model

As the vehicle explores the environment, onboard sensors provide observations of the
environment, as well as proprioceptive data. Land robots, for example, commonly use
laser range finders to measure the relative position of objects in the world. Underwater
vehicles, meanwhile, rely on acoustic sonar to sense the environment and Doppler
sensors to measure velocity.

As previously mentioned, sensors provide measurement data at discrete time
steps. At any time step, t, there are likely to be multiple different measurements,
zt =

{

1zt,
2zt, . . . ,

Jzt
}

, the jth of which we denote by the vector, jzt =
jz(t) ∈ R

l.
Each corresponds to an observation of a different map element, mi, within the sen-
sor’s field-of-view (FOV) or of vehicle pose. The general form of a vehicle-relative
observation of the object within the environment, jzt, is a nonlinear function of the
vehicle pose and the corresponding map element state, mi,

jzt = g (xt,mi) . (2.5)

This model describes the measurement acquisition process and is specific to the op-
eration of different sensors. As detailed as this model may be, though, it is not exact
as it is prone to both structured and unstructured uncertainty. For example, the
accuracy of parameter estimates is limited, the sensor may not be calibrated, data is
corrupted by noise, etc. In similar fashion to the robot dynamic model, we account
for the uncertainty with the addition of an unobserved noise term, vt. The true model
is then

jzt = g (xt,mi,vt) . (2.6)

Again, we provide specific examples of measurement models in Appendix A, where

1A slight abuse of our earlier notation, we will use t within subscripts to denote an incremental
time step.
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we describe the laser range and bearing sensors as well as the acoustic camera models
that we employ later in the thesis.

2.2 Probabilistic State Representation

The fundamental objective in online SLAM implementations is to maintain, over
time, an estimate for the current pose and map, xt and M, which comprise the latent
state, based upon the available observables, zt and ut. The stochastic nature of
the vehicle motion and sensor data complicates the estimation and, in particular, the
coupling between navigation and mapping that is inherent to SLAM. Many successful
SLAM algorithms address these issues by formulating the problem in a probabilistic
manner, using generative methods to track the joint distribution over the robot pose
and map.

Probabilistic interpretations of SLAM represent the problem in terms of the tuple,
St = 〈xt,M, zt, ut, T, O〉. The formulations model the robot pose as a stochastic
process and the map as a random vector. The random vectors xt and M denote
the latent pose and map states.2 Similarly, the vehicle motion (odometry, velocity)
data and map observations are particular realizations of the random variables, zt and
ut that constitutes the evidence. Probabilistic SLAM algorithms consider the entire
time history of measurements, zt = {z1, z2, . . . , zt}, and u

t = {u1, u2, . . . , ut}.
The probabilistic state space model specifies a transition function, measurement

likelihood model, and a prior over the state and observations. The state transition
function, T : xt × ut+1 × xt+1 → [0, 1], is a stochastic model for the dynamic behavior
of the robot pose in response to control inputs. Typical SLAM algorithms assume
that the map is static, i.e. that p (Mt+1) = p (Mt) = p (M), and that only the robot
pose is dynamic [127]. Note that, while we adopt this assumption in the thesis, it
is not always valid, since environments often contain dynamic elements (e.g. chairs
within an office, people). Probabilistic algorithms that assume a static world are
robust to some change [128], yet, as we discussed in Section 1.1.3, the ability to deal
with dynamic environments remains an open problem in SLAM.

We model the vehicle dynamics according to a first-order Markov process of the
form, T : p (xt+1 | xt,xt−1, . . . ,x0,ut+1) = p (xt+1 | xt,ut+1), where xt is the current
state and ut the control3 [128]. Given the previous pose and current control input,
the current pose is conditionally independent of the map and the historical data,
i.e. p (xt+1 | xt,M, zt,ut+1) = p (xt+1 | xt,ut+1). The distribution captures the uncer-
tainty in the vehicle dynamics model along with the noise that corrupts the odometry
data, which we describe in (2.4).

The perceptual model, O : xt×M×zt → [0, 1], is a sensor-specific stochastic repre-
sentation for the physical properties underlying the formation of measurements (2.6).

2We use fonts without serifs to denote random variables (e.g. x) and fonts with serifs to represent
particular instantiations of the random variable (e.g. x). The same applies to bold symbols that
represent vectors.

3This assumption is not restrictive as higher-order Markov models can easily be represented as
first-order Markov by defining a new state.
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A generative model, p (zt | xt,M) specifies the dependency of sensor measurements
on the robot pose and the observed map elements. The distribution explicitly models
noise in the data along with inaccuracies in the physical models.

Finally, the prior specifies the initial probability density over the state. In the
context of SLAM, which starts with an empty map, the prior is over the initial robot
pose, p (x0).

2.2.1 Bayesian Filtering

This thesis treats SLAM as a filtering problem whereby we track the joint dis-
tribution over the state based upon current and historical observation data, i.e.
zt = {z1, z2, . . . , zt} and ut = {u1,u2, . . . ,ut}. The goal is then to maintain the
conditional density

p
(

xt,M | zt,ut
)

(2.7)

as it evolves over time. With each subsequent time step, data arrives in the form
of motion control inputs and relative measurements of the environment. The filter
recursively updates the distribution to reflect these new observations, {ut+1, zt+1}.
This update follows from the application of Bayes’ rule,

p
(

xt,M | zt,ut
) ut+1, zt+1

−−−−−−→ p
(

xt+1,M | zt+1,ut+1
)

p
(

xt+1,M | zt+1,ut+1
)

= η p (zt+1 | xt+1,M)

·

∫

p (xt+1 | xt,ut+1) · p
(

xt,M | zt,ut
)

dxt.
(2.8)

The term, η, is a normalizing constant that ensures the new distribution is a valid
probability function. The recursive update (2.8) assumes a first-order Markov model
for the motion model and represents the measurements as temporally independent
given the state, i.e. p (zt+1 | xt+1,M, zt,ut+1) = p (zt+1 | xt+1,M).

The Bayesian filter (2.8) accomplishes two core updates to the distribution: time
prediction and measurement update. The time prediction step updates the distribu-
tion to reflect the vehicle’s motion from time t to time t+ 1,

p
(

xt,M | zt,ut
) ut+1

−−→ p
(

xt+1,M | zt,ut+1
)

(2.9)

per the state transition function, T . It is useful to break the time prediction com-
ponent into two sub-processes: state augmentation and roll-up. State augmentation
first adds the new pose to the state according to the vehicle motion model based upon
odometry data and control inputs.

p
(

xt,M | zt,ut
)

−→ p
(

xt+1,xt,M | zt,ut+1
)

(2.10)

A roll-up process follows augmentation and marginalizes away the previous pose,
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effectively transferring information from the prior to the new distribution,4

p
(

xt+1,M | zt,ut+1
)

=

∫

p
(

xt+1,xt,M | zt,ut+1
)

dxt

=

∫

p (xt+1 | xt,ut+1) · p
(

xt,M | zt,ut
)

dxt. (2.11)

We summarize two two-step interpretation of time prediction in (2.12).

After projecting the dynamics forward in time, the filter incorporates new mea-
surement data into the distribution. The measurement update step is a Bayesian
update to the distribution in (2.12b), based upon the generative model of the obser-
vation likelihood. The result is the posterior distribution at time t+ 1, which results
from conditioning the state upon the measurement data, zt+1, revealed in (2.13).

Algorithm 2.1 (Bayesian SLAM Filter)

p
(

xt+1,M | zt+1,ut+1
)

∝ p (zt+1 | xt+1,M)

∫

p (xt+1 | xt,ut+1) p
(

xt,M | zt,ut
)

dxt

1) Time Prediction:

p
(

xt,M | zt,ut
) ut+1

−−→ p
(

xt+1,M | zt,ut+1
)

Augmentation:

p
(

xt,M | zt,ut
) ut+1

−−→ p
(

xt+1,xt,M | zt,ut+1
)

(2.12a)

Roll-up:

p
(

xt+1,xt,M | zt,ut+1
)

−−→ p
(

xt+1,M | zt,ut+1
)

(2.12b)

2) Update:

p
(

xt+1,M | zt,ut+1
) zt+1

−−→ p
(

xt+1,M | zt+1,ut+1
)

(2.13)

Algorithm 2.1 summarizes the principle Bayesian filter steps. These components
form the basis of the many different algorithms that address the SLAM estimation
problem [128].

4Note that smoothing SLAM filters, also known as delayed-state filters, explicitly maintain the
robot pose history and do not marginalize over poses.
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2.3 State of the Art in Localization and Mapping

The Bayesian formulation to SLAM is seemingly straightforward, involving funda-
mental marginalization and conditioning operations that take the form of the time
projection and measurement update steps. In reality, though, an exact, general im-
plementation is intractable. For one, the space of maps is continuous and prohibits
a generic representation of the environment. The space of robot poses is also con-
tinuous, which complicates the marginalization component to time prediction. These
difficulties have given rise to a number of SLAM estimation algorithms that rely upon
different assumptions regarding the problem in order to alleviate these complications.
The approaches differ in their model of the environment, their assertions regarding the
form of the motion and measurement models, and their representation of the SLAM
posterior. We continue the chapter with a description of the state-of-the-art in SLAM
filtering. We take a hierarchical approach, whereby we frame specific algorithms in
the context of a few primary schools of thought in the SLAM community.

2.3.1 Feature-based Map Representations

SLAM algorithms avoid the infinite dimensional distribution over the map by reducing
the environmental model to a tractable form. Section 2.1.1 described the two metric
representations of the environment: occupancy grids and feature-based parametriza-
tions. Occupancy grids discretize the continuous environment into a collection of n
grid cells, ci = {(xi, yi),mi} ∈ C. Assigned to each cell is a binary label, mi ∈ {0, 1},
that classifies it as either occupied or free space. Grid-based probabilistic models track
the joint distribution over the cell labels, p (M) = p (m1,m2,m3, . . . ,mn). In order
to avoid the 2n dimensionality of the space, the models assume that the occupation
values stored within each cell are independent variables,

p (M) = p (m1,m2,m3, . . . ,mn)

≈
∏

ci∈C

p (mi) . (2.14)

Rather than an occupancy grid parametrization, this thesis focuses on a feature-
based model of the environment. Feature-based approaches account for the in-
tractable dimensionality of the environment by representing the map in terms of
a set of geometric primitives. This model reduces the map to a collection of lines,
points, planes, etc. Each map element, mi ∈ M = {m1,m2,m3, . . . ,mn}, consists
of the parameters that model the corresponding landmark primitive, e.g. Cartesian
coordinates, length, and orientation. The probability distribution over the map is
then a joint distribution over the set of feature parameters. Unlike occupancy grid
representations, the landmarks are not assumed to be independent.

Feature-based models of the environment have the benefit that they often provide
a decomposition of the map that is more succinct. Unlike an occupancy grid rep-
resentation, they do not suffer from exponential spatial growth. Instead, the size of
feature-based maps is a direct function of the structure and not the size of the envi-
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ronment. Of course, these representations rely upon the presumption that the world
is amenable to parametrization in terms of geometric primitives. This assumption is
often valid in indoor, office-like environments, where straight walls and clean corners
offer quality line and point features. In less structured domains, such as underwater
or outdoor environments, the features tend to be simple point landmarks, as we show
later in the thesis.

2.3.2 Gaussian Filter Models

A concise representation for the environment alleviates much of the complexity that
comes with modeling a distribution over the continuous space of maps. Nonetheless,
tracking the SLAM posterior (2.7) with a Bayesian filter remains difficult. Particularly
challenging is an appropriate model for the distribution over the robot pose and map.
In general, models that are more detailed offer a more accurate representation for
the posterior, but at the cost of filtering complexity. Just as the representation of
the environment helps to differentiate SLAM algorithms, so does the model for the
posterior distribution.

Perhaps the most common representation for the distribution is the multivari-
ate Gaussian (2.15). One benefit of the Gaussian model is that it is compact: it
completely describes the distribution by a mean vector, µt, and covariance matrix,
Σt. Additionally, the existence of closed-form realizations of the conditioning and
marginalization processes simplify Bayesian filtering. The general Gaussian model
for the SLAM posterior is of the form,

p
(

xt,M | zt,ut
)

= N
(

µt,Σt

)

∝ exp

{

−
1

2
(ξt − µt)

⊤ Σ−1
t (ξt − µt)

}

(2.15)

In their seminal paper [121], Smith et al. first present an approach to the SLAM
problem based upon a Gaussian model for the distribution. The authors describe a
novel solution that leverages an Extended Kalman Filter (EKF) [67, 86] to greatly
simplify the Bayesian filtering process. In part as a result of this relative simplicity,
this model has become the standard tool of choice for a majority of SLAM algo-
rithms [97, 75, 14, 28]. The EKF explicitly tracks the correlation between the robot
state and map elements, which accounts for the coupling that is inherent to SLAM.
Consequently, the EKF actively updates the filter estimates for the entire pose and
map states, based upon observations of only a subset of the map by exploiting the cor-
relation between the robot state and map elements. An account of the correlations
also improves the consistency of the resulting SLAM posterior. Maintaining these
correlations, though, imposes an O(n2) memory requirement, where n is proportional
to the size of the map [107]. Furthermore, while the EKF efficiently predicts the
vehicle motion, the standard EKF measurement updates are quadratic in the number
of states (map elements). As a consequence, it is well known that the standard EKF
SLAM algorithm is limited to relatively small environments (i.e. on the order of a few
hundred features) [128].
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Submap Decompositions

As robots are deployed in larger environments, extensive research has focused on the
scalability restrictions of EKF SLAM. An intuitive way of dealing with this limitation
is to divide the world into numerous sub-environments, each comprised of a more
manageable number of features. Such is the approach of the appropriately named
submap algorithms [76, 51, 139, 77, 12] that shed some of the computational burden
of the full EKF by performing filtering over only the robot’s current submap. This
framework describes the environment hierarchically as a graph in which each node
corresponds to a feature-based submap, each represented relative to a local coordinate
frame. Edges within the graph describe the transformation between submap reference
frames that arise from shared features. The filtering process operates at the local
(node) level, with measurement updates performed over individual submaps rather
than the entire map. By actively controlling the size of each map partition to contain
no more than l ≪ n features, the algorithms bound the cost of updates and, in turn,
filtering at O(l2) rather than the standard O(n2).

The computational efficiency of the submap framework comes at the cost of slower
estimation convergence and the absence of a consistent global map of the environment.
In essence, these approaches ignore what are generally weak correlations among dis-
tant landmarks in order to reduce the burden on filtering to track only local features.
Consequently, unlike the standard single-map estimator, filter updates improve only
local map estimates. It is not surprising, then, that submap algorithms suffer from
slower convergence speed [77]. A second drawback is the inability to transform the
network of submaps into a single, global map of the environment that respects the
transformations between submaps that are encoded within the edges of the graph.
These algorithms stitch individual submaps together to form a single map by con-
catenating frame-to-frame transformations. Typically, though, it is difficult to ensure
that the series of transformations are consistent over different paths in the graph
(i.e. cycles in the graph)5, which only coarsely account for the constraints between
overlapping submaps. The Atlas algorithm [12], for example, which lacks a notion of
the world origin, reduces the graph to a “global” map by registering each submap to
an arbitrarily chosen reference node. The registration follows from a shortest path
search over the transformations between submaps and is generally not consistent
across cycles.

Sparse Information Filtering

Recently, strategies have emerged that offer the promise of scalability through the
canonical parametrization for the Gaussian SLAM distribution. Rather than a dense
covariance matrix and mean vector, the canonical form completely describes the Gaus-
sian by the information (inverse covariance) matrix and information vector. Analo-
gous to the EKF, the evolution of the posterior is tracked over time via a two step
process comprising the Extended Information Filter (EIF) [86, 99]. The canonical

5Ideally, the transformation between non-adjacent submaps would be identical irrespective of the
path within the graph.
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parametrization is the dual of the covariance form, and, in turn, the EIF update
step is efficient as it is quadratic in the number of measurements and not the size
of the map.6 On the other hand, the time projection step is, in general, quadratic
in the number of landmarks. Also, recovering the mean from the information vector
and matrix requires a costly O(n3) matrix inversion. Together, these characteristics
would seem to rule out the information parametrization as a viable remedy to the
scalability problem of the standard EKF and are largely the reason for its limited
application to SLAM.

Pivotal insights by Thrun et al. [130] and Frese et al. [46] reveal that the canonical
form is, in fact, particularly beneficial in the context of feature-based SLAM, as
a majority of the off-diagonal elements in the normalized information matrix are
inherently very small. By approximating some of these small entries as zero, Thrun
et al. take advantage of what is then a sparse information matrix, presenting the
Sparse Extended Information Filter (SEIF), an adaptation of the EIF. In addition
to the efficient measurement updates, the SEIF performs the time projection step
at a significant savings in cost over the nominal EIF, offering a near constant-time
solution to the SLAM problem. The caveat is that a subset of the mean is necessary
to linearize the motion and measurement models, as well as to enforce the sparsity of
the information matrix. To that end, the authors estimate the mean of the robot pose
and a limited number of features as the solution to a sparse set of linear equations
that is approximated using relaxation. We discuss the SEIF algorithm in much more
detail throughout the remainder of the thesis.

Similar benefits extend from interpreting the canonical parametrization as a Gaus-
sian Markov random field (GMRF) [122] where small entries in the normalized in-
formation matrix correspond to weak links in the graphical model. By essentially
breaking these weak links, Paskin [113] and Frese [45] approximate the graphical
model with a sparse tree structure. Paskin’s Thin Junction Tree Filter (TJTF) and
Frese’s Treemap filter exploit this representation to operate on the graph in O(n) and
O(log n) time, respectively.

2.3.3 Rao-Blackwellized Particle Filters

Sequential Monte Carlo methods offer an alternative to the Gaussian model for the
SLAM distribution. Rao-Blackwellized particle filters were first applied to the SLAM
problem by by Murphy [98] and Doucet et al. [29]. Unlike Gaussian filters, which are
concerned only with the current robot pose, particle filter techniques consider a form
of the posterior that includes the entire trajectory, xt = {x1,x2, . . . ,xt}. Particle filter
algorithms rely upon a non-parametric model that represents the posterior as a collec-
tion of samples (particles) over the state space. The process of Rao-Blackwellization
factors the posterior into two distributions, one over the map and the other over the
robot pose,

p
(

xt,M | zt,ut
)

= p
(

M | xt, zt
)

· p
(

xt | zt,ut
)

(2.16)

6This assumes knowledge of the mean, which is necessary for observations that are nonlinear in
the state.
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where the map is assumed to be conditionally independent of ut given the pose his-
tory. Rao-Blackwellized particle filters maintain a representation for the distribution
over the vehicle’s trajectory, p (xt | zt,ut), as a set of samples. Associated with each
particle is its own model for the map distribution, p (M | xt, zt). The most com-
mon method for tracking this model for the posterior is via sampling importance
resampling (SIR), whereby the filter (i) draws samples from a proposal distribution
to reflect the next robot pose, then (ii) weights the samples according to the most
recent measurement information in order to better fit the target distribution, and
(iii) resamples according to the weights. The filter then updates the map distribution
associated with each particle.

The FastSLAM algorithm by Montemerlo et al. [93] represents the map distri-
bution for each particle as a Gaussian. FastSLAM treats the map elements as con-
ditionally independent (i.e. uncorrelated) given knowledge of the robot pose. The
algorithm then efficiently tracks the map for each of the m particles with a collection
of n independent EKFs, one for each feature. The O(m log n) computational cost
is dependent on the number of particles and offers improved scalability in situations
where relatively few particles are necessary to accurately represent the robot pose.

A problem with FastSLAM and Rao-Blackwellized particle filters, in general, is
the difficulty in fitting the samples to the target distribution, p (xt | zt,ut). Without
being able to sample directly from this posterior, SIR often leads to the phenomenon
of “particle depletion” [133], in which resampling eliminates the good particles that
closely approximate the actual state. The limitation is due largely to a poor choice
for the proposal distribution. Standard SIR algorithms rely on the vehicle’s motion
model as the proposal distribution. Typically, this distribution exhibits high variance
in comparison to the measurement model, which is highly peaked. Samples drawn
from the motion model will be distributed over the state space with the greatest
density near the mean. In the case where the measurement distribution is aligned
with the tail of the proposal, only a small number of samples will receive significant
weight. The likelihood of these “good” particles surviving subsequent resampling is
diminished, giving rise to particle depletion. The filter can improve the chances that
correct samples survive by increasing the number of particles that are tracked. This
approach soon becomes intractable due to the curse of dimensionality [49] that arises
as a result of having to maintain a distribution over a sequence of poses that grows
with time. As the dimensionality of this space increases, a larger number of particles
are necessary to describe the likelihood, particularly in the case of greater uncertainty.
Particle depletion only exacerbates this problem. Consequently, the efficiency benefits
are not as obvious, as the cost of Rao-Blackwellized particle filters is proportional to
the number of particles.

One way to reduce particle depletion is to improve the accuracy of the proposal
distribution to better approximate the target distribution. As an update to the Fast-
SLAM algorithm, Montemerlo et al. [94] incorporate an improved pose sampler that
mimics work by de Freitas [26] on alternative proposal distributions. The authors use
an EKF to update a Gaussian approximation to a proposal distribution that incorpo-
rates the most recent map observations. They show that sampling from this updated
proposal greatly reduces the number of particles necessary to model the posterior



2.3. State of the Art in Localization and Mapping 43

distribution. Similarly, Grisetti and colleagues [50] describe a two-fold improvement
on SIR. They first sample from a Gaussian approximation to a proposal distribution
that incorporates the current measurement data so as to minimize the variance in the
subsequent sample weights. Rather than resampling with every step as in standard
SIR, they resample only when the variance of the weights is deemed sufficiently high.
Together, these steps reduce the occurrence of particle depletion and allow them to
perform SLAM using an order of magnitude fewer particles than with the standard
method.

2.3.4 Nonlinear Graph Optimization

An alternative formulation to SLAM treats the problem as a constrained optimization
over the robot pose and map states [30, 41, 47, 27, 128, 110]. This approach solves
for the maximum likelihood (ML) estimate of the vehicle pose history by optimizing
a full, nonlinear log-likelihood that incorporates the history of robot motion and
measurement data. The optimization is performed over a series of iterations, which
eases the computational burden and provides robustness to linearization and data
association errors.

The initial research in this area dates back to the work of Lu and Milios [82],
who formulate the problem as a pose graph in which each node corresponds to a ve-
hicle reference frame and the edges denote spatial constraints between these frames.
The constraints encode observations of the relative transformation between two ve-
hicle pose reference frames. Lu and Milios utilize odometry information to establish
constraints between consecutive poses and laser scan matching [83] to extract a mea-
surement of the relative transformation between poses based upon overlapping laser
scans. Given a network of poses and constraints, they solve for the ML estimate of
pose history by optimizing the full, nonlinear log-likelihood. Assuming that the mea-
surement noise is Gaussian the joint likelihood is itself Gaussian and the optimization
is equivalent to the minimization of a Mahalanobis distance. The algorithm linearizes
the odometry and measurement constraints about the current estimate for the robot
trajectory to achieve what is then a linear least-squares formulation to the minimiza-
tion. The result is a set of linear equations of the form Ax = b, where the matrix of
coefficients, A, is the information matrix for the Gaussian distribution and x is the
unknown pose history. Lu and Milios then solve for the complete robot trajectory, x,
by inverting the information matrix at a cost that is cubic in the number of poses. As
the length of the robot trajectory grows large, though, this inversion quickly becomes
intractable, limiting the algorithm’s scalability.

Alternatively, Duckett, Marsland, and Shapiro [30] propose an algorithm that uti-
lizes Gauss-Siedel relaxation to iteratively optimize the joint likelihood. With each
iteration, they optimize over only a single node (robot pose) in the graph according
to its local constraints, while holding the other nodes fixed. Rather than invert the
information matrix to fully solve the set of linear equations, relaxation is equivalent
to estimating a particular robot pose by solving the limited set of linear equations
that correspond to its local constraints. Repeating this process for the sequence of
robot poses leads to convergence to a minimum of the cost function, though not neces-
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sarily the global minimum.7 The computational cost associated with each relaxation
iteration is a function of the number of constraints associated with each node, which
is often fixed due to the limited FOV of the robot’s sensors. In turn, each iteration
tends to be O(n), where n is the number of nodes in the graph. While Duckett et al.
have found that most online SLAM steps require only a single iteration, large loop
closures may require multiple iterations at a total cost of O(n2) [31].

Frese, Larsson, and Duckett [47] improve upon this performance with the Mul-
tilevel Relaxation algorithm, which adapts multigrid linear equation solvers [13] to
perform the estimation. Multilevel relaxation describes the pose graph at various lev-
els of resolution, and performs optimization on this hierarchy. Underlying this graph
decomposition, is a multigrid representation of the set of linear equations, Ax = b,
that describe the least-squares solution. Given a new constraint, the algorithm pro-
gresses from the finest to coarsest resolutions of the hierarchy, performing relaxation
on the set of linear equations corresponding to each level. At the lowest resolution,
the algorithm directly solves the corresponding coarse set of linear equations and sub-
sequently propagates the coarse state estimates to the finer levels of the hierarchy.
In essence, relaxation at high resolution refines the error in the pose estimates while
solutions at the coarse level reduce the error that tends to be spatially smooth by
coarsely adapting the estimates. Multilevel relaxation then requires O(n) operations
for each iteration update, including those that involve large loop closures.

Dellaert [27] computes the ML estimate of the robot’s pose history along with a
feature-based map by directly solving the linear least-squares problem. The Square
Root SAM algorithm takes advantage of what is a naturally sparse information ma-
trix [113, 34] to solve the for the mean over the state as the solution to the set of
linear equations. The algorithm decomposes the information matrix into either its
QR or Cholesky (LDL) factorization [48], paying close attention to variable ordering.8

In turn, the estimator jointly solves for the mean over the pose and map via back-
substitution. As the author insightfully shows, the approach closely parallels aspects
of the aforementioned graphical model methods. The results demonstrate promising
advantages over the EKF with regards to performance, though the algorithm cur-
rently does not address some important aspects of the SLAM problem such as data
association.

In its general form, the algorithm operates as a batch estimator, solving the full
least-squares problem anew as new constraints arise. Each time, the algorithm builds
the information matrix, performs the factorization and subsequently solves for the
entire trajectory and map. In order to achieve robustness to linearization errors, this
approach requires that the constraints be occasionally re-linearized when the state
estimate changes significantly. This batch implementation is sub-optimal for online
SLAM as the computational complexity grows with time. In the case that the current
linearization point is sufficiently accurate, one can avoid recomputing factorizing the

7Duckett et al. further rely upon knowledge of the robot’s heading to express the constraints as
linear in the robot’s position history. Consequently, the log-likelihood is quadratic in the state, and
the optimization is guaranteed to converge to the global minimum.

8Dellaert notes that colamd [22] yields a good variable ordering and that the Cholesky (LDL)
decomposition is particularly efficient at factorization.
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information matrix and take advantage of techniques that incrementally update an
existing matrix decomposition [23]. Kaess et al. [66] describe a variation on Square
Root SAM that incrementally updates the QR factorization of the information matrix
based upon a particular variable ordering. This algorithm is efficient when the robot
explores new regions of the environment, allowing a full state solution in time that is
linear in the number of poses and landmarks. Loop closures, on the other hand, alter
the structure of the information matrix and, with the same variable ordering, lead to
the fill-in of the QR matrix decomposition. Kaess et al. avoid this fill-in with a process
that periodically identifies a new variable ordering and subsequently performs a full
matrix factorization. So as to avoid linearization errors, the algorithm occasionally
updates the information matrix with a new linearization prior to full factorization.
The limitation of both the incremental and batch versions of the algorithm is the
cost of the matrix decomposition, which grows unbounded with time as a result of
jointly estimating the entire robot trajectory history. Nonetheless, empirical evidence
suggests that the factorization can be made tractable for large state dimensions with
a good variable ordering [27].

Olson, Leonard, and Teller [110] similarly treat SLAM as a pose graph and opti-
mize the joint likelihood associated with the inter-pose measurement and odometry
constraints. Rather than solve for the full least-squares solution for the state all at
once, though, they optimize the cost function iteratively. The algorithm performs
the optimization via stochastic gradient descent (SGD) [116], whereby it considers
only a single constraint (an edge in the graph) and its corresponding gradient at each
iteration. With each update, the algorithm searches for the new state estimate along
the direction of this gradient by an amount determined by a variable learning rate.
The batch version of the algorithm iterates over the set of constraints, gradually de-
creasing the learning rate to reduce the likelihood that the optimization converges
to a local minimum. A fast approximation to optimization, though, SGD generally
does not converge to the exact global minimum. Olson et al. complement SGD with
a state representation in terms of the incremental pose, i.e. the difference between
subsequent poses. As a result of this formulation, the SGD optimization of a con-
straint between two poses in the graph has the effect of updating the estimates for
the entire temporal sequence of poses in between. The computational cost of each
constraint iteration is O(log n), where n is the size of the state (number of poses).
While the number of iterations necessary for convergence is not clear, the algorithm
has been shown to yield accurate state estimates in far less time than other iterative
optimization techniques [110].

Olson et al. [111] propose a variation of their batch algorithm suitable for online
application that incorporates constraints in an incremental fashion. While it may
seem straightforward to develop an online extension of the SGD-based optimization
that incorporates measurement constraints as they arrive, one challenge is the effect
of the variable learning rate. The batch algorithm reduces the magnitude of the learn-
ing rate as the number of constraints increases, which, in turn, would diminish the
contribution that newly introduced constraints have on the optimization. Instead, the
online algorithm introduces a pose-specific learning rate that varies spatially over the
graph and does not explicitly depend upon the number of iterations. New constraints
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and their subsequent poses are assigned a learning rate that balances the information
available in the corresponding pose measurements with the predicted confidence as
currently maintained by the graph. Meanwhile, the algorithm updates the learning
rate associated with old constraints as the learning rate assigned to their interme-
diate poses changes. This learning rate allocation allows the algorithm to integrate
new measurement data in such a way that the optimization modifies the local pose
estimates without significantly disturbing the configuration of distant nodes. The
actual optimization is performed on constraints whose corresponding subgraphs have
converged the least, as indicated by learning rates that exceed a desired threshold.
Results demonstrate that these updates involve only a small fraction of the total num-
ber of constraints. Nonetheless, the optimizations significantly improve the overall
likelihood cost, which is not surprising as the corresponding nodes are farthest from
convergence.

2.4 Information Formulation to SLAM

The Gaussian distribution remains the most widely used parametric model for the
SLAM posterior. In SLAM as well as other probabilistic inference problems, one
typically represents the Gaussian distribution in what is referred to as the standard
form, in terms of its mean vector, µ, and covariance matrix, Σ. The popularity of this
parametrization is largely due to the ability to track the distribution over time with
the EKF. As we have discussed, however, the need to maintain correlations among
the state, an implicit characteristic of the standard form, restricts the size of the
map for feature-based SLAM. In this section, we describe the details of the canonical
parametrization for the Gaussian distribution, which we mentioned earlier in §2.3.2.
We show that this representation offers advantages over the standard form and, in
subsequent chapters, we exploit these characteristics to achieve scalable, feature-based
SLAM.

2.4.1 Canonical Gaussian Representation

We first present an alternative parametrization to a general Gaussian distribution
and contrast this representation with the standard covariance form. We focus, in
particular, on the duality between the two parametrizations in the context of the
fundamental aspects of SLAM filtering.

Let ξt be a random vector governed by a multivariate Gaussian probability dis-
tribution, ξt ∼ N

(

µt,Σt

)

, traditionally parametrized in full by the mean vector, µt,
and covariance matrix, Σt. Expanding the quadratic term within the Gaussian ex-
ponential, we arrive at an equivalent representation for the multivariate distribution,
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N−1
(

ηt,Λt

)

.

p (ξt) = N
(

ξt;µt,Σt

)

∝ exp
{

−1
2
(ξt − µt)

⊤Σ−1
t (ξt − µt)

}

= exp
{

−1
2

(

ξ⊤t Σ
−1
t ξt − 2µ⊤

t Σ
−1
t ξt + µ⊤

t Σ
−1
t µt

)}

∝ exp
{

−1
2
ξ⊤t Σ

−1
t ξt + µ⊤

t Σ
−1
t ξt

}

= exp
{

−1
2
ξ⊤t Λtξt + η⊤

t ξt
}

∝ N−1
(

ξt;ηt,Λt

)

(2.17)

The canonical form of the Gaussian (2.17) is completely parametrized by the infor-
mation matrix, Λt, and information vector, ηt, which are related to the mean vector
and covariance matrix by (2.18).

