
Case for Usability:
Designing Outdoor Augmented Reality Games

by

Tiffany Wang

B.S., Computer Science, 2007
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 2008

C 2008 Massachusetts Institute of Technology
All rights reserved.

SACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 13 2008

LIBRARIES

Department Electrical Engineering and Computer Science
August 22, 2008

Certified by:

Accepted by:

Eric Klopfer
Associate Professor, Department of Urban Studies and Planning

Thesis Supervisor

Arthur C. Smith
Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

ARCHIVES

MAS

Author:

Case for Usability: Designing Outdoor Augmented Reality Games

by

Tiffany Wang

Submitted to the
Department of Electrical Engineering and Computer Science

August 22, 2008

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Creating a successful Outdoor Augmented Reality (OAR) game can be a complicated process. With
every new feature added to the OAR toolset, games gain more levels of complexity, grow in size of
content, and become increasingly difficult to produce and manage. In order to identify plausible methods
to help alleviate some of the difficulties when creating OAR games, a heuristic usability evaluation of the
existing Game Editor toolkit and an assessment of the needs of game designers were made as part of this
research. Two new applications, the Desktop Editor and Remote Editor, were designed, prototyped, and
evaluated by new and experienced game designers. The Desktop Editor offers new methods of
visualizing and working with data which have proven to be useful features for creating games but also
add difficulties to overall learnability. The Remote Editor offers on-location game editing capabilities
which help expedite many of the tasks involved with creating and testing OAR games. Feedback and user
tests suggest that the new applications offer valuable ideas for game editing features that would be
beneficial in future iterations of the OAR Game Editor toolkit.

Thesis Supervisor: Eric Klopfer
Title: Associate Propfessor, Department of Urban Studies and Planning

Acknowledgements

I would like to acknowledge all those who have helped contribute to the completion of this project.

Many thanks to my project manager, Judith Perry, for her leadership and guidance since my first joining
the OAR project and for her patience and support throughout this challenging endeavor. Thanks to
Professor Eric Klopfer for the opportunity to be a part of the Teacher Education Program and the OAR
team, for his advice on various aspects of the project, and for the constant supply of diverse blends of
coffee. Thanks to my fellow developer, Lisa Stump, for sharing her technical knowledge and experience,
for always challenging my decisions to find the best possible solution, and for stepping up on the project
while I finished my research. Thanks to RJ Silk for doing an amazing job refactoring the backend code
base and making the process of developing new editing tools so much easier.

Thanks to the following project collaborators for their feedback throughout the project and for being such
great resources of knowledge and experience with the OAR game development process: Marleigh Norton
and Josh Sheldon at MIT; Chris Holden, Mingfong Jan, John Martin, and James Mathews at the
University of Wisconsin Madison; Patrick O'Shea at Harvard University; and Matt Dunleavy at Radford
University.

Thanks to Professor Rob Miller for introducing me to the field of User Interface research and design, for
the privilege of being his teaching assistant this past semester, and for providing me with a solid
foundation for undertaking this project.

Most importantly, endless thanks to my friends and family for all their support and encouragement and
constant reminders to enjoy life outside of lab and get enough sleep.

Table of Contents

1. Introduction ... 9
1.1 Augm ented Reality ... 9

1.2 Outdoor AR Gam es .. 10

1.3 Creating Outdoor AR Gam es 15

2. Problem Statem ent .. 19
2.1 Learnability and M em orability 20

2.2 Efficiency ... 22

2.3 Errors .. 24

2.4 Satisfaction 26

3. Requirem ents Research & Analysis ... 27
3.1 User Analysis.. 28

3.2 Task Analysis ... 30

3.3 Requirem ents Analysis ... 33

4. Desktop Editor .. 37
4.1 Developm ent Goals .. 37

4.2 Prototypes & Design...38

4.3 Im plem entation.. 55

5. Rem ote Editor ... 59
5.1 Developm ent Goals .. 59

5.2 Prototypes & Design .. 60

5.3 Implem entation... 70

6. Evaluation .. 73
6.1 Requirem ents Assessm ent .. 73

6.2 Evaluation M ethods 76

6.3 Results & Findings ... 79

7. Conclusion ... 83
7.1 Future Extensions ... 83

7.2 Reflections .. 85

8. References .. 87
A. Game Designer Survey & Interview Questions .. 89
B. User Testing Briefing & Tasks .. 91

1. Introduction

There has been a recent outbreak of mysterious illnesses around the MIT campus. Though no causes

have yet been determined, suspicions have prompted investigations of construction sites and reactor labs

in the area. You have been commissioned by the MIT administration to lead the efforts in uncovering the

source of the epidemic and devise a plan for remediation. The only tool provided for the job: a handheld

device with location tracking capabilities. Good luck!

The story may be made up, but the scenario is real. Middle school students at a recent science

fair were given this same introduction and sent out into the MIT campus equipped with handheld

computers and GPS devices. This is just one example of an Outdoor Augmented Reality game, a new

learning tool which can be customized to any class curriculum and is designed to help students learn

through immersion with the world around them.

This chapter presents the background information and context for this project. The first section

provides a definition of Augmented Reality and the purpose of the technology. The second section

discusses the applications of Augmented Reality, focusing on location-based educational games, also

known as Outdoor Augmented Reality games. Lastly, the third section describes the creation of these

types of Augmented Reality games.

1.1 Augmented Reality

Augmented Reality (AR) is a form of technology which enhances reality by combining the digital

world with the real world; intangible information with the tangible. Unlike Virtual Reality, which fully

immerses the user in an artificial environment, Augmented Reality still allows users to interact directly

with their surroundings and instead "augments" the environment with digital information in the form of

audio clips, sensory cues, or visual overlays.

+

Virtual Reality Reality Augmented Reality

Figure 1.1 Conceptual diagram of Augmented Reality. Augmented Reality is a

combination of virtual reality and actual reality and belongs to a class of

technology known as "Mixed Reality" (Milgram & Kishino, 1994).

By combining virtual reality with actual reality, AR attempts to transcend the both. The auxiliary

information superimposed onto the user's environment can enhance the user's perception and interactions

with the world around them. In turn, the environment can provide the information with a real world

context which helps the information be more readily conveyed to the user. Imagine learning about the

people and events involved in the Battle of Bunker Hill while exploring the actual site of the battle as

opposed to reading about the battle in a school library hundreds of miles away. Ultimately, the goal of

developing AR systems is to provide the user with an overall more engaging interactive experience and to

enable visualization and understanding of information that would not be possible in a purely real or

virtual world.

1.2 Outdoor AR Games

AR systems have been applied to a variety of fields including architecture, medicine, military

training, and entertainment. This project involves the application of Augmented Reality to games for

education, specifically the creation of Outdoor AR games.

,...

Figure 1.2 Augmented Reality applications. Augmented Reality systems are currently
used in a variety of applications including heart surgery, military training
games, and architectural planning.

Outdoor AR (OAR) games are games played at an on-site location using handheld devices with

GPS (Global Positioning System) tracking capabilities. Conceptually, OAR games can be thought of as a

mix between role-playing games and scavenger hunts: players assume a character role and must complete

tasks and solve problems by gathering information from their surroundings. Unlike scavenger hunts

which rely on physical clues, OAR games utilize virtual clues in the form of virtual game objects placed

at tagged locations throughout the environment. These game objects are virtual in the sense that they are

visible and accessible only through the handheld screen. Utilizing the GPS device, players can track their

location as they move throughout the playing field and can "visit" virtual game objects by walking into

the object's hotspot.

Figure 1.3 Location tracking in Outdoor AR games. Outdoor AR games are played at

a specific outdoor location. Global coordinates read from a GPS device are
translated into game coordinates used to position the player on the screen.

i

Figure 1.4 Interacting with virtual game objects. Virtual game objects are visible and
accessible only through the handheld screen. A player can "visit" a game
object by walking into the object's hotspot.

Game objects can take on the form of NPCs (non-playable characters), items, and even buildings.

Each game object has a unique name, picture, and description and may provide a player with information

by displaying dialog text or media files such as images, audio and video clips, and web page articles on

the handheld screen.

Figure 1.5 Game object information. Each game object has a unique profile and can
provide a player with information in the form of dialog text or media files.

One example of an OAR game is "Zoo Scene Investigators", a game developed in 2007 as part of

a collaboration between the MIT Teacher Education Program (MIT TEP) and the Columbus Zoo and

Aquarium (Norton, 2007). "Zoo Scene Investigators" is played at the zoo in Columbus, Ohio and is

designed to teach students about the illegal wildlife trade. The premise of the game is that an attempted

robbery has occurred at the zoo and zoo officials are trying to decide whether the man in custody is guilty

of trying to steal confiscated animal artifacts. Game participants may choose to play as a police officer, a

secret agent, or a spy and must piece together clues gathered from virtual characters located throughout

the zoo in order to reach a final conclusion.

Figure 1.6 Zoo Scene Investigators. "Zoo Scene Investigators" is an Outdoor AR
game about the illegal wildlife trade played at the Columbus Zoo and
Aquarium in Columbus, Ohio.

OAR games have been used to teach a variety of other subjects and are one of the newest tools

being used in (or more accurately, outside of) classrooms to help students develop math, science, and

literacy skills and become more engaged with school curriculum. "Environmental Detectives" (Klopfer

& Squire, 2005), the first OAR game developed by MIT TEP, is an environmental mystery game in

which students work together to uncover the source of a toxic spill and propose a solution for cleaning up

the contaminants. Research from that particular implementation identified OAR games as an effective

i

tool for teaching students about environmental engineering and scientific investigation. The majority of

the students was excited by the technology and enjoyed the immersive style of learning.

Figure 1.7 Outdoor AR games and learning. Outdoor AR games are now being
piloted in schools in hopes of helping students better develop math, science,
and literacy skills and become more engaged with class curriculum.

OAR games are only one instantiation of outdoor location based games. Similar technologies

have been developed by a number of research groups for both educational and entertainment purposes.

One example is Mediascapes, developed by HP (Hewlett Packard) Labs in collaboration with the

Futurelab, U.K. Like OAR games, Mediascapes are developed for GPS-enabled handheld devices and

utilize digital overlays to tag geographic locations with audio, video, and other forms of media.

Mediascapes do not require any structured storyline and have been used by the public for a variety of

applications including guided walks, interactive tours, and games (Stenton, 2007). Games Atelier

developed at the Waag Society, Amsterdam, is another project dedicated to games in learning using

location-based games (Veelo, 2008). Students use mobile phones to add and collect information to and

from the environment according to predefined game templates, then share their information with one

another over an online network. Similar to MIT TEP, the most recent research surrounding the Games

Atelier project has been focused on allowing students to create their own location-based education games.