Λt = Σ−1
t (2.18a)

ηt = Σ−1
t µt (2.18b)

Duality between Standard and Canonical Forms

The canonical parametrization for the multivariate Gaussian is the dual of the stan-
dard form in regard to the marginalization and conditioning operations [113], as
demonstrated in Table 2.1. Marginalizing over variables with the standard form is
easy since we simply remove the corresponding elements from the mean vector and
covariance matrix. However, the same operation in the canonical form involves cal-
culating a Schur complement and is computationally hard. The opposite is true when
computing the conditional from the joint distribution; it is hard with the standard
form yet easy with the canonical parametrization.

The duality between the two parametrizations has important consequences for
SLAM implementations as marginalization and conditioning are integral to the fil-
tering process. The marginalization operation is fundamental to the time prediction
step as part of the roll-up process (2.11). Measurement updates (2.13), meanwhile,
implement a conditioning operation in order to incorporate new observation data in
the distribution over the state. The duality between the two Gaussian parametriza-
tions then helps to explain why time prediction is computationally easy/hard with
a standard/canonical parametrizations while measurement updates are hard/easy.
The quadratic complexity of measurement updates is implicit to the standard form
and contributes of the EKF’s scalability problem. However, the subsequent chapters
demonstrate the ability to exploit the structure of the information matrix in order
to make what is otherwise a hard marginalization operation easy in the canonical
form. Consequently, both the measurement update and time prediction components
of SLAM information filters can be made to better scale with the size of the environ-
ment.
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Table 2.1: Summary of the marginalization and conditioning operations on a Gaussian
distribution expressed in the covariance and information forms.

p (α,β) = N
(

[

µα
µβ

]

,
[

Σαα Σαβ

Σβα Σββ

]

)

= N−1
(

[

ηα
ηβ

]

,
[

Λαα Λαβ

Λβα Λββ

]

)

Marginalization Conditioning

p (α) =
∫

p (α,β) dβ p (α | β) = p (α,β) /p (β)

Covariance

Form

µ = µα µ′ = µα + ΣαβΣ
−1
ββ (β − µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ
−1
ββΣβα

Information

Form

η = ηα − ΛαβΛ
−1
ββηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ
−1
ββΛβα Λ′ = Λαα

Encoding the Markov Random Field

Throughout the thesis, we take advantage of the graphical model [63] representa-
tion of the SLAM distribution to better understand the estimation process. This is
particularly true in the case of the information form of the Gaussian, as we use the
graphical model to motivate novel filtering algorithms. An advantageous property of
the canonical parametrization is that the information matrix provides an explicit rep-
resentation for the structure of the corresponding undirected graph or, equivalently,
the GMRF [122, 113]. This property follows from the factorization of a general Gaus-
sian density

p (ξ) ∝ exp
{

−1
2
ξ⊤Λξ + η⊤ξ

}

=
∏

i

exp
{

−1
2

(

λiiξ
2
i − ηiξi

)}

·
∏

i,j
i 6=j

exp
{

−1
2
ξiλijξj

}

=
∏

i

Ψi(ξi) ·
∏

i,j
i 6=j

Ψij(ξi, ξj)

where

Ψi(ξi) = exp
{

−1
2

(

λiiξ
2
i − ηiξi

)}

Ψij(ξi, ξj) = exp
{

−1
2
ξiλijξj

}

are the node and edge potentials, respectively, for the corresponding undirected graph.
Random variable pairs with zero off-diagonal elements in the information matrix (i.e.
λij = 0) have an edge potential Ψij (ξi, ξj) = 1, signifying the absence of a link be-
tween the nodes representing the variables. Conversely, non-zero shared information
indicates that there is an edge joining the corresponding nodes with the strength of
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Figure 2-1: An example of the effect of marginalization on the Gaussian information
matrix. We start out with a joint posterior over ξ1:6 represented by the information
matrix and corresponding Markov network pictorialized on the left. The information
matrix for the marginalized density, p (ξ2:6) =

∫

p (ξ1:6) dξ1, corresponds to the Schur
complement of Λββ = Λξ1ξ1 in Λξ1:6ξ1:6 . This calculation essentially passes information
constraints from the variable being removed, ξ1, onto its adjacent nodes, adding shared
information between these variables. We see, then, that a consequence of marginaliza-
tion is the population of the information matrix.

the edge proportional to λij. In turn, as the link topology for an undirected graph
explicitly captures the conditional dependencies among variables, so does the struc-
ture of the information matrix. The presence of off-diagonal elements that are equal
to zero then implies that the corresponding variables are conditionally independent
given the remaining states.

It is interesting to note that one comes to the same conclusion from a simple analy-
sis of the conditioning operation for the information form. Per Table 2.1, conditioning
a pair of random variables, α = [ξ⊤i ξ⊤j ]

⊤, on the remaining states, β, involves extract-
ing the Λαα sub-block from the information matrix. When there is no shared infor-
mation between ξi and ξj, Λαα is block-diagonal, as is its inverse (i.e. the covariance
matrix). Conditioned upon β, the two variables are uncorrelated, and we can con-
clude that they are conditionally independent:9 p

(

ξi, ξj | β
)

= p (ξi | β) · p
(

ξj | β
)

.
The fact that the information matrix characterizes the conditional independence re-
lationships emphasizes the significance of its structure.

With particular regard to the structure of the information matrix, it is impor-
tant to make a distinction between elements that are truly zero and those that
are just small in comparison to others. On that note, we return to the process of
marginalization, which modifies zeros in the information matrix, thereby destroying
some conditional independencies [113]. Consider a six-state Gaussian random vec-
tor, ξ ∼ N−1

(

η,Λ
)

, characterized by the information matrix and GMRF depicted
in the left-hand side of Figure 2-1. The canonical form of the marginal density
p (ξ2:6) =

∫

p (ξ1:6) dξ1 = N−1
(

η′,Λ′
)

follows from Table 2.1 with α = [ξ2 ξ3 ξ4 ξ5 ξ6]
⊤

9This equality holds for Gaussian distributions but is, otherwise, not generally valid.
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and β = ξ1. The correction term in the Schur complement, ΛαβΛ
−1
ββΛβα, is non-zero

only at locations associated with variables directly linked with ξ1. This set, denoted
as m+ = {ξ2, ξ3, ξ4, ξ5}, comprises the Markov blanket [114] for ξ1. Subtracting the
correction matrix modifies a number of entries in the Λαα information submatrix,
including some that were originally zero. Specifically, while no links exist between
ξ2:5 in the original distribution, the variables in m+ become fully connected due to
marginalizing over ξ1. Marginalization results in the population of the information
matrix, a characteristic that has important consequences when it comes to applying
the information form to feature-based SLAM.

2.5 Feature-based SLAM Information Filters

Now that we have discussed the fundamental aspects of the canonical Gaussian repre-
sentation, we describe its application to the SLAM problem. Much like the Extended
Kalman Filter (EKF) tracks the mean and covariance of the Gaussian distribution,
the Extended Information Filter (EIF) tracks the information vector and information
matrix that comprise the canonical form. Stemming from the duality between the
standard and canonical parametrizations, there are fundamental differences in the way
in which the EIF formulates the time projection and measurement update steps. The
remainder of this section is devoted to a detailed description of the canonical formula-
tion to these processes. We show that the canonical parametrization of feature-based
SLAM naturally evolves into a unique form. Subsequent sections describe filtering
algorithms that exploit this structure to address the scalability problem.

2.5.1 Active versus Passive Features

Throughout this section and the remainder of the thesis, we differentiate between
active features and passive features as first proposed by Thrun et al. [130]. We
borrow their notation and refer to active features as those that share information
with the robot state. In terms of the graphical model, active landmarks are defined
by the existence of an edge that pairs them with the robot node. We denote the
set of active landmarks as m+, which is consistent with our earlier notation for the
Markov blanket for the robot pose. In turn, passive landmarks are features with
zero entries in the information matrix corresponding to the robot pose. They are not
directly linked to the robot node in the GMRF and are, equivalently, conditionally
independent of the vehicle state. We denote this set of landmarks as m−.

2.5.2 Measurement Updates in the EIF

Measurement updates are a bottleneck of the EKF, since they involve modifying the
entire covariance matrix at quadratic cost. In contrast, the EIF updates only a small,
bounded number of terms within the information vector and matrix. The difference
is a consequence of the duality between the standard and canonical parametrizations
and, in particular, the differences in the fundamental conditioning operation.
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Consider the state of the system at time t after having projected the SLAM
posterior forward in time, p (ξt | z

t−1,ut) = N−1
(

η̄t, Λ̄t

)

. Given a set of observations
of neighboring landmarks, zt, the update process follows from Bayes’ rule along with
independence assumptions regarding the measurements as detailed in (2.8),

p
(

ξt | z
t,ut

)

∝ p (zt | ξt) · p
(

ξt | z
t−1,ut

)

. (2.19)

The general measurement model (2.20a) is a nonlinear function of the state corrupted
by white Gaussian noise, vt ∼ N

(

0,R
)

. As part of our Gaussian approximation to
the probabilistic measurement model, p (zt | ξt), we linearize (2.20a) with respect to
the state. Equation (2.20b) is the first-order Taylor series linearization about the
mean of the robot pose and observed features with the Jacobian, H, evaluated at this
mean.

zt = h
(

ξt
)

+ vt (2.20a)

≈ h
(

µ̄t

)

+H
(

ξt − µ̄t

)

+ vt (2.20b)

The EIF estimates the canonical form of the new posterior via the update step:

p
(

ξt | z
t,ut

)

= N−1
(

ηt,Λt

)

Λt = Λ̄t +H⊤R−1H (2.21a)

ηt = η̄t +H⊤R−1
(

zt − h (µ̄t) + Hµ̄t

)

(2.21b)

A detailed derivation may be found elsewhere [130].

At any time step, the robot typically makes a limited number, m, of relative
observations to individual landmarks. The measurement model is then a function
only of the vehicle pose and this small subset of map elements, mi and mj and, in
turn, a majority of terms in the Jacobian (2.22) are zero.

H =







∂h1

∂xt
· · · 0 · · · ∂h1

∂mi
· · · 0

...
. . .

...
∂hm

∂xt
· · · ∂hm

∂mj
· · · 0 · · · 0






(2.22)

The matrix outer-product in (2.21a), H⊤R−1H, is zero everywhere except at positions
associated with the vehicle pose and observed features. More specifically, the matrix
is populated at the xt, mi, and mj positions along the diagonal, as well as at the
off-diagonal positions for the (xt,mi) and (xt,mj) pairs. The addition of this matrix
to the original information matrix modifies only the terms exclusively related to the
robot and the observed landmarks. The update then acts to either strengthen existing
constraints between the vehicle and these features or to establish new ones (i.e. make
them active).

Due to the sparseness of H, computing H⊤R−1H involves O(m2) multiplications.
Assuming knowledge of the mean for the robot pose and observed features for the
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linearization, this matrix product is the most expensive component of (2.21). Since
the number of observations, m, is limited by the robot’s FOV, the EIF update time
is bounded and does not grow with the size of the map. In general, though, we do
not have an estimate for the current mean, and computing it via (2.18b) requires an
O(n3) matrix inversion. The exception is when the measurement model is linear, in
which case the mean is not necessary and the update step is indeed constant-time.

2.5.3 Time Projection Step

While the measurement step is computationally easy for the EIF but hard for the
EKF, the opposite is true of the time projection component. In Section 2.2.1, we de-
scribed time projection as a two step process whereby we first augment the state with
the new robot pose and subsequently marginalize out the previous pose. We present
the EIF projection step in the same way in order to make clear some fundamental
characteristics of the information formulation to feature-based SLAM. We show that
the complexity of the EIF projection step is a direct consequence of the duality of
the fundamental marginalization process.

State Augmentation

A Markov model governs the motion of the robot and is, in general, a nonlinear
function (2.23a) of the previous pose and the control input. The additive term,
wt ∼ N

(

0,Q
)

, represents a Gaussian approximation to the uncertainty in the model.
The first-order linearization about the mean robot pose, µxt

, follows in (2.23b) where
F is the Jacobian matrix.

xt+1 = f
(

xt,ut+1

)

+wt (2.23a)

≈ f
(

µxt
,ut+1

)

+ F
(

xt − µxt

)

+wt (2.23b)

In the first step, we grow the state vector to also include the new robot pose,

ξ̂t+1 =
[

x⊤
t x⊤

t+1 M
⊤
]⊤

. The distribution over ξ̂t+1 follows from the current posterior,
p (ξt | z

t,ut) = N−1
(

ηt,Λt

)

, through the factorization

p
(

ξ̂t+1 | z
t,ut+1

)

= p
(

xt+1, ξt | z
t,ut+1

)

= p (xt+1 | xt,ut+1) · p
(

ξt | z
t,ut

)

where we have exploited the Markov property. Accordingly, the augmentation to the
information matrix and vector is shown by Eustice et al. [34] to have the form given
in (2.24). Notice that the new robot pose shares information with the previous pose
but not the map. This is exemplified in the middle schematic within Figure 2-2 by the
fact that the only effect on the structure of the graphical model is the addition of the
xt+1 node linked to that of xt. Given xt, the xt+1 pose is conditionally independent
of the map as a consequence of the Markov property.

p
(

xt,xt+1,M | zt,ut+1
)

= N−1
(

η̂t+1, Λ̂t+1

)
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Figure 2-2: A graphical explanation for the inherent density of the information ma-
trix due to the motion update step. Darker shades in the matrix imply larger mag-
nitude. On the left are the Markov network and sparse information matrix prior
to time projection in which the robot shares information with the active features,
m+ = {m1,m2,m3,m5}. We augment the state with the new robot pose, which is
linked only to the previous pose due to the Markovian motion model. Subsequently, we
marginalize over xt, resulting in the representation shown on the right. The removal of
xt creates constraints between the robot and each map element in m+, which are now
fully connected. Along with filling in the information matrix, we see from the shading
that the time projection step weakens many constraints, explaining the approximate
sparsity of the normalized information matrix.
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(2.24b)

Marginalization

We complete the time projection step by marginalizing xt from the posterior to achieve

the desired distribution over ξt+1 =
[

x⊤
t+1 M

⊤
]⊤

,

p
(

xt+1,M | zt,ut+1
)

=

∫

xt

p
(

xt,xt+1,M | zt,ut+1
)

dxt.

This brings us back to the expression for marginalization in the canonical represen-

tation from Table 2.1. Let α =
[

x⊤
t+1 M

⊤
]⊤

and β = xt. Using the decomposition
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of the information matrix and information vector in (2.24), we apply the canonical
form of the marginalization here:

p
(

ξt+1 | z
t,ut+1

)

= N−1
(

η̄t+1, Λ̄t+1

)

Λ̄t+1 = Λ̂22
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

Λ̂12
t+1 (2.25a)

η̄t+1 = η̂2
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

η̂1
t+1 (2.25b)

The resulting information matrix (2.25a) is the Schur complement of the on-diagonal
matrix sub-block that corresponds to the previous pose, Λ̂11

t+1 =
(

Λxtxt
+ F⊤Q−1F

)

.

Computational Complexity

The computational cost of the augmentation component is nearly constant-time. In
order to modify the canonical distribution to include the new pose, we add a row and
column to the information matrix that correspond to the new pose. This row and
column pair is zero everywhere except for the fixed-size sub-block that denotes shared
information with the previous pose. We also modify the diagonal matrix sub-block
for the previous pose. Both operations involve the product of the Jacobian and noise
matrices at a cost that depends only on the number of elements that comprise the
previous pose state. The complexity of pose augmentation is independent of the size
of the map with one caveat. In the common case that the motion model is nonlinear,
linearization using (2.23b) requires the mean of the previous pose. Recovering the
entire mean vector directly from the information matrix and vector via (2.18) requires
that we invert the information matrix. The cost of this inversion is cubic in the size
of the state, ξt, and, in turn, the map size. Fortunately, as we show in later chapters,
there are a number of alternatives that yield an estimate for a subset of the mean
vector in constant time.

Assuming a linear motion model or efficient access to the robot mean, the marginal-
ization component dictates the computational cost of the time projection step. The
correction term of the Schur complement (2.25a) is calculated as the outer product
with the off-diagonal submatrix for the old pose, Λ̂21

t+1(Λ̂
11
t+1)

−1Λ̂12
t+1. The complex-

ity of this outer product is quadratic in the number of nonzero elements within the
matrix, Λ̂21

t+1 = Λ̂12⊤

t+1 , which encodes the shared information between the old pose
and map. Consequently, the Schur complement is quadratic in the number of map
elements linked to the old pose (i.e. the size of m+). The number of nonzero ele-
ments within the resulting matrix outer product is quadratic in the size of the active
map. As the example in Figure 2-2 demonstrates, the Schur complement modifies
O(|m+|2) components of the information matrix, including elements that correspond
to information shared among the map and between the map and new robot pose.

To summarize, the time projection step imposes an O(|m+|2) computational cost
on the EIF and results in O(|m+|2) modifications to the information matrix.
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2.5.4 Structure of the SLAM Information Matrix

Beyond the immediate computational issues, the time projection step has important
consequences regarding the structure of the information matrix. The marginalization
component, in particular, gives rise to a fully populated matrix over the course of
the SLAM filtering process. We describe the natural evolution of the feature-based
SLAM canonical form and show that the information matrix takes on a relatively
sparse form that is, nonetheless, fully populated.10

To better understand the consequences of this marginalization, we refer back to
the discussion at the end of Section 2.4.1. Prior to marginalization, the old robot pose
is linked to the active features, m+, while the new pose shares information only with
xt. When we remove the old pose, though, a link is formed between the new pose
and each feature in m+, and this set itself becomes fully connected. The information
matrix that was originally sparse is now populated as a consequence of (2.25a). In
the scenario depicted in the right-hand side of Figure 2-2, the only remaining zero
entries correspond to the lone feature, m4, which will become active upon the next
observation. The subsequent time projection step will instantiate shared information
between this landmark and the other features within the active map. Over time, more
features will become active and links between the robot pose and map will persist,
leading to an ever-growing active map. As Paskin [113] previously showed, the time
projection step naturally leads to a full information matrix in online, feature-based
SLAM, with a single maximum clique over the GMRF.

The population of the information matrix, particularly the number of off-diagonal
elements that associate the robot pose with the map, affects the computational cost of
the filtering process. While the EIF incorporates new measurements in near constant-
time, the trade-off is a time projection step that is quadratic in the number of active
landmarks. As we have just stated, though, the active map inherently grows to include
the entire map. In its natural form, then, the EIF is also O(n2) per iteration and does
not offer an alternative to the EKF in addressing scalability issues. A closer look at
the structure of the information matrix, though, reveals that an adapted form of the
EIF may provide a solution. Figure 2-3(a) depicts the final normalized information
matrix for a nonlinear dataset, where darker shades denote greater magnitudes. While
every element within the matrix is nonzero, the large majority of off-diagonal values
are negligible in comparison to a few entries that have large magnitude. The structure
of the matrix implies a GMRF in which a small number of edges are strong while
most are relatively weak. Figure 2-3(b) compares the information matrix with the
corresponding normalized covariance (correlation) matrix. The covariance matrix is
also fully-populated, but the elements are fairly uniform in magnitude over the entire
matrix. This disparity is typical of feature-based SLAM for which landmarks become
fully-correlated in the limit [107], yet the information matrix is naturally relatively
sparse.

Ironically, while the time projection step induces the fill-in of the information
matrix, it also results in the matrix’s relatively sparse structure. Returning to the

10We describe relative sparsity in the context of the normalized information matrix for which the
majority of elements are very small relative to a few dominant elements.
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(a) Information Matrix

 

 

(b) Covariance Matrix

Figure 2-3: The (a) normalized information and (b) covariance (correlation) matrices
for a feature-based SLAM distribution. Darker shades denote elements with larger
magnitude, and white elements represent zero values. Typical of feature-based SLAM,
the information matrix, while fully populated, is relatively sparse, dominated by a small
number of large elements. On the other hand, the elements within the normalized
covariance matrix are uniformly large as a result of the high correlation among the
map.

example pictorialized in Figure 2-2, note that, aside from populating the information
matrix, the time projection step weakens the off-diagonal links. The correction term
within the Schur complement component of marginalization (2.25a) creates shared
information among any active landmarks that were previously conditionally inde-
pendent. At the same time, the correction term has the effect of weakening the
information shared among features already linked in the graph. Marginalization also
degrades the information that pairs the robot pose with the active map. When the
vehicle re-observes landmarks, the update to the canonical distribution strengthens
the edge between the robot pose and these features. In turn, by marginalizing over
this pose, the subsequent time projection step distributes the information associated
with these links jointly among the corresponding features. This has the effect of
strengthening the information shared among these features, which, prior to the ob-
servation, had decayed due to marginalization. Over the course of the SLAM filtering
process, this has been shown to result in a normalized information matrix that is
nearly sparse [44].

2.6 Efficient Filtering via Sparsity Approximation

In the limit of the EIF filtering process, the GMRF naturally forms into a single
maximum clique over the robot pose and map [113]. The information matrix is rela-
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tively sparse but nonetheless fully-populated, as even the small elements are nonzero.
The computational complexity of the time projection step, in turn, is quadratic in
the size of the map. In order to store the full matrix, the canonical parametrization
requires an amount of memory that is also quadratic in the number of landmarks.
Consequently, the filter suffers from the same problem of scalability as the EKF.

A close analysis of the canonical parametrization reveals that, by approximating
the matrix as being exactly sparse, it is possible to achieve significant gains when it
comes to both storage and time requirements [130, 46, 113]. Specifically, a bound
on the number of links between the robot and the map allows for near constant-time
implementation of the time projection step and controls the fill-in of the information
matrix resulting from marginalization. The delicate issue is how to approximate the
posterior, p (ξt | z

t,ut), with a sparse canonical form. Paskin’s Thin Junction Tree
Filter (TJTF) [113] essentially breaks weak links in the GMRF in order to approx-
imate the graphical model with a sparse tree structure. Frese [45] adopts a similar
strategy with the Treemap filter that represents the environment as a hierarchical
tree structure. Analogous to message passing in the TJTF, the Treemap algorithm
efficiently maintains an information parametrization of the posterior by exploiting
the sparse tree structure. Meanwhile, Thrun and colleagues [130] describe the Sparse
Extended Information Filter (SEIF), which forces weaker, nonzero information that
is shared between the robot and map to be zero in order to maintain a sparse infor-
mation matrix.

2.7 Discussion

Simultaneous Localization and Mapping (SLAM) has taken its place as a fundamen-
tal problem within robotics. Much attention has been paid to the problem, giving
rise to several estimation-theoretic algorithms that maintain a joint distribution over
the vehicle pose and map (2.7). We have reviewed the fundamental characteristics
that define these approaches, notably the representation for the posterior distribu-
tion and the model of the environment. Each have their respective advantages and
disadvantages but are faced with the common challenge of robustly scaling to larger
environments. This thesis addresses that challenge in the context of the Gaussian
representation of the feature-based SLAM posterior (2.15).

We have reviewed much of the state of the art in scalable SLAM filtering. Of par-
ticular promise for overcoming the quadratic complexity of the EKF are the insights
into the structure of the canonical parametrization of the posterior (2.17). The key
observation that the feature-based canonical form is nearly sparse has given rise to
filtering strategies that exploit exactly sparse approximations to achieve scalability.
While a majority of the elements within the information matrix are relatively small,
the feature-based parametrization is nonetheless fully populated. Consequently, each
of these algorithms must approximate the SLAM posterior by a distribution that
exhibits exact sparsity. The delicate issue in this case is how to perform this approx-
imation. The specific sparsification strategy has important consequences regarding
the accuracy of the resulting posterior distribution.
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In the next chapter, we present a detailed analysis of the Sparse Extended Infor-
mation Filter (SEIF) approach to sparsification from the perspective of our discussion
in Section 2.4.1 on the conditional independence encoded within the information ma-
trix. We show that the SEIF approximates the conditional independence between
the robot and a subset of the map in order to enforce sparsity. Our analysis reveals
that a consequence of SEIF sparsification strategy is an inconsistent posterior over
the robot pose and map. We subsequently propose an alternative sparsification strat-
egy that preserves consistency while simultaneously providing the benefits of a sparse
information parametrization.



Chapter 3

Sparsification via Enforced
Conditional Independence

Chapter 2 discussed the structure inherent to the canonical parametrization of the
SLAM posterior. We have shown that the information matrix exhibits the appealing
property that the majority of terms are very small in comparison to a few large
elements. In the case that the parametrization is actually sparse, filtering can be
performed in near constant time. Unfortunately, while the matrix is relatively sparse,
it remains fully populated as every element is generally nonzero.

The fill-in of the information matrix induced by the motion update step, together
with its computational complexity, are proportional to the number of links between
the robot and the map. Unfortunately, as discussed in Section 2.5.4, these links may
weaken as a result of the time projection step, but they never disappear. The size
of the active map will only increase over time and quickly leads to a fully populated
information matrix. As a result, in order to bound the size of the active map and,
in turn, preserve the sparsity of the canonical parametrization, the Sparse Extended
Information Filter (SEIF) actively breaks links between the robot and the map. In
this chapter, we explore, in depth, the approximation that the SEIF employs in order
to break these links.1 We show that a particular assumption of the SEIF sparsification
process leads to an inconsistent global estimate for the map. Meanwhile, empirical
testing suggests that the relative map relations are better preserved. Nonetheless, the
general sparsification strategy that forces the robot to be conditionally independent
of a set of landmarks inherently yields an inconsistent distribution over the map.

3.1 SEIF Sparsification Rule

The SEIF describes the structure of the information matrix in terms of Γa, the desired
size of the active map, and Γp, the number of links among the entire map. The SEIF
enforces a bound on Γa in order to maintain a desired level of sparsity reflected by
Γp. Recalling the conditional dependency relationships implicit in the GMRF, the

1The analysis of the SEIF sparsification strategy that we discuss in this chapter was performed
in collaboration with Ryan Eustice [37].

59
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SEIF breaks links between the robot and a set of landmarks by replacing the SLAM
posterior with a distribution that approximates the conditional independence between
the pose and these features. In describing the sparsification rule, we decompose the
map into three disjoint sets, M = {m0,m+,m−}. The set m− consists of the passive
features that will remain passive. In a slight abuse of notation, m+ denotes the active
features that are to remain active. We represent the active landmarks that will be
made passive as m0. The SEIF sparsification routine proceeds from a decomposition
of the SLAM posterior

p
(

ξt | z
t,ut

)

= p
(

xt,m
0,m+,m−

)

= p
(

xt | m
0,m+,m−

)

· p
(

m0,m+,m−
)

(3.1a)

= p
(

xt | m
0,m+,m− = ϕ

)

· p
(

m0,m+,m−
)

, (3.1b)

where we have omitted the dependence upon zt and ut for notational convenience. In
(3.1b), we are free to condition on an arbitrary instantiation of the passive features,
m− = ϕ, due to the conditional independence between the robot and these landmarks.

The SEIF deactivates landmarks by replacing (3.1b) with an approximation to
the posterior that drops the dependence of the robot pose on m0:

p̃seif
(

ξt | z
t,ut

)

= p̃seif
(

xt,m
0,m+,m−

)

= p
(

xt | m
+,m− = ϕ

)

· p
(

m0,m+,m−
)

. (3.2)

While the expression in (3.1b) is theoretically exact, it is no longer valid to condition
upon a particular value for the passive map elements while ignoring the dependence
upon m0 as we have done in (3.2). Given only a subset of the active map, the robot
pose and passive features are dependent, suggesting that the particular choice for
ϕ affects the approximation. Indeed, the dependence on the specific setting of the
passive map is apparent from the covariance formulation to sparsification. Applying
Bayes’ rule to (3.2), we factor the sparsified SEIF distribution as

p̃seif
(

ξt | z
t,ut

)

= p
(

xt | m
+,m− = ϕ

)

· p
(

m0,m+,m−
)

=
pB (xt,m

+ | m− = ϕ)

pC (m+ | m− = ϕ)
· pD

(

m0,m+,m−
)

(3.3)

The standard (3.5) and canonical (3.7) parametrizations for the pB, pC and pD distri-
butions follow directly from p (xt,m

0,m+,m−) = N
(

µt,Σt

)

= N−1
(

ηt,Λt

)

accord-
ing to the basic marginalization and conditioning operations detailed in Table 2.1.
For the sake of consistency, we adopt the notation employed by Thrun et al. [130], in
which S denotes a projection matrix over the state ξt (e.g., xt = S⊤

xt
ξt extracts the

robot pose). We reveal the parametrization for the SEIF sparsified posterior (3.3) in
both the standard form (3.4), as well as the canonical form (3.6).
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Covariance Form

Σ̃t =
(

Sxt,m+Σ−1
B S⊤

xt,m+ − Sm+Σ−1
C S⊤

m+ + Sm0,m+,m−Σ−1
D S⊤

m0,m+,m−

)−1
(3.4a)

µ̃t = µt + Σ̃t

(

Sxt,m+Σ−1
B S⊤

xt,m+ − Sm+Σ−1
C S⊤

m+

)

ΣtSm−

(

Σm−m−

)−1(
ϕ− µm−

)

(3.4b)

where

ΣB = S⊤
xt,m+ΣtSxt,m+ − S⊤

xt,m+ΣtSm−

(

S⊤
m−ΣtSm−

)−1
S⊤
m−ΣtSxt,m+

ΣC = S⊤
m+ΣtSm+ − S⊤

m+ΣtSm−

(

S⊤
m−ΣtSm−

)−1
S⊤
m−ΣtSm+

ΣD = S⊤
m0,m+,m−ΣtSm0,m+,m−

(3.5)

Information Form

Λ̃t = Sxt,m+ΛBS
⊤
xt,m+ − Sm+ΛCS

⊤
m+ + Sm0,m+,m−ΛDS

⊤
m0,m+,m− (3.6a)

η̃t = Sxt,m+ηB − Sm+ηC + Sm0,m+,m−ηD (3.6b)

where

η
ϕ
= ΛtSm−ϕ

ΛB = S⊤
xt,m+ΛtSxt,m+ − S⊤

xt,m+ΛtSm0

(

S⊤
m0ΛtSm0

)−1
S⊤
m0ΛtSxt,m+

ηB = S⊤
xt,m+

(

ηt − ηϕ

)

− S⊤
xt,m+ΛtSm0

(

S⊤
m0ΛtSm0

)−1
S⊤
m0

(

ηt − ηϕ

)

ΛC = S⊤
m+ΛtSm+ − S⊤

m+ΛtSxt,m0

(

S⊤
xt,m0ΛtSxt,m0

)−1
S⊤
xt,m0ΛtSm+

ηC = S⊤
m+

(

ηt − ηϕ

)

− S⊤
m+ΛtSxt,m0

(

S⊤
xt,m0ΛtSxt,m0

)−1
S⊤
xt,m0

(

ηt − ηϕ

)

ΛD = S⊤
m0,m+,m−ΛtSm0,m+,m− − S⊤

m0,m+,m−ΛtSxt

(

S⊤
xt
ΛtSxt

)−1
S⊤
xt
ΛtSm0,m+,m−

ηD = S⊤
m0,m+,m−ηt − S⊤

m0,m+,m−ΛtSxt

(

S⊤
xt
ΛtSxt

)−1
S⊤
xt
ηt

(3.7)

Notice in (3.4b) that the mean for the sparsified distribution depends upon the
choice for ϕ. Conditioning on a value for the passive features other than their mean
(i.e. ϕ 6= µm−) yields a mean of p̃SEIF

(

ξt | z
t,ut

)

that differs from that of the original
posterior,2 p (ξt | z

t,ut). Furthermore, we will demonstrate that by ignoring the de-
pendence relationships in (3.2), the SEIF sparsification algorithm leads to inconsistent
covariance estimates.

3.2 Modified Sparsification Rule

The SEIF sparsification strategy breaks links between the robot state and a set of
features by approximating their conditional dependence. This approach to sparsifi-
cation introduces a conditional dependence between the robot pose and the passive
map. The SEIF then adopts a specific realization of the passive landmarks, which, as

2The mean is preserved by the sparsification routine that Thrun and colleagues describe in their
paper [130] since the authors condition upon ϕ = µm− and not ϕ = 0 as the paper states.
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a result of this dependence, affects the form of the resulting posterior. In particular,
choosing a value other than the mean for the passive map modifies the mean of the
SLAM distribution. Even in the case that the mean is preserved, though, the spar-
sification rule induces inconsistent error bounds in the posterior. In this section, we
present a variation on the SEIF rule that similarly enforces conditional independence
to impose sparsity without sacrificing the quality of the approximation.

We derive the modified sparsification rule from a factorized version of the posterior,
p (xt,m

0,m+,m−) much like we use for the SEIF in (3.2). In this case, though,
we exploit the initial conditional independence between the robot and the passive
landmarks when given the active map. Rather than setting the passive features to a
specific instantiation, we make the valid choice of dropping m− from the conditional
distribution over the pose at the outset. We exploit the conditional independence in
(3.8b) and, for convenience, factorize the posterior as

p
(

ξt | z
t,ut

)

= p
(

xt,m
0,m+,m−

)

= p
(

xt | m
0,m+,m−

)

· p
(

m0,m+,m−
)

(3.8a)

C.I.
= p

(

xt | m
0,m+

)

· p
(

m0,m+,m−
)

(3.8b)

=
p (xt,m

0 | m+)

p (m0 | m+)
· p

(

m0,m+,m−
)

(3.8c)

The modified rule proceeds from the theoretically exact formulation in (3.8c) and
subsequently approximates the conditional independence of xt and m0, given m+:

p̆ModRule

(

xt,m
0,m+,m−

)

=
p (xt | m

+) · p (m0 | m+)

p (m0 | m+)
· p

(

m0,m+,m−
)

(3.9a)

= p
(

xt | m
+
)

· p
(

m0,m+,m−
)

(3.9b)

=
pU (xt,m

+)

pV (m+)
· pD

(

m0,m+,m−
)

. (3.9c)

For convenience, we factorize the modified posterior in terms of pU , pV , and pD.
The form of these distributions easily follow from the original SLAM posterior,
p (xt,m

0,m+,m−) = N
(

µt,Σt

)

= N−1
(

ηt,Λt

)

, according to the marginalization
and conditioning operations described in Table 2.1. As with the derivation of the
SEIF sparsification step, we take advantage of this factorization to arrive at the stan-
dard (3.10) and canonical (3.11) forms of the modified posterior.

Covariance Form

Σ̆t =
(

Sxt,m+Σ−1
U S⊤

xt,m+ − Sm+Σ−1
V S⊤

m+ + Sm0,m+,m−Σ−1
D S⊤

m0,m+,m−

)−1
(3.10a)

µ̆t = µt (3.10b)
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where

ΣU = S⊤
xt,m+ΣtSxt,m+

ΣV = S⊤
m+ΣtSm+

ΣD = S⊤
m0,m+,m−ΣtSm0,m+,m−

Information Form

Λ̆t = Sxt,m+ΛUS
⊤
xt,m+ − Sm+ΛV S

⊤
m+ + Sm0,m+,m−ΛDS

⊤
m0,m+,m− (3.11a)

η̆t = Sxt,m+ηU − Sm+ηV + Sm0,m+,m−ηD (3.11b)

where

ΛU = S⊤
xt,m+ΛtSxt,m+ − S⊤

xt,m+ΛtSm0,m−

(

S⊤
m0,m−ΛtSm0,m−

)−1
S⊤
m0,m−ΛtSxt,m+

ηU = S⊤
xt,m+ηt − S⊤

xt,m+ΛtSm0,m−

(

S⊤
m0,m−ΛtSm0,m−

)−1
S⊤
m0,m−ηt

ΛV = S⊤
m+ΛtSm+ − S⊤

m+ΛtSxt,m0,m−

(

S⊤
xt,m0,m−ΛtSxt,m0,m−

)−1
S⊤
xt,m0,m−ΛtSm+

ηV = S⊤
m+ηt − S⊤

m+ΛtSxt,m0,m−

(

S⊤
xt,m0,m−ΛtSxt,m0,m−

)−1
S⊤
xt,m0,m−ηt

ΛD = S⊤
m0,m+,m−ΛtSm0,m+,m− − S⊤

m0,m+,m−ΛtSxt

(

S⊤
xt
ΛtSxt

)−1
S⊤
xt
ΛtSm0,m+,m−

ηD = S⊤
m0,m+,m−ηt − S⊤

m0,m+,m−ΛtSxt

(

S⊤
xt
ΛtSxt

)−1
S⊤
xt
ηt

The modified sparsification rule reduces the size of the active map by imposing
conditional independence between xt and m0. If we look closely at the expression for
the information matrix in (3.11a), the term Sxtm+ΛUS

⊤
xtm+ populates the links between

the robot and the m+ landmarks only. The off-diagonal elements that pair the robot
pose with the m0 map elements are now zero, which implies that the approximation
enforces conditional independence. Additionally, without setting the passive map
to a particular instantiation, the modified rule preserves the mean of the original
distribution (3.10b). Furthermore, we will show that, unlike the SEIF sparsification
strategy, the modified rule yields uncertainty estimates that are nearly identical to
those of the original SLAM posterior. Nonetheless, the results demonstrate that
the distribution remains slightly overconfident. In the following section, we suggest
that this inconsistency is an implicit result of a sparsification strategy that relies
on an approximation to the conditional independence between the robot and active
landmarks.

Though the modified rule provides a more sound means of enforcing conditional
independence, the computational cost required to implement it is significant. In
particular, in order to solve for ΛU and ΛV , we need to invert the two matrices,
S⊤
m0,m−ΛtSm0,m− and S⊤

xt,m0,m−ΛtSxt,m0,m− , of size proportional to the number of pas-
sive landmarks. The cost of these inversions is cubic in the size of the passive map,
and quickly becomes intractable. Consequently, the modified rule is not a viable
option when it comes to solving the scalability problem of SLAM. Nonetheless, the
modified rule provides insights into sparsification and motivates the investigation into
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a consistent alternative that can meet computational efficiency requirements.

3.3 Discussion on Overconfidence

An important consequence of the SEIF sparsification algorithm is that the resulting
approximation to the SLAM posterior significantly underestimates the uncertainty
in the state estimate. In this section, we show that this inconsistency is a natural
consequence of imposing conditional independence between the robot pose and the
m0 subset of the map. To illustrate this effect, consider a general three state Gaussian
distribution parametrized in the standard form (3.12a) and information form (3.12b).

p (a, b, c) = N









µa

µb

µc



 ,





σ2
a ρabσaσb ρacσaσc

ρabσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c







 (3.12a)

= N−1









ηa
ηb
ηc



 ,





λaa λab λac

λab λbb λbc

λac λbc λcc







 (3.12b)

We would like to sparsify the canonical parametrization by forcing a and b to be
conditionally independent given c:

p (a, b, c) = p (a, b | c) p (c)
approx.
−−−−→ p̃ (a, b, c) = p (a | c) p (b | c) p (c) .

Recalling the discussion in Section 2.4.1, the approximation is implemented in the
canonical form by setting λab = 0. In the standard form, this is equivalent to treating
a and b as being uncorrelated in p (a, b | c). The resulting approximation then follows
as

p̃
(

a, b, c
)

= N









µa

µb

µc



 ,





σ2
a ρacρbcσaσb ρacσaσc

ρacρbcσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c







 . (3.13)

In order for the approximation to be consistent, it is necessary and sufficient that
the resulting covariance matrix obey the inequality,

Σ̃− Σ =





0 (ρacρbc − ρab) σaσb 0
(ρacρbc − ρab) σaσb 0 0

0 0 0



 ≥ 0. (3.14)

A necessary condition for (3.14) to hold is that the determinant of the upper-left 2×2
sub-block be non-negative [48]. Clearly, this is not the case for every ρacρbc 6= ρab.
Extending this insight to the SEIF sparsification strategy sheds some light on why
enforcing the conditional independence between the robot pose and them0 landmarks
leads to overconfident state estimates. This helps to explain the empirical results that
demonstrate that the modified rule yields a posterior that, while nearly identical to
the original, remains slightly inconsistent.
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Figure 3-1: A plot of the LG simulation environment. The robot (denoted by the
diamond marker) begins at the origin and travels in a series of counterclockwise loops
within an environment that consists of 60 point features. The vehicle measures the
relative position of a limited number of features that lie within the sensor’s FOV, as
indicated by the circle.

3.4 Experimental Results

In this section, we experimentally investigate the two sparsification strategies and fo-
cus on the implications of approximating conditional independence to achieve sparsity.
We compare the two sparsified information filters to the standard Kalman Filter (KF)
formulations in the context of two different implementations. The first scenario con-
siders a controlled linear Gaussian (LG) SLAM simulation for which the KF is the
optimal Bayesian estimator. The KF serves as a benchmark against which to compare
the consequences of the different sparsification strategies. Next, we discuss the per-
formance of the different filters on a real-world nonlinear dataset to better understand
their performance in practice.

3.4.1 Linear Gaussian Simulation

In an effort to better understand the theoretical consequences of enforcing sparsity in
information filters, we first study the effects of applying the SEIF and modified rule to
a synthetic dataset. In this example, the vehicle travels in a series of counterclockwise
loops in a roughly 45 × 45 unit environment. Shown in Figure 3-1, the environment
consists of 60 uniformly distributed point features. The vehicle observes the relative
position of a bounded number of features within a limited FOV. The robot motion is
purely translational and evolves according to a linear, constant-velocity model that is
corrupted by additive white Gaussian noise. Similarly, the landmark observation data
is also subject to additive white Gaussian noise. Appendix A.1 presents additional
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Figure 3-2: Plots of the global normalized estimation error squared (NEES) for the (a)
vehicle and (b) one of the features as estimated based upon a series of LG Monte Carlo
simulations. The global errors are computed by comparing the direct filter estimates to
the ground truth and provide a measure of global consistency for the two sparsification
routines. The horizontal line signifies the the 97.5% chi-square upper bound. In the
case of both the vehicle and the map, the SEIF sparsification rule induces significant
overconfidence while the modified rule better approximates the true distribution.

details concerning the simulation.

We implement a separate information filter for the SEIF and modified rule and
use their corresponding sparsification routines to maintain a bound of Γa = 6 active
features (10% of the total number of features). Additionally, we apply the standard
Kalman Filter (KF) that, by the linear Gaussian (LG) nature of the simulation, is
the optimal Bayesian estimator. Aside from the different sparsification routines, each
estimator is otherwise identical.

We analyze the performance of the different sparsification routines based upon a
series of Monte Carlo LG simulations. We compare the consistency of the resulting
posteriors relative to the true distribution based the normalized estimation error
squared (NEES) [5]. As one test of filter consistency, the NEES jointly measures



3.4. Experimental Results 67

estimator bias, along with the extent of agreement between the estimation error and
a filter’s corresponding confidence. We evaluate the NEES error based upon a pair
of error metrics, the first of which relates the ground truth to the direct output of
the filters and provides a measure of global error. Figure 3-2(a) compares the global
NEES error for the KF, SEIF, and modified rule vehicle position estimates. Similarly,
Figure 3-2(b) presents the normalized global errors attributed with a single feature,
which represents the typical performance for the rest of the map estimates. The
horizontal threshold corresponds to the the 97.5% upper bound for the chi-square test
and serves as reference for assessing the consistency of the different filters. Looking at
the vehicle pose and landmark scores, the modified rule yields errors that are nearly
identical to those of the KF, both with regards to magnitude, as well as behavior
over time. In contrast, the SEIF induces global errors that are noticeably larger
than the NEES score associated with the true distribution. This implies that the
SEIF sparsification routine produces an approximation to the SLAM posterior that
is inconsistent with the true distribution. The modified rule better approximates the
actual posterior but in agreement with our discussion on overconfidence in Section 3.3,
remains inconsistent.

The second NEES error metric considers the state estimate as expressed rela-
tive to the first feature that was observed, m1, via the compounding operation:
ξm1i = ⊖m1 ⊕ ξi [121].3 This metric provides a measure of the relative error as-
sociated with the filter estimates. Figure 3-3(a) depicts the relative NEES error
associated with the vehicle pose for the three filters. In Figure 3-3(b), we plot the rel-
ative score for the same representative feature that we employed for the global error.
The NEES errors attributed with the modified rule are again nearly indistinguishable
from those of the KF. Interestingly, unlike the global estimate errors, the relative
SEIF NEES scores are similarly close to the KF errors. This discrepancy suggests
that, while the SEIF sparsification routine induces an inconsistent global posterior,
it preserves the relative consistency of the state estimates.

The NEES score measures the mean estimation error normalized by uncertainty
as an evaluation of an estimator’s consistency. We gain further insight into the con-
sequences of sparsification by looking directly at the uncertainty estimates for the
two information filters relative to those of the actual posterior. Figure 3-4 depicts a
histogram over the map uncertainties that result from the modified rule and SEIF
relative to those of the KF. More specifically, we convert the two canonical filter
parametrizations to the standard form by inverting the information matrices. We
then compute the log of the ratio between the determinants of each feature’s covari-
ance matrix sub-block and the covariance submatrix from the true distribution as
maintained by the KF. This metric describes the confidence associated with the two
sparsified filter estimates: positive values reflect a conservative belief while negative
values signify overconfidence. The histogram reveals that the two sparsified uncer-
tainty measures are overconfident with respect to those of the standard KF and, in
turn, are inconsistent with the true estimation error. This agrees with our earlier

3The compounding operation transforms the state from one coordinate frame to another. We
also refer to this process as root-shifting.
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Figure 3-3: The relative normalized estimation error squared (NEES) for the (a)
vehicle and (b) a representative feature based upon the same series of Monte Carlo
simulations that we use to calculate the global error. We compute the relative error by
transforming the original random vector with respect to the first feature instantiated in
the map: ξm1i = ⊖m1 ⊕ ξi. Both plots include a horizontal line that denotes the 97.5%
chi-square upper bound. The relative map error for both the SEIF and modified rule
is nearly identical to that of the KF, suggesting that the SEIF preserves the relative
consistency of the state estimates.

discussion in Section 3.3 on the consequences of approximating conditional indepen-
dence to achieve sparsity. However, the SEIF sparsification strategy induces a level
of overconfidence that is noticeably greater than that of the modified rule. Thus, the
high global NEES scores for the SEIF are not so much a consequence of error in the
vehicle and map estimates as they are of the overconfidence of the SEIF posterior.

Much like we have seen with the NEES error analysis, the SEIF yields relative
uncertainty estimates that are much better behaved. In this case, we again transform
the state relative to the first feature added to the map the compounding operation.
Note that in the process of expressing the map relative to the first feature, the orig-
inal world origin is now included as a state element. We compute the confidence
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Figure 3-4: Histogram for the LG simulation that depicts the global uncertainties
that result from the SEIF (left) and modified rule (right) sparsification strategies as
compared to those of the KF. We compute the relative uncertainty for each feature as
the log of the ratio between the determinant of the information filter covariance sub-
block and the corresponding determinant from the actual distribution as maintained
by the KF. Positive values correspond to conservative error estimates while negative
log ratios indicate overconfidence. Both sparsification routines yield overconfident map
estimates, though the inconsistency of the SEIF is more pronounced.

measures for the SEIF and modified rule relative to the KF based upon covariances
associated with the root-shifted state, as before. Figures 3-5(b) and 3-5(a) plot the
histograms associated with the modified rule and SEIF sparsification strategies, re-
spectively. Unlike the global (nominal) distribution, the SEIF uncertainty estimates
for the relative feature positions are closer to the values from the actual distribution.
The one exception is the estimate for the former world origin as expressed in the
relative map, which remains overconfident as a result of the global inconsistency of
the SEIF. Meanwhile, the modified rule remains slightly overconfident in the rela-
tive estimates with confidence levels that are more similar to those of the underlying
Gaussian.

The effect of sparsification on the covariance estimates is in-line with what is
observed with the normalized errors. Though there is little difference between the
three sets of feature position estimates, the normalized errors for the global SEIF map
are larger due to the higher confidence attributed to the estimates. In the case of root-
shifting the state, the histograms in Figure 3-5 reveal a negligible difference between
the relative uncertainty estimates associated with the three filters. Consequently, the
uncertainty-based normalization has similar effects on each filter’s feature position
errors.

3.4.2 Experimental Validation

Simulations are helpful in investigating our findings without having to take into con-
sideration the effects of linearization. However, real-world SLAM applications typi-
cally involve nonlinear vehicle motion and perception models, and include noise that
is not truly Gaussian. For that reason, we analyze the effects of the two sparsification
strategies on a typical nonlinear dataset. As we show, the SEIF and modified rule
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Figure 3-5: Histograms that show the uncertainties associated with the relative (a)
SEIF and (b) modified rule map estimates relative to the baseline KF. We compute the
uncertainty ratios based upon the relative covariance estimates that follow from root-
shifting the state to the first feature added to the map. Unlike the global estimates, the
SEIF is only slightly overconfident and performs similarly to the modified rule. The
one outlier in the SEIF histogram corresponds to the representation for the original
world origin in the root-shifted reference frame and is a consequence of the inconsistent
global representation.

yield posteriors with the same characteristics as those of the linear Gaussian (LG)
simulations.

In our experiment, we operated an iRobot B21r wheeled robot in a gymnasium
consisting of four adjacent tennis courts. A set of 64 track hurdles were positioned
at known locations on the court baselines, which provide a convenient ground truth
for the experiment. Figure A-1 within Appendix A presents a photograph of the
environment. The vehicle recorded observations of the the relative position of the
legs of neighboring hurdles with a SICK laser range finder as we drove it in a series of
loops. Wheel encoders measured the vehicle’s forward velocity and rate of rotation,
which we employ in the time projection step for each filter.

We independently implement two information filters, one that employs the SEIF
sparsification routine and a second filter that uses the modified rule to maintain a
limit of Γa = 10 active features. As a basis for comparison, we also apply a standard
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Figure 3-6: The final global maps for the (a) SEIF and (b) modified rule, along
with the three-sigma uncertainty ellipses. We compare each to the map generated with
the standard EKF, as well as the manually-measured ground truth hurdle positions.
The SEIF maintains global feature estimates that are significantly overconfident as
the uncertainty bounds do not capture the ground truth or the EKF estimates. The
modified rule, meanwhile, yields estimates for absolute feature pose and uncertainty
which are nearly identical to those of the EKF.

EKF. We treat each hurdle as a single feature that we interpret as a 2D coordinate
frame. The model considers one of the two hurdle legs, which we refer to as the “base”
leg, to be the origin of this frame and defines the positive x-axis in the direction of
the second leg. Features are then parametrized by the translation and rotation of this
coordinate frame. Each filter employs a kinematic model for the vehicle motion and
treats the forward velocity and rotation rates as control inputs. The measurement
model adapts the laser range and bearing observations into a measure of the position
and orientation of the hurdle reference frame with respect to the vehicle’s body-fixed
frame. We solve the data association problem independently in order to ensure that
the correspondences are identical for all three filters. For a more detailed explanation
of the experiment and the filter implementation, refer to Appendix A.2.

We first consider the posterior over the global state representation that results
from the different sparsification routines. Figure 3-6 presents the final global map
estimates for the SEIF and modified rule together with the EKF map and the ground
truth hurdle positions. The ellipses denote the three-sigma confidence intervals as-
sociated with the estimate for the base position for each hurdle. Much like the LG
simulation, the final SEIF map estimates exhibit a distinctive degree of overconfi-
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Figure 3-7: A comparison of the relative maps estimates that result from the (a) SEIF
and (b) modified rule, along with the three-sigma uncertainty ellipses. We compute the
relative map by expressing the nominal state in the reference frame associated with the
first hurdle added to the map. Both the SEIF and modified rule sparsification strategies
yield estimates for the relative relationship between features that are nearly identical
to those of the EKF.

dence. We see in the inset plot in Figure 3-6(a) that the SEIF uncertainty estimates
are overly tight and do not capture either the EKF position estimates or the ground
truth. Empirically, this behavior supports the belief that the SEIF sparsification
strategy yields global map estimates that are inconsistent. In contrast, the confi-
dence intervals associated with the modified rule are much larger and account for the
ground truth and EKF positions. Qualitatively, we also see that the modified rule
yields estimates for the feature position and orientation that better approximate the
EKF estimates. While the modified rule produces a posterior that remains overcon-
fident with respect to the EKF, it maintains a distribution that better approximates
that of the EKF.

As a study of the relative map estimate structure, we transform the state into the
reference frame associated with the first hurdle added to the map. The result agrees
with the LG analysis in that the quality of the SEIF estimates improves significantly
when we consider the relative map relationships. We plot the relative maps for the
SEIF and modified rule in Figure 3-7 alongside the root-shifted EKF estimates and the
ground truth. The ellipses again denote the three-sigma uncertainty bounds for the
two information filters. The SEIF’s relative feature pose and uncertainty estimates
agree more closely with the ground truth and EKF estimates and are similar to those
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of the modified rule. The SEIF sparsification strategy seems to preserve the relative
consistency of the feature estimates, not only in a controlled simulation, but also with
this real-world experiment.

3.5 The Argument for Consistent Sparsification

In their presentation of the Sparse Extended Information Filter (SEIF), Thrun and
colleagues [130] provide novel insights into the benefits of a sparse canonical parametriza-
tion of the feature-based SLAM Gaussian. Their insight gives rise to the SEIF as a
possible solution to the problem of scalability that remains an open issue in SLAM. A
delicate issue with the SEIF algorithm is the method by which it enforces the sparsity
of a canonical parametrization of the feature-based SLAM posterior that is naturally
populated. We have taken a close look at the SEIF sparsification strategy, which
controls the population of the information matrix by approximating the conditional
independence between the vehicle pose and much of the map. We revealed inconsis-
tencies with the SEIF approximation to conditional independence and proposed the
modified rule as a more precise strategy for enforcing conditional independence. A
controlled, linear Gaussian (LG) simulation reveals that the SEIF maintains an over-
confident posterior and confirms our belief that the SEIF sparsification strategy leads
to inconsistent global estimates. Results from a real-world, nonlinear dataset provide
empirical evidence that support our claim. Alternatively, the modified rule yields an
approximation to the SLAM posterior that is nearly identical to the nominal Gaus-
sian distribution. Unfortunately, the accuracy comes at a significant computational
cost as the modified rule is cubic in the size of the map and, therefore, not scalable.

Despite the performance of the modified rule, it too results in a posterior that is
overconfident. We argue in Section 3.3 that this inconsistency is implicit in any sparsi-
fication routine that approximates conditional independence. In the next chapter, we
describe an alternative sparsification strategy that does not rely on such an approxi-
mation. Instead, our sparse information filter actively controls the formation of links
in the Gaussian Markov random field (GMRF) in a manner that is computationally
efficient and preserves the consistency of the distribution.
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Chapter 4

Exactly Sparse Extended
Information Filters

At this point, we have shown that an open problem in SLAM is that of scaling to
large environments. Previous chapters discussed several promising algorithms that
address this problem, ranging from submap approaches that break the world into
more manageable chunks to pose graph formulations that exploit the efficiency of
iterative optimization techniques. Most relevant to the work of this thesis are tech-
niques based upon the canonical form of a Gaussian distribution that exploit a sparse
parametrization to achieve computational efficiency. As such, we have devoted much
attention to the SEIF algorithm by Thrun and colleagues [130], which has helped to
lay the groundwork for information filter SLAM formulations, including the algorithm
that we derive in this thesis. The previous chapter presented a detailed analysis of
SEIF sparsification process whereby the filter controls the population of the infor-
mation matrix. We have shown that, as a direct consequence of the sparsification
strategy as implemented by the SEIF, the filter maintains overconfident estimates for
the vehicle pose and map.

The thesis presents the Exactly Sparse Extended Information Filter (ESEIF), an
alternative form of the EIF that achieves the efficiency benefits of a sparse poste-
rior parametrization without sacrificing consistency. This chapter describes the our
estimator as a feature-based SLAM algorithm. We derive the filter in terms of a
novel sparsification strategy that prevents the population of the information ma-
trix by proactively controlling the creation of links in the Gaussian Markov random
field (GMRF). The ESEIF then tracks an alternative form of the SLAM posterior
that is inherently sparse. Consequently, the filter avoids the need to force what
are naturally non-zero elements of the information matrix to zero. By adopting an
efficient, approximate inference strategy, the natural sparsity of the Gaussian distri-
bution enables the ESEIF to perform SLAM filtering at computational cost that is
linear in the size of the map. We show both in a controlled simulation, as well as on
a pair of real-world datasets, that the ESEIF maintains uncertainty estimates that
are conservative relative to the gold standard EKF.

75
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4.1 Sparsification Strategy

We begin with high-level description of the ESEIF sparsification strategy. We present
the intuition behind our approach, framing it in the context of the fundamental
aspects of Bayesian SLAM filtering. In this way, our goal is to ground the ESEIF
sparsification methodology in the natural operation of SLAM filtering.

4.1.1 Conditional Dependence of Filter Estimates

As part of our earlier discussion in Chapter 2, we described SLAM filtering in terms
of three fundamental processes: augmentation, roll-up, and measurement updates.
Here, we again use this interpretation of filtering to motivate the ESEIF sparsification
strategy.

Consider the Gaussian filtering process at time t immediately following a time
prediction step. The current robot pose is conditionally dependent upon a subset of
the map per the distribution, p (xt,M | zt−1,ut), and makes a set of feature obser-
vations, zt. We incorporate this evidence into the distribution via a measurement
update step and, in the case of new landmarks, add them to the map. The latter
process of growing the map instantiates relatively strong links between the robot state
and the new features. Similarly, the measurement update strengthens the existing
shared information between the vehicle and the re-observed landmarks. Despite the
introduction of new information, the density of the information matrix is likely to
decrease on account of the conditional independence between the new and old given
the robot pose. More importantly, though, the size of the active map will either stay
the same or increase in the case that new landmarks are observed.

Next, we project the robot state forward in time, first augmenting the posterior
distribution, p (xt,M | zt,ut), to include the predicted pose at time t+ 1. Assuming
that the process model is first-order Markov, the new pose is conditionally indepen-
dent of the map given the previous pose and recent control input. As we have men-
tioned in earlier chapters, this conditional independence implies that we add a single
link in the GMRF between the previous and current robot states, leaving the rest of
the graph untouched. In the specific case of our canonical Gaussian approximation to
the distribution, we add an additional block row and column to the information ma-
trix that is zero everywhere in the off-diagonal aside for entries between the two poses.
At this point, the computational cost to tracking the additional pose is negligible as
we have not increased the density of the information matrix.

The final component of the time projection step is to marginalize the previous
robot state from the distribution, p (xt+1,xt,M | zt,ut+1), via the roll-up step. In
Chapter 2 we discussed, in detail, the consequences of marginalization on the structure
of the Gaussian SLAM distribution, namely the fill-in of the information matrix. The
Schur complement (2.25a) instantiates shared information among each feature within
the active map, equivalently adding links to the undirected graphical model. Active
landmarks remain active as the information that they share with the previous pose is,
effectively, transferred to the current robot state. While these links weaken due to the
process noise, they persist over the course of subsequent prediction steps, resulting in
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an active map that never decreases in size.

4.1.2 Actively Control Link Formation

The factor most critical to the population of the information matrix is the size of the
active map. While the measurement update step does not immediately contribute
to the density of the information matrix, it generally increases the number of active
features. The marginalization component of the subsequent time prediction step will
then create a maximal clique among what is now a larger set of active landmarks,
corresponding to an increase in the density of the information matrix. While edges
between the robot pose and map in the GMRF may weaken over time, they will not
vanish, resulting in an ever-growing active map and the inherent population of the
information matrix. The role of the active map suggests that we can prevent the fill-in
of the information matrix by controlling the number of landmarks that are made active
as a consequence of measurement updates. One strategy is to actively restrict the
number of observations that the filter incorporates in an update step to a finite number
of “optimal” measurements. Optimality may be defined, for example, by a reward
function that balances information gain as defined by relative entropy [84] with the
size of the resulting active map. With this regularization penalty, however, it would
be difficult to formulate the reward measure such that it permits exploration, which
inherently implies adding new links between the robot pose and map. An additional
problem with such an approach is that it disregards measurement information.

We propose an alternative strategy that actively prevents the fill-in of the infor-
mation matrix while retaining all map observation data. In the same spirit as the
aforementioned approach, we control the incorporation of measurement information
and, in turn, the addition of links to the GMRF, in order to maintain a sparse in-
formation matrix. The ESEIF sparsification process takes the form of a modified
measurement update step that we implement periodically in response to the size of
the active map. Our strategy partitions the available map observations into two sets.
The first includes any observations of passive features (including new landmarks) as
well as a limited number of active feature measurements. The filter incorporates this
data as in the standard EIF to update the filter and grow the map. This update
strengthens links in the graph and increases the number of active landmarks. Next,
we marginalize the SLAM distribution over the robot pose, effectively “kidnapping”
the robot from the map. As in the roll-up stage of the time projection step, this
induces a maximal clique among the set of active features. The ESEIF then relocates
the vehicle within the map based upon the remaining set of measurements. The ac-
tive map now consists only of the landmarks that were used for relocalization and the
subsequent time projection produces a limited amount of fill-in.

The fundamental advantage of this sparsification strategy is that it prevents the
unbounded growth of the active map. By periodically kidnapping the robot, the
ESEIF actively controls the population of the information matrix induced by the
roll-up step, without ignoring measurement data. Instead, the ESEIF sacrifices some
odometry information by relocating the vehicle within the map based only on a subset
of measurements. As we describe throughout the remainder of the chapter, this is
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analogous to tracking an alternative form of the SLAM posterior that is exactly
sparse.

4.2 Mechanics of the ESEIF

The Exactly Sparse Extended Information Filter (ESEIF) introduces a novel spar-
sification strategy that provides for an exactly sparse parametrization of the SLAM
posterior. In turn, the ESEIF is able to efficiently track estimates for the robot pose
and map that are consistent by exploiting the advantages of sparse SLAM informa-
tion filters. In this section, we discuss the mechanics of the ESEIF, first explaining
the sparsification step in detail. We then briefly describe our implementation of the
basic time projection and measurement update steps. Subsequently, we explain an
approach for approximate inference on the canonical distribution, which efficiently
computes the mean and uncertainty estimates for the robot pose and map needed
for linearization and data association. Throughout the section, we elaborate on the
computational costs associated with the filtering process.

4.2.1 Sparsification Process: Maintaining Exact Sparsity

The general premise of ESEIF sparsification is straightforward: rather than deliber-
ately breaking links between the robot and map, we maintain sparsity by controlling
their initial formation. More specifically, the ESEIF manages the number of active
landmarks by first marginalizing out the vehicle pose, essentially “kidnapping” the
robot [128]. The algorithm subsequently relocalizes the vehicle within the map based
upon new observations to a set of known landmarks. The set of features that were
originally active have been made passive and the set of landmarks used for relocal-
ization form the new active map.

The ESEIF sparsification algorithm takes place as needed to maintain the Γa

bound on the number of active landmarks. Outlined in Algorithm 1, sparsification
takes the form of a variation on the measurement update step. For a more detailed
description, we consider a situation that would give rise to the GMRF depicted in
Figure 4-1. At time t, suppose that the robot makes four observations of the envi-
ronment, Zt = {z1, z2, z3, z5}, three of active features and one of a passive landmark:

Active: z1 = h(xt,m1), z2 = h(xt,m2), z5 = h(xt,m5)

Passive: z3 = h(xt,m3).