Figure 1.8 Related AR games research. One other example of outdoor location based
games is Mediascapes, developed by the HP labs in collaboration with the
Futurelab, U.K.

1.3 Creating Outdoor AR Games

OAR games are played by loading a game file into the Outdoor AR Game Engine application

installed on handheld devices. The game file is specific to each particular game implementation and

contains all the game settings and content including map and coordinates, game object profiles, dialog

text, and media files.

OAR game files were first created by meticulously hand-generating XML (Extensible Markup

Language) files in a standard plain-text editor. Since game designers were not always familiar with the

XML language, the task of populating game data usually fell to the OAR developers. Needless to say,

this was a very tedious and error-prone process during production and testing. With the development of

the Outdoor AR Game Editor by MIT TEP, a toolkit with a graphical user interface became available to

game designers for creating custom OAR games. The Game Editor is a desktop application that allows

designers to create an OAR game for any location with any theme and any content by simply uploading a

map and its coordinates, populating the game with game objects, and deploying the game file onto a

handheld device to play on site. By abstracting away underlying details of the OAR game structure,

designers now have more control over game content which enhances the overall quality of games.

< xml version-". 0"?>
<ArGame xmlns:xsi-"http://www.
xmlns: xsd="http://www.w3. org/2

<1 ockcurrentGameState />
<GaneDirectory />
<ActiveRol eIO>-2147483648</A
<ActiveTeamI D>-2147483648</A
<ActiveChapterIndex>-214 7483
<ActiveP ayerLocation>

<x>100</X>
<Yv>00<v>

</ActiveP1ayerLocati on>
<version>Editor v4.02.02<
<GamelD>72c4a060-7a5a-4 293
<Name>Wystery at MIT</Namle
<NewEnt tyIndex>23</NeEntit
<objects>

<ArGameobject xsi:type."Ar
<Name>Peter Reid<-/Name>
<ID>7</DO>
<Accessi blityconditions

<Arcondition>
<subconditions>

<Ar aseconditi onTy
<Rolel0s>

<nt>4</int>
</RolIDS>

</AreaseconditionT
<ArBasecondt ti onTv

Figure 1.9 From XML to GUI. The Outdoor AR Game Editor provides a means of
creating custom OAR games using a desktop application and abstracts away
the need to manually generate game content in XML.

Creating a game may seem simple enough using the existing toolkit, but in reality the creation of

a cohesive and effective OAR game is a much more involved process than just dropping game objects

onto a map and typing in some text. Perhaps the most important aspect of OAR games is the connection

between the game and the physical location. A truly immersive OAR game implementation is more than

a linear walk-a-path through the game space, it is a dynamic experience that complements and adapts to

the surrounding environment. This level of player engagement requires a thorough understanding of the

game's physical location, something that can only be achieved through dedicated exploration and research

of the game space.

Furthermore, the existing toolkit offers an extensive set of tools and options for game creation,

each adding its own dimension of complexity to the overall game. Every game object has a profile and

content which may be specific to player role and game chapter. Game objects have the ability to contain

other game objects, to change their visibility based on time, and to change the visibility of other game

vow

Cuner SVmew

Fle Vew To*l Help

UN WC Grad

<Asaeonlio-

objects after being "visited" by the player. Team scripts can be applied to override initial location and

visibility settings. As the laundry list of features continues to grow, so does the difficulty in managing the

complexity of games.

The current challenge and the focus of this project is to streamline the process of creating OAR

games, focusing on the needs of the most common users: game designers.

2. Problem Statement

Creating OAR games can be a very complex process because of the sheer size the scope of a

game can take on. Managing all the details of a game becomes increasingly difficult as the amount of

game content grows larger and as more features and levels of customization are added to the game.

Although the existing Game Editor is a drastic improvement over plain-text editors in terms of managing

this complex process, the toolkit is still an XML builder in spirit and does not always provide the ease of

use and robustness of features that game designers would like when creating games.

This project is a re-evaluation and extension on the interface of the existing Game Editor toolkit.

By focusing on key user interface design principles, investigating the needs of game designers throughout

the design and implementation process, and exploring new methods of visualizing and working with

game data, this project strives to develop a more "designer-friendly" Game Editor and to remedy many of

the interface problems in the existing toolkit in order to improve overall usability.

What is usability? Usability.gov defines usability as "how well users can learn and use a product

to achieve their goals and how satisfied they are with that process" (US DHHS). Usability guru, Jakob

Nielsen, defines usability as a "quality attribute that assesses how easy user interfaces are to use"

(Nielsen, 2003). In short, there is no strict definition. Usability can be defined using a variety of

dimensions depending on the application. However, there does exist a traditional set of measurements

used to evaluate usability. These measurements are learnability, memorability, efficiency, errors, and

satisfaction (ISO 13407, 1999).

This chapter describes each of the usability measurements in more detail and identifies areas of

improvement that can be made to the existing Game Editor interface. Information pertaining to the pros

and cons of the Game Editor was gathered from performing a heuristic evaluation (evaluation based on

usability guidelines) of the interface, as well as from surveying OAR game designers

2.1 Learnability and Memorability

Learnability refers to how easily new users accomplish basic tasks the first time they encounter

an interface. Memorability refers to how easily returning users accomplish tasks each subsequent time

they encounter an interface. Improving learnability and memorability essentially involves making

interfaces easier for new users to learn and easier for returning users to remember.

Issues with learnability and memorability in the Game Editor:

* Lack of documentation:

Documentation of features and instructions for operating the Game Editor are not always

readily available since they reside as documents separate from the toolkit. Although it would be

ideal for an application to be used without documentation, creating OAR games is not an entirely

intuitive process and having an easily accessible resource to reference for help would be useful.

* Insufficient interface cues:

Cues are nonverbal indications of system functionality. One example of a cue is the

affordance, or mapping between the "perceived and actual properties", of controls (Norman,

1988). For example, button controls have an affordance of "click here" while textbox controls

with a blinking cursor have an affordance of "type here". Other types of cues include the

positioning and visibility of controls and feedback in response to user actions.

Web Images Maps News Shopping Gmail more

H iAffordncesGoogle" Google
Web Books

SAffrdance - Wikipedia, the free encyclopedia

G oole Serch I'm Feeling Lucky An dance is a quality of an object, or an environment.
an action. The term is used in a variety of fields: ...
en.wikipedia.org/wiki/Affoldance -28k - Cached - Similar

Figure 2.1 Cues. Cues are contextual implications of an element's functionality. Some

well known cues are cursor changes: an I-bar indicates an area for typing and

a pointing hand indicates a clickable hyperlink.

There are a handful of features in the Game Editor, such as Substance Types, Spill

Objects, and Team Scripts, which could benefit from additional cues to provide clearer indication

of how they should be used. Even experienced game designers are unaware of certain game

features or struggle with using more ambiguous parts of the Game Editor.

* Inconsistent interface:

By the Law of Least Astonishment (also known as the Principle ofLeast Surprise), an

interface should always respond to the user in the way that astonishes him the least (James, 1987).

Similar things should look and behave in similar ways. Conversely, different things should be

visibly different.

The interface of the Editor has inconsistencies both internally and externally. Externally,

the overall layout of the interface differs from applications that are more commonly used by game

designers. Internally, the placement, organization, and labeling of similar options may differ

from object to object and from dialog form to dialog form. Finding a particular option is not

always clear or consistent and many options such as the admin code and GPS settings are grouped

haphazardly under the "Miscellaneous" tab in the Game Properties dialog form.

2.2 Efficiency

Efficiency refers to how quickly users can accomplish tasks once they have become familiar with

an interface. There are many different methods of improving efficiency depending on the type of

interface. More common methods include setting keyboard shortcuts, providing default user inputs,

keeping a history of recently performed actions, and allowing customization of interface controls.

Although methods of improving efficiency are often catered towards experienced or "power" users, an

interface design should strive to improve efficiency for users of all levels.

Issues with efficiency in the Game Editor:

* Restrictive modal-dialog interface:

With the exception of placing and moving game objects around the game map, all Game

Editor interactions such as viewing and editing game object properties are made through modal

dialog boxes that are displayed above the rest of the interface. Modal dialog boxes are dialog

boxes that prevent the user from interacting with the application that the dialog was displayed

from. As a result, viewing and changing parts of the game can only be done one part at a time.

This format may be suitable for a system with a small amount of dynamic data or when working

with isolated parts of the game, but turns designing games with a lot of complex, connected parts

into a very tedious and often frustrating process.

____ -__ __ I

4-

,I r> .

Figure 2.2 Modal dialogs in the Game Editor toolkit. Game object properties are

viewed and edited through modal dialog boxes that cover up and prevent
interactions with the rest of the interface.

* Lack of functionality shortcuts:

The Game Editor interface does not provide any convenience controls such as keyboard

shortcuts, relying solely on mouse input for even simple tasks like saving a game. Although the

use of convenience controls has a bit of a learning curve, it can greatly improve efficiency once

mastered. The Game Editor does provide shortcuts in the form of context menus, but the menus

do not always include a complete set of functions.

* Lack of default user input:

Creating an OAR game involves a good deal of data entry such as specifying different

properties for each game object. When adding a new game object, game designers are presented

with a blank form and required to fill in fields (which may or may not be pertinent to their

particular game implementation) before the object can be successfully added. If the designer

forgets to set certain properties, it can often lead to unexpected behavior during deployment. For

example, if the visibility of a game object is left unspecified, it is defaulted to invisible and the

game object will not appear in game. Providing meaningful default values not only improves

0...rru.

OaTpj

- --- , ---- -~ I ----- ---- -- ------
S9P~EA~

41u

1

1

I

efficiency, but can help designers better learn the interface by providing examples of proper field

entries.

* Non-mobile application:

The Game Editor cannot easily be used remotely because it is a desktop application.

Creating a location-based game using a non-mobile tool thus proves to be a prolonged process

since not all tasks can be completed directly in the Game Editor. Tasks such as incorporating

information from the game site and verifying the placement of game objects on the map must be

completed on-site. Without the ability to add content or make corrections on the fly, game

designers often need to make multiple trips to the game site before the game is set to their

satisfaction.

2.3 Errors

The measurement of errors is based on the frequency, severity, and ease of recovery from errors

made by users. It would be nearly impossible to stop all user errors from ever happening, thus the goal of

an interface should be to prevent the occurrence of errors as much as possible and, at the very least, to

provide clear error messages.

Common errors made when using the Game Editor:

* Forgetting game content:

Game designers often conceptualize and assemble game content outside the Game Editor

and have to manually port (copy-and-paste) the information into the Game Editor. Repetitive and

tedious tasks such as these are prone to slip errors, or failures of execution (Reason, 1990).

Designers will often make the mistake of copying information into the wrong places or forget to

specify information all together. Without having the ability to holistically view all the game

content and spot check for holes and mistakes, game designers must methodically verify that all

content is present and accounted for. The verification step can be just as repetitive and tedious as

porting the content, so designers may not catch all the errors.

* Forgetting game flow settings:

Similar to making errors when populating game content, game designers will often make

mistakes when specifying game flow settings. Errors include setting a game object's visibility

property to the wrong value, forgetting to set triggers for game objects, and placing the wrong

game object within a container object. These types of errors are even harder to detect because of

the dependency between multiple game objects, each of which can only be viewed independently

of the others as a result of the modal-dialog driven interface.

* Formatting text and images incorrectly:

Since editing the game and playing the game are done on different devices, a disparity

can exist between how text and images appear in the Game Editor and how they appear in the

Game Engine. To ensure a clean game implementation, designers must ensure that content

properties such as image resolution, text length, and web page layout appear as designed on the

actual handheld device. Currently, the only way of verifying the look and feel of a game is

deploying the game file and all its associated media files to the handheld device and manually

playing through the game. The time it takes to test every image for every game object after every

modification can quickly add up.

2.4 Satisfaction

Satisfaction refers to how much a user enjoys using the interface. Since it is very subjective

measurement that is often loosely defined, satisfaction is difficult to evaluate concretely. There has been

a lot of research conducted around developing a structured method of measuring user satisfaction, but

none of the proposed instruments have been accepted in the general case. One such instrument is Bailey

and Pearson's 39-Factor Computer User Satisfaction. Users are asked to rate an interface on multiple

point scales according to a list of factors such as accuracy, reliability, timeliness, and confidence in the

system (Baily & Pearson, 1983).

The satisfaction that a user derives from using an interface is inevitably tied with all the

measurements previously mentioned. Not many people would enjoy using an interface that came

packaged with a 1,000 page manual, required stepping through a dozen screens to specify a single setting,

and crashed sporadically without so much as a warning message. By focusing on ease of use, efficiency

of tasks, and an error-free system, improving satisfaction can be easily accomplished for the general user

population.

The interface revisions proposed by this project focus primarily on these measurements of

usability and try to remedy each of the specific problems outlined above. Since the application being

developed is a toolkit for game designers creating OAR games, the revisions also focus on requirements

governed by the needs of game designers and the structure of the games. This user and requirements

analysis is presented in the next chapter.

3. Requirements Research & Analysis

This chapter details the requirements gathering step of this project. In order to design a new

Game Editor interface which accurately reflects the needs of game designers and supports all features of

OAR games, it is necessary to first identify what these needs and features are. A crucial step in designing

interfaces with good usability is conducting user and task analyses in order to determine how the system

can best meet the needs of its users (Hackos & Redish, 1997)

The first section presents the user analysis. The purpose of the user analysis is simple enough:

"Know thy user for he is not thyself' (Rubinstein & Hersh, 1984). Since developers are typically not the

targeted users, they must find out who the users actually are. Learning about the users consists not only

of their individual characteristics, but also situational information such as the environment and social

context in which they use the interface. Does the user work in an environment that has a lot of

distractions? Does the user work individually or as part of a team?

The second section presents the task analysis. The purpose of the task analysis is to identify the

high-level goals and supporting tasks that must be accomplished when using the interface, essentially the

purpose of using the interface in the first place. Task analyses can also provide insight into how users

typically plan and approach these goals and tasks. The information for the user and tasks analyses was

gathered from interviews and surveys conducted with OAR game designers. In total, six game designers

with varying degrees of experience creating OAR games participated in the user and task analyses.

Questions posed in the interviews and surveys can be found in Appendix A.

The third section presents the requirements analysis. The purpose of the requirements analysis is

to create a description of the system's necessary functionality. This information was gathered from

reviewing documentation for the existing Game Engine and Game Editor applications.

The last section introduces the proposed approach for designing the new Game Editor interface.

The approach was derived from a holistic review of the problems identified in the previous chapter and

the information gathered from the following requirements research.

3.1 User Analysis

The targeted users of the Game Editor toolkit are game designers; typically education researchers

who are investigating the feasibility and value of using OAR games in a classroom setting. Game

designers can be divided into two groups: (1) new designers and (2) experienced designers.

New designers have never created or played an OAR game and are thus unfamiliar with the

features and structure of the games. New designers require more support getting started with using the

Game Editor and rely more heavily on documentation, application help cues, and guidance from more

experienced designers to learn how to use different features of the toolkit. Having never used previous

iterations of the Game Editor, new designers do not have any expectations based on earlier iterations of

the toolkit.

Experienced designers have medium to high familiarity with creating and playing OAR games.

Experienced designers sometimes require a small amount of support with new or previously unused

features, but are more concerned with accurately and efficiently revising previously implemented games

or creating new games of similar structure. Having used previous iterations of the Game Editor, some

experienced designers prefer consistency with earlier interfaces.

Game designers generally have the following characteristics:

* Computer literate.

Designers have experience working on various computer platforms and operating

systems. Since the Game Editor toolkit is only supported on Windows PCs, designers typically

use desktop computers that are fitted with Windows XP when creating OAR games.

* Experienced with other editing applications.

While creating OAR games, designers use various editing applications including

Microsoft Office Suite for editing text and presentations, Adobe Creative Suite for editing image

and multimedia, and Macromedia Dreamweaver for editing web pages. Designers are thus more

familiar with these types of application interfaces.

* Collaborate with other designers.

Designers work in teams that have anywhere from 1 to 20 people while working on OAR

games. Tasks divided up amongst the team include curriculum development, game content

creation and formatting, and game building and testing. Since all the tasks are interrelated,

designers must share ideas and discuss game content frequently.

* Design and implement games in a very iterative manner.

Creating an OAR game is a very iterative process. Curriculum and content must be

reviewed and revised often to ensure they meet education standards and provide a compelling

enough game for students. Depending on the life cycle of the project, designers may have to

perform major game revisions anywhere from 1 to 5 times, usually in very quick succession.

3.2 Task Analysis

Creating an OAR game is no trivial task. From first inception to final deployment, there are

many steps which must be done and redone in order to produce a clean implementation. The game

creation process can be broken down into four high-level tasks: (1) design the game, (2) build the game,

(3) test the game, and (4) revise the game. Each task is presented below along with more detailed

subtasks.

1. Design the game.

* Identify requirements:

OAR games are created with the purpose of teaching students and therefore must meet

certain educational criteria. From the very start, game designers hold interviews and discussions

with educators and project facilitators to identify education standards, learning goals, and

characteristics of the targeted student age groups. Logistical requirements, such as time

constraints, group sizes, levels of supervision, and number of available staff, are also identified in

these meetings.

* Scout the location:

When an OAR game is conceptualized, there is typically a location already in mind. The

location must still be evaluated to ensure its suitability for the curriculum and to identify any

additional logistical limitations such as out-of-bound areas or places of potential traffic

bottlenecks. Game designers may even begin gathering game content and staging portions of the

game around landmark objects while on site.

* Gather background information:

Since game designers are typically not actual teachers, they must learn more about the

material being presented in order to incorporate proper information into the game. This step may

involve sifting through school curriculum plans, reading relevant literature on the subject, or even

trying games with similar themes and structure.

* Conceptualize the game:

With all specifications and background information in mind, the game designer must now

convert the gathered information into a cohesive game. Content balance is crucial to ensure

sufficient information is provided to complete in-game tasks, all roles are contributing equally to

the group, and the game meets all educational requirements but is still interesting to play.

2. Build the game.

* Prepare game assets:

One of the most compelling aspects of OAR games is the ability to present media

content. Typical assets used in games include images, audio and video clips, text articles, and

web pages. All these resources must be gathered, correctly formatted, and reviewed by the design

team before being placed in-game.

* Assemble the game file:

In order to have a playable OAR game, a game file must be created using the Game

Editor toolkit. Information specific to each game implementation falls into two categories: game

settings and game content.

Game settings are information related to the logistics of game play. Game settings

include the game map image and coordinates, names of the player roles, time and date, and visual

settings such as the color of the player icon. Game content is all the information that was

scripted during the design phase. Game content includes game object profile details, text and

media data that game objects present to players, as well as other information that describes how

game objects are related to one another and how players interact with game objects. A

comprehensive list of all the game settings and game content options can be found in the next

section.

3. Test the game.

* Content testing:

With so much information embedded within an OAR game, missing and erroneous

content is a likely and frequent occurrence and must be identified and corrected before the final

implementation. As mentioned in the Errors section of the Problem Statement chapter, common

mistakes include forgetting to place files in the proper game directory, associating text and

information with the wrong game object, and incorrectly setting the visibility or triggering of

game objects.

* On-site testing:

The final implementation of OAR games is played outdoors, so naturally the playability

of the game must be tested on-site. Game specifications that must be verified and adjusted

include the positioning of the game objects (in relation to landmarks and other game objects) and

the ease with which players can "visit" game objects when moving about the playing field.

4. Revise the game.

Game properties and content must be continually revised to fix any errors found during

the verification phase and also to make adjustments after curriculum reviews with educators and

project facilitators. Although any aspect of the game may have to be revised, the majority of

revisions involve minor changes such as game object positioning, game object text content, and

media file formatting. This task is often repeated multiple times before the final implementation

is reached.

3.3 Requirements Analysis

The following tables are a compilation of all game properties, game object properties, and editor

functionality that are currently supported or need to be supported in the current Game Editor.

Table 3.1 Game Settings.

Game Title title of OAR game

Roles selectable player roles

Teams selectable player groups

Chapters time based game sections

Date & Time start/end time during game

Map Options

Map Image & Coordinates game map and corner coordinates

Zoom Map & Ratio optional zoom map and zoom ratio

Autozoom Boundary optional autozoom trigger region

Paint-a-Path Map optional player-to-path mapping

Hotspot Region size of object "visit" region

Nudge Region size of object tap to "visit" region

Player Icon look and feel of player icon (shape/color)

Trigger Highlighting look and feel of trigger indicator (shape/size)

A min Options
Manual Movement enable/disable thumbpad navigation

IR Transfers enable/disable IR beaming

GPS Settings GPS setup settings

Admin Code access code for in-game admin options

Table 3.2 Game Content.