Updating the current distribution, p (ξt | z
t−1,ut), based upon all four measurements

would strengthen the off-diagonal entries in the information matrix pairing the robot
with the three observed active features, m1, m2, and m5. Additionally, the update
would create a link to the passive landmark, m3, the end result being the information
matrix and corresponding graphical model shown in the left-hand side of Figure 4-1.
Suppose that activating m3 would violate the Γa bound. The subsequent time pre-
diction process would then induce shared information (i.e. a maximal clique) among
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Time Projection:
(

η+
t−1,Λ

+
t−1

)

−→
(

η−
t ,Λ

−
t

)

;

Measurement Update
(

zt =
{

zactive, zpassive
})

:
if Nactive + n (zpassive) ≤ Γa then

Standard update:
(

η−
t ,Λ

−
t

) (4.10)
−−−−→

(

η+
t ,Λ

+
t

)

;
Nactive = Nactive + n (zpassive);

else
Partition zt =

{

zα, zβ
}

s.t. n
(

zβ
)

≤ Γa ;

(i) Update using zα:
(

η−
t ,Λ

−
t

) (4.1)
−−−→

(

η̄−
t , Λ̄

−
t

)

;

(ii) Marginalize over the robot pose:
(

η̄−
t , Λ̄

−
t

) (4.3)
−−−→

(

η̌−
t , Λ̌

−
t

)

;

(iii) Relocate the robot using zβ:
(

η̌−
t , Λ̌

−
t

) (4.6)
−−−→

(

η̆+
t , Λ̆

+
t

)

;

Nactive = n
(

zβ
)

;

end

Algorithm 1: A description of the ESEIF algorithm. Note that Nactive denotes the number of
features that are currently active.
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Figure 4-1: At time t, the robot observes four features, {m1,m2,m3,m5}, three
of which are already active, while m3 is passive. The update strengthens the shared
information between vehicle pose and m1, m2, and m5 and adds a link to m3 as we
indicate on the left. The next time projection step forms a clique among the robot and
these four features and populates the information matrix. The ESEIF sparsification
strategy avoids this effect by controlling the number of active landmarks and, in turn,
the size of this clique.
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the set of active features as we show on the right. The simplest way to avoid this is to
disregard the observation of the passive landmark entirely. This approach, though, is
not acceptable, since the size of the map that we can build is then dictated by the Γa

bound. A better option is to proceed with a standard update based upon the complete
set of measurements and immediately nullify weaker links by enforcing conditional
independence between those features and the robot pose. As we saw in the previous
chapter, however, ignoring conditional dependence gives rise to overconfident state
estimates. Alternatively, the ESEIF allows us to both incorporate all measurement
data and simultaneously maintain the desired degree of sparsity without sacrificing
consistency.

In the ESEIF sparsification step, the measurement data is partitioned into two
sets, zα and zβ, where the first set of observations is used to first update the filter and
the second is reserved for performing relocalization. Several factors guide the specific
measurement allocation, including the number and quality of measurements necessary
for relocalization. Additionally, as the landmarks associated with zβ are made active
as a result of sparsification, the choice for this set defines the size of the active map
and, in turn, the frequency of sparsification. The more measurements that we reserve
for relocalization, the more often that the filter will sparsify the posterior. In the case
that the bound on the active map size is larger than the number of measurements, we
prefer to relocalize the vehicle based upon as many measurements as possible in order
to reduce the resulting pose error. Meanwhile, we first incorporate any observations
of new landmarks in the initial measurement update step, whereby we grow the map.
Of the four measurements available in our example, group that of the passive feature
together with one of the active measurements for the update, zα = {z1, z3}. The
remaining two observations are withheld for relocalization, zβ = {z2, z5}. We now
describe the two components of sparsification.

Posterior Update

We first perform a Bayesian update to the current distribution, p (ξt | z
t−1,ut), to

incorporate the information provided by the zα measurements:

p
(

ξt | z
t−1,ut

)

= N−1
(

ξt;ηt,Λt

) zα={z1,z3}
−−−−−−→ p1

(

ξt |
{

zt−1, zα
}

,ut
)

= N−1
(

ξt; η̄t, Λ̄t

)

.

The p1
(

ξt | {z
t−1, zα} ,u

t
)

posterior follows from the standard update equations (2.21)
for the information filter.

p1
(

ξt |
{

zt−1, zα
}

,ut
)

= N−1
(

ξt; η̄t, Λ̄t

)

Λ̄t = Λt +H⊤R−1H (4.1a)

η̄t = ηt +H⊤R−1
(

zα − h (µt) + Hµt

)

(4.1b)

The Jacobian matrix, H, is nonzero only at indices affiliated with the robot pose and
the m1 and m3 landmarks. As a result, the process strengthens the link between the
robot and the active feature, m1, and creates shared information with m3, which was
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Figure 4-2: A graphical description of the ESEIF sparsification strategy. At time t,
the map is comprised of three active features, m+ = {m1,m2,m5}, and two passive
features, m− = {m3,m4}, as indicated by the shaded off-diagonal elements in the in-
formation matrix. The robot makes three observations of active landmarks, {z1, z2, z5},
and one of a passive feature, z3. In the first step of the sparsification algorithm, shown
in the left-most diagram, the ESEIF updates the distribution based upon a subset of
the measurements, zα = {z1, z3}. The result is a stronger constraint between m1 and
the robot, as well as the creation of a link with m3, which we depict in the middle

figure. Subsequently, the ESEIF marginalizes out the vehicle pose, leading to connec-
tivity among the active landmarks. The schematic on the right demonstrates the final
step of sparsification in which the robot is relocated within the map based upon the re-
maining zβ = {z2, z5} measurements. The result is a joint posterior, pESEIF

(

ξt | z
t,ut

)

,
represented by an exactly sparse information matrix where the size of the active map
is controlled.

passive. The middle diagram of Figure 4-2 demonstrates this effect.

As a traditional measurement update step, the computational cost of this com-
ponent of sparsification is constant-time. In the case that the observation model is
nonlinear, linearization requires access to the mean estimate for only the robot pose
as well as the m1 and m3 landmarks.

Marginalization

Now that a new connection to the vehicle node has been added to the graph, there are
too many active features. The ESEIF sparsification routine proceeds to marginalize
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out the robot pose to achieve the distribution over the map,

p2
(

M |
{

zt−1, zα
}

,ut
)

=

∫

xt

p1
(

ξt |
{

zt−1, zα
}

,ut
)

dxt

= N−1
(

M; η̌t, Λ̌t

)

.

(4.2)

In order to make the derivation a little clearer, we decompose the canonical expression
for p1

(

ξt | {z
t−1, zα} ,u

t
)

into the robot pose and map components,

p1
(

ξt |
{

zt−1, zα
}

,ut
)

= N−1
(

ξt; η̄t, Λ̄t

)

η̄t =

[

η̄xt

η̄M

]

Λ̄t =

[

Λ̄xtxt
Λ̄xtM

Λ̄Mxt
Λ̄MM

]

.

The information matrix for the marginalized distribution then follows from Table 2.1:

p2
(

M |
{

zt−1, zα
}

,ut
)

= N−1
(

M; η̌t, Λ̌t

)

Λ̌t = Λ̄MM − Λ̄Mxt

(

Λ̄xtxt

)−1
Λ̄xtM (4.3a)

η̌t = η̄M − Λ̄Mxt

(

Λ̄xtxt

)−1
η̄xt

. (4.3b)

The Λ̄Mxt
(Λ̄xtxt

)−1Λ̄xtM outer product in the Schur complement (4.3a) is zero
everywhere except for the entries that pair the active features. Recalling our earlier
discussion in Section 2.4.1 on the effects of marginalization for the canonical form,
this establishes full connectivity among the active features, as we show in the right-
hand side of Figure 4-2. We have essentially transferred the information available in
the links between the map and pose to the active landmarks, sacrificing some fill-in
of the information matrix. Of course, in contrast to the depiction in the figure, we do
not have a representation for the robot pose, which brings us to the final step that
we discuss shortly.

The marginalization component of sparsification is computationally efficient. In-
verting the robot pose sub-matrix, Λ̄xtxt

∈ R
p×p, is a constant-time operation, since p

is fixed. The ESEIF then multiplies the inverse by Λ̄Mxt
∈ R

n×p, the sub-block that
captures the shared information between the robot and map. With a bound on the
number of active landmarks, a limited number of k rows are populated and the matrix
product is O(kp2). In (4.3a), we then post-multiply by the transpose in O(k2p) time
while, in (4.3b) we post-multiply by η̄xt

∈ R
p×1, an O(kp) operation. With the valid

assumption that k ≫ p, the marginalization component of ESEIF sparsification is
quadratic in the bounded number of active features and, thus, constant-time.

Relocalization

The sparsification process concludes with the relocalization of the vehicle within the
map. We estimate the new robot pose based upon the remaining zβ observations of
a set of features that we denote by the random vector mβ. This step mimics that of
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adding landmarks to the map, though, in this case, we define the vehicle pose as a
function of these features.

The actual expression for the new pose estimate depends largely on the charac-
teristics of the vehicle’s sensor model as well as the nature of the mβ landmarks. For
now, we represent this expression in its most general form as a nonlinear function of
mβ and the measurement data. We include an additive white Gaussian noise term,
vt ∼ N

(

0,R
)

, that accounts for model uncertainty and sensor noise, giving rise to the
expression in Equation (4.4a). Equation (4.4b) is the first-order linearization over the
observed landmarks evaluated at their mean, µ̌mβ

, from the map distribution (4.2).
The Jacobian matrix with respect to the map, GM , is sparse with nonzero entries
only within the columns associated with the mβ landmarks. In turn, (4.4b) requires
only the µ̌mβ

mean.

xt = g
(

mβ, zβ
)

+ vt (4.4a)

≈ g
(

µ̌mβ
, zβ

)

+GM

(

m− µ̌t

)

+ vt (4.4b)

We augment the map state with this new pose, ξt =
[

x⊤
t M⊤

]⊤
, and form the

joint distribution,

pESEIF
(

xt,M | zt,ut
)

= p (xt | mβ, zβ) p2
(

M |
{

zt−1, zα
}

,ut
)

, (4.5)

where the factorization captures the conditional independence between the pose and
the remaining map elements. Per the linearization of the relocalized vehicle pose
function (4.4b), we approximate the conditional distribution over the pose as Gaus-
sian, p (xt | mβ, zβ) ≈ N

(

xt;g(µ̌mβ
, zβ),R

)

. The problem of adding the robot pose is
fundamentally the same as adding a new feature to the map or augmenting the state
as part of the time prediction step (2.24). One can then easily derive the canonical
parametrization (4.6) for the joint distribution, pESEIF (ξt | z

t,ut).

pESEIF
(

ξt | z
t,ut

)

= N−1
(

ξt; η̆t, Λ̆t

)

Λ̆t =

[

R−1 −R−1GM

−G⊤
MR−1 Λ̌t +G⊤

MR−1GM

]

(4.6a)

η̆t =





R−1
(

g
(

µ̌mβ
, zβ

)

−GM µ̌t

)

η̌t −G⊤
MR−1

(

g
(

µ̌mβ
, zβ

)

−GM µ̌t

)



 (4.6b)

As a consequence of the sparseness of the Jacobian matrix, GM , the majority of

terms within the −R−1GM = −
(

G⊤
MR−1

)⊤
block of the information matrix that link

the robot to the map are zero. The landmarks used for relocalization are the only
exception, as we show in the right-hand diagram in Figure 4-2 with the robot linked
to the mβ = {m2,m5} features but no others. These landmarks now form the active
map.

Returning to the general relocalized pose model (4.4), pose estimation depends
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on the nature of the exteroceptive sensors as well as the map structure. In the case
that the measurements are represented by a bijective model, each observation yields
a vehicle pose estimate via the inverse measurement function. For example, consider
the hurdles dataset that we first described in Section 3.4.2. If we assume that we can
resolve the coordinate frame associated with a hurdle observation (i.e. identify the
hurdle’s base leg), an estimate for the vehicle’s position and heading follows from an
inverse transformation. Oftentimes, though, the function is not invertible (i.e. injec-
tive), such as with a three DOF robot that makes range and bearing measurements
to point features in a planar environment. In this case, we need to formulate the pose
estimate as a joint function of several observations. Whether or not an observation
of a single feature is sufficient to estimate the vehicle state we prefer base the esti-
mate on multiple observations. A “batch” approach to relocalization offers greater
robustness to both measurement noise as well as errors that may corrupt individual
estimates. However, a larger allocation of measurements to zβ increases the size of
the resulting active map and, in turn, affects the frequency of sparsification. We then
take both factors into account when partitioning measurement data into the two sets,
based upon the desired bound on the number of active landmarks and the nature of
the vehicle’s sensors.

The ESEIF actively controls the information constraints between the vehicle and
the map in a consistent manner, since it does not break (i.e. set to zero) undesired links
in order to approximate conditional independence. Instead, the filter marginalizes
over the pose, in effect, distributing the information encoded within these links to
features in the active map, m+. The marginalization (4.3) populates the information
submatrix associated with m+, which then forms a maximum clique in the graph.
Irrespective of sparsification, this fill-in would otherwise occur as part of the next time
prediction step and, with the active map growing ever-larger, would fully populate
the matrix. The ESEIF avoids extensive fill-in by bounding the number of active
landmarks. When the active map reaches a predetermined size, the ESEIF “kidnaps”
the robot, sacrificing temporal information as well as a controlled amount of fill-in.
The algorithm then relocalizes the vehicle, creating a new set of active features. Since
observations are typically confined to the robot’s local environment, these features
are spatially close. The active map is built up from neighboring landmarks until
the next sparsification. As a result, the ESEIF forms marginalization cliques that
resemble submaps that are structured according to robot’s visibility and the density
of features in the environment.

4.2.2 Core Filter Mechanics

The principle component of the ESEIF that differentiates it from other forms of the
information filter is the sparsification strategy, which takes the form of a variation of
the measurement update step. Aside for the occasional sparsification step, the ESEIF
measurement update and time prediction processes mimic the standard information
filter implementations. For completeness, we briefly summarize these filter mechanics
that we originally discussed in Section 2.5.
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Time Projection Step

We model the vehicle dynamics according to a first-order nonlinear Markov model
(4.7a) with additive white Gaussian noise, wt ∼ N

(

0,Q
)

. A Taylor series expansion
about the current mean pose, µxt

, yields the linear approximation in (4.7b).

xt+1 = f
(

xt,ut+1

)

+wt (4.7a)

≈ f
(

µxt
,ut+1

)

+ F
(

xt − µxt

)

+wt (4.7b)

In Section 2.2.1, we presented time prediction as a two step process in which we
first augment the state with the new robot pose, xt+1, and then marginalize over the
previous pose, xt. Below, we present the composition of the augmentation and roll-up
processes as a single step that brings the p (xt,M | zt,ut) posterior up to date:

p
(

xt+1,M | zt,ut+1
)

= N−1
(

η̄t+1, Λ̄t+1

)

Λ̄t+1 =





Q−1 −Q−1FΩF⊤Q−1 Q−1FΩΛxtM

ΛMxt
ΩF⊤Q−1 ΛMM − ΛMxt

ΩΛxtM



 (4.8a)

η̄t+1 =





Q−1FΩηxt
+
(

Q−1 −Q−1FΩF⊤Q−1
) (

f(µxt
,ut+1)− Fµxt

)

ηM − ΛMxt
Ω
(

ηxt
− F⊤Q−1

(

f(µxt
,ut+1)− Fµxt

))



 (4.8b)

where Ω =
(

Λxtxt
+ F⊤Q−1F

)−1

The matrix ΛMxt
= Λ⊤

xtM
denotes the block matrix that forms the lower-left sub-block

of Λt and corresponds to the shared information between the map and previous pose.
Similarly, Λxtxt

and ΛMM denote the robot and map sub-blocks along the diagonal.
In Section 2.5.3, we discussed the fundamental characteristics of time prediction

in the information form, namely the population of the information matrix and the
persistence of the active map. The update to the map information matrix sub-block,
Λ̄22 = ΛMM − ΛMxt

ΩΛxtM , instantiates shared information among the set of active
landmarks, m+, and represents the majority of the matrix fill-in. This particular
calculation is quadratic in the number of active features and defines the upper bound
on the computational cost of time prediction. As ESEIF sparsification enforces a Γa

limit on the size of the active map, time projection is constant-time, irrespective of
the size of the map, M. This assumes an efficient strategy for estimating the mean
vehicle state, which we will describe shortly.

Measurement Update Step

Our description of the ESEIF update step assumes that measurements are nonlinear
in the robot pose and landmarks and follow the general form in Equation (4.9a).
The additive term, vt ∼ N

(

0,R
)

, corresponds to white Gaussian noise and models
the contribution of sensor noise and measurement uncertainty. Equation (4.9b) is
the first-order linearization about the mean estimate for the robot pose and observed
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features, with H the sparse Jacobian matrix.

zt = h
(

ξt
)

+ vt (4.9a)

≈ h
(

µ̄t

)

+H
(

ξt − µ̄t

)

+ vt (4.9b)

The ESEIF updates the distribution, p (xt+1,M | zt,ut+1) = N−1
(

η̄t+1, Λ̄t+1

)

, to
incorporate this evidence via the standard EIF update step. This process yields the
canonical form of the new SLAM posterior,

p
(

xt+1,M | zt+1,ut+1
)

= N−1
(

ηt+1,Λt+1

)

Λt+1 = Λ̄t+1 +H⊤R−1H (4.10a)

ηt+1 = η̄t+1 +H⊤R−1
(

zt+1 − h(µ̄t+1) + Hµ̄t+1

)

(4.10b)

The structure of the environment, along with the limited FOV of the robot’s
sensors, bound the number of landmarks, m, that the vehicle observes at each time
step, i.e. |zt+1| = O(m). Consequently, the Jacobian matrix, H, is zero everywhere
except for the limited number of O(m) columns that correspond to the observed
features. The additive update to the information matrix, H⊤R−1H in Equation (4.10a)
is itself sparse and contributes only to elements that correspond to the robot and
observed features. Due to the sparseness of H, this matrix outer-product involves
O(m2) multiplications. Assuming access to estimates for the mean robot and observed
landmark poses, the ESEIF measurement update step isO(m2) and, in turn, constant-
time irrespective of the overall map size.

4.2.3 Mean Recovery and Data Association

A significant limitation of the ESEIF and other variants of the information filter is
that the canonical form does not provide direct access to the mean vector or co-
variance estimates. As we discussed in our description of the time projection and
measurement update steps, the linearization of the motion and observation models
requires an estimate for a subset of the mean vector. Data association typically relies
on the knowledge of the marginal distribution over the robot state and a subset of
the map [128]. Computing this marginal in the information form is equivalent to cal-
culating a sub-block of the corresponding covariance matrix. The ESEIF overcomes
these limitations with approximate inference strategies that efficiently perform mean
estimation and data association over the SLAM posterior.

Mean Recovery

The sparse information filter provides for a near constant-time SLAM implementa-
tion. The caveat is, in part, a consequence of the fact that we no longer have access
to the mean vector when the posterior is represented in the canonical form. Näıvely,
we can compute the entire mean vector as µt = Λ−1

t ηt, though the cost of inverting
the information matrix is cubic in the number of states, making it intractable even



4.2. Mechanics of the ESEIF 87

for small maps.

Instead, we pose the problem as one of solving the set of linear equations

Λtµt = ηt (4.11)

and take advantage of the sparseness of the information matrix. There are a number
of techniques that iteratively solve such sparse, symmetric, positive definite systems
of equations, including conjugate gradient descent [118] as well as relaxation-based
algorithms, such as Gauss-Seidel [6] and, more recently, the multilevel relaxation
adaptation of multigrid optimization [47]. The optimizations can often be performed
over the course of multiple time steps, since, aside from loop closures, the mean vector
evolves slowly in SLAM. As a result, we can bound the number of iterations required
at any one time step [30].

Oftentimes, we are interested only in a subset of the mean, such as during the
time projection step, which requires an estimate for the robot pose. We can then
consider partial mean recovery [34] in which we partition (4.11) as

[

Λll Λlb

Λbl Λbb

] [

µl

µb

]

=

[

ηl

ηb

]

(4.12)

where µl is the “local portion” that we want to solve for and µb is the “benign
portion” of the map. The benign map typically refers to landmarks outside the
robot’s local neighborhood. By virtue of the inverse relationship between the strength
of feature-to-feature and feature-to-vehicle information constraints and their spatial
distance [44], recent measurement updates have only limited effect on the estimates
for these landmarks, hence the term. Given an estimate for µb, we can reduce the
partitioned set of equations (4.12) to an approximate solution for the local mean,

µ̂l = Λ−1
ll (ηl − Λlbµ̂b) . (4.13)

Due to the sparsity of Λlb, this formulation requires only a subset of µ̂b, corresponding
to the Markov blanket for the local map. Assuming that we have an accurate estimate
for the mean of this portion of the benign map, this expression (4.13) provides an
efficient approximation to the mean that we are interested in.

Data Association

The successful implementation of any SLAM algorithm requires the ability to correctly
match observations of the environment with the associated landmarks in the map.
The data association problem is often addressed by choosing the feature that best
explains the measurement, subject to a threshold that identifies spurious observations.
For a particular correspondence, the likelihood follows from the marginal distribution
for the particular states associated with the hypothesis (typically the robot pose,
xt, and a single landmark, mi), p (xt,mi | z

t−1,ut). Unfortunately, the information
form is not amenable to computing this marginal from the full joint posterior, since,
referring back to Table 2.1, the Schur complement requires the inversion of a large
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matrix.

Consequently, the traditional approach to data association is not an option for
scalable information filters. Instead, Thrun et al. [130] approximate the measurement
likelihood from a conditional distribution rather than the marginal. Specifically, the
SEIF considers the Markov blanket for xt and mi, MB(xt,mi), that consists of all
states directly linked to either xt or mi in the GMRF. The SEIF first computes
the conditional distribution p (xt,mi,MB(xt,mi) | M

′, zt−1,ut) where M′ denotes
all state elements not in {xt,mi,MB(xt,mi)}. This distribution is then marginal-
ized over the Markov blanket to achieve an approximation to the desired marginal,
p (xt,mi | M

′, zt−1,ut), which is used to determine the likelihood of the hypothesis.
The cost of conditioning on M′ is negligible and does not depend on the size of the
map. Once most of the map has been conditioned away, the matrix that is inverted
as part of the subsequent marginalization is now small, on the order of the size of
the Markov blanket. The resulting distribution has been successfully utilized for data
association with the SEIF [79], though it has been demonstrated to yield exaggerated
confidence in measurement data. This overconfidence then lead to valid data asso-
ciation hypotheses being ignored and, in turn, the resulting disregard of evidence in
the subsequent measurement update step [36].

The marginal is easily determined from the standard parametrization, described
by the mean and sub-blocks of the full covariance matrix corresponding to xt and
mi. Inverting the information matrix to access the covariance, though, is equivalent
to performing the marginalization in the canonical form and is, thus, impractical.
Alternatively, Eustice et al. [36] propose an efficient method for approximating the
marginal that gives rise to a conservative measure for the hypothesis likelihood. The
technique stems from posing the relationship, ΛtΣt = I, as a sparse system of linear
equations, ΛtΣ⋆i = ei, where Σ⋆i and ei denote the i

th columns of the covariance and
identity matrices, respectively. They estimate the robot pose joint-covariance, Σ⋆xt

,x
online by solving the system of equations with one of the iterative algorithms men-
tioned for mean recovery. The algorithm combines this with a conservative estimate
for the feature covariance to achieve the representation for the marginal covariance.
The marginal, which is itself conservative, is then used for data association.

4.3 Experimental Results

This section explores the effectiveness of the ESEIF algorithm in comparison to the
SEIF and EKF when applied to different forms of the SLAM problem. We first present
the results of a controlled LG SLAM simulation that allows us to compare the different
sparsified posteriors with the true distribution as maintained by the Kalman Filter.
We then discuss the performance of the sparsified information algorithms on a pair of
real-world, nonlinear SLAM problems, including the benchmark Sydney Park outdoor
dataset widely popular in the SLAM community.
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4.3.1 Linear Gaussian Simulation

In an effort to better understand the theoretical consequences of enforcing sparsity in
information filters, we first study the effects of applying the different approaches in a
controlled simulation. The experiment mimics the linear Gaussian simulations that
we use in Section 3.4.1 to compare the SEIF and modified rule sparsification strategies.
In this example, the environment is comprised of a set of point features, uniformly
distributed over the area. The robot moves translationally according to a linear,
constant-velocity model and measures the relative position of a bounded number of
neighboring features. Both the measurements, as well as the vehicle motion, are
corrupted by additive white Gaussian noise.

We implement the ESEIF and SEIF using their corresponding sparsification rou-
tines to maintain a bound of Γa = 10 active features. In the case of ESEIF sparsi-
fication, we reserve as many of the measurements as possible for the relocalization
component, to the extent that we do not violate the Γa bound (i.e. |zβ| ≤ Γa). Ad-
ditionally, we apply the standard Kalman filter that, by the linear Gaussian nature
of the simulation, is the optimal Bayesian estimator. Aside from the different sparsi-
fication routines, each estimator is otherwise identical.

Our main interest in the LG simulation is to evaluate the effect of the different
sparsification strategies on the estimation accuracy. To that end, we perform a series
of Monte Carlo simulations from which we measure the normalized estimation error
squared (NEES) [5] as an indication of filter consistency. As with our evaluation
in Section 3.4.1, we first consider the global error between the unadulterated filter
estimates for the vehicle and feature positions and their ground truth positions. We
compute this score over several simulations and plot the averages in Figure 4-3 for
the vehicle and a single landmark. The 97.5% chi-square upper limit for the series of
simulations is denoted by the horizontal threshold, which the KF normalized errors
largely obey. Figure 4-3(a) demonstrates that the SEIF vehicle pose error is signifi-
cantly larger than that of the KF and ESEIF, and exceeds the chi-square bound for
most of the simulation. The same is true of the estimate for the landmark positions
as shown in Figure 4-3(b). This behavior indicates that SEIFs maintain an absolute
state estimate that is inconsistent. In contrast, the ESEIF yields global errors for
both the vehicle and map that are similar to the KF and pass the chi-square test.
This suggests that the ESEIF SLAM distribution is globally consistent.

The second normalized error concerns the accuracy of the relative state elements.
We transform the vehicle and map positions into the reference frame associated with
the first observed feature, xm, via the compounding operation, xmi

= ⊖xm⊕xi [121].
We then measure the relative error by comparing the transformed map estimates to
the root-shifted ground truth positions. The error in the relative estimates for the
vehicle and the same feature as in Figure 4-3 are shown in Figures 4-4(a) and 4-4(b),
respectively, together with the 97.5% chi-square bound. As we demonstrated as part
of our analysis of the SEIF sparsification strategy in Section 3.4.1, the SEIF relative
estimates satisfy the chi-square test. Meanwhile, the ESEIF yields relative map errors
that are nearly indistinguishable from those of the KF. Furthermore, the normalized
errors fall well below the chi-square limit. This behavior suggests that, unlike the
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Figure 4-3: Plots of the NEES measured based upon a series of Monte Carlo simula-
tions of linear Gaussian SLAM. The global errors associated with the estimates for (a)
vehicle pose and (b) a single feature representative of the map are computed by com-
paring the direct filter estimates with ground truth and provide a measure of global
consistency. The horizontal threshold denotes the 97.5% chi-square upper bound and
serves as a test for the consistency of the different filters. For both the vehicle and
the map, the global ESEIF errors satisfy the chi-square limit while those of the SEIF
exceed the bound.

SEIF, the ESEIF maintains a posterior that preserves both the global and relative
consistency of the map.

The NEES score jointly measures the error in the mean estimate as well as the
confidence that the filter attributes to this error. The normalized error for the ESEIF
reflects map estimate errors that agree with those of the KF. Additionally, the score
is an indication of a posterior belief function that is conservative with respect to
the nominal distribution. In the previous chapter, we analyzed this confidence by
comparing the filter uncertainty estimates against those of the true distribution as
maintained by the KF. We recover the map covariance from the information matrix
and, for each landmark, compute the log of the ratio of the covariance sub-block
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Figure 4-4: Plots of the relative estimate consistency as measured by the NEES.
The error corresponds to the same set of Monte Carlo linear Gaussian simulations that
we use to calculate the global NEES. We compute the relative error by transforming
the state with respect to the first feature added to the map. The plot in (a) presents
the resulting vehicle pose error while (b) demonstrates the relative error for the same
feature that we reference in Figure 4-3(b). Both plots include the 97.5% chi-square
upper bound (horizontal line) as an indication of estimator consistency. As is the case
for the global error shown in Figure 4-3(a), the ESEIF vehicle pose and feature estimates
largely satisfy the chi-square bound. This suggests that the filter maintains estimates
that are both globally and locally consistent.

determinant to the determinant of the KF sub-block. The KF estimate represents
the true distribution and log ratios less than zero signify overconfidence while values
greater than zero imply conservative uncertainty estimates. Figure 4-5 presents a
histogram plot of these ratios for the two information filters. Our filter maintains
uncertainty bounds for the global map estimates that are conservative with respect
to the KF. This indicates that, by sacrificing temporal information across poses as
part of occasional sparsification, the ESEIF yields a posterior that is conservative
relative to the true distribution. Meanwhile, the SEIF uncertainty bounds for the
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Figure 4-5: Histogram for the LG simulation describing the global map uncertainty
maintained by the SEIF (left) and ESEIF (right) as compared with that of the KF. For
each feature, we compute the log of the ratio between the information filter covariance
sub-block determinant and the determinant for the actual distribution as given by the
KF. Values greater than zero imply conservative estimates for the uncertainty while
log ratios less than zero indicate overconfidence. Note that all of the SEIF estimates
are overconfident while those of the ESEIF are conservative.

global map are significantly smaller than those of the KF, indicating that the filter
is susceptible to overconfidence as a consequence of the sparsification strategy. This
agrees with our discussion in Section 3.3 on the inherent implications of enforcing
sparsity by approximating conditional independence.

We similarly evaluate the relative uncertainty associated with landmark estimates
expressed with respect to the first feature. The histogram in Figure 4-6(b) demon-
strates that the ESEIF maintains measures of uncertainty for the relative map that,
like the global estimates, are conservative in comparison to the EKF. The one outlier
corresponds to the representation for the original world origin within the root-shifted
map, whose uncertainty estimate is less conservative. This behavior is in contrast with
that of the SEIF relative map estimates. As we the analysis performed in Section 3.4.1
revealed, the histogram in Figure 4-6(a) shows that the SEIF and KF estimates for
the relative uncertainty agree much more closely than do the global estimates. The
relative position of the world origin is the one exception and exhibits greater over-
confidence on account of the inconsistency of the distribution over the global map.
Hence, while the SEIF maintains a distribution that is overconfident both for the
global and relative map estimates, the ESEIF yields a sparse parametrization of the
posterior that remains conservative with respect to the true distribution, in the linear
Gaussian case.

Figure 4-7 illustrates the computational benefits of the ESEIF over the KF. Plot-
ted in Figure 4-7(a), the KF update time grows quadratically with the number of
states. In contrast, the ESEIF and SEIF updates remain constant-time despite an
increase in the state dimension. While this efficiency is inherent to information filter
updates, sparseness is beneficial for the prediction step, which is quadratic in size of
the map for non-sparse information filters. We see this benefit in Figure 4-7(b) as
the prediction time is similar for all three filters. In the case of the KF, the com-
putation time increases linearly with the number of landmarks, albeit with a small
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Figure 4-6: The uncertainty attributed to the relative map estimates for the (a)
SEIF and (b) ESEIF expressed relative to the optimal KF. The uncertainty ratios
are determined as before, in this case based upon the relative covariance estimates that
follow from root-shifting the state to the first feature added to the map. While the SEIF
relative map estimates remain overconfident, the ESEIF produces a posterior over the
relative map that is conservative with respect to the true distribution.

constant factor. Meanwhile, prediction is constant-time for the sparsified information
filters as a result of the bounded active map size. Note that the filtering processes
do not require knowledge of the mean vector and, thus, both the time prediction and
measurement update steps are inherently constant-time.