Introduction info shown prior to start of game
Chapter Text info shown at chapter transitions
Start/End Tasks task reminders at start/end of game
Team Scripts team-specific settings for object

placement/ visibility
Point Objects (base roerties

Type classification type
Location location on map
Name object profile alias
Image object profile picture
Description object profile description
Map Icon look and feel of map icon (shape/color)
Visibility conditions for visibility (role/chapter)
Triggers/Anti-Triggers objects triggered/anti-triggered by this object

Point Objects (ItemsNPCs)

Info Pages information given to player (text/files)
Documents media documents given to player
Task task message displayed after "visiting" object

Point Objects (Gates)
Contained Objects objects this object "contains"
Object Codes associated codes with contained objects

Point Objects (Checkpoints)
Code code needed to clear checkpoint

Substance Objects (Substance Types)

Name substance type alias
Color substance type color indicator
Sampling Time time to take sample of this type (sec)
Accessibility conditions for accessing samples (roles)
Test Methods methods used to take samples of this type

Substance Objects (Test Methods)

Name test method alias

Processing Time time to process sample using this method (sec)
Percent Error possible error in test result
Accessibility conditions for accessing method (roles)

Substance Objects (Spill Instances)

Name spill instance alias
Locations location of spill foci points
Substance Type spill instance substance type
Drop-off linear/exponential drop-off rate from center
Intensity max spill sample value
Radius width of spill instance region
Visibility conditions for accessing samples (roles)

I I

Table 3.3 Editor Functions.

New Game create a new game

Load Game load a previously created game

Save Game save current game

Recent Files keep list of recently edited games

Edit Functions
Add/Edit/Delete add/edit/delete game objects

Copy/Cut/Paste copy/cut/paste game objects

Undo/Redo undo/redo user actions

View Functions

Map Zoom zoom in/out on game map

Preview Zoom Map preview zoom map image

Preview Paint-a-Path preview paint-a-path map overlay

Filter Game Object Display by:

- role/chapter show/hide objects only visible for role/chapter

- point objects show/hide point objects

- spill objects show/hide spill gradients

- triggers show/hide trigger/anti-trigger indicators

Tool Functions

Map Capture Tool tool used to obtain game map and coordinates

Check Files check for missing file paths

Repair Files repair broken file paths

Package & Deploy Game Consolidate game files and deploy to handheld

3.4 Project Proposal

Although the design stage is perhaps the most time and resource intensive stage of the game

creation process, the majority (if not all) of the tasks must be completed conceptually, outside the scope

of the toolkit. Much in the same way that an image must be conceptualized before it can be composed in

a graphics editor, an OAR game must be planned and conceptualized before being assembled in the Game

Editor. Thus the new design of the Game Editor does not attempt to integrate all game creation stages

under a single toolkit, but primarily focuses on helping game designers better manage the complexity of

games by alleviating the more tedious and error-prone steps during the building, testing, and revising

stages of the creation process. Providing game designer with better editing tools and better control over

game data allows them to spend less time building and testing implementations and more time focusing

on content and the overall quality of their games.

After reviewing the problems identified by OAR game designers and the information gathered

from the requirements research, there was an obvious need for two different interfaces for the next OAR

Game Editor. The first interface is a desktop application which extends from the current Game Editor and

is intended to be used when working with the majority of the game content. The second interface is a

new lightweight mobile counterpart for the handheld device which is intended to be used for on-site

planning and game adjustments.

The following chapters describe the design and implementation phases of developing each of the

new Game Editors. Design goals, prototype sketches, and implementation details are presented under

each section. The Desktop Editor (desktop application) is introduced in Chapter 4 and the Remote Editor

(handheld application) is introduced in Chapter 5.

4. Desktop Editor

As aptly named, the Desktop Editor is the desktop application of the new OAR Game Editor

toolkit. The more complex and heavy-weight of the two toolkit applications, the Desktop Editor's

intended use is to handle the majority of the work in composing an OAR game, particularly more

complicated tasks such as populating game content and specifying game flow details.

This chapter documents the design and implementation process of creating the Desktop Editor.

Development goals, prototype screenshots, and implementation details are presented in the following

sections.

4.1 Development Goals

The current Game Editor has already undergone three design iterations and has been an effective

tool in creating OAR games. Thus the intention when developing the Desktop Editor was not to create a

completely new interface but to improve and build upon the core infrastructure already established by the

existing Game Editor. Many elements such as the game map-centric, drag-and-drop method of

manipulating game objects were kept intact and re-evaluated to identify key areas for improvement.

In addition to a clean-up of the current Game Editor, several new interface elements and features

were added as part of the Desktop Editor's improvements. These features focused on addressing

limitations of the current Game Editor, in particular the lack of structure and direction when creating

games (learnability and memorability) and the difficulty and tediousness of completing tasks when

creating games (efficiency and error).

4.2 Prototypes & Design

This section contains prototype sketches and design descriptions for the most significant additions

and modifications made to the Game Editor, organized according to feature.

* Startup Screen and Wizard

The startup screen is the first screen the game designer is presented with upon launching the

Desktop Editor. This sort of welcome dialog is a common feature in many other applications and

provides the Desktop Editor with a clear entry point from which to navigate. The designer has the option

of starting a new game, loading a saved game, or quickly returning to a recently edited game file. These

options are not new features but are now directly presented to the designer instead of being tucked away

in the File menu.

Outdoor AR Editor v.OA

New Game

Load Game

RecentGame Fies

LIoiI

Figure 4.1 Startup Screen Prototype. The startup screen is the welcome screen of the
toolkit and is displayed when the Desktop Editor is first launched.

Figure 4.2 Original Game Editor Opening Screen. The current Game Editor launches
directly on to the main interface without providing any guidance to the
designer.

Electing to start a new game advances the startup screen to a "New Game Setup" wizard. The

wizard helps guide the designer through the initial setup of a game. One question considered during

design was how much content the game setup wizard would cover: from as much as the A to Z's of

creating an OAR game to as little as just the title of the game. In order to help the designer get started as

quickly as possible, it was decided to forgo a full tutorial and cover only the bare necessities of setting up

a game: title, roles, chapters, and game map.

Startup new game Wizard
Screen

load file Open File
Dialog

recent file
EDITOR

Figure 4.3 Desktop Editor Startup Sequence. The startup screen and wizard provide a
step by step guide for the designer through the initial setup of a new game.

rte

H F% %- To Mbb

In the final design, each of the setup options in the wizard is separated into its own individual

screen. By increasing the number of steps through the setup sequence, the wizard avoids overwhelming

the designer with too much information at once and has the opportunity to give a brief description and

emphasize the functionality of each option; something that would be especially beneficial to a new game

designer.

Lrbr*C b IJ*

k~~ ~r cr~m~~a*
rrarrrC l-W hh"rMuUgalur.rrm~n~crm~~*h **ta rl-~,~
inwrr* mrrlrr*

UmC14*p inw.14

WlhRIa
rst~~nhnI-~wrr4Y

WnI~Uj1r ~ dn*~

Figure 4.4 Wizard Paper Final Design. The wizard was separated into individual
screens to emphasize the purpose of each setup option.

* New Interface Organization

A recurring theme in the Desktop Editor interface is modularity. All editable options in the

Desktop Editor are grouped within three main tabs according to related game functionality: "Map",

"Object Info", and "Game Info". The "Map" tab is very similar to the main interface of the current Game

Editor and encompasses options related to visual properties of game objects such as map placement,

visibility conditions, triggers, and icon look-and-feel. The "Object Info" tab is used for editing all game

object related content including dialog text and media files, object containment specifications, and access

codes. The last tab is used for editing general game content that is player role specific. Content such as

introduction text, chapter transition messages, and start and ending task reminders are set up under the

"Game Info" tab.

40

~~1~~~5~ __ ~ ~~il~_ 1_1_ __^_ _~l__rll__ P_ ___~___

s nn.,

5~1

~~"-""~-~ ""~~ ^~"""*-~~"""~r;~~";~~-~"^ ~- ~'c"^~Y~'-"1Y"n~- ~~ D~~Fr~-rul~-a~-;*~;r---r~
L1 rPh ~l t

CHihl*b~nhpi*
~U)M LI~-Clr~r ~CYII~krhreh*nhmnr,~ln 9r

irsur I~ IzJ
juv i. U

Tlrrrt~rui u

i .s, I kl.

* qr r*

mrn,*
.I r' ~,l^ r~hn n~NFnr
~~~~ ~I~-~ ~nzs uUUu mr\qhrr nmrrrWrainmhr-enlNI\I~

r ,,~*n~ l i,
~Uloa

-c~e~ I tm ,:~~-I----i --------- ~

i

larnur,,,?, a rr,
rnnr~~- p p u uInnhlm.hrrnmmp

i UI j i



Figure 4.5 New Interface Organization Paper Prototype and Final Design. The
Desktop Editor interface is partitioned into three main tabs according to
related functionality: map, game object content, and general game content.

The game content within the "Object Info" and "Game Info" tabs are further grouped into pages.

Each game object type (Item, NPC, Gate, Checkpoint, and Substance type) and each game info type

(Introduction, Chapter Messages, and Start and End Tasks) has its own tabbed page under the "Object

Info" and "Game Info" tabs, respectively. Content on each tab and page is kept in sync with all others in

order to maintain consistent data. Thus modifications such as changing an object's name on the "Object

Info" tab will be properly reflected on the "Map" tab and all other referenced locations in the toolkit.

F 4 r Te rg

Figure 4.6 Layered Page Tabs. The main tabs are further grouped into pages according
to the specific type of game object or game info type.

41

a
I

u:lrru



The organization of editor options was influenced by observations of how game designers

typically approached creating OAR games and the sequence in which implementation steps were

completed. Regardless of project, the necessary parts identified by game designers for assembling an

OAR game included game object placement, content population, and general game setup. The three

tabbed pages on the main interface of the Desktop Editor were thus chosen to reflect these major parts.

Since different designers have different preferences for the order in which to complete these parts, there

arose the question of what would be the best ordering of the tabs. The tabs were originally arranged from

general to specific options ("Game Info", "Object Info", "Map") but the order was later reversed to reflect

the ordering which game designers generally use to planned out game implementations and also to launch

the toolkit onto a familiar interface for the more experienced game designers.

ailW -Co

Map OLec Info Carie [ift
T * " Tau T 

Figure 4.7 New Interface Hierarchy Map. The Desktop Editor interface upholds an
theme of modularity throughout its interface.

The main motivation behind the interface reorganization was to give more structure to building

games when working with the Game Editor. The grouping allows game designers to plan, build, and test

the game in more logical and manageable parts. For example, some designers who preferred to first plan

and populate game content found it a bit awkward that they were required to place each game object

before being able to start populating the game object's content. The grouping of editor options allows

these designers to focus and work on content for all objects in one sweep, then go back and properly

position the objects and adjust look and feel when they are ready to work on object placement.

Ii



. Content Tables

The content tables are the biggest addition to the Desktop Editor interface. All game object and

general game content such as text dialog and media files and chapter transition messages are displayed in

an Excel-like grid table layout. All tables are organized with player role column headers and content type

row headers, though the exact layout of information varies with the type of content being displayed. For

example, the chapter transition messages only take up single rows for each chapter message string while

objects such as Items and NPCs may take up multiple rows since each object can have a variable number

of dialog pages as well as associated documents and tasks.

Figure 4.8 Editing Content in Game Editor. Content in the Game Editor was edited
using individual property dialog forms which allowed only one object to be
viewed and edited at a time.

Fk View Took He

ur!~
I
!I



Figure 4.9 Editing Content in Desktop Editor. Content tables bring a new way of
visualizing and accessing game content. The new layout should prove to be a
more efficient and effective method of working with data.

Unlike Excel sheets, not all content tables are editable in place since many of the game content

values information are more complex than simple strings. For example, an object dialog pages can be

both plain text and media files, gate containment information are lists of selectable objects, and all game

object profiles consist of images and text. More complex information fields such as these are edited in

property panels associated with each content table. Each content table also has a toolbar which may

include options to add or remove objects from the table, invoke an "Apply All" function to copy content

into fields for all roles or all chapters, and sort content according to object type, name, or other

parameters.

Figure 4.10 Editing Content in Desktop Editor. Each content table has an associated
property panel and toolbar which is used to edit the displayed content.

I __l~lfl~~;__~rl____X-------~--ra: rrt rr*t 99ii---~-
- I---- - ~ii-rxu~.~-,,.~~.- i,,.;~,_..-. ~~...~.
"' 61
999 ~sm rknrrrlonr:~a :LaUMu*aLE*r*C M, LIP1 n~i-~C10 I rl~VI*19999 C l~ul9999 rar~11;1sQC k lrU rillC l rhrrtl*hx-

(rC~hi ~Xu*nf mtnn;
uw ar* au

rmw k~) rrUircrlrr:a~rm:-~lnnrm nr -r~l,.rtc-yr ml~nrmr~kr~r*U1 CF~I---ICI 1.1*-yWI-)C-r,-3W iWI IU*II YI ~ l-^(-*
anurrri-, a.~m a,-rrr*.r,lr4~ C1QfIrr~~lrr (1~1I~II1
91 931 lil
nu~l NU( NC I
*-ur-~ *ll rr* -r lq-ri C-l ~L?1M)urnlrrrtb -nlrr(Yr nrnk ri**xl.Wh~ *-LCILlh *I*LUbha *9 rC r r- n-*nxlUI)U)iIruhi-~99)999999"4~~' (19WIL(Ullr9999"99'9999
DU a~

: . : - -: :

99 I-u*r

Irr
~--al,~c-1-rr~r~Irl~prl~rtrr~"~ t,Ug^N
r-r

"L*-
-C*---rl)r~l~- r(--m~~'
"--^Ij)llr~rrcri~li.ilsV

li-LII-Ir lrl"411--_r e

.i

1!



The use of content tables helps a great deal in increasing the visibility of game content. Content

that was previously hidden in dialog forms and could only be viewed and edited one game object at a time

can now be viewed and edited simultaneously in a single location. Many game designers plan out game

content using Word documents or Excel sheets. Populating game content according to these designer

files becomes much more efficient since it requires fewer steps to port (copy and paste) from the

designer's text editor of choice into the Desktop Editor. Imagine the process as updating a list of phone

numbers that was organized in an Excel spreadsheet as opposed to a rolodex. Instead of looking up and

pulling out an index card for each modification, you simply select the proper phone number cell in the

spreadsheet and start editing. Spot checking content for any errors or typos also becomes a much easier

process. Instead of navigating through dozens of game object dialogs and keeping careful accounts of

what content has been populated and verified, designers can merely scan a single content table.

Figure 4.11 Content Table Paper Prototype and Final Design. Many of the visual
complexities from original prototypes were removed from the final design to
make the interface more simplistic and more in line with the modularity
theme.

The final design of the content tables is not as visually robust as earlier prototypes. The original

paper prototypes contained more iconic representations of information such as the visibility of an object,

its containment status, and the number of associated documents. This cut back was both a limitation of

implementation as well as a design decision to not overwhelm the designer with too much information.



Collapsing all game object information into a single content table would have worked contrary to the goal

of modularity and the grouping of different game functionality within separate tabs and pages.

Table 4.1 Permutations of Content Table Headers.

Row Heder Coumn Hader.Aalysi

Game Object Role

Game Object

Role

Role

Chapter

Chapter

IA -.
Chapter

Game Object

Chapter

Game Object

Role

- maximum visibility of information in table
- utilizes top-to-bottom scrolling

moderate visibility of intormation in table
(typically more roles than chapters)
utilizes top-to-bottom scrolling

- maximum visibility of information in table
- utilizes side-to-side scrolling

- minimal visibility of information in table, limited to
Viewing one game object at a time

- utilizes side-to-side scrolling

- moderate visibility of information in table
(typically more roles than chapters)

- utilizes side-to-side scrolling

- minimal visibility of information in table, limited to
Viewing one game object at a time

- utilizes top-to-bottom scrolling

Another design decision was determining which dimensions the content table would be organized

along. Currently game object content is specified based on three criteria: the game object, the player role,

and the game chapter. The final design utilizes player roles as column headers, game objects as row

headers, and chapters as selections in a drop down box which switches the content of the tables according

to the selected chapter. The final design was based upon an analysis of all permutations of the

dimensions from a game design and usability standpoint. Using a role and chapter combination would

still have provided more content visibility than the current Game Editor but still has the limitation of

viewing only one game object at a time. Since most OAR game implementations either have only a

' " ''" '' ' ' - "



single chapter or more roles than chapters, chapters were the better candidate for the drop down box since

it would be used less frequently to change views. Lastly, player roles were chosen as column headers as

opposed to row headers since there are always more game objects than player roles and side-to-side

scrolling is more difficult and less conventional than top-to-bottom scrolling (Accot and Zhai, 1997).

* Extended Property Panels

In addition to increasing the visibility of content, the Desktop Editor strives to increase the

visibility of important game options and settings. Many of the options in the property dialog forms of the

current Game Editor have been moved to more persistent property panels. The "Map" and "Game Info"

tab have been fitted with collapsible property panels at the bottom of each tab which contain game map

and game setup properties, respectively. These property panels contain only the most commonly used

properties while more advanced settings such as Auto-zoom and Paint-a-Path map features remain in the

full game options dialog form which may be accessed via the "All Properties" button on either of the

collapsible panels or through the Edit menu.

Jg

Figure 4.12 Map and Game Setup Property Panels. Persistent but collapsible property

panels on the "Map" and "Game Info" tabs contain game map and game setup

properties.

I
us r**rrrr rrum

,Q -; -*:
uu

(r~;i:-w*c;t : ::WI~O 3L: i~(



In the current Game Editor, the main interface includes a side property panel which switches

between an object overview tree list and a selected game object's properties. These property panels have

been kept intact but modified slightly. Extraneous information was removed from the overview tree and

the tree now only displays information related to an object's location and containment status. Especially

useful are the lists of contained objects displayed with each gate object since these contained objects

cannot be selected from the map. For the object property panel, visibility and trigger settings are new

additions to the already present basic object and icon properties.

Figure 4.13 Map Overview Tree List: Before and After. Extraneous information was
removed from the current Game Editor's overview tree and now only includes
the object's location and containment status.

In the current Game Editor, visibility settings only applied to an object's initial visibility. Thus

designers could only specify when an object first appeared and disappeared. The Desktop Editor allows

designers to set visibility for any chapter and for any role using a checkbox tree that lists out all player

roles and chapters. Triggers were previously specified by checking off objects for a particular player role

and chapter combination. The Desktop Editor takes a completely opposite approach, specifying triggers

according to game objects as opposed to role and chapter conditions. The triggers are displayed in the

property panel as a list of game objects with an icon indicating whether it is a trigger or anti-trigger in

addition to a list of role and chapter conditions for which the trigger applies. Adding or editing a trigger

---- i

i I U" ' "'31~m~- :~~sn, .~i ~uu~ a* i



brings up a dialog from which the designer may select a game object, the type of trigger, ad conditions

using a checkbox tree similar to the visibility settings.

Figure 4.14 Editing Game Object Visibility: Before and After. The visibility

properties for game objects have been moved from the object property dialog

into the map property panel.

Role Er orRa laa __ i i

Q MirdFilpPa" Rmd

0 Arbr a !

LI Fdodh.,D I-Ro m0 R
1[] D

DoraThmrson1[3 J"W
M. W~oRdor.10 D"* Uoap""

FF11-1,El!

L .F.T

lmdan., i..dI

[] Dr.avis

Li RmGawia

0 LI a"
ow
Da T...... . , t .........

EiFunaw ippForMd
FaMulmu,

OWbMMa [!!!. Rord

0lp3l AMgagorev We.

¢h~ml~m
Ive Chapter 1

,3 []Enginer

apt r ISChapter 2]Chapte
-3 0 Ewestigttie Rporte

-- : :

a y on... .d ...flf
GaraI Chapter 1,

Chapter z

-. 1 ,

Figure 4.15 Editing Game Object Triggers: Before and After. The trigger properties

for game objects have also been moved from the object property dialog into

the map property panel.

By exposing more options that were once buried within dialog forms, the interface maximizes the

visibility of important options and settings and reduces the amount of navigational traffic through the