Additionally, the sparse information matrices impose memory requirements that
are considerably smaller than the memory necessary to store the covariance matrix.
Consider the density of the three 536 × 536 matrices at the end of the simulation.
The covariance matrix is fully-populated, accounting for the correlations that exist
among the entire robot and map state. In contrast, 92% of the terms in the ESEIF
information matrix are exactly zero as is 89% of the SEIF matrix. Figure 4-7(c)
plots the difference in the memory requirements as a function of the state dimension.
The memory for the sparse information matrices reflects the cost of the suboptimal
storage-by-index scheme.1

1The representation stores the matrix as three vectors, one for the non-zero elements and two for
their individual row and column indices.
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Figure 4-7: A comparison of the performance of the three filters for the LG simulation.
The (a) update times for the ESEIF and SEIF are nearly identical and remain constant
with the growth of the map. In contrast, the KF exhibits the well-known quadratic
increase in complexity. The (b) prediction time grows linearly with the size of the map
in the case of the KF while those of the SEIF and ESEIF are constant by virtue of the
sparsity of the information matrices. The outliers are due to system multitasking. The
plot in (c) reveals that the sparse information forms demand significantly less memory
than the fully-populated covariance matrix.
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Figure 4-8: An overhead image of Victoria Park in Sydney, Australia, along with a
rough plot of the GPS vehicle trajectory. The environment is approximately 250meters
East to West and 300meters North to South.

4.3.2 Experimental Validation

The linear Gaussian simulations allow us to explore the theoretical behavior of the
ESEIF estimator. In particular, we analyze the benefits of a sparsification algorithm
that actively controls the formulation of dependence relationships between the robot
and map. The results empirically show that the ESEIF provides a sparse representa-
tion of the canonical Gaussian while simultaneously preserving consistency. Unfortu-
nately, the simulations are not representative of most real-world applications, which
generally involve motion and measurement models that are nonlinear and noise that
is non-Gaussian. To study the performance of the ESEIF under these circumstances,
we apply it to two nonlinear datasets, along with the SEIF and standard EKF.

Victoria Park Dataset

For the first real-world SLAM problem, we consider the benchmark Victoria Park
dataset courtesy of E. Nebot of the University of Sydney [51]. The dataset is widely
popular in the SLAM community as a testbed for different algorithms that address
the scalability problem [51, 94, 12, 130]. In the experiment, a truck equipped with
odometry sensors and a laser range-finder drove in a series of loops within Victoria
Park, Sydney. Figure 4-8 presents a bird’s-eye view of the park, along with a rough
plot of the GPS trajectory. We use a simple perceptual grouping implementation
to detect tree trunks located throughout the park among the laser data, which is
cluttered with spurious returns. We solve the data association problem offline to
ensure that the correspondences are identical for each filter.

We apply the SEIF and ESEIF algorithms together with the EKF, which has been
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Figure 4-9: Histogram for the Victoria Park dataset comparing the ESEIF and SEIF
global uncertainty estimates to the results of the EKF. We again use the log of the ratio
of the covariance sub-block determinants for each landmark. The ESEIF sparsification
strategy yields marginal distributions that are conservative relative to the EKF while
the SEIF induces overconfidence.

successfully applied to the dataset in the past [51]. We limit the size of the active
map to a maximum of Γa = 10 features for the two information filters. As with the
LG simulation, we place a priority on the relocation step when sparsifying the ESEIF,
reserving as many tree observations as possible (i.e. no more than Γa = 10) for the
sake of adding the vehicle back into the map. Any additional measurements are used
to update the filter prior to marginalization. This helps to minimize the influence of
spurious observations on the estimate for the relocated vehicle pose.

The final SEIF and ESEIF maps are presented in Figures 4-10(a) and 4-10(b),
respectively, along with the estimate for the robot trajectory. The ellipses denote the
three sigma uncertainty bounds estimated by the two filters. As a basis for compar-
ison, we plot the map generated by the EKF, which is similar to results published
elsewhere. One sees that the ESEIF feature position estimates are very similar to
those of the EKF while the SEIF map exhibits a larger deviation. The most obvious
distinction between the two maps is the difference in the estimates of filter accuracy as
indicated by the uncertainty ellipses associated with each feature. The ESEIF confi-
dence regions capture all of the EKF estimates while the SEIF sparsification strategy
induces three sigma confidence estimates that do not account for much of the EKF
map. This is particularly evident in the periphery, as we reveal in the inset plot.
While not ground truth, the EKF results represent the baseline that the information
filters seek to emulate.

The difference becomes more apparent when we directly compare the uncertainty
measures for each feature. Figure 4-9 presents a histogram plot of the log ratio be-
tween the global feature covariance determinants for the SEIF and our filter with
respect to the EKF determinants. The ESEIF maintains estimates for the global
uncertainty that are conservative with respect to the EKF while the SEIF estimates
for this dataset are smaller. This is consistent with the linear Gaussian simulation
results and empirically suggests that the ESEIF produces a posterior that is conser-
vative with respect to that of the EKF while the SEIF sparsification strategy results
in an overconfident distribution.
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Figure 4-10: Plots of the global vehicle trajectory and feature position estimates,
along with the three sigma confidence bounds for the Victoria Park dataset. The global
maps generated by (a) the SEIF and (b) the ESEIF are similar to the EKF map. The
SEIF uncertainty ellipses, though, are significantly smaller than those of the ESEIF
and, in many cases, do not include the EKF feature estimates. The nature of the
ESEIF estimates in comparison with those of the EKF empirically supports the claim
that ESEIF sparsification does not induce global inconsistency.
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Figure 4-11: Histograms for the Victoria Park dataset that compare the relative (a)
SEIF and (b) ESEIF uncertainty estimates to those of the EKF. We see that the ESEIF
estimates remain conservative relative to the EKF and that the SEIF overconfidence
persists, but is less severe.

In similar fashion to the LG experiment, we observe contrasting behavior for
the relative map that follows from root-shifting the state relative to the vehicle’s
final pose. The SEIF map shown in Figure 4-12(a) and the ESEIF map plotted in
Figure 4-12(b) are both nearly identical to the relative EKF map. Furthermore, the
three sigma relative uncertainty bounds maintained by the two filters contain the
EKF position estimates. We evaluate the confidence estimates associated with the
information filters in Figure 4-11, which presents a pair of histograms over uncertainty
relative to that of the EKF. As is the case with the global estimates, the ESEIF
maintains a posterior over the relative map that is conservative relative to that of
the EKF. Meanwhile, consistent with our analyses in Section 3.4, the SEIF relative
estimates better approximate the EKF distribution, but remain slightly overconfident.

Figure 4-13(a) compares the total time required for the time prediction and mea-
surement update steps for the ESEIF and EKF. We do not include the SEIF perfor-
mance but note that it is similar to that of the ESEIF. The ESEIF implementation
employed partial mean recovery (4.13), solving the full set of equations only upon
sparsification. The EKF is more efficient when the map is small (less than 50 land-
marks), a reflection of the ESEIF prediction time that is quadratic in the number of
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Figure 4-12: The relative estimates for the vehicle trajectory and map, along with the
three sigma confidence bounds for the Victoria Park dataset. We compute the relative
estimates by root-shifting the state into the reference frame of the robot at its final
pose. Unlike the global estimates shown in Figure 4-10, the relative (a) SEIF and (b)
ESEIF feature marginals are similar. The ESEIF uncertainty bounds again capture the
EKF landmarks, suggesting that relative estimate consistency is preserved.
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Figure 4-13: Plots of the computational efficiency of the EKF and ESEIF for the
Victoria Park dataset. We present (a) the total prediction and update time as a function
of state dimension, which includes the cost of mean estimation. The complexity of the
EKF increases noticeably with the size of the map while the increase in the ESEIF
computation time is more gradual. Employing partial mean recovery, the ESEIF cost is
largely a function of the number of active features. The (b) EKF memory requirement
is quadratic in the size of the map, yet only linear for the ESEIF.

active features, and the cost of estimating the mean. Yet, as the map grows larger,
the quadratic update of the EKF quickly dominates the filtering time of the ESEIF,
which varies with the number of active features rather than the state dimension.

The plot in Figure 4-13(b) displays the EKF and ESEIF memory allocations. In
order to store the correlations among the map and robot pose, the fully-populated
EKF covariance matrix requires quadratic storage space. The ESEIF information
matrix, however, is sparse. The matrix is populated along the diagonal and contains
a limited number of non-zero, off-diagonal terms that are shared among landmarks
and between the robot pose and map. Thus, the ESEIF storage requirement is linear
in the size of the map.
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Hurdles Dataset

Section 3.4.2 considered the hurdles dataset to analyze the implications of the SEIF
sparsification strategy. We return to this experiment to compare the performance
of our ESEIF algorithm. As described earlier, a wheeled robot was driven among
64 track hurdles positioned at known locations along the baselines of four adjacent
tennis courts. The vehicle employed a SICK laser scanner to observe the range and
bearing to nearby hurdles and encoders to measure the vehicle’s forward velocity and
rate of rotation. Figure A-1 provides a photograph of the experimental setup.

We again apply the ESEIF and SEIF SLAM algorithms, along with the standard
EKF as a basis for comparison. We model each feature as a 2D coordinate frame
with the local origin centered on the hurdle’s so-called “base” leg and the positive
x-axis in the direction of the second leg. Features are then parametrized by the
translation and rotation of this coordinate frame. Each filter represents the robot’s
motion by a kinematic model that includes the encoder-based forward and angular
velocity as control inputs. The measurement model is an abstraction of the nominal
laser range and bearing observations into a measure of the relative transformation
between the vehicle and feature coordinate frames. The data association problem is
solved independently, such that the correspondences are identical for all three filters.
The maximum number of active landmarks for the three information filters is set
at Γa = 10 hurdles. As with the Victoria Park dataset, we prefer to relocalize the
vehicle during sparsification with as many measurements as possible and use any
surplus observations in the preceding update component. Appendix A.2 presents a
detailed explanation of the filter implementation.

We present the final map estimates for the ESEIF and SEIF in Figure 4-14, along
with the EKF map and the ground truth feature poses. These maps correspond to
the global estimates for feature position and orientation. The ellipses denote the
three-sigma uncertainty bounds for the position of each hurdle’s base leg. The inset
axis within the plot of the ESEIF map is the one exception, where we show the
one-sigma bounds for visual purposes. Qualitatively, the ESEIF produces landmark
pose estimates that are very similar to those of the EKF as well as the ground truth
hurdle positions. The noticeable difference between the two sparsified information
filters regards the uncertainty bounds. We again see that the ESEIF confidence
estimates account for both the ground truth as well as the EKF map, while the SEIF
bounds are too small to capture a majority of the true hurdle positions. This behavior
supports our belief that the ESEIF maintains a sparse canonical distribution that is
globally consistent with respect to the EKF.

We evaluate the consistency of the filters’ relative estimates by transforming the
state with respect to the coordinate frame of the first hurdle added to the map.
Figure 4-15 compares the relative ESEIF and SEIF map estimates with the EKF
map and ground truth. We depict the marginal distribution for each map element
with the three-sigma confidence interval. The SEIF yields relative pose estimates that
are close to the EKF mean positions, though the uncertainty bounds remain smaller
than those of the ESEIF and do not account for many of the ground truth positions.
Looking at the ESEIF map, we see that there is very little error between its estimates
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Figure 4-14: The final global maps for the hurdles dataset generated with the (a)
SEIF and (b) ESEIF compared with the EKF estimates and the ground truth hurdle
positions. The ellipses define the three-sigma uncertainty bounds on the location of
the base leg of each hurdle. The only exception is the inset plot for the global ESEIF
map, where, for aesthetic reasons, we plot the one-sigma uncertainty region. The
ESEIF yields marginal distributions that are consistent with the EKF while the SEIF
sparsification strategy induces overconfidence.

and those of the EKF. Furthermore, the ESEIF marginals capture the ground truth
hurdle positions. In agreement with the LG and Victoria Park analyses, the ESEIF
sparsification strategy preserves the relative consistency of the Gaussian model for
the marginals.

4.4 Discussion

Over the course of the last two chapters, we have taken a closer look at the SEIF spar-
sification strategy and, in particular, the consequences on the uncertainty estimates.
We presented an alternative algorithm for maintaining sparsity and have shown that
it does not suffer from the same overconfidence. In this section, we elaborate on our
claims regarding the consistency of the ESEIF. In addition, we draw comparisons be-
tween the ESEIF and the D-SLAM algorithm [136], which similarly achieves sparsity
while preserving consistency.
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Figure 4-15: The relative map estimates for the (a) SEIF and (b) ESEIF as expressed
relative to the first hurdles added to the map. The ellipses define the three-sigma
uncertainty bounds on the location of the base leg of each hurdle. The ESEIF maintains
relative map estimates that are consistent with those of the EKF as well as ground truth.

4.4.1 Estimator Consistency

The results presented in the previous section empirically demonstrate that our filter
yields a sparse parametrization of the posterior that is conservative both for the global
map as well as the relative landmark estimates. In the linear Gaussian case, this is
sufficient to conclude that the ESEIF preserves the consistency of the SLAM posterior
for the relative and global representations. On the other hand, as the ESEIF is based
upon the dual of the EKF, it is subject to the same convergence issues as the EKF for
nonlinear applications [5]. While the results empirically demonstrate that the ESEIF
is conservative with respect to the EKF, this does not guarantee that the ESEIF
SLAM posterior is a consistent approximation of the true, non-Gaussian distribution.
Nonetheless, the algorithm allows us to capitalize on the computational and storage
benefits of a sparse information form without incurring additional inconsistency. The
EKF has been successfully applied to a wide range of real-world datasets and the
ESEIF provides a scalable means of achieving nearly identical estimates.

4.4.2 Comparison with D-SLAM

Wang et al. [136] propose a similar algorithm that maintains a sparse canonical
parametrization in a consistent manner. The approach decouples SLAM into sep-
arate localization and map building problems and addresses them concurrently with
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different estimators. The D-SLAM considers the map distribution, p (M | zt,ut), to
be Gaussian and represents it in the canonical form. It then uses an EIF to maintain
the information matrix and vector with updates based upon inter-landmark measure-
ments that have been extracted from the robot’s observations of the environment.
The EIF time projection step is trivial, since the robot pose is not contained in this
distribution and, in turn, the information matrix is naturally sparse. The algorithm
utilizes two estimators in order to infer the robot pose. One estimator computes the
vehicle pose by solving the kidnapped robot problem at each time step, based upon
observations of the map. Additionally, D-SLAM implements a standard EKF SLAM
process for the robot’s local neighborhood that provides a second estimate of pose.
To account for unmodeled correlation between the two estimates, they are fused with
covariance intersection [64] to achieve a conservative belief over pose. By decoupling
the problem in this way, D-SLAM capitalizes on an exactly sparse information matrix
without sacrificing consistency.

The key component to maintaining the sparseness of the information matrix fol-
lows from the observation that the time projection step for the robot pose causes
fill-in. By periodically kidnapping and relocalizing the robot, the ESEIF controls the
population of the information matrix. The D-SLAM algorithm takes this one step
farther by essentially performing kidnapping and relocalization at each time step. As
a result, they sacrifice nearly all information provided by the temporal constraints
between successive poses. Additionally, in order to preserve exact sparsity for the
map distribution, the algorithm does not incorporate any knowledge of the robot’s
pose when building or maintaining the map. We believe the D-SLAM estimator to
be less optimal as it ignores markedly more information than the ESEIF, which only
occasionally disregards temporal links.



Chapter 5

ESEIF for an Underwater Vehicle
with an Imaging Sonar

The thesis has analyzed the performance and consistency of the ESEIF algorithm
in controlled, linear Gaussian simulations. We then demonstrated the algorithm on
a pair of real-world data sets. The results show that the ESEIF yields pose and
map estimates similar to those of the EKF, yet at a cost that is better suited to
large environments. The performance gains are a direct product of the sparsity of
the information matrix. Empirical results suggest that the ESEIF maintains a sparse
parametrization of a belief function that is conservative with respect to the EKF in the
case that the models are nonlinear and the noise is non-Gaussian. In order to maintain
a desired level of sparsity in a consistent manner, the ESEIF relies on there being a
sufficient number of observations to relocalize the vehicle. For both the hurdles and
the Victoria Park surveys, this isn’t a problem due to the environment density and the
sensor’s field-of-view. We can afford to set a low value for the maximum number of
active features and take advantage of the observation frequency to maintain a sparse
information matrix. Unfortunately, not every environment is sufficiently feature-rich
to relocalize the vehicle on demand. Similarly, the exteroceptive sensors often have
a small FOV and limited degrees of freedom that further reduce the times that the
ESEIF can sparsify.

This chapter describes the application of the ESEIF to three-dimensional localiza-
tion and map building with an autonomous underwater vehicle (AUV). In particular,
we consider the ship hull inspection problem that we discussed earlier in Section 1.1.2.
A vehicle, equipped with an acoustic imaging sonar conducts three-dimensional sur-
veys of the ship’s underwater structure.1 The hull environment consists of both a
sparse set of man-made objects including the running gear and weld lines, as well as
biological growth. In the context of SLAM, the reduced sensitivity of the sonar re-
duces the number of available features. This, together with the sonar’s reduced FOV
complicate the application of feature-based SLAM and, in particular, the ESEIF.

1Throughout the chapter, vehicle refers to the AUV that performs the survey. The term ship

denotes the vessel under inspection.

105



106 Chapter 5. ESEIF for an Underwater Vehicle with an Imaging Sonar

5.1 Ship Hull Inspection Problem

Governments and port authorities worldwide have a pressing need for frequent in-
spection of marine structures including jetties, walls, and ships. The United States
alone has hundreds of ports that service more than 1,100 million tons of international
goods per year with a total waterborne cargo of over 2,300 million tons in the year
2000 [131]. Local and national governmental organizations face the difficult challenge
of securing such an enormous amount of cargo. In addition to the goods themselves,
though, port authorities also must deal with ensuring the security and integrity of
the more than 75,000 vessels that transport these goods [131].

Detailed surveys of a ship’s hull, whether to identify structural faults or to confirm
that the vessel is free of explosives, are important to guaranteeing the safety of the
vessels and harbors. The majority of structural inspections of a ship’s hull take
place annually, while the ship is in drydock. The process of placing a vessel in
drydock is time-consuming and costly and imposes an undue burden on the ship’s
operator if required only for an inspection that could otherwise be performed in
water. Meanwhile, security inspections, particularly those of military vessels and
ships carrying hazardous cargo, are necessarily performed in-water by a large team
of divers. In order to ensure complete coverage, the divers form a line along the
ship’s width and swim the length of the hull. This process is challenging as the
divers are tasked with locating mines as small as 20 cm in diameter on ships that
are typically hundreds of meters in length.2 The shallow water environment typical
of most harbors further complicates surveys as the divers are subject to extremely
poor visibility, strong currents, and low clearance between the hull and the seabed.
Consequently, accurate surveys are dangerous and time-consuming and it becomes
difficult to ensure that the entire structure has been inspected.

In light of these challenges, there is a strong desire to perform surveys with under-
water vehicles in place of dive teams and as a supplement for costly drydock inspec-
tions. In addition to alleviating risk, underwater vehicles offer several advantages over
traditional in-water survey techniques. Whether they are autonomous or remotely
operated, the vehicles are highly-maneuverable and can be accurately controlled to
perform close-range inspection. Additionally, recent advancements in sensor technol-
ogy, particularly with regards to acoustic imaging sonars, allow vehicles to acquire
high-quality imagery of the hull, even in turbid conditions. Leveraging sensor quality
with accurate navigation and control, the goal is to then deploy an underwater vehicle
in-situ on a vessel and produce accurate and complete maps that describe the location
of targets on the hull. Key to achieving the overall goal of autonomous inspection
are accurate navigation of the vehicle relative to the hull and the ability to acquire
detailed imagery of the structure.

2Liquefied natural gas tankers, for example, may be as large as 300m in length with a draft of
15m and a beam of 50m.
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5.1.1 A Brief Overview of Underwater Navigation

The key requirements for autonomous underwater inspection are the ability to pro-
duce a high-quality map of a ship’s hull and to ensure one hundred percent coverage.
A requisite element to achieving both goals is an accurate estimate for the vehicle’s
pose relative to an arbitrary hull over the course of the survey. We briefly discuss
the standard techniques that are employed for underwater vehicle localization and
describe their limitations in the context of our desire for on-site hull inspection.

Underwater vehicles are typically equipped with an extensive suite of onboard
sensors that provide observations of its motion and pose at an update rate of several
hertz [137]. Vehicles typically estimate their position by integrating this motion data
in the form of angular rate and linear velocity measurements. These dead-reckoned
estimates tend to be highly accurate over short timescales, but small noise in the
motion data gives rise to errors that grow with time. In order to compensate for the
accumulated error, vehicles supplement motion data with drift-free measurements of
their depth, attitude, and heading provided by onboard sensors. Meanwhile, vehicles
account for drift in 3D position estimates by periodically measuring their position
relative to a network of underwater acoustic beacons as part of an long baseline (LBL)
navigation framework. Long baseline navigation relies upon acoustic time-of-flight
measurements of the range between the vehicle and two or more fixed transponder
beacons to triangulate the vehicle’s position. Standard 12Hz LBL systems yield range
data at a rate of 0.1Hz-1.0Hz with an accuracy around 0.1m-10m [137]. The state-
of-the-art in underwater navigation fuses these noisy but drift-free observations with
higher bandwidth dead-reckoned estimates to achieve localization to within sub-meter
accuracy [138].

Standard LBL navigation is well-suited for most underwater applications but is
less than optimal in the context of ship hull inspection. In particular, a LBL sys-
tem requires the deployment of the network of two or more acoustic transponders
at the operating site. After estimating the sound velocity profile,3 the position of
each beacon must be calibrated prior to vehicle operation [138]. The vehicle is then
confined to operate within the working range of the network. While these distances
can be large (5 km-10 km for 12 kHz LBL systems), the localization accuracy degrades
with range and, as a result, the performance is greatest closer to the network [138].
These factors do not preclude the use of LBL navigation for ship hull deployments
but, together, are in opposition with the desired goal of flexible, in-situ inspections.
Furthermore, the environment typical of these surveys complicates LBL time-of-flight
position estimates. In particular, the acoustic signals are prone to a greater degree of
multipath compared with standard deployments due to the vehicle’s close proximity
to the surface and the ship’s hull.

Alternatively, we describe a navigation strategy that employs localization and
mapping to provide a drift-free estimate of the vehicle’s position relative to the hull.
We utilize the ESEIF algorithm to jointly build the desired map of the hull, which
describes the location of both natural and man-made features on the vessel. The

3The sound velocity profile represents a measure of the speed of sound at various depths and is
necessary to infer range from time of flight data.
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filter then exploits subsequent observations of these targets to yield “absolute” vehicle
position and heading fixes.

5.1.2 Underwater Imaging Sonar

In addition to accurate navigation, the second capability that is necessary to generate
a thorough map of the hull is a high quality imaging sensor. An optical camera
provides high resolution imagery at high frame rates and would be the ideal sensor
for surveys. Unfortunately, the underwater environment is not conducive to optical
imagery, largely due to the rapid attenuation of light with depth [87]. Poor lighting
requires that underwater vehicles provide their own external light source, which then
becomes a significant fraction of their power budget. Additionally, the turbidity of the
water severely limits the imaged field of view. This problem is further compounded
by illumination from the external light source, which yields an increase in backscatter
with larger fields of view [62]. Despite these complications, though, a number of
autonomous vehicles successfully utilize optical cameras, including the Autonomous
Benthic Explorer (ABE) [141] and the SeaBED AUV [115, 35], to name a few. These
vehicles typically operate at depth, imaging the sea floor. Near the surface, where
ship hull inspection takes place, the conditions are arguably more difficult on account
of greater turbidity, cast shadows, and high variability lighting [101].

Sonar sensors are not subject to these same factors and offer an alternative for
underwater imaging. The advanced, high frequency sonars currently available produce
acoustic images that resemble those of standard optical cameras, at near-video frame
rates. While the quality of optical imagery remains superior in ideal conditions, sonars
are far less sensitive to the limitations that characterize the underwater environment.
Imaging sonars rely upon the acoustic illumination of the scene and are not affected by
the lighting conditions nor the presence of particulates in the water. As a result, they
function equally well in the often turbid water of harbors where sub-meter visibility
prohibits the use of traditional cameras. Unlike pinhole cameras that are invariant
to scale, sonars directly provide depth information at the sacrifice of some directional
ambiguity. These factors have contributed to the recent popularity of imaging sonars,
which have been used for tasks that range from building image mosaics [69, 102] to
monitoring fish populations [59]. Both applications rely, in particular, on the Dual
Frequency Identification Sonar (DIDSON) high frequency sonar developed by the
Applied Physics Laboratory at the University of Washington [9].

5.2 Vehicle Platform

The Hovering Autonomous Underwater Vehicle (HAUV) was initially designed and
built by Massachusetts Institute of Technology (MIT) Sea Grant with the assistance
of Bluefin Robotics as a platform for close-range underwater inspection [21, 60]. The
vehicle has been deployed on numerous ship hulls ranging from the USS Salem, a
215meter heavy cruiser [132] to a 64meter Sauro-class Italian naval submarine [132].
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Figure 5-1: Version 1B of the HAUV. The vehicle is roughly 90 cm (L) × 85 cm (W )
× 44 cm (H) in overall size and weighs approximately 90 kg. Eight ductless thrusters
provide for full maneuverability. At the front of the vehicle are the DIDSON imaging
sonar and DVL that can be independently pitched to accommodate changes in hull
geometry. The aft section includes the MEH, which houses the IMU, depth sensor,
and PC104 stack. An optional fiber optic tether provides real-time topside DIDSON
imagery, as well as navigation information.

We conduct our surveys with the second iteration HAUV1B,4 redesigned through
a collaboration between MIT [71] and Bluefin Robotics. Shown in Figure 5-1, the
HAUV is relatively small and lightweight compared with other AUVs with dimensions
90 cm (L) × 85 cm (W ) × 44 cm (H) and a weight of roughly 90 kilograms. The
vehicle is designed as a highly maneuverable inspection platform. The vehicle is
equipped with eight brushless DC thrusters that provide a high degree of control for
each degree of freedom, allowing the vehicle to conduct forward/backward, lateral,
and vertical surveys. The vehicle’s primary inspection sensor is a forward-looking
DIDSON imaging sonar. Located at the front of the vehicle, the sonar is mounted
on its own independently actuated pitch axis, which allows the FOV to be oriented
according to the hull geometry. Adjacent to the DIDSON is a Doppler Velocity Log
(DVL) that is independently pitched to track the hull. The main electronics housing
(MEH) at the aft end houses the primary vehicle computer, along with additional
electronics and sensors. A 1.5 kWh lithium polymer battery located below the MEH
powers the vehicle.

The HAUV is well-instrumented with a sensor suite that includes an IMU, DVL,
compass, depth sensor, and GPS. Table 5.1 outlines the sensor details. The IMU
utilizes a ring laser gyro to measure the three-axis, body-referenced angular rates
and exhibits a bias of 2◦/hour (1σ). Inclinometers yield observations of the vehicle’s

4Note that throughout the thesis, any mention of the HAUV refers to the second version of the
vehicle, unless explicitly stated otherwise.
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pitch and roll attitude to within ±0.1◦ (1σ) accuracy. A magnetic flux-gate compass
provides absolute vehicle heading to within a nominal accuracy of 3◦ (1σ), but is
subject to extensive interference induced by the ship during survey. The vehicle
measures its three-axis surge, sway, and heave body velocities5 with a 1200 kHz RDI
Workhorse Navigator ADCP DVL that is actuated in pitch to face the hull surface.
As a result of the close range, the DVL precision is 0.3 cm/s–0.5 cm/s. In addition to
velocity, the DVL records the range to the hull along each of its four beams.

Table 5.1: HAUV sensor details.

Measurement Sensor Type Performance
Depth Pressure Sensor Accuracy: ±0.01%
xyz Linear Velocity 1200 kHz DVL Precision: 0.3 cm/s–0.5 cm/s,

Accuracy: ±0.2%
xyz Angular Velocity Ring Laser Gyro Bias: 2◦/hour (1σ)
Roll & Pitch Angles Inclinometer ±0.1◦ (1σ)
Heading Magnetic Compass Accuracy: ±3◦ (1σ)

5.2.1 DIDSON Sonar

The DIDSON is the primary sensor used by the HAUV to image underwater structures
at close range. The DIDSON is a high-frequency, forward-looking sonar that produces
two-dimensional acoustic intensity images at near video frame rates (5Hz–20Hz).
A novel implementation of beamforming utilizes a pair of acoustic lenses to both
focus narrow ensonification beams over the horizontal FOV, as well as to sample
the corresponding echos. This yields a set of fixed-bearing temporal signals that
correspond to the acoustic return intensities along each beam. By then sampling these
profiles, the DIDSON generates a two-dimensional range versus bearing projection of
the ensonification echo. Figure 5-2 presents the Cartesian projection of a typical
acoustic image of a hull. Shown on the right is a 23 cm diameter cylindrical target
and, on the left, a 50 cm rectangular target. The quality is surprisingly detailed for a
sonar image, though the resolution is still less than that of an optical camera under
suitable conditions. Nonetheless, the quality of detail is sufficiently high to detect
targets that are several centimeters in size.

The DIDSON images targets within a narrow field-of-view that spans an angle
of 28.8◦ in the horizontal direction (azimuth), and 12◦ in the vertical direction (el-
evation). The range extent depends upon the operating frequency, which trades off
lower spatial resolution for increased range as detailed in Table 5.2. In the 1.1MHz
extended-range detection mode, the range extends from a minimum of 4.5meters to
a maximum of 40meters. The acoustic lenses ensonify the 28.8◦ azimuthal window
with 48 distinct beams with a beamwidth of 0.4◦, spaced 0.6◦ apart. The sonar sam-
ples each fixed-bearing return along 512 range bins, resulting in an acoustic intensity
image with 0.6◦ resolution in bearing and a range-dependent resolution that varies

5Surge, sway, and heave refer to the vehicle’s forward, lateral, and vertical motion, respectively.
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Figure 5-2: The DIDSON acquires two-dimensional acoustic intensity images that are
a function of range and bearing that we show mapped into Cartesian space. Visible
in the right side of the image is a 23 cm diameter cylindrical target and, on the left, a
50 cm rectangular feature. These targets represent the scale of features that we detect
on the hull.

Table 5.2: DIDSON operating modes.

Detection Identification
Mode Mode

Frequency 1.1MHz 1.8MHz
Range Extent

minimum 5.0m 1.25m
maximum 40.0m 10.0m

Range Resolution
minimum 8.0mm 2.0mm
maximum 78.0mm 20.0m

Angular Resolution 0.6◦ 0.3◦
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Figure 5-3: A schematic (not to scale) of hull-relative navigation in which the HAUV
maintains a heading orthogonal to the hull surface at a fixed distance. The vehicle
servos its pose, as well as the DVL pitch, based upon a planar model for the local hull
geometry. The DVL orientation determines the DIDSON’s pitch to achieve a suitable
viewing angle.

between 8mm to 78mm. Alternatively, the 1.8MHz identification mode offers finer
resolution over a window that extends from just over 1meter to 10meters in range.
In this mode, the sonar generates 96 beams of 0.3◦ horizontal width and produces
images with a resolution of 0.3◦ in bearing and between 2mm and 20mm in range.
The difference in resolution between the two modes is noticeable when viewing the
image in Cartesian coordinates where the pixels are no longer uniform across the
image as a consequence of the dependence of resolution on range.