interface. Designers will be able to more efficiently find and set game options and new designers will be

more aware of what options are available and important to specify for game play.

Ammim d Imt

Pi D-Woma

r 0bjrcth~cc-WrrvmAG*"

Mlw T To

WWOd

ma

V"Iky

7
Intevim

= r -C*i

!~~u
uapa_t,:&- -i;*

llPJ99S~

i

I~*"DL

i wi

I

1 j

-r i

1ii

ill ,



• Stray Object Sandbox

A new feature added to the Desktop Editor is the Stray Object Sandbox. The sandbox is a

temporary holding area for game objects with no specified location (i.e. a "stray object") and thus cannot

be accurately displayed on the game map.

Gru..""GrodStudent

CotfHM»:er

, !

.~.!::-....""""""-'-'---.o.-J;I ~::'"
i :0 ,ft;:~=:~'::; Stuy ObJf<tl

I (-*":=Gt...~ .----.--------

.. tdot r .....

I ~ ~- :,)~w. ;~ =~

Figure 4.16 Stray Object Sandbox. The Stray Object Sandbox is a temporary holding
area for objects without set locations.

The sandbox is displayed on the overview panel of the "Map" tab. To move an object from the

sandbox onto the map, the designer simply selects a stray object from the list and clicks the "Add to Map"

button. The object's coordinates are then set to the center of the map, which is updated immediately in

the interface. The designer can then move and position the object at will.

50



Figure 4.17 Moving a Stray Object onto the Game Map. Stray objects are placed at
the center of the map by default when moved out of the sandbox.

This feature was added to the Desktop Editor since designers can now add game objects by means

other than directly placing them on the game map, more specifically by adding objects to content tables

on the "Object Info" tab. By placing the completed objects into a temporary holding area, designers do

not have to switch back and forth between the map and the content views or worry about object placement

as they populate game object content.

* Spill Testing

Another new feature added to the Desktop Editor is Spill Testing. Designers have the ability to

enter a "spill testing" mode on the "Map" tab to retrieve samples of spill objects using different testing

methods, just as a player would when playing the game.



Figure 4.18 Spill Testing. The spill testing feature allows game designers to verify the
placement and values of spill objects placed on the game inside the Desktop
Editor.

The Spill Test buttons is located on the "Map" tab toolbar. The panel to the right of the game

map allows designers to select the substance type they would like to test and the test method they would

like to use for sampling. Samples can then be retrieved by clicking on different locations of the game

map. An icon labeled with the substance type and sample value will be displayed on the map.

Figure 4.19 Testing Spill Object Values. Clicking on various locations of the map will
display icons labeled with the substance type and sample value.

_ II ~_~___ 1___1~____1__ *_^IIII__I^~_~______I_~i. -~-~~----ILiXq~l

Ili rrrljn~r*nh :*rJm T.-iiirr
~ ,,.,,. z.r ~rrt -r ~ r



This feature was added to help designers test placement and sample values of spill objects on the

game map. Though it may be more accurate in terms of game play to perform sample testing on location,

designers may not always have the time to walk around the entire game map taking samples and plotting

values for verification. This feature provides a quick and easy way to test samples and catch common

mistakes such as incorrect maximum intensity values, incorrect drop off rates, or overlapping spill objects

which return abnormally high values since the values are additively compounded.

* More User Feedback

As part of the cleanup effort of the Game Editor, a few passes were made through the existing

interface focusing on providing designers with more information about editor features and functionality.

The first pass focused on clearer and more consistent naming and labeling standards for features

as well as fitting interface controls with tool tips with brief descriptions of their purpose and functionality.

Tool tips are displayed when the designer hovers the mouse cursor over any part of the interface control.

File Edit Tools Help

Figure 4.20 Interface Tool Tips. The majority of interface controls are fitted with tool
tips explaining the purpose of each feature and how it should be used.



A second pass through the interface focused on clarifying error messages and placing more

confirmation dialogs in riskier parts of the interface. A number of the error messages in the current Game

Editor contain cryptic messages and jargon which do not divulge much information about the cause of the

error and how to resolve it. One example is the File Checker which checks for missing or broken game

content file paths and displays a list of problematic links. The current Game Editor returns a list of IDs

for media files that have broken paths which is not very helpful for resolving the issues since media IDs

are not provided to the designer anywhere else in the interface. This particular example was redesigned to

display the name of the game object that the missing file is associated with as well as the full path of the

broken link. Confirmation dialogs were also placed in many locations that were at risk of designers

accidentally deleting a lot of information, such as removing roles or chapters which would delete all

associated game content. Although pop up dialogs can be a bit of an annoyance, it is less tragic than

recovering hours worth of lost work.

Figure 4.21 Helpful Error Messages. Error messages were revised to help explain the
problem and propose possible solutions for errors occurred during game
editing.

Another pass focused on identifying property fields which could use default values when being

newly added. Examples include designating new roles as "New Role" or defaulting pages added to an

object's dialog to have the text "New Page". Default values provide new designers with additional clues

on how to use features by providing examples of what information should be placed in a particular field.

The image for "Doug Thompson" is missing or corrupt.
doug.bmp

The image for "Drainage Pipe" is missing or corrupt.
drainpipebmp

OK



Default values are also good indicators of missing data. A common mistake that designers make is

confusing missing data with broken functionality. For example, if a designer forgets to specify dialog

text for a particular role or chapter, no dialog is displayed for that game object in game since the OAR

Game Engine is defaulted to ignore blank pages. Game designers must now intentionally leave a page

blank, otherwise the text "New Page" will appear in game.

4.3 Implementation

The Desktop Editor is a Windows application implemented in C# using the Microsoft .NET

Framework SDK 2.0. An additional development SDK, the Krypton Component Factory SDK 2.8.5, was

also used in order to have access to an extended library of user interface controls. The structure of the

code base for the Desktop Editor is organized by modules according to the Model-View-Controller

development model (Apple Inc., 2007).

* Model

The Model module of the Desktop Editor is a collection of OAR game-related object classes.

Much of this code was previously maintained in separate code bases for the Game Engine and Game

Editor. In order to reduce the amount of redundant code as well as the sections of code that needed to be

updated whenever changes were made to the game, the object classes were recently refactored so that all

classes reside in a single library, the CommonLib, which is shared between all the OAR applications.

One notable change to the backend code during the refactoring is the new structure of game

object types. Items, NPCs, Gates, and Checkpoints were previously specified as sub-classes of a base

object class but largely handled their properties and functionality in their own derived classes. The game

objects in CommonLib are all instances of the same ArTemplateObject class and utilize a templating



system to specify unique values for common game object properties as well as to specify special

behaviors such as providing dialog information (i.e. Items and NPCs) or containing other game objects

(i.e. Gates). The main motivation behind the use of templates was to provide a way of visually

customizing game objects that are functionally the same. For example, Items and NPCs are essentially

the same game object in code but are referenced by different names and may have different map icons for

the purposes of game play

Table 4.2 Game Object Base and Template Properties.

GaelbjctBae roerie
IJ

Visibility Conditions

Trigger Events

AntiTrigger Events

Location

Image Path

unique object ID number

conditions object is visible

objects triggered by this object & conditions

objects anti-triggered by this object & conditions

x,y coordinates of game object

profile image path

Glyph Shape map icon shape

Glyph Fill Color map icon fill color

Glyph Border Color map icon border color

Glyph Visited Fill Color map icon fill color (visited)

Glyph Visited Border Color map icon border color (visited)

Template Icon Image template icon image for Editor UI

Show Info Panel does game object need info property panel?

Show Access Code does game object need code property panel?

Show Container Panel does game object need container property panel?

Template Name name of template type



* View

The View module of the Desktop Editor consists of all the window and dialog forms that make up

the Desktop Editor interface. Since editor options are grouped according to similar game functionality,

the interface forms naturally are organized in a similar structure: layered pages and tabs. Each of the

forms is responsible for handling user input, displaying the proper game data, and ensuring that the data is

in sync with the backend.

The most taxing part in implementing the interface was populating and maintaining the data

displayed in content tables. In the current Game Editor, game content is accessed in dialog forms on an

as needed basis, which simplifies the display and editing of data. Content tables display all game content

simultaneously, allowing the data to be viewed and edited at will. The interface controls tagging system

provided by the .NET Framework was utilized to simplify data maintenance. Every row header, column

header, and cell was tagged with object IDs or pointer references to data so the values of that data could

be accessed and updated without having to perform excessive look ups. As a result a lot of accounting

had to be done to make sure tags were correct and that data was being correctly referenced and modified.

Figure 4.22 Content Table Tagging. In order to provide faster access to game data and

avoid excessive lookups, row headers, column headers, and table cells were

tagged with different game data references. This figure shows the tags used

on one of the more complex tables: Item and NPC information.



Furthermore, content table cells contain varied types of data which are edited in different

manners. The proper property panel had to be created and displayed based on the cell selected in the

content table in order to provide the designer with access to the right editable fields. In retrospect

utilizing the SDK's Property Grid control would have provided a simpler and more uniform way of

modifying property values.

* Controller

The Controller module acts as an intermediary between the toolkit user interface and the backend

data. Since much of the backend data can be accessed directly with simple set methods and the View

classes directly handle a good portion of processing user input, the Controller module of the Desktop

Editor is fairly small. The EditorManager class is the main Controller class and primarily handles more

computationally expensive methods for accessing and manipulating data that are referenced in several

locations in the Desktop Editor. Some of the tasks that the EditorManager takes care of include

performing clean up work when game objects and other settings are removed from the game, and tracking

changes made to game data to ensure different parts of the interface are updated appropriately to stay in

sync.

Some Controller related functionality, is also maintained in CommonLib since it is used by all

OAR applications. More specifically, CommonLib contains the input and output utility classes used for

saving and loading OAR game files. The utility classes were also revised in the recent code refactoring to

take advantage of the .NET Framework's XML serialization capabilities. Game files are now loaded and

saved using serialization as opposed to being written and read one XML line at a time. This change also

helps reduce the amount of code that needs to be maintained when changes are made to the game.



5. Remote Editor

The Remote Editor is the handheld side of the new OAR Game Editor toolkit. A brand new tool

being introduced to OAR game creation, the Remote Editor was designed as a mobile compliment to the

Desktop Editor. The intended use of the application is to allow designers to directly modify and test

game implementations while at the game's physical location.

This chapter documents the design and implementation process of creating the Remote Editor.

Development goals, prototype screenshots, and implementation details are presented in the following

sections.

5.1 Development Goals

The development of the Remote Editor was largely motivated by the importance of game locality

as part of the concept of OAR games. In order for an OAR game to be an effective and truly immersive

experience, the game must be conscious of the characteristics of a location and try to make connections

between objects in the location and game content as much as possible. By creating a mobile editing tool,

the game location can more easily be incorporated into the OAR game design process. Game designers