5.2.2 Hull-Relative Survey Pattern

Irrespective of the operating frequency, the sonar’s field-of-view is only 12◦ in eleva-
tion. While it can resolve acoustic intensity as a function of range and bearing, it
does not disambiguate the elevation angle of the return. Consequently, the DIDSON
produces higher resolution images over a larger FOV when the grazing angle relative
to the ensonified surface is small. To achieve a suitable viewing geometry, the HAUV
conducts surveys as close as possible to the ship, typically on the order of one meter,
and pitches the DIDSON to attain a small grazing angle. The pitch angle depends on
the local geometry of the hull, which the vehicle models as being locally planar and
tracks with the DVL. More specifically, the vehicle estimates the distance to the hull,
as well as its hull-relative azimuth and elevation, based upon the ranges to the hull
measured along each of the four DVL transducers. The vehicle then navigates at an
approximate fixed distance from the vessel while it maintains a perpendicular orienta-
tion with respect to the hull. With the DVL servoed to this hull-relative orientation,
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(a) Horizontal Survey Pattern (b) Vertical Survey Pattern

Figure 5-4: The HAUV executes either a horizontal or vertical survey pattern as it
inspects each side of the hull in turn. The (a) horizontal survey dictates that the vehicle
move laterally along tracklines that extend along the length of the ship. The tracklines
are staggered approximately one meter apart from the waterline to the bottom of the
hull. When implementing the (b) vertical survey pattern, the vehicle moves in the heave
direction along vertical tracklines that extend from the waterline to the bottom of the
vessel.

the DIDSON pitches at a slight offset from that of the DVL. The vehicle fine-tunes
the sonar’s viewing angle based upon the image quality and brightness. Figure 5-3
demonstrates this hull-relative navigation with a schematic on the left that depicts
the side view of a survey and, on the right, a top view.

The HAUV inspects each side of the ship according to a predefined, hull-relative
survey pattern while maintaining the appropriate viewing geometry. The two stan-
dard surveys are comprised of a set of parallel tracklines that extend either vertically
or horizontally along one side of the vessel. When following the horizontal survey
pattern shown in Figure 5-4(a), the vehicle starts at either the ship’s bow or stern
at a depth just below the water line. While facing the hull, the vehicle moves lat-
erally along the length of the ship at approximately 20 cm/s and, upon reaching the
end of the trackline, dives approximately one meter and continues in the opposite
direction along the next trackline. The survey continues in this fashion until the ve-
hicle reaches a particular depth, pre-defined to image the chine (bottom) of the hull.
The vehicle executes the mirrored version of the survey pattern in order to inspect
the opposing side of the ship. Aside for the short transitions between tracklines, all
motion is cross-body (sway). Vertical surveys, depicted in Figure 5-4(b), are much
the same with tracklines that extend from the waterline down to the chine. Starting
at either the stern or bow, the HAUV heaves downwards until it reaches a certain
depth, at which point it transitions laterally and follows the adjacent trackline to-
wards the surface. The vehicle continues in this manner, spanning the ship’s length
with the set of tracklines and then repeats the same process for the remainder of the
hull. The tracklines within both survey patters are spaced to provide roughly 40%
overlap between images. Nominally one meter, the actual spacing depends upon the
hull geometry and the DIDSON settings.
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Figure 5-5: We rely on two main coordinate frames to describe the vehicle state. The
world frame, xwywzw is positioned at the ocean surface with the xw-axis oriented North
and the yw-axis East. A separate body coordinate frame is affixed to the vehicle with
the xv-axis directed towards the bow, the yv-axis to starboard, and the zv-axis down.
The xdydzd frame at the front of the vehicle denotes the DIDSON coordinate frame
with vehicle-relative pitch, α.

5.2.3 Vehicle State Space Model

In modeling the vehicle state, we reference two main coordinate frames, one world
frame and one body-fixed frame as shown in Figure 5-5. We assume an inertial world
coordinate frame, xwywzw, located at the ocean surface with the xw-axis pointing
North, the yw-axis pointing East, and the zw-axis down. This basis serves as the
global reference frame for the vehicle pose and the SLAM map.6 We include a sec-
ond, body-fixed coordinate frame, xvyvzv, coincident with a stationary point on the
vehicle. Consistent with the standard notation [42], xv points towards the vehicle’s
bow, yv to starboard, and zv downwards.

We describe the state of the vehicle by its pose relative to the world frame along
with its body-referenced linear and angular velocities. The position of the body-
fixed frame, tv = [x y z]⊤, along with its orientation, Θv = [φ θ ψ]⊤, describe the
full six-DOF vehicle pose, xt. We parametrize the vehicle’s orientation as a series of
three consecutive rotations, adopting the xyz-convention for Euler angles in which φ
denotes vehicle roll, θ designates the pitch, and ψ denotes the vehicle’s heading. The
state vector also includes the vehicle’s linear velocity, ν1 = [u v w]⊤, as referenced
in the body-fixed frame where u denotes the surge (forward) velocity, v is the sway
(lateral) velocity, and w is the heave (vertical) velocity. The vehicle’s angular velocity,
ν2 = [p q r]⊤, consists of the roll, pitch, and yaw rotation rates, respectively, as
referenced in the body-fixed frame.

We assign an additional reference frame to the DIDSON. As the sonar samples the

6We assume that the ship remains stationary during the inspection. Accommodating a moving
vessel would require that we track its motion relative to the inertial reference frame.
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acoustic intensity of a three-dimensional scene as a function of range and bearing, the
imagery is most naturally parametrized in spherical coordinates. We assign a local
coordinate frame to the sonar, xdydzd, that is oriented with the yd-axis orthogonal
(outwards) to the lens, the xd-axis to the right and the zd-axis orthogonal to the zero
elevation plane. We describe the pitch of the sonar in terms of the rotation of this
frame about the xd-axis as shown in Figure 5-5. The sonar resolves the range and
bearing of the acoustic returns as projections onto the xdyd image plane.

5.3 Navigation with the DIDSON Imaging Sonar

The DIDSON produces high resolution sonar imagery, particularly when operating at
close range in the higher-frequency identification mode. The quality of the acoustic
imagery is close to that of optical cameras. The similarity suggests that we can
treat the sonar as an acoustic camera, leveraging techniques for optical camera-based
navigation and mapping for the DIDSON. This section presents an overview of the
interpretation of this sonar as a camera, and discusses the corresponding issues as
they relate to navigation. In this context, we review some recent work on vision-
based techniques for navigation and mapping with the DIDSON. We conclude the
section with a description of our SLAM framework, which exploits the sonar as the
primary sensor for the ESEIF algorithm.

5.3.1 Acoustic Camera-based Navigation

The sonar-based ship hull inspection problem that we consider here shares a lot in
common with the broader field of multiple view geometry. We first discuss work in
this area that is particularly relevant to our specific application.

Optical cameras provide rich measurements of the environment, yet, until recently,
have seen little use as tools for robotic navigation. The main reason for the limited
popularity of cameras is that it is difficult to succinctly parse rich image data and
fuse the results with measurements provided by the many other sensors that vehicles
rely on for navigation. Recent advances in computer vision, however, have given
rise to algorithms that identify salient image data that is amenable for use in a
navigation framework. In particular, the scale-invariant feature transform (SIFT) [81]
as well as adaptations to Harris corner interest points [56, 90, 91] have introduced
image features that are robust to a wide range of changes in scale, illumination, and
viewpoint. Consequently, methods exist for detecting and describing interest points
that are amenable to re-observations and loop closure.

Once image data has been reduced to a set of interest points, the problem is then to
integrate this data in an online navigation framework. The classic formulation of this
problem in the computer vision community is that of structure from motion (SFM),
which jointly estimates camera position and scene structure based upon interest points
common across images [55, 124, 7, 40]. Under the assumption that matching image
features correspond to static points in the world, the observations imply constraints
on the relative camera motion and the 3D location of these world points. Structure
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from motion algorithms solve for the set of camera poses and the scene geometry, up
to a projective transformation in the case of uncalibrated cameras, that best agree
with these constraints. Standard SFM solutions to scene reconstruction [124, 92]
operate as batch algorithms, computing the entire set of camera motion and scene
geometry states, and are not suitable for online navigation.

Alternatively, a few researchers in the vision community have developed sequential
formulations to SFM that provide camera pose and scene estimates in an online
fashion [55, 7, 19, 8, 88]. Some algorithms [19, 88] rely on a varying combination
of recursive and batch estimation in an attempt to achieve similar performance to
bundle adjustment techniques. Harris and Pike [55] utilize a set of Kalman Filters
to track the 3D position of points in the scene that they then use to estimate the
incremental camera motion. Given a set of matches between image interest points and
feature in the “map”, their method computes the ego-motion as that which maximizes
the joint likelihood of the observation set. Beardsley, Zisserman, and Murray [8]
extend upon this approach with work that sequentially updates structure and motion
estimates for a range of different problem formulations. The authors consider the case
of uncalibrated cameras and describe a method for recovering projective structure.
Assuming additional constraints on the camera motion, they describe an algorithm
that is capable of estimating structure up to an affine transformation.

Of particular relevance to our work is that of McLauchlan [88], who presents a
combined batch/recursive SFM algorithm based upon a novel adaptation to least-
squares estimation. McLauchlan considers a non-random, variable-length parameter
vector comprised of a set of scene points and camera poses. The algorithm treats each
interest point detected within images as noisy measurements over the corresponding
scene point and camera pose. He then solves for the structure and motion parameters
that maximize the joint measurement likelihood. Under the assumption that the
noise is independent and Gaussian, the distribution over the observations is also
Gaussian, parametrized by an information matrix that is sparse. The equation that
describes the maximum likelihood solution has the same form as that of inference for
the canonical Gaussian form (2.18) and the matrix in the least squares expression
is the information matrix for the distribution. This matrix is originally sparse and
McLauchlan notes that factorization induces fill-in as a consequence of removing
measurements (constraints) that model camera motion. The effect is very similar to
the density increase that results from marginalizing over robot pose as we discussed
in Section 2.5.4.

McLauchlan is concerned with the motion and scene parameters that maximize
the likelihood of the measurements. Assuming a uniform prior over these states,
the ML estimate is equivalent to the maximum a posteriori (MAP) solution and the
algorithm shares a lot in common with the delayed-state EIF [34], as well as with
other information filter-based pose graph techniques [27]. In that regard, another
option is to treat the camera trajectory as a random vector and track a Gaussian
approximation to the distribution over the entire vehicle pose history, conditioned on
pose-to-pose camera measurements. Eustice et al. [34] propose the Exactly Sparse
Delayed-State Filter (ESDSF) whereby they parametrize the Gaussian pose distribu-
tion in the canonical form (2.17), in terms of the information matrix and information
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vector. The ESDSF exploits the epipolar geometry between calibrated image pairs
to compute the three angles that parametrize the relative rotation between camera
frames, along with the scale-normalized translation. These observations of relative
pose serve as primary measurements in an EIF framework. The ESDSF benefits from
the authors’ fundamental insight that, by maintaining a distribution over vehicle pose
history, the corresponding information matrix is exactly sparse.7 The filter is then
able to take advantage of this sparsity and track the vehicle pose history in near
constant-time as we discussed in Section 2.5.3.

In similar fashion, one can interpret the DIDSON as an acoustic camera and
leverage the various tools that exist for optical camera-based navigation. Multiple
view techniques, such as SFM or pose graph filters, rely on the epipolar geometry
that governs image pairs to establish measurements of the scene structure and the
relative camera motion. The imaging geometry that underlies an acoustic sonar, such
as the DIDSON, though, is fundamentally different from that of projective cameras.
A pair of optical rays for two projective cameras constrain the corresponding scene
point and camera centers to lie on the epipolar plane. The nonlinear sonar imaging
model, on the other hand, confines the second camera to lie on a torus in three-space,
centered about the first camera frame. The corresponding scene point lies on the
circular ring that forms the center of the torus tube. The limited FOV in elevation
reduces relative camera and scene point locations to a section of the torus. Hence,
unlike optical imaging, the epipolar geometry that constrains acoustic camera pairs is
highly nonlinear and does not yield a direct observation of the relative transformation
between the two poses.

As we describe in detail in Appendix B, we can instead approximate the DIDSON
imaging model as a projective geometry and thereby apply standard multiple view
techniques. The world point that corresponds to a point in the image is located
somewhere along a narrow |β| ≤ 6◦ arc at an observed range and bearing. The limited
FOV in elevation allows us to approximate the arc projection by an orthographic
projection and thereby model the DIDSON as an affine camera. The effect of limited
variability in the elevation direction over the scene is analogous to the small depth
relief that permits the affine approximation for optical cameras. Given a set of image
pairs from two corresponding DIDSON images, we can then exploit affine epipolar
geometry to constrain the scene structure as well as the relative pose of the two
acoustic cameras. Affine epipolar geometry, though, is invariant to a greater degree
of relative camera motion than is the case for perspective projection. In addition to
scale ambiguity, the epipolar constraints are unaffected by a rotation of the second
camera frame about an axis parallel to the first image as a consequence of the bas-relief
ambiguity [70]. Koenderink and van Doorn [70] introduce a novel parametrization of
the relative motion that resolves the relative camera position up to a one-parameter
family of rotations, thereby isolating the bas-relief ambiguity. Two of the angles that
describe this pose-to-pose transformation, along with the relative scale factor between

7Recall our earlier discussion in Section 2.5.3 where we demonstrate that the marginalization over
old poses induces matrix fill-in. The ESDSF essentially bypasses this component to time projection
and, by tracking the entire pose history, preserves the sparsity of the information matrix.
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the two images, can be determined directly from an estimate of the fundamental
matrix [117].8

Given a pair of DIDSON images, then, the affine epipolar approximation provides
two observations of the six-DOF transformation between camera frames. The remain-
ing parameter represents the relative distance between the two images and the scene
along the projection axis. In the context of the DIDSON model, this direction is the
orthographic approximation to the elevation arc. We can not exactly estimate this
distance in an absolute or relative manner but can exploit the DIDSON’s narrow FOV
to restrict its range. The two angular measurements can be fused in a delayed-state
Bayesian filter to track vehicle pose, in much the same way as Eustice et al. [34] use
the five constraints between a pair of perspective views. The success of the latter
approach results from the ability to augment the camera-based measurements with
observations of absolute attitude and depth provided by onboard sensors with the
five relative pose measurements. Unfortunately, with only two observable constraints
between each pair of DIDSON images, the framework is less valuable for navigation.

5.3.2 Current Approaches to Sonar-based Ship Inspection

The ability to approximate the DIDSON as an affine camera has not gone unnoticed.
At least two other groups have developed algorithms for mapping with an underwater
vehicle that use the DIDSON as the primary exteroceptive sensor. Both techniques
treat the sensor as an acoustic camera and leverage work from the computer vision
community.

Kim et al. [69] address the problem of building mosaics of an underwater scene
from a collection of DIDSON images. The authors treat the sonar as an affine cam-
era, approximating the acoustic imaging model by an orthographic projection. They
assume a planar scene that then induces an affine homography between pairs of im-
ages. Image pairs are registered by extracting multi-scale Harris corner features [56]
that are matched based upon cross-correlation. They estimate the affine homogra-
phy between a given image and a reference image in a manner similar to random
sample consensus (RANSAC), sampling from the set of feature matches to identify
the homography most consistent with the supporting features. Upon estimating the
affine homography between consecutive image pairs, the transformations are chained
together to compute a mapping that relates each image to a single image plane. They
then build the mosaic, using this transformation to map the images onto the reference
plane. The mapped images are combined, weighted by their relative illumination, in
order to reduce noise and achieve a more uniform illumination pattern across the
mosaic.

One limitation of this approach as with other mosaic algorithms is that it relies
on the assumption that the scene is well-approximated as planar, which is not gener-
ally the case, particularly with regards to hull inspection. At the scale of individual
images, the imaging geometry (narrow FOV in elevation, small grazing angle) facil-
itates the assumption that the scene is locally planar. Imposing this constraint on

8The relative scale factor is equal to unity for a pair of orthographic projection cameras.
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the entire structure, though, introduces inconsistencies in the mapping that degrade
the algorithm’s performance as the size of the environment grows. Consequently, the
approach does not scale to large environments unless they are sufficiently planar.

Negahdaripour [101] adopts a similar approach to mapping, building a mosaic
by estimating the homography between image pairs. The author models the scene as
planar and considers both an affine and similarity form of the homography. The latter
is more restrictive in that it corresponds to a four parameter transformation between
images, in terms of a 2D rotation and translation (isometry) followed by a uniform
scaling. The paper briefly describes the mosaicing process, which is based upon an
estimate for the similarity homography between successive image pairs from a set of
matched Harris corner interest points via RANSAC. The process then builds the
mosaic by stitching these homographies together to map each image onto a common
plane. As is the case with Kim et al., one drawback of this approach is that the
planar scene assumption restricts the algorithm to small environments. Indeed, the
paper presents a mosaic constructed from only a handful of images. The error is
exacerbated by the similarity approximation to the homography, the accuracy of
which depends on the motion of the vehicle between images. While this model may
be sufficient for image pairs that are temporally close, it does not hold in general for
those that are spatially close but taken from different viewpoints (i.e. images from
different tracklines).

5.3.3 Feature-based SLAM with the DIDSON

The two aforementioned algorithms address a similar problem to the one that we are
interested in, namely mapping underwater structure with a DIDSON imaging sonar.
However, these approaches are concerned with rendering a 2D mosaic rather than a
metric map of the scene and do not maintain an estimate of the vehicle pose. The set
of image-to-image homographies provide a rank-deficient constraint on the relative
vehicle motion. The accuracy of this information in the context of inspecting 3D
structure is limited as a result of the planar scene assumption.

One alternative is to generalize the scene to three dimensions and incorporate
multiple view geometric constraints analogous to affine structure from motion. Unlike
SFM, which provides scene and motion reconstruction up to an affine transformation
under our assumed acoustic camera model, we can augment the image data with
motion and pose measurements provided by the vehicle’s proprioceptive sensors. In
particular, measurements of depth, hull-relative velocity, and tilt impose additional
constraints on the form of the reconstruction. Fusing this data with the affine epipolar
constraints in a Bayesian filter framework then provides an online metric estimate of
vehicle pose in much the same vein as the ESDSF [34]. There are a number of
benefits to this approach, particularly if we approximate the distribution over poses
by a Gaussian. In that case, we can take advantage of what is then a naturally sparse
information parametrization to efficiently track the distribution in a scalable manner.

A key component of this “pose graph” approach is establishing correspondence
between overlapping image pairs, typically by matching a large number of interest
points across the two. With optical imagery, there exist a number of well-established
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methods for detecting and describing interest points in a manner that is robust to
different viewpoints and varying illumination. We have explored similar techniques
for DIDSON imagery and have found it difficult to consistently match a sufficient
number of features to robustly register image pairs. The fact that the resolution of
DIDSON imagery is non-uniform and significantly poorer than that of optical cameras
limits robust feature detection, particularly at pixel-level scales. Our experience is
consistent with the results of Kim and colleagues, who rely on detections at the third
and fourth levels of a Gaussian pyramid to register successive image pairs [69]. This
suggests that, while the resolution makes it difficult to identify pixel-scale interest
points, it is sufficient to detect larger features within the FOV.

Our approach exploits the capability of the DIDSON in order to detect these
large-scale landmarks on the hull. In that regard, we structure the problem in a
feature-based SLAM framework whereby we build a three-dimensional map of the
environment, using the DIDSON as the primary exteroceptive sensor. Under the true,
nonlinear projection model, the sonar imagery provides a measurement of the range
and bearing to each target, along with a bound on the elevation. We augment these
observations with data from sensors onboard the vehicle that yield measurements
of depth, tilt, hull-relative velocity, and angular rates. We fuse this data online,
using the Exactly Sparse Extended Information Filter (ESEIF) to track a Gaussian
approximation to the distribution over the current vehicle pose and the mapped
landmarks. Consequently, we can take advantage of the memory and computational
benefits of a sparse information parametrization to better scale to large underwater
structures.

5.4 ESEIF for the HAUV

This section describes our approach to feature-based SLAM with the HAUV. We
present the algorithm as a form of vision-based localization and mapping filter, em-
ploying tools from computer vision in order to use DIDSON image data for estimation
with the ESEIF. Adopting a systems-level approach, the algorithm takes advantage
of the vehicle’s onboard proprioceptive sensor measurements, fusing the available data
in a principled manner. As we show, this framework allows us to resolve the ambi-
guity in the DIDSON imagery to then maintain an online estimate of the six-DOF
vehicle pose and map.

At the core of our localization and mapping framework is the ESEIF, which tracks
the posterior distribution over the vehicle pose and targets on the hull. The funda-
mental aspects of the filter are much like the mechanics that we have employed for
the hurdles and Victoria Park data sets. As we discuss shortly, the main differences
relate to what is now a three-dimensional rather than planar representation of the
environment, which requires slightly different filter mechanics. An additional set of
subsystems augment the ESEIF and serve largely to transform raw input data into a
more salient form for the filter. This input data includes raw vehicle pose and motion
measurements, DIDSON imagery of the ship hull, and a set of DVL-measured ranges
to the hull. The bulk of the low-level processing of this data is devoted to extracting
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measurements of the range and bearing to a set of targets, along with an estimate
for their elevation relative to the vehicle’s reference frame. This component of the
system includes a vision-based feature detection process that extracts large-scale blob
features from acoustic imagery. Each detection is associated with a range and bear-
ing measurement as well as a bound on its elevation angle with respect to the sonar.
We fuse this data with an independent estimate for the local hull geometry in order
to disambiguate the elevation. Upon performing data association, ESEIF uses the
observations to either update the state estimate or augment the map.

5.4.1 Feature Extraction from Acoustic Imagery

Our objective with underwater acoustic surveys is to demonstrate the effectiveness
of the ESEIF algorithm for SLAM in a 3D environment based primarily on sonar
imagery. We facilitate this application of localization and mapping by leveraging
tools from the vision community to treat the DIDSON as a more traditional sensor.
As mentioned earlier, our system relies on the ability to reliably identify large-scale
features within images. We then resolve each sonar image into a more succinct set of
observations of range and bearing to a comparatively small number of objects in the
scene.

Feature Detection

Feature detection is performed by a third-party application developed by SeeByte Ltd.
that detects targets within DIDSON imagery as part of a computer-aided detection
and classification (CAD/CAC) system [89]. We use the application as a black box
tool, but describe its fundamental structure for clarity.

Feature detection relies on a multistage algorithm that identifies, fuses, and sub-
sequently tracks salient image regions. In the first stage, the image is processed in
parallel by a number of coarse detection filters, each tuned to respond to different
image signatures that are characteristic of discriminating features. One detector seg-
ments images into echo, shadow, and background reverberation regions. The detector
utilizes k-means clustering to partition the images based on the acoustic return in-
tensity, followed by a Markov random field (MRF) that imposes spatial consistency.
A second filter searches for protrusions on the hull by dilating high echos, which can
often be attributed to the edge of an object. The bank of detectors also includes fil-
ters that identify regions exhibiting high intensity gradients, analogous to large-scale
corner features. Each filter is liberal in its detections, resulting in a large number of
false positives that is subsequently reduced based upon a priori constraints on the
size of target observations. The aggregate output of the feature detectors are then
combined to form a candidate set of target observations labeled as either shadows
or echos. In the case of acoustic imagery, an object’s shadow often conveys as much
information as its direct return. The next stage of the algorithm attempts to fuse
each of these echos with their corresponding shadow by evaluating the similarity of
the shadow and echo detections. This fusion step models the similarity of each pair
with a Gaussian likelihood that accounts for the relative position and orientation of



122 Chapter 5. ESEIF for an Underwater Vehicle with an Imaging Sonar

the shadow. Pairs that meet a likelihood criterion are identified as object hypotheses
and passed on to the final tracking stage. This filter tracks detections over several
frames, looking for image-to-image object motion that is consistent with the vehicle
motion. Objects whose motion is deemed consistent are output as valid observations
of a target on the hull.

Computing Feature Observation Data

Consistent with the sonar’s imaging geometry, each feature detected within a DID-
SON image is associated with an arc in three dimensions that represents the possible
source of the acoustic return. This arc is parametrized by a constant range, r, and
bearing, θ, along with the elevation, |β| ≤ 6◦, corresponding to the DIDSON’s FOV
with respect to the sonar’s reference frame. We consider feature detections to then
be a measure of the range, bearing, and elevation of a set of targets on the ship hull.
A Gaussian distribution approximates the uncertainty in the range and bearing data,
which accounts both for feature detection errors, as well as noise that is induced by
the sonar itself. We further assume that the elevation associated with each return is
independent of the range and bearing and model the distribution over elevation as
uniform over the |β| ≤ 6◦ arc.

The sensor model for each target observation, p (z | xt,m), is then the product
of a Gaussian distribution over range and bearing and a uniform distribution over
elevation. The ESEIF, though, assumes a fully Gaussian model and does not account
for the uniform elevation likelihood. We address this by approximating this uniform
distribution by a finite set of particles that span the |β| ≤ 6◦ elevation window. The
approach resembles that of Davison [24] who utilizes a particle set to model the uni-
form depth ambiguity of monocular camera rays. Initially, the particles are weighted
equally, corresponding to a uniform prior distribution. We subsequently update the
weight of each particle based upon an independent estimate for the local hull geome-
try, which constrains the source of the acoustic return. A separate filter maintains a
planar approximation to the local structure based upon DVL observations. The DVL
measures the range to the hull along each of its four beams. We fit a plane to the
corresponding set of four points via least-squares estimation. The filter treats this as
an observation of the local geometry and updates an online estimate of the planar
model. Based upon this estimate, the particle tracker identifies the maximum like-
lihood elevation angle that best supports the hull approximation. We subsequently
replace the uniform distribution for elevation angle with a Gaussian model, using
the maximum likelihood estimate as the mean. The variance is conservatively set to
one third of the elevation. Combining this model for the elevation angle with the
direct range and bearing data from the feature detection algorithm, we now approx-
imate each measurement of a target’s range, bearing, and elevation as being jointly
Gaussian.
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5.4.2 ESEIF Architecture

The ESEIF forms the core of the HAUV localization and mapping algorithm, tracking
the six-DOF vehicle pose along with the target locations. Fundamentally, the filter
is little different from the ESEIF implementation that we employed for the Victoria
Park and hurdles applications previously in the thesis. In this case, we take advantage
of the acoustic imagery to sparsify the filter, relying on target detections to relocalize
the HAUV within the 3D map. The main differences relate primarily to the details
of the filter that are specific to this application. Namely, we rely on a modified form
of the prediction and measurement update steps largely on account of what is now a
six-DOF motion model.

The state vector, ξt =
[

x⊤
t M⊤

]⊤
, consists of the AUV state along with a feature-

based model of the environment. As described earlier in Section 5.2.3, we model the

vehicle state, xt =
[

t⊤v Θ⊤
v ν⊤

1 ν⊤
2

]⊤
∈ R

12, by its six-DOF position and orientation,
tv and Θv, as well the vehicle’s body frame linear and angular velocities, ν1 and ν2.
We describe the map as a set of point features, M = {m1,m2, . . . ,mn}, where each
mi ∈ R

3 represents the 3D position of a target on the hull.

Time Prediction

We represent the actual vehicle motion by a constant-velocity kinematic motion
model. By considering the linear and angular velocities as part of the vehicle state,
the continuous-time kinematics can be described according to the general form

ẋ(t) = f (x(t)) + Gw(t) (5.1)

where f (x(t)) is a nonlinear, time-invariant function of the vehicle pose and veloc-
ity. As a constant velocity model, we assume that the control term is zero, i.e.
f(x(t),u(t)) = f(x(t),u(t) ≡ 0) = f(x(t)). The Gw(t) additive term corresponds to
unmodeled or otherwise unknown aspects of the true kinematic model. More specif-
ically, we account for the uncertainty in the velocity component of the model with
the noise projection matrix, G = [06×6 I6×6] ∈ R

12×6, where 06×6 is a 6× 6 matrix of
zeros and I6×6 is a 6 × 6 identity matrix. We represent this uncertainty as additive
noise and approximate w(t) as a wide-sense stationary, white Gaussian process with
zero mean.

The kinematic motion model in (5.1) is a continuous-time, nonlinear function
of the vehicle pose and velocity. In order to perform the time projection step, we
then linearize the prediction model about the mean state estimate. Additionally, we
convert the model to a discrete-time form for the sake of implementation. Appendix A
presents the derivation of the discrete-time, linearized kinematic model, which we
represent by the familiar form,

xt+1 = Ftxt + Btūt +wt, (5.2)

where ūt is a function of the mean vehicle state and is analogous to an external control
input. The discrete-time expression for the model uncertainty, wt ∼ N

(

0,Qt

)

, is
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approximated by a zero-mean Gaussian random vector with covariance, Qt.

As before, we view time projection as a two step process of state augmentation
followed by marginalization over the previous vehicle state. The ESEIF first grows

the state vector to include the new vehicle pose and velocity, ξ̂t+1 =
[

x⊤
t x⊤

t+1 M
⊤
]⊤

.
Treating the process model as first-order Markov, the corresponding distribution fol-
lows from the current posterior, p (ξt | z

t,ut) = N−1
(

ηt,Λt

)

, as in (2.24). For the sake
of readability, we restate the canonical Gaussian parametrization for the augmented
distribution,

p
(

xt,xt+1,M | zt,ut+1
)

= N−1
(

η̂t+1, Λ̂t+1

)

Λ̂t+1 =
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Λxtxt
+ F⊤
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−1
t Ft

)

−F⊤
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(5.3a)
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(5.3b)

The zero off-diagonal elements in (5.3a) express the conditional independence between
the map and the new vehicle pose and velocity given the previous vehicle state.

The filter subsequently marginalizes over the vehicle pose and velocity state at

time, t, yielding the desired distribution over the state, ξt+1 =
[

x⊤
t+1 M

⊤
]⊤

,

p
(

ξt+1 | z
t,ut+1

)

= N−1
(

η̄t+1, Λ̄t+1

)

Λ̄t+1 = Λ̂22
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

Λ̂12
t+1 (5.4a)

η̄t+1 = η̂2
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

η̂1
t+1 (5.4b)

The current robot state is now conditionally dependent on the active landmarks.

Measurement Update

The ESEIF incorporates observations of the map and vehicle state into the posterior
distribution via the measurement update step. These observations include sonar de-
tections of targets on the hull, zet+1, which we interpret as measurements of relative
range, bearing, and elevation.9 The filter treats data from the onboard motion and
attitude sensors as observations of the vehicle’s state. These proprioceptive measure-
ments, zpt+1, include hull-relative velocity from the DVL, along with observations of
pitch and roll and three-axis angular rates provided by the IMU. We model these

9Note the abuse of notation with ze
t+1 where the superscript e denotes exteroceptive measurements

and not a measurement time history.
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observations as linear functions of the vehicle state,

zpt+1 = Hxt+1 + vp
t+1 (5.5)

where vp
t+1 ∼ N

(

0,Rp

)

denotes white Gaussian measurement noise. Appendix A
presents the specific DVL, IMU, and depth sensor measurement models, which rep-
resent direct observations of the pose and velocity. The ESEIF assimilates the data
into the current conditional distribution, p

(

ξt+1 | z
t,ut+1

)

= N−1
(

η̄t+1, Λ̄t+1

)

via the
standard information filter update step (4.10), which simplifies to

p
(

ξt+1 | z
t,ut+1

)

= N−1
(

η̄t, Λ̄t+1

) z
p
t+1

−−→ p
(

ξt+1 | ž
t+1,ut+1

)

= N−1
(

η̌t+1, Λ̌t+1

)

Λ̌t+1 = Λ̄t+1 +H⊤R−1
p H (5.6a)

η̌t+1 = η̄t+1 +H⊤R−1
p zpt+1 (5.6b)

where the accent on žt+1 denotes the absence of new exteroceptive measurements.
One thing to note is that the matrix, H, is non-zero only for the observed vehicle
states. Consequently, the information matrix update (5.6a) does not contribute to
any links between the robot state and map. Additionally, the update does not require
knowledge of the vehicle mean state due to the linearity of the measurement model.

Shared information between the vehicle and map result from filter updates based
upon DIDSON data. The acoustic image detections together with the hull tracking
filter yield observations of the relative range, bearing, and elevation to the targets
on the hull. The DIDSON measurement model (5.7a) is a nonlinear function of the
six-DOF vehicle pose and the landmark location, mi. We treat noise in the data and
model uncertainty as additive noise, ve

t+1 ∼ N
(

0,Re

)

. Equation (5.7b) is the first-
order linearization about the mean robot and feature pose with the sparse Jacobian,
H, evaluated at this mean.

zet+1 = h(xt+1,mi) + ve
t+1 (5.7a)

= h(µ̌xt+1
, µ̌mi

) + H
(

ξt+1 − µ̌t+1

)

+ ve
t+1 (5.7b)

The ESEIF updates the SLAM canonical form of the distribution to reflect the
measurement information through the standard update step,

p
(

ξt+1 | ž
t+1,ut+1

)

= N−1
(

η̌t, Λ̌t+1

) z
e
t+1

−−→ p
(

ξt+1 | z
t+1,ut+1

)

= N−1
(

ηt+1,Λt+1

)

Λt+1 = Λ̌t+1 +H⊤R−1
e H (5.8a)

ηt+1 = η̌t+1 +H⊤R−1
e

(

zet+1 − h
(

µ̌t+1

)

+Hµ̌t+1

)

(5.8b)

Sparsification

Sparsification in the context of hull inspection is less straightforward. Due to the
DIDSON’s limited FOV, the vehicle observes only a small number of features at any
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Figure 5-6: The first version of the HAUV being lowered into the water to survey
the barge during AUVFest. The barge is 13.4m from port (side nearest to the pier) to
starboard and 36.2m from bow to stern.

one time. During the sparsification process, we tend to relocalize the vehicle based
upon all available observations. We supplement this data with the measurements
of the vehicle’s velocity, attitude, and depth as measured by the proprioceptive sen-
sors. The marginalization and relocalization components are identical to the forms
described in Section 4.2.1 with zβ =

{

zet+1, z
p
t+1

}

.

5.5 Results

We apply our ESEIF localization and mapping architecture to survey a series of man-
made and natural targets located on the hull of a large barge. The vehicle performs
an autonomous inspection of the structure independently of our algorithm, which we
subsequently apply to post-process the data. In this section, we first describe the
experimental setup. We then present the results of applying our system architec-
ture based upon both hand-picked targets as well as features that are automatically
detected within the images.

5.5.1 Experimental Setup

Both the first and second versions of the HAUV participated in a series of deploy-
ments as part of the 2007 AUVFest at the Naval Surface Warfare Center (NSWC) in
Panama City, FL. The focus of the ship hull inspection experiments was a barge of
length 36.2meters and width 13.4meters that was moored to a pier on its port side,
shown in Figure 5-6. Approximately 30 targets were distributed over the underside
of the barge and their position measured by a team of divers. Among these targets
were several 50 cm × 30 cm rectangular (“ammo box”) targets and 23 cm diameter
cylindrical (“cake”) targets of the form previously shown in Figure 5-2, along with
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(a) Cylinder Target (b) Box Target (c) Brick Targets

Figure 5-7: Thumbnail acoustic images of the three types of targets that were manu-
ally affixed to the hull.

15 cm × 7 cm brick-shaped targets. Figure 5-7 presents thumbnail DIDSON images
of these three targets. In addition to these features, the hull was littered with both
man-made as well as natural targets, most of which are clearly visible in the sonar
imagery.

Over the course of the experiment, the two vehicles spent more than thirteen hours
collecting high-resolution imagery of the entire barge. We consider a survey conducted
by version 1B of the HAUV. The 45minute mission consists of four overlapping
horizontal surveys of the bow, stern, port, and starboard sections of the hull. The
vehicle starts the mission near the aft-starboard corner of the barge and first surveys
most of the stern with the exception of the corners. The vehicle then proceeds to
image the port and starboard sides, followed by the bow. The HAUV moves laterally
along tracklines that span the width (for the stern and bow surveys) and length (for
the starboard and port surveys) of the barge at a velocity of 25 cm/s. Throughout
the survey, the DVL is positioned vertically upwards at the hull and the DIDSON is
oriented at just over 20◦ from horizontal to achieve a suitable grazing angle with the
hull. Over the duration of the nearly 45minute mission, the HAUV collected about
4200 acoustic images of the bottom of the barge.

5.5.2 Experimental Results

We consider two different implementations of the sonar-based localization and map-
ping architecture. In an effort to specifically analyze the performance of the ESEIF
in this domain, we first apply the algorithm based upon hand-selected features. This
allows us to decouple the effects of the particular feature detector, which is secondary
in the thesis. We reduce the batch of roughly 4200 DIDSON images to a set of just
over 100 in which we manually identify observations of both natural and synthetic
features. Each detection provides a measure of the relative range and bearing to a
target on the hull that is subject to the DIDSON 12◦ elevation ambiguity. We resolve
the ambiguity in elevation by independently tracking the local geometry of the hull
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based upon the range data from the DVL as we described at the end of Section 5.4.1.
The resulting measurement data serves as observations of the environment for the
ESEIF algorithm.

We implement the ESEIF as described to fuse the motion and pose observations
with the manually detected sonar measurements. The filter implements the ESEIF
sparsification strategy to maintain a bound of five active features and relocalizes
the vehicle within the map based upon all available measurements, i.e. zβ = zt and
zα = {}. As a basis for comparison, we concurrently apply the localization and
mapping algorithm with the standard feature-based EKF estimator in place of the
ESEIF.

Figure 5-8 presents a bird’s-eye view of the final estimates of the map. The plot
compares the map built with the ESEIF with that of the “gold standard” EKF as
well as the ground truth target locations as measured by the divers. Both the ESEIF
and EKF maps are aligned with the barge’s hawse holes10 based upon a least squares
estimate for the transformation. The uncertainty ellipses correspond to the three
sigma confidence bounds associated with the ESEIF map estimates. Note that these
intervals capture each of the EKF target positions, but not the ground truth location
of every feature. We find the same to be true of EKF-based map estimates and believe
that the disagreement is largely due to the difficulty in accurately measuring the true
position of the targets on the hull. Additionally, the ground truth data indicates
that there are several targets that neither the EKF nor the ESEIF-based algorithms
incorporate into their respective maps. An inspection of the images associated with
these regions of the hull according to the ESEIF pose estimates suggests that these
features broke free from the hull. While this does not offer conclusive proof, it is in
agreement with divers’ claims that targets had broken free.

Meanwhile, we assess the 3D quality of the map based upon the depth of the
mapped features. Figure 5-9 presents a side view of the ESEIF map from the barge’s
port side. Ground truth data regarding the draft profile of the barge is unavailable
but, based upon the vehicle’s depth measurements and the DVL ranges to the hull,
we estimate the draft to be 1.5m. In comparison, the mapped features exhibit a
mean depth of 1.63m and a standard deviation of 8.7 cm. The synthetic targets are
not flush with the hull and their vertical extent largely accounts for this offset.

In order to confirm that the ESEIF sparsification strategy does not induce over-
confidence in the state estimates, we compare resulting uncertainty with that of the
EKF. The metric is identical to that employed in Sections 3.4 and 4.3. Specifically,
we compute the ratio between the determinant of each feature’s sub-block of the co-
variance (inverse information) matrix as maintained by the ESEIF with that of the
EKF. On a log scale, a ratio greater than zero implies a conservative estimate for the
uncertainty with respect to the EKF while negative ratios suggest overconfidence.
We plot a histogram over these ratios in Figure 5-10. As the results described in
Section 4.3 reveal for both simulation as well as with experimental data, the plot
confirms that the ESEIF preserves estimator consistency relative to the EKF.

10The barge is equipped with four 0.5m diameter openings that extend through the hull, two near
the bow and two amidships. We also refer to these as “thru-hulls”.



5.5. Results 129

−15 −10 −5 0 5

−5

0

5

10

15

20

25

30

X (meters)

Y
 (

m
e

te
rs

)

 

 

Thru−hull (ESEIF)

Thru−hull (EKF)

Thru−hull (truth)

Cake (ESEIF)

Cake (EKF)

Cake (truth)

Ammo (ESEIF)

Ammo (EKF)

Ammo (truth)

Brick (ESEIF)

Brick (EKF)

Brick (truth)

Other (ESEIF)

Other (EKF)

Other (truth)

Figure 5-8: Overhead view of the ESEIF map of the barge based upon hand-picked
image features. The plot includes the EKF estimates for the feature locations, as well
as a measure of ground truth. Targets shown in black comprise the ESEIF map while
the EKF map is shown in red and the ground truth in green. The ellipses centered at
each feature denote the three sigma uncertainty bounds maintained by the ESEIF.
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this projection. While there is no ground truth data regarding the depth of the targets,
the DVL ranges to the hull suggest a uniform hull draft of 1.5m. The mean feature
depth as estimated by the filter is 1.63m with a variance of 8.7 cm. The variation from
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Figure 5-10: A histogram plot comparing the ratio of feature uncertainty as esti-
mated by the ESEIF with that of the EKF. Ratios greater than zero are indicative of
conservative confidence intervals while negative values indicate overconfidence.

Our second application of the localization and mapping algorithm considers the
same barge survey, but with automatic feature detection. Applied to the DIDSON
imagery, the SeeByte computer-aided detection algorithm yields just over 2,000 detec-
tions over the course of the survey. The detector fires on both the synthetic, mine-like
targets, as well as natural features on the hull, the latter of which make up most of the
detections. We then sub-sample this set by a factor of two in order to reduce clutter
within images. The result is a list of salient feature detections from which we extract
the corresponding range and bearing observations. Note that the detections consist
only of pixel locations and are not accompanied by a descriptor. The ESEIF fuses
these range and bearing measurements with DVL range to the hull and the vehicle’s
proprioceptive data as before. In this case, we utilize the sparsification routine in an
attempt to maintain a bound of 20 active landmarks. The algorithm again reserves
the maximum number of observations to relocalize the vehicle.

Figure 5-11 presents an overhead view of the final ESEIF map, along with the
ground truth target positions. For the sake of visualization, we manually identify
feature detections that correspond to man-made targets and display them with their
corresponding marker as in Figure 5-8. The dark green point features on the right
side of the map denote detections of the barge edge. The figure depicts the three
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sigma uncertainty ellipse for these targets but omits the ellipses associated with the
other features merely for aesthetic purposes. Similar to the map generated based
upon hand-picked features, many of the ground truth target locations lie within the
estimated confidence intervals. One notable exception is the “cake” target (indicated
by the plus sign) near the bow of the barge (top of the figure). While the uncertainty
ellipse associated with one cake feature captures the ground truth position, the adja-
cent target lies outside corresponding feature’s confidence interval. Additionally, the
filter yields duplicate instantiations for both of these features. This effect is a result
of an error in data association.
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Figure 5-11: A bird’s-eye view of the final ESEIF map based upon features automat-
ically detected within the DIDSON images. The plot includes the ground truth target
locations as estimated by the divers. For visual clarity, we render the three sigma un-
certainty bounds only for mapped features that correspond to the man-made targets.
The dark green points with their corresponding ellipses that run down the starboard
side denote the edge of the hull.



Chapter 6

Conclusion

There is an increasing demand for robotic vehicles that are capable of sustained, long-
term autonomous operation in complex environments, whether on the surface of Mars
or underwater. One skill that is necessary to achieve this autonomy is the capability
to accurately navigate in large environments that are unknown a priori. In the mid-
1980’s, Simultaneous Localization and Mapping (SLAM) was proposed as a potential
solution that actively exploits the structure of the world for localization. The robotics
community has since devoted a lot of attention to the SLAM problem. In the process,
researchers have helped to answer a number of questions that are fundamental to
the coupled problem of localization and mapping. Exemplifying this progress are a
number of capable algorithms that have proven successful in environments that range
from indoor office-like buildings to highly complex outdoor and underwater settings.

Over the past decade, SLAM has grown from a relatively small discipline to
emerge as one of the fundamental problems within robotics science. However, de-
spite extensive contributions towards a solution, many key issues remain unresolved.
Foremost among them is the need for an efficient, consistent estimation framework
that is capable of easily scaling to large environments. This thesis attempts to an-
swer this question with an efficient variation on the SLAM information filter. We
described a feature-based localization and mapping algorithm that leverages the ben-
efits of a sparse parametrization to the posterior, in order to perform estimation in
near constant time. The novel aspect of our Exactly Sparse Extended Information
Filter (ESEIF) is a sparsification strategy that preserves the consistency of the Gaus-
sian posterior.

6.1 Thesis Contributions

The goal of this thesis is to help answer some open questions that pertain to the
localization and map-building problem. To that end, the thesis makes the following
contributions to the robotics literature:

• Sparse approximations of the canonical formulation to the SLAM posterior that
impose conditional independence induce inconsistent state estimates.

133
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We began with an in-depth look at the inherent structure of the information
form of the Gaussian SLAM distribution. While the canonical formulation ex-
hibits a natural structure that is relatively sparse in the case of feature-based
SLAM, the information matrix is, nonetheless, completely populated. Filter-
ing algorithms that take advantage of the efficiency of a sparse parametrization
must approximate the distribution by a posterior that is truly sparse. We de-
rive the SEIF sparsification strategy from the perspective of the independence
assertions of the GMRF. The derivation shows that the SEIF approximates the
conditional independence between the robot pose and most landmarks in order
to enforce a sparse information matrix. We present a detailed analysis of the
SEIF sparsification rule through both controlled LG simulations, as well as a
pair of nonlinear datasets. The results reveal that the SEIF yields an inconsis-
tent posterior that exhibits overconfident estimates for the map compared with
the standard EKF. We present a modified form of the conditional independence
approximation that induces far less inconsistency, but sacrifices computational
efficiency.

• The Exactly Sparse Extended Information Filter (ESEIF) provides an alterna-
tive formulation to sparse, feature-based SLAM information filters that main-
tains a sparse representation without inducing an inconsistent posterior.

The primary contribution of the thesis is the Exactly Sparse Extended Infor-
mation Filter (ESEIF) as a scalable localization and mapping framework that
maintains consistent state estimates. The ESEIF takes advantage of insights
into the canonical formulation to the Gaussian in order to achieve an efficient
SLAM information filter that preserves consistency. The principal component
of the ESEIF is an alternative sparsification strategy that maintains a modified
form of the SLAM posterior that forgoes some temporal information in order
to maintain an exactly sparse information matrix. In this manner, the ESEIF
employs a distribution that is conservative with respect to the Gaussian ap-
proximation of the state distribution. We confirm the consistency of the ESEIF
on a set of LG simulations, based upon a comparison with the optimal KF. We
further demonstrate the consistency and performance properties of the ESEIF
on a pair of benchmark nonlinear datasets.

• We incorporate the ESEIF in a three-dimensional, six-DOF framework for un-
derwater localization and mapping with an acoustic imaging sonar.

The final contribution of the thesis is an extension of the ESEIF algorithm
to the problem of ship hull inspection with an AUV equipped with an imaging
sonar. We describe a framework for underwater, feature-based SLAM that fuses
sonar target detections with observations of vehicle motion and pose provided
by onboard sensors. The ESEIF serves as the state estimation engine that
maintains consistent estimates for the vehicle pose and the set of targets.
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6.2 Assumptions and Failure Modes

The thesis imposes certain assumptions in making these three contributions. These
assumptions affect the scope of our claims regarding filter consistency and perfor-
mance, and give rise to several failure modes that afflict the ESEIF algorithm. In
this section, we elaborate upon these assumptions and describe some of the ESEIF’s
failure modes.

• The ESEIF is a variation on the EKF and is, therefore, subject to the same
well-known limitations of the Gaussian approximation to the SLAM posterior.
For one, we rely on the assumption that the noise that corrupts the vehicle
motion and sensor measurements is Gaussian. In general, though, the noise is
non-Gaussian and, in many cases, multimodal, and does not accurately account
for systematic modeling errors. Secondly, the Gaussian representation of the
posterior depends upon a linear approximation to the process and measurement
models, about the current mean estimate. The accuracy of this approximation
is sensitive to the nonlinear structure of these models and the quality of the
mean estimate, particularly that of the vehicle’s heading. Linearization errors
degrade the validity of the Gaussian model and can lead to inaccurate covariance
(uncertainty) estimates and, over time, an inconsistent posterior [65, 15, 4].
Thus, the consistency of the ESEIF relative to the standard EKF is insufficient
to guarantee that the resulting Gaussian approximation to the posterior remains
consistent with respect to the true distribution.

• The ESEIF sparsification step relies upon the ability to relocalize the vehicle
within the map, as necessary. This assumes that there are a sufficient number
of measurements at any one time step to estimate the vehicle pose. While this
assumption proved valid in the examples described within the thesis, its validity
depends both on the structure of the environment, as well as the nature of the
vehicle’s exteroceptive sensors. If the distribution of features is sparse, or the
sensor’s field-of-view is limited, the measurements may not be rich enough for
sparsification. In this case, we propose a batch, delayed-state process in which
the filter estimates the robot pose over a sequence of time steps.

• The application of the ESEIF to ship hull inspection suffers from a related failure
mode. Specifically, our feature-based map parametrization supposes that the
hull contains a number of large, high quality targets and that these targets are
detectable within sonar imagery. This assumption is typically valid largely due
to the marine growth on the ship but, in the case of a relatively clean hull, may
be difficult to satisfy. Furthermore, the estimation algorithm assumes that the
vessel under survey is stationary during the inspection. In-situ deployments at
sea typically invalidate the framework and require that we additionally account
for the motion of the ship-relative map reference frame with respect to an inertial
coordinate frame.
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6.3 Future Research Directions

Several open problems remain, some of which are specific to the ESEIF algorithm or,
more generally, to the localization and mapping problem. Others are even broader
in scope and concern bigger picture issues related to autonomy. We discuss some of
these issues below and offer recommendations for future research.

• A remaining limitation of the canonical parametrization of the Gaussian is the
difficulty in performing inference. Mean estimation is equivalent to solving
a sparse set of linear equations, which allows us to leverage extensive work in
sparse solvers. Data association, on the other hand is not as straightforward. We
have discussed approximate strategies for estimating the marginal distributions
that establish the likelihood of correspondences, but a more robust solution
remains an open problem. This is true not only for the canonical representation,
but for the general SLAM problem.

• The ESEIF sparsification strategy introduces a dependence between the vehicle
pose and a limited set of neighboring landmarks. Subsequent measurement
updates induce additional links to other nearby features and, upon the next
sparsification routine, this active map forms a clique in the MRF. This process
continues as the vehicle explores the environment. The tendency for cliques
to form among neighboring features suggests an overall graph structure that is
akin to a submap decomposition of the environment. A detailed comparison
between the ESEIF formulation and submap algorithms would provide useful
insights into the implications of ESEIF sparsification. For example, if the ESEIF
does yield a partitioning of the space, “what is the effect of the bound on the
number of active landmarks?”, “to what extent does the resulting structure
depend upon the vehicle’s motion policy?”, etc.

• There are several open problems in the context of autonomous ship hull inspec-
tion. We have demonstrated the ability to perform SLAM based upon acoustic
imagery with an offline implementation of the ESEIF in Matlab. The first
step towards using the ESEIF as a localization and mapping tool is an online
implementation on the HAUV.

An interesting direction for future research is the coupling of SLAM with plan-
ning and control for the HAUV. Hull inspection, particularly in the case of mine
detection, demands 100% coverage, together with accurate navigation and map-
ping in as short a time period as possible. By coupling the SLAM filter with
the path planning and control systems, we can better satisfy these constraints.
Path planning plays an integral role in the mapping performance of SLAM in
terms of coverage rate, overall coverage, and accuracy. At the same time, the
vehicle’s ability to execute the plan depends directly on the performance of the
controller. The SLAM localization estimates, meanwhile, provide pose data
that can be exploited to improve the control accuracy.



Appendix A

Implementation Details

Throughout the thesis, we utilize both simulations as well as real-world datasets to
analyze the characteristics of the ESEIF. This addendum offers a detailed description
of the various filter components, elaborating on the specifics of the measurement
and motion models that we employ. We first describe the linear Gaussian (LG)
simulation experiments, followed by a description of the models for the 2D Victoria
Park and hurdles experiments. We conclude with a detailed discussion of the six DOF
underwater vehicle models.

A.1 Linear Gaussian Simulations

Sections 3.4.1 and 4.3.1 utilize a series of linear Gaussian simulations to analyze the
effects of the different sparsification routines on the SLAM posterior. Within each
simulation, the robot executes a series of counterclockwise loops within an environ-
ment that is uniformly distributed with point features. The vehicle motion is purely
translational and, thus, linear in the state. The exteroceptive observations consist of
measurements of the relative position of neighboring features. We limit the field-of-
view to a maximum range of rmax, and bound the number of concurrent observations
at mmax. Table A.1 defines the specific settings for the two sets of simulations.

We represent the two-DOF vehicle and feature states by their Cartesian position,
xt = [xt yt] and mi = [xi yi]. The linear motion model is of the form,

xt+1 = Fxt + ut +wt

[

xt+1

yt+1

]

=

[

1 0
0 1

] [

xt

yt

]

+

[

vx
vy

]

+wt,

where wt ∼ N
(

0,Qt

)

is white Gaussian noise. We represent each of the j ≤ mmax
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Table A.1: Linear Gaussian simulation parameter settings.

Parameter Section 3.4.1 Section 4.3.1
Environment size 45× 45 70× 70

Number of features 60 375
rmax 10 10
mmax 3 4

Γa 6 6

Qt =

[

0.0225 0.010
0.010 0.0225

]

Rt =

[

0.040 0.010
0.010 0.040

]

concurrent measurements by the linear model

jzt = Hjξt + vt

=
[

−I2×2 02×l I2×2 02×p

]

ξt + vt

=

[

xi − xt

yi − yt

]

+ vt.

The Jacobian matrix, Hj, is non-zero only at columns that correspond to the vehicle
pose and the observed landmark. We corrupt the measurements with white Gaussian
noise, vt ∼ N

(

0,Rt

)

.
Meanwhile, the relocalization function (4.4) that we employ for ESEIF sparsifica-

tion is a simple extension of the above measurement model,

xt = GMt + zβ + vt

=
[

02×l I2×2 02×p

]

Mt + zβ + vt

We specify the motion and measurement noise parameters in Table A.1.

A.2 Hurdles Dataset

The hurdles experiment was conducted in an indoor gymnasium comprised of four
adjacent tennis courts, shown within Figure A-1. A total of 64 track hurdles were
positioned at various points along the baselines of each court, which allow for an
easy measure of their ground truth positions. The overall size of the environment
is 57meters by 25meters. An iRobot B21r wheeled robot, equipped with a forward-
looking SICK laser range finder, was driven in a series of loops throughout the course.

We assume that the robot and map lie in a planar environment. We assign an
arbitrary inertial coordinate frame, xwywzw, and represent the vehicle state as the
position, (xt, yt), and orientation, θt, of a body-fixed reference frame, xvyvzv. The
right-handed body-fixed frame is oriented with the xv-axis aligned with the vehicle’s
forward direction and yv-axis to the left. Attached to the body is the exteroceptive
sensor coordinate frame, xsyszs. Figure A-2 provides a general model schematic.
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Figure A-1: The experimental setup for the hurdles dataset. The environment consists
of 64 track hurdles positioned on the baselines of four adjacent tennis courts. The iRobot
B21r robot is equipped with a laser scanner mounted near the base of the vehicle that
provides measurements of range and bearing to the hurdle legs within its field-of-view.
Note that the second laser scanner affixed at the top of the robot was not used during
this experiment.

A.2.1 Motion Model

We describe the motion of the synchronous-drive B21r with a discrete-time, kinematic
motion model (A.1). The forward velocity, vt, and angular velocity, wt, serve as the
control inputs, ut = [vt wt]

⊤, the former of which is derived from the wheel rotations.
The additive term represents uncertainty in the model due to factors such as wheel
slip and is modeled as white Gaussian noise, wt ∼ N

(

0,Qt

)

.

xt+1 = f
(

xt,ut

)

+wt





xt+1

yt+1

θt+1



 =





xt + vt∆t cos(θt)
yt + vt∆t sin(θt)

θt + wt∆t



+wt (A.1)

A first-order Taylor’s series expansion of the kinematics about the current mean pose
estimate, µxt

, yields the linear approximation to the motion model that we employ
for the filter prediction step,

xt+1 = f
(

xt,ut

)

+wt

≈ f
(

µxt
,ut

)

+ Fx

(

xt − µxt

)

+wt. (A.2)

The matrix, Fx, denotes the Jacobian of the nominal model (A.1) with respect to the
vehicle pose, evaluated at the mean,

Fx =
∂f

(

xt,ut

)

xt

∣

∣

∣

∣

∣

xt=µxt
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Figure A-2: A schematic of the system model for the hurdles filter implementation.
We model the vehicle state by the 2D position and orientation of a body-fixed reference
frame, xvyvzv. The xsyszs frame at the front of the vehicle denotes that of the laser
range and bearing sensor. We treat each hurdle as a feature that we parametrize by the
position and orientation of a coordinate frame, xmymzm coincident with the hurdle’s
base leg.

A.2.2 Measurement Model

Our map representation treats each hurdle as a landmark in the planar environment.
We model a hurdle as a coordinate frame, xmymzm, arbitrarily choosing a “base”
leg as the origin while the second leg defines the positive xm-axis. We parametrize
each feature by the 2D position, (xi, yi), and orientation, θi, of the coordinate frame
relative to the world frame, i.e. mi = [xi yi θi]

⊤. Figure A-2 presents a top-view
schematic of the feature model.

We abstract laser scan data into measurements of the position and orientation of
the hurdle coordinate frame relative to the vehicle’s body-fixed frame. In particular,
we reduce the noise-corrupted observations of the range and bearing to the two hurdle
legs, za = [zra zθa ]

⊤ and zb = [zrb zθb ]
⊤, into the vehicle-relative coordinate frame

transformation measurements as

zmi
=





zx
zy
zθ



 =





zxa

zya
atan2 (zyb − zya , zxb

− zxa
)



 (A.3)

where
[

zxa

zya

]

= zra

[

cos (zθa)
sin (zθa)

] [

zxb

zyb

]

= zrb

[

cos (zθb)
sin (zθb)

]

.

We model the nominal measurement noise in terms of additive white Gaussian noise,
v̄t ∼ N

(

0, R̄t

)

, that corrupts the range and bearing observations. The corresponding
Gaussian approximation to the noise in the relative position and orientation mea-
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surement (A.3) follows from the linearization with respect to the original range and
bearing pairs.

The expression for the corresponding measurement model (2.6) is given by the
nonlinear function,

zt = h
(

ξt
)

+ vt

=

[

Rw
v
⊤ (mw

i − twv )
θt − θi

]

+ vt,
(A.4)

where Rw
v ∈ SO(2) and twv = [xt yt] denote the rotation and translation from the

world frame to the vehicle frame, expressed in the world coordinate frame. The
position of the feature in the world frame is denoted as mw

i = [xi yi]. The additive
term, vt ∼ N

(

0,Rt

)

, corresponds to the aforementioned Gaussian approximation to
the error.

In order to derive the linearized model, we view the relative measurement as a
tail-to-tail compounding operation [121],

zt = xvmi
+ vt = ⊖xwv ⊕ xwmi

+ vt.

Here, for the sake of consistency with the representation of spatial relationships [121],
xij represents the pose of state element j relative to the reference frame associated
with element i. The linearized measurement equation follows from the nonlinear
model,

zt = h
(

ξt
)

+ vt

= ⊖xwv ⊕ xwmi
+ vt

≈ h
(

µxt
,µmi

)

+H
(

ξt − µt

)

+ vt.

(A.5)

The Jacobian of the tail-to-tail operation matrix is

H =
[

J1⊕J⊖ 03×l J2⊕ 03×p

]

,

Note that the Jacobian is sparse and that the linearization requires knowledge of the
mean estimates of only the pose of the robot, µxt

, and the observed landmark, µmi
.

A.2.3 Relocalization Model

In the case of the ESEIF, sparsification relocates the robot within the map based upon
observations of known landmarks, zβ = h (xt,mβ). Each observation corresponds to
a measure of the relative vehicle-to-feature transformation, zβ = xvmβ

, of the form in
(A.4) and (A.2.2). Inverting this transformation yields a measurement of the vehicle
pose via the head-to-head compounding operation [121],

xwv = xwmβ
⊕
(

⊖xvmβ

)

= xwmβ
⊕

(

⊖zβ
)

. (A.6)
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We linearize this model for the relocalized pose (4.4) with respect to the mean of the
observed feature, µ̌mβ

, and measurement data,1

xt = g
(

mβ, zβ
)

= xwmβ
⊕ (⊖zβ)

(A.7a)

≈ g
(

µmβ
, ẑβ

)

+GM

(

Mt − µ̌t

)

+Gzβvt. (A.7b)

Note that this representation integrates the noise via the observation of the trans-
formation between the vehicle and hurdle, xvmβ

. The Jacobian associated with the
head-to-head transformation includes two submatrices, one for the Jacobian with
respect to the observed features, and the other over the measurements [121],

⊕J⊖ =
[

J1⊕ J2⊕J⊖
]

=
[

Gmβ
Gzβ

]

.

The first term forms the only nonzero component of the Jacobian over the map,

GM =
[

03×l Gmβ
03×p

]

,

while we use Gzβ to model the contribution of the sensor noise to the uncertainty of
the relocated pose. As with the measurement model, the linearization relies only on
the mean estimate for the observed features.

Our ESEIF implementation reserves as many hurdle observations for relocalization
as possible. Consequently, the sparsification routine typically estimates the robot
pose based upon more than one measurement, zβ = {izt : i ∈ β}. We compute an
individual pose estimate for each observation as in (A.6), and model the new pose
as the average over these estimates. This is equivalent to the maximum likelihood
estimate under the linearized model when the noise in the individual measurements
is independent. It is straightforward to compute the corresponding map Jacobian,
GM , which is nonzero at positions that correspond to the set of mβ features.

A.3 Victoria Park Dataset

The Victoria Park dataset serves as a benchmark against which to compare different
SLAM algorithms. The dataset is courtesy of E. Nebot at the Australian Centre for
Field Robotics at the University of Sydney [51]. During the experiment, a truck was
driven among trees in Victoria Park in Sydney, Australia. A SICK laser sensor was
mounted at the front, left corner of the car and provides observations of the range
and bearing to neighboring tree trunks. The vehicle was equipped with a rotary
variable differential transformer and wheel encoders that measured the steering angle
and forward velocity, respectively.

We model the environment as planar and represent the state by the vehicle pose
along with a set of 2D point features. The vehicle pose corresponds to the (x, y)

1Recall our notation in Section 4.2.1 where we represent the “kidnapped” distribution over the
map as Mt ∼ N−1

(

η̌t, Λ̌t

)

= N
(

µ̌t, Σ̌t

)

.
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Figure A-3: A diagram of the car model for the Victoria Park dataset. We represent
the vehicle state by the 2D pose of a body-fixed coordinate frame, xvyvzv, coincident
with the laser range finder on the left side of the front bumper. The schematic is
adapted from that of Guivant et al. [51].

position and orientation, θ, of a body-fixed reference frame that is coincident with
the sensor coordinate frame. Figure A-3 offers a schematic that describes the model.

A.3.1 Motion Model

The truck moves according to a non-holonomic, Ackerman-steered motion model.
We adopt a kinematic representation for the motion, and treat the forward velocity,
v̂t, and steering angle, α̂t, as control inputs. The following discrete-time, constant-
velocity model describes the motion,

xt+1 = f
(

xt,ut

)

+wm





xt+1

yt+1

θt+1



 =





xt

yt
θt



+ vt∆t





cos(θt)−
1
L
tan(θt)

(

ly sin(θt) + lx cos(θt)
)

sin(θt) +
1
L
tan(θt)

(

ly cos(θt)− lx sin(θt)
)

1
L
tan(αt)



+wm (A.8)

vt = v̂t + wv, αt = α̂t + wα

where the lengths L, lx, and ly are defined in Figure A-3. The kinematic representation
includes zero-mean white Gaussian process noise, wm ∼ N

(

0,Qm

)

, that accounts for
uncertainty in the model parameters. We also assume that the velocity and steering
control measurements, vt and αt, are corrupted by additive noise, wu = [wv wα],
where wu ∼ N

(

0,Qu

)

.
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We linearize the model (A.8) about the current mean pose, µxt
, and noise mean

via a Taylor’s series expansion. Dropping terms of second order and higher results in
the linear approximation,

xt+1 = f
(

xt,ut

)

+wm

≈ f
(

µxt
, ût

)

+ Fx

(

xt − µxt

)

+Guwu +wm. (A.9)

The matrix, Fx, denotes the Jacobian with respect to the vehicle state evaluated at
the mean pose and zero-mean noise. Similarly, Gu is the Jacobian with respect to the
observed control inputs.