are more likely to spend time exploring the location while planning their games and to more accurately

work objects in the game location into the content.

Another motivation for the Remote Editor was expediting the process of testing game play. All

problems and information gathered from pilot testing a game must be carefully documented, manually

updated in the Game Editor, and verified again at a second trip to the game site. This multi-step process

requires of lot of time and effort, especially if the game location is not easily accessible.



Following from these motivations, there are two major tasks that the Remote Editor application

focuses on: (1) location-based game design and (2) on-site game refinement. Location-based game

design allows designers to immediately add, remove, or modify game objects and log memo notes as they

are exploring the location. On-site game refinement allows designers to test game object placement and

game settings and directly make adjustments as necessary.

5.2 Prototypes & Design

This section contains prototype sketches and design descriptions for the Remote Editor, organized

according to feature. The interface design and general functionality of the Remote Editor is heavily based

off the Game Engine application. The reason for mirroring the Game Engine is to provide experienced

game designers with a familiar interface and to keep a consistent look and feel across the OAR game

applications.

* Remote Editor Setup

To start editing a game in the Remote Editor, the designer loads a game file into the application

the same way a game file is loaded into the Game Engine: using a file selection screen at launch time.

The game file can contain as much or as little game content as the designer wishes to work with but must

have the bare minimum of one role, one chapter, and a game map with valid map coordinates.

Two methods were considered for setting up games in the Remote Editor. The first method was

starting a game completely from scratch. The designer would have to acquire a map using the Desktop

Editor's Map Tool, load the image and corresponding coordinate file on to the handheld device, reference

those map files when starting up the Remote Editor, and finally save it into a playable game file. The



second and current method was building on an existing OAR game file and involved the steps described

at the beginning of this section.

Figure 5.1 Scratch Method Setup. Using the scratch method for setting up the Remote
Editor requires acquiring a map using the Map Tool, uploading the image and

coordinate file to the handheld, loading the files in the Remote Editor, and
saving the game into a playable game file before beginning to edit.

Figure 5.2 Build Method Setup. Using the build method for setting up the Remote
Editor requires initializing a game file in the Desktop Editor, uploading the
file to the handheld, and loading the files in the Remote Editor to start editing.

The build method is the simpler of the two methods in terms of number of steps required to set up

the Remote Editor as well as consistency with loading games in the Game Engine. Since the Remote

Editor also allows designers to edit and test pre-existing game files, it needs to support the loading of

OAR game files regardless. Maintaining a single loading and setup sequence for both new and existing

games is more consistent and less confusing for users.

* Main Interface



Given that the Remote Editor puts a heavy emphasis on game location, the main interface of the

Remote Editor is naturally dominated by the game map. The main screen consists of several parts: map

panel, GPS status bar, editing toolbar, and the file menu bar. The original prototype design also contained

a game object information panel which displayed the profile information of a selected game object, but

due to limitation on screen space, this feature was redesigned as a caption box displayed on top of the

game map.

W Rohi IMe Toam (100,100) M IAN dWpen

[ VPiew optins Ntp

Figure 5.3 Main Screen Original and Final Prototypes. The original mockup of the
main screen contained an additional game object information panel which was
changed to a caption in order to save screen real estate.

Like the Game Engine main screen, the map panel displays the game map with icons indicating

the placement of all game objects as well as an icon tied to the location of the designer as he moves

around the map.

The GPS status bar is an up-to-date display of the game designer's location in game coordinates

and the signal strength of the GPS device. Since the designer does not normally need to be concerned

with the finer details of the GPS interface such as satellite count or degree of precision, the status bar

displays just the essential amount of GPS information. More detailed GPS information may be found on

the GPS Status screen which is accessible via the Options menu.

The editing toolbar provides direct access to the main features of the Remote Editor: adding,

editing, deleting, and moving game objects, taking notes, and zooming in and out of the game map.

t



These features were placed on the main screen since they are related to map activity and the designer

must be able to view the game map while using these features. The toolbar uses iconic buttons in order to

save screen space, but mainly to provide more appealing visual cues for each button's functionality.

* Game Editing

The Remote Editor allows game designers to edit a subset of all game options and settings.

Designers may add and delete game objects, change the locations of game objects on the map, modify

basic properties of each game object, and tune map-related game settings.

Adding a new object to the map or selecting an existing object to edit brings up the Object

Properties screen. The Object Properties screen covers only the most basic game object properties such

as type, location, icon look-and-feel, name, description, and visibility conditions for roles, chapters, and

teams. This subset of properties is sufficient for placing an object on the map, specifying a name and map

icon to identify the object, and providing a short descriptive note for the game object. All text content

more complicated than a short description such as dialog text was not intended to be edited with the

Remote Editor since the tap-to-type keyboard input method on handheld devices is not well suited for

performing large amounts of text editing.

_- I

Locaton: (100,100)

Type: I Item 1I

Name: I I
D esripton:

Shape: ITriarleUp

a BI Iwcv 1-i~. ~s

Apply Team Scrl:

[Apply script: Team A

OApply scrpt: Team B

O Apply script: Team C
RVisible

I~~~J~IITeanw I

Roleapter:
ERole 1

Chapter 1
0 Chapter 2
[Chapter 3

0 Roe 2
[aChapter 1
I]Chapter 2
0hapter 3

IRole3
2Chapter 1

Chapter 2Chapter 3

Tvlfbfm T

N -ew- 0 L9 Am., "Yew rr UuFr'. juul91
I • II "ii~l!![ll? 

VIItl[ l-

-- --~-~~~~~--~~~~~-- -----~-~~
I

1

7 , Ok Cancel
Ok Cancel



Figure 5.4 Object Properties Screen. The Object Properties screen allows the game
designer to set a game object's type, name, description, icon look-and-feel,
and visibility according to role, chapter, and team.

Deleting or moving objects is done directly from the main screen by selecting a game object and

tapping on the delete or move button, respectively. When a designer moves a selected game object, the

object is moved from its current location to the designer's location on the maps. Moving game objects

was one of the more open-ended design questions while implementing the Remote Editor. One moving

mechanic considered was using the handheld device's thumb pad controls to move the object up, down,

left, or right. However, this was a slower and more inefficient method since the game object would have

to translated and redrawn on the map for every small pixel increment. A second method involved first

selecting the game object, then tapping on the move button, and finally tapping on a new map location to

move the object. This "tap-to-move" method was originally implemented and later disabled and replaced

by the current "move-to-me" method. Based on initial evaluations by the project development team, it

was determined that the tapping method was a less fluid mechanic and that the "move-to-me" method

would be more useful since in most cases the designer would already be at or near the desired location of

the game object.

Figure 5.5 Moving Game Objects. Moving a game object transports the game object
from its current location to the location that the designer is standing at.

Al Roles /o Team (100,100)
Al ChWs nM

N

IV EN



Game settings are viewed and edited on the Game Settings screen which may be accessed from

the Edit menu. The current editable settings include only map settings such as the player icon color and

game object visitation settings such as hotspot and nudge size. Hotspot size is the range around a game

object in which a player can bump and "visit" the object. Similarly, nudge size is the range around a

game object in which a player can tap to "visit" the object.

Hotspot: 1 pixels

Nudge: p II els

Player Icon:

FigureO 5.CaeStigacre.TeGm etnceenalwlh einrt

Figure 5.6 Game Settings Screen. The Game Settings screen allows the designer to
modify map and game object related settings.

* Notepad

Designers will often take copious notes while exploring a game location or testing a game

implementation on-site. The Notepad feature is essentially a digital scratch pad that designers can use to

take notes instead of the traditional pen and paper method. In addition to text, designers have the option

of automatically appending game or map coordinates to a note if the note is tied to a specific location.

For example, a designer might note that a picnic table located at coordinates (25, 50) had exceptionally

good GPS signal strength and would be a good place to set up the handheld devices and deliver game

instructions.

in Gm etig



Figure 5.7 Notepad Screen. The Notepad screen displays all entries that have been
added to the note log and allows the designer to append new notes with map
and game coordinates.

The Notepad is a running text log which may be viewed in the Remote Editor by tapping on the

Notepad button on the mainscreen. The log is stored as a text file which can be extracted from the game

file directory. Although designers can also take notes by tagging locations with pseudo game objects, the

Notepad offers a faster, more collective method of gathering information from the game site.

* Inventory

The Inventory feature provides a compiled listing of all game objects currently in the game. The

list of game objects is filterable by object type and may be sorted alphabetically by column. Selecting an

object will populate the information panel below the table. This information was not included as

additional columns in the table because the narrow width of the screen would have required lots of side

scrolling between columns in order to view different property values.

Ivery I sot

Append (,y Coord Nat
flAppnd GPS Corckates

lIT: The Game

good spot for setup
(0,0)

119 Notepad 'I

Ok 01



View: Al Objects

Figure 5.8 Inventory Screen. The Inventory screen displays a list of all game objects
currently in the game which can be filtered and sorted by type and name.

Since not all game objects can be simultaneously selected on the mainscreen map panel, it can be

difficult to locate a particular game object if there are a large number of game objects displayed on the

map. The Inventory provides the designer with a holistic and more organized view of all the game

objects. The Inventory screen also provides access to the Object Properties screen so game objects may

be edited from within the Inventory.

* Testing Games

As mentioned in the task analysis in Chapter 3, the task of on-site game testing involves verifying

and adjusting the position of game objects and game play settings such as the size of hotspot and nudge

visitation zones. Similar to playing the game with the Game Engine, designers can walk around the game

map and "visit" objects by walking into their hotspots. However, instead of displaying the object's full

profile, an information caption with the object's information is displayed on the map. The caption uses a

darker background to indicate that the object was selected by means of "visiting" and not tapping.



Fi View Opu Help

Figure 5.9 Testing Object Visitation. Walking into the hotspot of a game object will
trigger a "visit" like during game play but brings up the game object info
caption. The darker background color of the caption indicates that the object
was selected via "visiting".

ri-i..l-
L!~J~RUA FIFjII

File View OpUons Help I e View Optons Help

Figure 5.10 Filtering Viewable Objects. Similar to the Desktop Editor map interface,
the visibility of game objects on the map can be filtered according to role,
chapter, and team by using the options in the View menu.

This ability to "visit" game objects in the Remote Editor can be disabled in the Options menu if a

designer does not wish to bump into objects as they are walking around the game location. Designers

also have the option of filtering the display of game objects according to role, chapter, and team using the

Al Roles I No Tram
All Chapters

LANl*M

(100,100) -



options under the View menu. This allows designers to test groups of game objects according to specific

role, chapters, and team script conditions.

* Editor Settings

In addition to game settings, the Remote Editor also has editable settings for the application itself.

The editor settings currently only include adjustable default values for game object type icon look-and-

feel, but may be extended if more editor settings are later required.

in Remot Editor Setti

Default Icon Colors:

Item 10 UDMXM E
Checkpaint JPkr.

NPC fl IStare

Gate Isqure