Fx =
∂f

(

xt,ut

)

∂xt

∣

∣

∣

∣

∣

(xt=µxt
,ut=ût)

Gu =
∂f

(

xt,ut

)

∂ut

∣

∣

∣

∣

∣

(xt=µxt
,ut=ût)

A.3.2 Observation Model

We treat the trees as point features in the 2D environment and extract range and
bearing observations from laser scan data. The measurement model for a particular
feature, mi = [xi yi], has the simple form,

zt = h
(

ξt
)

+ vt

=

[√

(xi − xt)
2 + (yi − yt)

2

atan2 (yi − yt, xi − xt)

]

+ vt,
(A.10)

where vt ∼ N
(

0,Rt

)

. The linearization about the mean estimate for the robot pose
and the landmark position follow as

zt = h
(

ξt
)

+ vt

≈ h
(

µxt
,µmi

)

+H
(

ξt − µt

)

+ vt. (A.11)

A.3.3 Relocalization Model

A single range and bearing measurement to a landmark is insufficient to estimate
the three-DOF vehicle pose. We compute the pose based upon observation pairs,
azt = [zri zθi ] and

bzt =
[

zrj zθj
]

. In similar fashion to the hurdle representation,
we define a coordinate frame in terms of the two point features corresponding to the
observation pair. One arbitrarily chosen landmark defines the origin while the other
specifies the direction of the positive x-axis. The filter then interprets the range and
bearing measurements as observations of the relative position and orientation of this
feature-defined reference frame in the vehicle’s body-fixed frame.

Given two point features, mβ = {mi,mj} where mi = [xi yi]
⊤ and mj = [xj yj]

⊤,
the coordinate frame with the origin coincident with mi can be expressed by the
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spatial relationship,

xwmij
,





xij

yij
θij



 =





xi

yi
atan2 (yj − yi, xj − xi)



 . (A.12)

Similarly, an observation of the range and bearing to the landmark pair is formulated
as a measure of the vehicle-relative position and orientation of this frame. This model
mimics that of the hurdles dataset and is equivalent to the tail-to-tail compounding
operation,

zβ = ⊖xwv ⊕ xwmij
+ v̄t

= xvmij
+ v̄t.

We derive the observation data from the raw measurements of range and bearing to
each landmark with the same abstraction that we employ for the hurdles experiment
(A.3). The noise term, v̄t ∼ N

(

0, R̄t

)

, is adapted from the original model (A.10)
that treats the noise in range and bearing as Gaussian.

The vehicle relocalization model is equivalent to the head-to-head spatial relation-
ship,

xwv = xwmij
⊕

(

⊖xvmij

)

.

Treating the measurement data, zβ, as an observation of the transformation between
the vehicle and composite feature frame, xvmij

, yields the model for the relocated
vehicle pose,

xt = g
(

mβ, zβ
)

= xwmij
⊕ (⊖zβ)

(A.13a)

≈ g
(

µmβ
, ẑβ

)

+GM

(

Mt − µ̌t

)

+Gzβ v̄t. (A.13b)

A.4 Hovering Autonomous Underwater Vehicle

This section details the model and filter implementation details for the AUV experi-
ments. We first describe the six-DOF vehicle state-space and the various coordinate
frames that the filter employs to describe the vehicle’s motion and sensing data. We
subsequently derive the discrete-time motion model based upon the continuous-time
kinematic equations of motion. The section concludes with an overview of the mea-
surement models that describe the different sensors onboard the vehicle.

A.4.1 Vehicle State-Space Model

The underwater survey implementation references two main coordinate frames. The
framework assumes an inertial reference frame, xwywzw, that remains fixed at the
surface with the xw-axis pointing North, the yw-axis directly East, and the positive
zw-axis pointing down. This reference frame serves as the world coordinate frame with
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respect to which we describe the vehicle pose and map. We describe vehicle motion
with respect to a second, body-fixed reference frame, xvyvzv, positioned at the aft
end of the vehicle. Consistent with the standard convention for ocean vehicles [42],
the xv-axis points in the direction of forward motion, the yv-axis points to starboard,
and the zv-axis is positive downwards.

The vehicle state consists of its pose with respect to the world frame, together
with the vehicle’s body-referenced linear and angular velocities.

xv =
[

twv
⊤ Θw

v
⊤ ν⊤

1 ν⊤
2

]⊤
=

[

x, y, z, φ, θ, ψ, u, v, w, p, q, r
]⊤

The six-DOF vehicle pose is described in terms of the position, twv = [x y z]⊤, and
orientation, Θw

v = [φ θ ψ]⊤, of the body-fixed coordinate frame. We adopt the xyz-
convention for Euler angles2 to define the orientation in terms of the vehicle’s roll,
φ, pitch, θ, and heading (yaw), ψ. In addition to pose, the vehicle state includes the
body-relative linear and angular velocities. The linear vehicle velocity, ν1 = [u v w]⊤,
consists of the forward (surge), u, lateral (sway), v, and vertical (heave), w, velocities.
We denote the body-fixed angular rates as ν2 = [p q r]⊤ that correspond to the roll,
pitch, and yaw rates.

Consistent with the attitude representation, the following rotation matrix relates
the vehicle reference frame to the world frame.

Rw
v = Rz,ψRy,θRx,φ

=





cosψ − sinψ 0
sinψ cosψ 0
0 0 1









cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 (A.14)

=





cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ





A.4.2 Motion Model

This section describes the six-DOF kinematic motion model that is employed for
time prediction. We first introduce the continuous-time, constant-velocity equations
of motion from which we then derive the linearized state-space equations. Subse-
quently, we discretize the continuous-time state equation to arrive at a discrete-time
approximation to the kinematic motion model. The following derivation mimics that
of Eustice [33], who offers a thorough derivation of the stochastic motion model for
an underwater vehicle.

2The xyz-convention can be thought of as aligning the world frame with the vehicle frame through
a series of rotations about the current (rotating) axes. The world frame is first rotated in yaw about
its z-axis, followed by a rotation in pitch about the current y-axis, and, subsequently, a rotation in
roll about the new x-axis.
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Continuous-Time Motion Model

The continuous-time evolution of the vehicle state is described according to a nonlin-
ear, time-invariant state-space equation. We represent the state equation according
to a stochastic, constant-velocity model.

ẋv(t) = f (xv(t)) + Gw(t)

d

dt









twv (t)
Θw

v (t)
ν1(t)
ν2(t)









=









J1

(

Θw
v (t)

)

ν1(t)
J2

(

Θw
v (t)

)

ν2(t)
03×1

03×1









+Gw(t)
(A.15)

J1

(

Θw
v (t)

)

= Rw
v

(

Θw
v (t)

)

J2

(

Θw
v (t)

)

=





1 sin
(

φ(t)
)

tan
(

θ(t)
)

cos
(

φ(t)
)

tan
(

θ(t)
)

0 cos
(

φ(t)
)

− sin
(

φ(t)
)

0 sin
(

φ(t)
)

sec
(

θ(t)
)

cos
(

φ(t)
)

sec θ(t)



 G =

[

06×1

I6×6

]

The matrix that describes the rate of change in vehicle position, J1

(

Θw
v (t)

)

, is the
rotation matrix (A.14) that rotates the body-relative linear velocities into the world
frame. The additive vector, w(t), corresponds to wide-sense stationary, zero-mean,
white Gaussian noise whose covariance function is Kww(t, s) = Qδ(t − s). Per the
projection matrix, G, the noise corrupts only the rate of change for the linear and
angular velocities and accounts for error in the constant-velocity assumption.

Prior to deriving the discrete-time form of the motion model, we linearize the state
equations about the current mean estimate for the vehicle pose. As our filter operates
in discrete time steps, this estimate corresponds to a time, tk, where tk ≤ t < tk+1.
We denote the corresponding mean pose as µxv

(tk). Dropping terms of second order
and higher from the Taylor’s series expansion of the motion model (A.15) yields the
linear approximation,

ẋv(t) = f (xv(t)) + Gw(t)

≈ f
(

µxv
(tk)

)

+ Fxv

(

xv(t)− µxv
(tk)

)

+Gw(t), (A.16)

where Fxv denotes the Jacobian of the state equation, evaluated at the mean,

Fxv =
∂f (xv(t))

∂xv(t)

∣

∣

∣

∣

(xv(t)=µxv
(tk))

Rearranging terms results in the familiar form for the linearized state-space equations,

ẋv(t) ≈ Fxvxv(t) +
{

f
(

µxv
(tk)

)

− Fxvµxv
(tk)

}

+Gw(t)

= Fxvxv(t) + u(tk) + Gw(t). (A.17)
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Above, we adopt the notation employed by Eustice [33], and treat the component,

u(tk) = f
(

µxv
(tk)

)

− Fxvµxv
(tk)

as a form of control input that is fixed for t within the sampling window, tk ≤ t < tk+1.

Discrete-Time Motion Model

Equation (A.17) corresponds to the linear approximation to the continuous-time equa-
tions of motion. The prediction step of our Bayesian filter relies upon a discrete-time
representation for the state-space equations. In particular, the filter implements a
motion model that predicts the evolution of the vehicle state at specific instances in
time, tk+1 = tk + ∆t, where ∆t need not be constant. We derive the discrete-time
equivalent of the linearized motion model by discretizing the continuous-time state
equation (A.17).

Over each time interval, tk ≤ t < tk+1, we assume that the Jacobian, Fxv , is
well-approximated as time-invariant and that the control term, u(tk), is also con-
stant (i.e. zero-order hold equivalent). Under these assumptions, the discretization
of the continuous-time state-space equation yields the following approximation to
the difference equation. The derivation relies upon sampling the solution to the
continuous-time state equation (A.17), and is described, in detail, by Ogata [109].3

xv[tk+1] = F̄xvxv[tk] + B̄u[tk] +w[tk] (A.18)

The discrete-time form of the process matrices are given by

F̄xv = eFxv∆t B̄ = eFxv tk+1

∫ tk+1

tk

e−Fxv τdτ.

The discrete-time representation for the noise term, which is not assumed to be
constant over the interval t ∈ [tk, tk+1) is given by

w[tk] =

∫ tk+1

tk

eFxv (tk+1−τ)Gw(τ)dτ = eFxv tk+1

∫ tk+1

tk

e−Fxv τGw(τ)dτ.

The discretized noise, w[tk] ∼ N
(

0,Q[tk]
)

, is white and Gaussian with covariance
function,

Q[tk] =

∫ tk+1

tk

eFxv (tk+1−τ)GQ(τ)G⊤eF
⊤
xv

(tk+1−τ)dτ,

where, we additionally model the continuous-time covariance function as constant,
Q(τ) = Q.

3Note that, throughout the remainder of the section, we will abuse our earlier notation and
represent discrete-time random vectors and data with their time stamps enclosed within square
brackets as opposed to as subscripts, i.e. w[tk] in place of wk.
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A.4.3 Observation Models

Since the filter tracks the vehicle’s linear and angular velocity as part of the state vec-
tor, we treat velocity data from the DVL and IMU as state measurements. Together
with attitude observations and DIDSON-based target measurements, we incorporate
this data through the appropriate measurement update steps. In this section, we
briefly describe the different observation models that the filter employs.

Linear Velocity Measurements

The HAUV is equipped with an RDI Workhorse Navigator DVL that provides mea-
surements of linear velocity along each of its four beams. This radial velocity data can
be transformed into an observation of the three-axis vehicle velocities with respect to a

reference frame affixed to the DVL, νdvl

1 [tk] =
[

vdvlx [tk] v
dvl

y [tk] v
dvl

z [tk]
]⊤

. We trans-
form this velocity into the body-fixed reference frame by applying a sensor-to-vehicle
rotation (head-to-tail operation) that is a function of the DVL pitch, αdvl[tk].

νv
1[tk] =





u[tk]
v[tk]
w[tk]



 = Rv
dvl

(

αdvl[tk]
)

νdvl

1 [tk]

The corresponding observation model is then straightforward,

zdvl[tk] = Hdvlxv[tk] + vdvl[tk] (A.19)

Hdvl =
[

03×6 I3×3 03×3

]

.

We model the underlying noise as additive, zero-mean, white Gaussian noise that
corrupts the four radial velocity measurements. In turn, we approximate the noise in
the three-axis DVL linear velocities as Gaussian, v̄[tk] ∼ N

(

0, R̄dvl

)

. The additive
noise term, vdvl[tk], corresponds to applying the transformation from the DVL frame
to the vehicle frame and exhibits a covariance function that depends upon the sensor’s
pitch, vdvl[tk] ∼ N

(

0,Rv
dvl

(αdvl[tk]) · R̄dvl · R
v⊤

dvl
(αdvl[tk])

)

.

Attitude and Angular Rate Measurements

The IMU is coincident with the vehicle frame and provides observations of the vehicle’s
roll and pitch, as well as the three-axis body-relative angular rates.

zimu[tk] =
[

φ[tk] θ[tk] p[tk] q[tk] r[tk]
]⊤

The measurement model is linear in the vehicle state,

zimu[tk] = Himuxv[tk] + vimu[tk] (A.20)

Himu =

[

02×3 I2×2 0 02×3 02×3

03×3 03×2 0 03×3 I3×3

]

,
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where vimu[tk] ∼ N
(

0,Rimu

)

is the zero-mean noise that we attribute to the IMU.

DIDSON Measurements

Features extracted from DIDSON acoustic imagery yield a measure of the range and
bearing to targets on the hull, along with a bound on their elevation. We reduce
the ambiguity in elevation with the help of an estimate for the local hull geometry.
The result is an observation of the range, bearing, and elevation to a target, mi,
as expressed in the sonar’s coordinate frame. We model the measurement as an
observation with respect to this reference frame, whose origin relative to the world
frame follows from the head-to-tail operation, xws = xwv ⊕ xvs, where s denotes the
sonar sensor. Note that the transformation from the vehicle frame to that of the
sonar, xvs, is a function of the sonar pitch pitch, αs[tk].

zs[tk] = hs

(

xws[tk]
)

+ vs[tk] (A.21a)

= hs

(

xv[tk],mi, αs[tk]
)

+ vs[tk]

≈ h
(

µxv
[tk],µmi

[tk], αs[tk]
)

+Hs

(

ξ[tk]− µ[tk]
)

+ vs[tk] (A.21b)

The last line above corresponds to the linearization of the range, bearing, and ele-
vation measurement with respect to the current mean estimate for the vehicle pose
and the landmark location. The additive term signifies zero-mean Gaussian noise,
vs[tk] ∼ N

(

0,Rs[tk]
)

.
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Acoustic Imaging Sonar

The DIDSON ensonifies the scene with a pair of lenses that, operating at 1.8MHz,
individually direct a sequence of 96 transmitted pulses. It then uses the same lenses to
focus the acoustic return on a 96 element transducer array. The result is an acoustic
intensity image, resolved as a discrete function of range and bearing. The sonar does
not disambiguate the elevation angle, and the echos may originate from any point
along the constant range and bearing arc that subtends the |β| ≤ 6◦ elevation. This
ambiguity is analogous to the scale invariance of pinhole camera models, with the
additional constraint on the size of the acoustic field-of-view.

B.1 Brief Overview of Multiple View Geometry

The standard approach to resolve observation ambiguity is to image the scene from
several vantage points. Multiple view imaging techniques [58], including structure
from motion and delayed-state Bayesian filters [34] rely upon observations of the
scene that are shared between sets of images. This correspondence establishes the
epipolar geometry that relates view pairs, imposing constraints on the relative pose of
the corresponding cameras. The linear projection model of pinhole cameras leads to a
fundamental matrix and essential matrix that describe the epipolar geometry for pairs
of uncalibrated and calibrated cameras, respectively,1 Consider a pair of calibrated
cameras specified by their normalized camera matrices, P = [I |0] and P′ = [R | t],
where I is the 3 × 3 identity matrix and R ∈ SO(3) and t ∈ R

3 correspond to
the rotation and translation of the second camera frame relative to that of the first.
Without loss of generality, we assume that the first camera frame is aligned with the
world frame.2 If both cameras image the same world point, X, the corresponding
normalized image points, u = PX and u′ = P′X satisfy the epipolar constraint,

u′⊤Eu = 0, (B.1)

1To be correct, the essential matrix specifies the epipolar constraint between pairs of image points
that have been normalized by the inverse of the calibration matrix.

2These cameras may represent the same physical camera that acquires a pair of images at different
points in time from different vantage points.
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where E = [t]×R ∈ R
3×3 is the essential matrix.3 Unlike the general fundamental

matrix, which has seven degrees of freedom, there are only five for the essential
matrix. The relative rotation, R, and translation, t, between camera frames account
for six degrees of freedom, yet there is a scale invariance as the essential matrix
is a homogeneous matrix. It is possible to then estimate the relative rotation and
translation up to scale directly from the essential matrix [58].

With only five degrees of freedom, the essential matrix can be estimated from as
few as five pairs of image points, in terms of the the zeros of a tenth order polynomial
[108]. As with other minimal solutions, though, this five-point algorithm is partic-
ularly sensitive to errors in the location of the points within the images, which can
be quite high. Alternatively, the eight-point algorithm [80] estimates the essential
matrix as the solution to a set of linear equations. Hartley [57] demonstrates that, by
first normalizing the image coordinates, the eight-point algorithm tolerates a greater
amount of image noise. Typically, feature detection identifies a much larger set of im-
age pairs that, along with errors in point locations, includes erroneous (false) matches.
While location inaccuracies degrade estimator precision, false matches induce gross
errors in the estimated essential matrix [143]. Most implementations overcome the
effects of outliers by sampling solutions from several different sets of point pairs.
Hartley and Zisserman [58] describe a multiple step algorithm that first samples from
a set of linear solutions for the essential matrix, using RANSAC [39] to identify the
largest set of inlier pairs. Next, they iteratively solve for the essential matrix that
minimizes the nonlinear reprojection error over this set of inliers. The subsequent
step uses the resulting estimate for the epipolar geometry to generate a new set of
feature correspondences from the set of interest points. The algorithm then repeats
the iterative minimization with this inlier set and continues to refine the essential
matrix estimate till convergence.

Given an estimate of the essential matrix for a pair of cameras, one can resolve
the second camera matrix, P′ = [R | t], to one of four (R, t) transformations (modulo
scale). Including an additional constraint on the location of an imaged point relative
to the two image planes reduces this set to a single transformation up to a scale
factor. In similar fashion, Eustice [33] estimates the roll, pitch, and yaw angles that
parametrize the relative rotation, R = R (φ, θ, ψ), along with the scale-normalized
translation, t.

B.1.1 DIDSON Camera Model

The convenient form of the epipolar constraint (B.1) follows directly from the linear
projection model of pinhole cameras. With invariance in elevation as opposed to scale,
however, the DIDSON imaging geometry obeys a projection model that is nonlinear
in the scene coordinates. Consider the schematic in Figure B-1 in which the sonar
images a point with spherical coordinates (r, θ, β) relative to the camera frame. If we
assume, as before, that the camera frame is aligned with the world reference frame,

3Here, X ∈ R
4 and u,u′ ∈ R

3 are homogeneous coordinates of the world and image points,
respectively.
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Figure B-1: The DIDSON produces a discrete, two-dimensional acoustic intensity
image that resolves the range, r, and bearing, θ, of the echo source. The image is
invariant to changes in elevation within the sonar’s FOV, i.e. |β| ≤ 6◦. It proves
beneficial to approximate the image geometry by an orthographic projection. Under
this model, the 3D point (r, θ, β) projects to û on the image plane rather than u.

the Cartesian coordinates of the point are

X̃c =





xc

yc

zc



 =





−r sin θ cos β
r cos θ cos β
r sin β



 , (B.2)

where we use the tilde accent to denote inhomogeneous vectors. The DIDSON maps
the corresponding acoustic return to the inhomogeneous image coordinates, ũ, ac-
cording to the nonlinear projection model,

ũ =

[

−r sin θ
r cos θ

]

=

[

xc (x
2
c + y2

c + z2c)
1/2

(x2
c + y2

c)
−1/2

yc (x
2
c + y2

c + z2c)
1/2

(x2
c + y2

c)
−1/2

]

. (B.3)

This expression takes a more convenient form if we specify the range as

r =
(

x
2
c + y

2
c + z

2
c

)1/2
= r̂ + δr,

where r̂ = (x2
c + y2

c)
1/2

= r cos β is the length of the orthogonal projection on the
image plane. The disparity between the range and the projection length is a function
of the elevation angle, δr = r̂

(
√

1 + tan2 β − 1
)

. Together, this notation yields an
alternative representation (B.4a) for the nonlinear projection model.

ũ =

(

1 +
δr

r̂

)[

1 0 0
0 1 0

]





xc

yc

zc



 =
√

1 + tan2 β

[

1 0 0
0 1 0

]





xc

yc

zc



 (B.4a)

≈

[

1 0 0
0 1 0

]





xc

yc

zc



 (B.4b)
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The DIDSON’s narrow FOV in elevation suggests that we can ignore the non-
linear aspect of the model (B.4a), and approximate the projection by one that is
completely linear. More specifically, the |β| ≤ 6◦ bound on the target’s elevation cor-

responds to a tight limit on the nonlinear component as 1 ≤
√

1 + tan2 β ≤ 1.0055
and, equivalently, 0 ≤ δr

r̂
≤ 0.0055. Consequently, if we make the narrow eleva-

tion approximation,
√

1 + tan2 β ≈ 1, the nonlinear model simplifies to the linear
form (B.4b), and we can then view the sonar imaging process as one of orthogonal
projection onto the image plane.

The approximation relies on the assumption that the scene’s relief in the invariant
elevation direction is negligible relative to its extent in other directions. Assuming
suitable viewing geometry for the DIDSON (i.e. a small grazing angle), the sonar’s
narrow FOV supports this assumption. While there is ambiguity in the elevation
angle for each acoustic return, this uncertainty is small with respect to range. This
relationship is analogous to that of a perspective camera that images a scene with
a depth relief that is negligible in comparison to the distance to the camera. If this
is the case and the camera has a limited FOV, the perspective camera geometry
can be accurately approximated by an affine imaging model [58]. The same is true
for the DIDSON acoustic camera, whose narrow elevation component of the FOV
allows us to model image formation by the linear approximation (B.4b) with limited
error. To better understand this approximation, we express the camera model (B.4) in
homogeneous coordinates and consider an arbitrary transformation, (R, t), from the
world frame to the camera’s frame. With these changes, we arrive at an orthographic
projection model for the DIDSON imaging geometry:

u ≈





1 0 0 0
0 1 0 0
0 0 0 1





[

R t
01×3 1

]









x

y

z

1









= PX, P =





r⊤1 tx
r⊤2 ty
03×1 1



 (B.5)

The orthographic camera matrix, P, consists of the first two rows of the rotation
matrix, r⊤1 and r⊤2 , and two components of the translation vector. As is the case
for orthographic cameras, the DIDSON projection matrix has only five degrees of
freedom, namely the three angles that define the rotation relative to the world frame,
R, and the x and y components of the translation.

We note that Kim et al. [69] and Negahdaripour et al. [102] identify much the same
approximation of the DIDSON imaging geometry. Taking advantage of the sonar’s
narrow FOV in elevation and assuming that the sonar ensonifies the environment at
a small grazing angle, they treat the scene as being locally planar. This assumption
reduces the imaging model to an orthographic projection, P = P (xc,yc, zc,n), that
is a non-uniform function of image coordinates and the scene plane normal, n. They
then impose the narrow elevation approximation to achieve a linear projection model,
P = P(n), that is uniform over the image, as above (B.5).

The expression for the DIDSON camera (B.5) models the imaging geometry as an
affine transformation followed by orthographic (parallel) projection. An important
consequence of this decomposition is that it represents the sonar as an affine camera,
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which possesses a number of unique properties that differentiate it from standard
pinhole cameras. In particular, the camera center associated with affine cameras lies
on the plane at infinity. This implies that, unlike perspective projection, the camera
preserves parallelism, as parallel lines in the world are also parallel in the image.
Similarly, the projection rays are all parallel with one another and perpendicular to
the image plane, since we approximate the projection as orthographic. As we discuss
next, the parallel projection model of the DIDSON directly affects the constraints
that we can impose on camera pairs.

B.1.2 Affine Epipolar Geometry

With a linear approximation for the DIDSON projection model, we can use the same
framework that is employed for optical cameras to constrain the relative motion be-
tween pairs of acoustic cameras. These constraints follow from the epipolar geometry
that describes the relationship between image point pairs. However, inherent differ-
ences in the affine epipolar geometry lead to greater ambiguity in the relative camera
motion as well as in the scene structure. In addition to the scale ambiguity, it has long
been known that two affine views are invariant to a one parameter family of relative
transformations that can not be resolved from fewer than three images [61, 70].

The unique nature of the epipolar geometry that governs affine camera pairs can
be attributed, in large part, to the fact that the principle plane is the plane at infinity.
Consider two acoustic images taken from different vantage points,4 We assume that
the first camera pose is coincident with the global reference frame and let (R, t)
represent the transformation from the first camera pose frame to that of the second
pose. Per the linear approximation to the imaging model (B.5), the corresponding
orthographic projection matrices are

P1 =





1 0 0 0
0 1 0 0
0 0 0 1



 P2 =





r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 1



 . (B.6)

The corresponding fundamental matrix for affine camera pairs has the form given
in (B.7) (the derivation is straightforward and is described in Hartley and Zisser-
man [58]). With five non-zero elements, the homogeneous fundamental matrix has
four degrees of freedom.

FA =





0 0 a
0 0 b
c d e





a = r23 b = −r13 c = r13r21 − r11r23
d = r13r22 − r12r23 e = r13t2 − r23t1

(B.7)

The two epipoles, which are the right and left null vectors of FA (i.e. FAe = 0 and
F⊤
Ae

′ = 0), are given by e = [ b −a 0 ]⊤ and e′ = [ d −c 0 ]⊤. The epipolar lines, l and

4In the context of delayed-state SLAM, we are particularly interested in the case where the same
camera images the scene at different points in time. Nonetheless, the subsequent derivation applies
just as well to images from arbitrary camera/time pairs.
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l′, which relate corresponding points in the first and second image, are all parallel since
they intersect at points on the plane at infinity. As a result, the epipolar planes, which
intersect the image plane at the epipolar lines, are parallel and, like the projection
rays, perpendicular to the image plane.

e =
[

b −a 0
]⊤

l =
[

a b cx+ dy + e
]⊤

e′ =
[

d −c 0
]⊤

l′ =
[

c d ax+ by + e
]⊤

(B.8)

Given corresponding image pairs, ui = [xi yi 1]
⊤ and u′

i = [x′
i y

′
i 1]

⊤, the fundamental
matrix describes the affine epipolar constraint,

u⊤
i FAu

′ = 0 −→ axi + byi + cx′
i + dy′i + e = 0 (B.9)

The unique nature of the affine epipolar geometry, namely the fact that the epipo-
lar planes are parallel, gives rise to invariance in the constraints between camera pairs.
In addition to the scale ambiguity, the inferred scene structure and camera motion
associated with two affine views is invariant to a one-parameter pencil of transforma-
tions [61, 70]. More specifically, given only two views of a scene, parallel projection is
subject to two ambiguities that confound the structure and relative camera motion:
Necker reversal and the bas-relief ambiguity [58]. Necker reversal refers to the fact
that the parallel projection image of an object that rotates by an angle ρ is identical
to that of the mirror object5 that rotates by −ρ. Equivalently, if the object remains
stationary and the camera moves, we can not tell whether the camera rotated by ρ
about an axis parallel to the image plane, or by −ρ and imaged the mirror object.
The bas-relief ambiguity describes the inability to decouple the relationship between
the size of the imaged objects in the direction of projection and the extent of their
rotation. Under parallel projection, large objects that undergo small rotations yield
identical image pairs as shallow objects that rotate by a greater amount. The same
holds if the scene is static and the camera rotates.

The bas-relief ambiguity is particularly important in situations where the goal
is to exploit the epipolar geometry to estimate the relative motion of the camera.
Given two views of a static scene under parallel projection, point correspondence
establishes a set of parallel epipolar planes that lie perpendicular to the two image
planes. One can imagine rotating the second camera about an axis perpendicular
to the epipolar planes while changing the unknown depth relief of the imaged scene
points. We demonstrate this ambiguity with Figure B-2, in which we rotate the
second camera about a fronto-parallel axis. By simultaneously shortening the line
in the scene along the projection ray of the first camera, the two image pairs are
invariant to the rotation.

As a consequence of the bas-relief ambiguity, there is a one-parameter family of
transformations that describes the relative motion between affine camera pairs [61,
70]. Koenderink and van Doorn [70] present a rotation model that accounts for this
invariance by isolating the bas-relief ambiguity. The represent the transformation as

5Reflected relative to a plane parallel to the image plane.
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Figure B-2: Pairs of affine camera images are subject to the bas-relief ambiguity
that describes the coupling between the scene’s depth relief and the relative camera
rotation. Under parallel projection, a large camera rotation about an axis that lies
within a fronto-parallel plane and a shallow scene produces the same pair of images
as a smaller rotation but larger depth relief. This effect gives rise to a one parameter
family of transformations between affine camera pairs.

a pair of rotations of the base camera frame. They first rotate the camera within
the image plane about the z-axis such that the orientation of the epipolar lines is
the same within both images. The subsequent rotation takes place about an axis, Φ,
that lies at a known orientation in a fronto-parallel plane. This rotation corresponds
directly to the bas-relief ambiguity as the distance to the plane and the rotation angle
are coupled as part of the one-parameter family of relative motion.

Shapiro et al. [117] propose a concise formulation for the Koenderink and van
Doorn model in terms of three observable variables, (θ, φ, s), and a single free param-
eter, ρ. The terms θ, φ, and ρ parametrize the two rotations while s is the relative
scale between cameras. Considering an affine camera pair of the form given in (B.5),
they describe the relative rotation as

R = R (Φ, ρ) R (z, θ) . (B.10)

The matrix R (z, θ) is the image plane rotation by θ about the z-axis that yields
parallel epipolar lines. The camera then rotates by ρ out of the image plane about
the Φ axis, which projects onto the image at angle φ with respect to the x-axis. The
R (Φ, ρ) matrix accounts for this bas-relief rotation.

Shapiro et al. relate the one-parameter family of transformations (B.10) to the
affine epipolar constraint (B.9). From this constraint, they derive the (θ, φ, s) vari-
ables as a function of the five parameters, (a, b, c, d, e), that define the fundamental
matrix, FA, in (B.7):

tanφ =
b

a
tan (φ− θ) =

d

c
(B.11)

Note that we have omitted the relative depth factor, s, as s = 1 in the case of
orthogonal projection.

One can estimate the fundamental matrix based upon as few as seven paired
observations of non-planar structure, one for each degree of freedom. As mentioned
with regards to the essential matrix, however, the number of correspondences is much
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larger and estimators often solve for the fundamental matrix that minimizes the total
error associated with the entire set of points. Shapiro et al. [117] show the total point-
to-point error within both images to be a particularly good metric, in part, because it
explicitly accounts for noise in the location of image points.6 Under the assumption
that the noise is independent and Gaussian, the minimum solution is equivalent to
the maximum likelihood estimate for the fundamental matrix [58].

Given n ≥ 7 paired observations of non-planar structure, (ui,u
′
i), we can solve

for FA up to scale. A typical strategy for estimating the matrix is to solve for the
set of five parameters, (a, b, c, d, e) that minimize the total error associated with the
epipolar constraint equation for each point pair,

{

ui = [xi yi 1]
⊤ ↔ u′

i = [x′
i yi′ 1]

⊤
}

: u⊤
i FAu

′ = 0 −→ axi + byi + cx′
i + dy′i + e = 0.

Recalling our earlier discussion on multiple view geometry techniques in Sec-
tion B.1, an estimate for the fundamental matrix between an acoustic camera pair
provides a constraint on their relative pose. In particular, the matrix parameters
yield an estimate of the relative rotation between frames (B.10) via the formulation
(B.11) that Shapiro et al. describe. As we have discussed, the epipolar geometry for
optical camera pairs provides five constraints on the six-DOF transformation between
frames. In contrast, the epipolar geometry that results from an affine approximation
to acoustic cameras yields only two of the six transformation parameters.

6When the relative scale is one, as is the case for orthographic projection, the minimum total
point-to-point solution is equal to that of the point-to-line error.
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