Figure 5.11 Editor Settings Screen. Default icon shape and colors for game object
types can be set up in the Editor Settings screen.

Adjustable default values for game object icons are a convenience feature which was created

during prototype testing of the Remote Editor. Icons of game objects can be set to different colors and

shapes so they can be distinguished more easily on the game map. For example Items can be displayed as

red stars and NPCs as green triangles, as opposed to all game objects being displayed as a sea of blue

squares. The shape and colors of game object icons on the Object Properties screen were previously

initialized to the values specified by the object template files. Theses initial values can now be set and

Ok Canmel



saved under the Editor Settings screen. Thus when designers are adding game objects, they do not have

to perform the extra steps of remembering which shape and color they had matched with each object type

and extra steps of setting the properties since the values are automatically populated when a specific type

is selected.

A R E i I
taI rclsIi.

I U Star I
U U Square *

Location:

Type:

Name:

Description:

(100,100)

Item v

K
Shape:

Color:

I Dvnnrl-i, II U kh*i- I Tmvm I

Figure 5.12 Default Icon Settings. Default icon settings are saved on the handheld
device so do not need to be set each time the Remote Editor is launched.
Changes are immediate reflected in the Object Properties screen.

5.3 Implementation

The Remote Editor is a Windows mobile application implemented in C# using the Microsoft

.NET Compact Framework SDK 2.0. The application is compatible with handheld devices that are fitted

with Windows Mobile 5.0 or later and have GPS tracking capabilities (either built-in or connected

through peripherals). For this particular project, the Remote Editor was installed and tested on Dell Axim

x51, HP iPAQ rx5915 Travel Companion, and Pharos 525 and 535 handheld models.

Default Icon Colors:

TYM Fill Border Shaoe

Item i Diamond

Checkpoint mulu 7 1
NPC

Gate

I C



Like the Desktop Editor, the structure of the code base for the Remote Editor is organized by

modules according to the Model-View-Controller development model. The Model module is the same

CommonLib shared among all OAR application. The View module again consists of all screens that

make up the Remote Editor interface. The Controller module of the Remote Editor mainly handles

monitoring and processing of received GPS data.

The Remote Editor is essentially a hybrid of the Game Engine and Game Editor, combining GPS

tracking and real time player-game object interactions with the ability to modify backend game data.

Although the Remote Editor and Game Engine applications are deployed using the same method and

share common user interface elements, the Remote Editor was developed as a separate application to keep

the interface of both applications simple and maintain separate focuses on game-editing and game-play.

Combining the two applications would have required additional setup screens or additional modes in the

Game Engine, adding more complexity to the application's interface.

The Game Engine is used primarily by young students who may unintentionally (or intentionally

at times) stray into parts of the interface where they should not be accessing. For example, exiting the

OAR application and playing games installed on the handheld. A feature to hide all non-game play

related options in an "Admin Mode" screen was recently requested and implemented in the Game Engine.

Implementing the Remote Editor as a separate application from the Game Engine avoids the risk of

curious students modifying game data without requiring game designers to jump through extra hoops like

punching in admin codes to make modifications to their games.

One of the biggest challenges when developing the Remote Editor was working around the

disparity between developing a Windows desktop application and a handheld application. The .NET

Compact Framework is similar to the .NET Framework used to develop Windows applications but has a

much more limited toolset. A lot of features and functions available for Windows application



development is not supported on the mobile. Thus a lot of missing functionality such buttons with images

and graphics transformations required creating custom interface controls or even deferring features. One

feature that did not make it into this iteration of the Remote Editor is viewing and testing spill objects due

to the lack of support for rendering rotated images.

Another challenge faced when developing the Remote Editor was the limitation of screen real

estate. Many design prototypes such as the layout of the main screen had to be scaled back and

redesigned in order to find other means of displaying information that did not fit on screen. In the end,

this limitation may have been beneficial to the overall design because it prevented the design from getting

too overly complex and forced additional evaluations to identify the most necessary features and

functionalities to be included in the interface.



6. Evaluation

This chapter documents the evaluation process of the new Desktop Editor and Remote Editor

applications. The first section is an overview of the usability limitations previously identified in the

existing Game Editor and an assessment of how each of the editors addressed these limitations. The

second section documents the various methods used to evaluate the applications throughout the

development process and the last section presents the results and findings gathered from those

evaluations.

6.1 Requirements Assessment

As mentioned in the Problem Statement, this project focused on improving the usability of the

existing Game Editor according to a standard set of usability measurements: learnability, memorability,

efficiency, errors, and satisfaction. The following tables are organized by measurements and provide an

overview of the proposed solutions for the limitations identified in the existing Game Editor. "+"s

indicate methods used by the new editor applications to address each limitation and to improve general

usability for each measurement, "x"s indicate areas for improvement. "DE" refers to features in the

Desktop Editor, while "RE" refers to features in the Remote Editor. Since satisfaction is closely tied to

the other usability criteria, it is not included in the assessment.



Table 6.1 Learnability and Memorability Assessment Overview.

+ createa appiication
documentation (RE, DE)

+ new game wizard (DE)

+ tool tips (DE)

aocumentation Tor uon eaitor appIIcadIons nave ueen
created and kept up to date

descriptions provided for basic game options needed for
setup of a new game

descriptions attached to user interface controls
throughout the application, amount of detail provided
varies with control and feature

x in-application help menu (DE, RE)

Insufficient interface cues

+ tool tips (DE) hints about the purpose and at times instructions for the
control displayed when mouse cursor hovers over
interface controls

+ iconic buttons (DE, RE) icons on buttons used as visual cues for the purpose of
certain features

+ revised feature labeling more consistent naming of features used in applications,

(DE, RE) more ambiguous features renamed to provide better
insight on purpose and functionality

+ new interface editor options grouped by related functionality to

organization (DE) provide cues on how features are used and how they fit
into the scope of a game

+ mapping between content content table cells are associated with a particular

table cells and property property panel which includes only options related to the

panels (DE) contents of the selected table cell

Inconsistent interface

+ start up screen (DE) start screen displayed at launch similar to many other
editing applications

+ new interface layout of interface controls particularly the tabs, pages,

organization (DE) and content tables are standardized across the
application interface

+ revised feature labeling more consistent naming of features to avoid any

(DE, RE) ambiguities when being referenced

Other

+ property panels (DE) more fully populated and more persistent property
panels increase visibility and access of important options

+ default values (DE) default values provide examples of valid user input



Table 6.2 Efficiency Assessment Overview.

+ new interface
organization (DE)

%t,.WI L L U ,J . Fl VI ,, IiV 11.0If%, iIIIIV U WI VIVV IIJ U1Iu

editing game content

editor options are grouped into tabbed pages instead of
separate dialog forms and provide direct access to many
of the game options

+ file menu shortcuts (DE) keyboard shortcuts connected to many file menu options
(i.e. starting new games, saving games, etc.)

+ content table context content tables fitted with context menus listing options
menus (DE) related to that particular table

x addition revision and additions needed for shortcuts and context menus (DE)

+ default field values (DE) default values are set when instances of new objects or
options are added to game (i.e. player roles, dialog
pages, etc.)

+ new game template (DE) starting new games loads in default game template with
the bare minimum of game options already set to
default values

x provide pre-made, fully populated templates for game objects and games (i.e. load
an "Adventure Game") (DE)

Non-mobile application

+ Remote Editor Remote Editor provides ability to edit and test game
implementation (RE) implementations while on-location

Other

+ property panels (DE) more fully populated and more persistent property
panels provide faster access to important options

+ editor settings (RE) game object icon look-and-feel can be populated
according to user specified default values

I ,,l,,"Jl LUI. L



Table 6.3 Errors Assessment Overview.

+ content tables (DE) content tables provide an overview ot all game content
and a faster, more reliable way of checking for missing
game content

Fogeting game flow settings

x timeline view of game object connections (i.e. triggers, anti-triggers) (DE)

x logic checker: verify missing links (i.e. object triggered by invisible object) (DE)

Formatting text and images incorrectly

+ property panel text boxes text boxes in game object property panels sized to
(DE) match text display on handheld devices

+ content table profile content tables display profile images of game objects,
images (DE) although not in the same size as on handheld devices

x preview of text and content in handheld device view (i.e. emulator) (DE)

Other

+ error messages and error messages fitted with clearer messages and
verification dialogs (DE) remediation instructions, verification dialogs placed in

areas of interface at risk of deleting lots of data

+ default values (RE) default values for newly added game data provides
noticeable errors in missing input

6.2 Evaluation Methods

The Desktop Editor and Remote Editor applications were evaluated by both new and experienced

game designers. For experienced game designers, feedback was requested from current game designers

as well as other member of the OAR development team. These users are very familiar with the existing

Game Editor and the concept of OAR games and thus have a clearer picture of the pros and cons of the

existing and proposed interface designs. These users are also the targeted users for the project and can

thus provide an evaluation matched against their own needs as designers. For new game designers,

feedback was solicited from a group of students of various academic backgrounds who have moderate to



high computer experience. This group of users is closest to simulating new game designers and can

provide a new perspective on using the editing toolkit and help identify flaws more related to usability

than content.

* Experienced Game Designers

The new editor applications were evaluated by designers and developers at various stages

throughout the development process. During the design phase and earlier stages of developing working

prototypes, mockups were sketched out for the riskier parts of the interfaces and reviewed by members of

the OAR development team. These informal walkthroughs were of great value in gathering more ideas,

challenging any assumptions made, flushing out difficult design questions, and identifying any major

flaws early on in development.

The majority of the evaluations were performed after the completion of the application

prototypes. Both the Desktop Editor and Remote Editor were presented to the development team with a

walkthrough of the features and of the overall interface. These presentations also served as Q&A sessions

to explain design decisions and clarify more ambiguous parts of the interface. Usability problems and

possible solutions were also identified and discussed during these presentations and incremental changes

were made to the applications accordingly. Having been completed earlier, a play-testable prototype for

the Remote Editor was also posted to a content management and discussion site which is shared between

the OAR team and collaborators at University of Wisconsin Madison and Harvard University.

* New Game Designers

Testing sessions were set up with the group of new users. Since testing of the Remote Editor is

more valuable if the users are familiar with the previous method of creating OAR games, these testing



sessions were only centered on the Desktop Editor. The testing sessions were held with five new users on

two separate occasions, spaced one week apart.

In the first testing session, users were given a briefing on the concept of OAR games and the

steps involved in creating a game. The first task they were given was to set up a new game with a given

title, list of roles and chapters, game map, and a single game object. The second task they were given was

to populate their game with three additional game objects and introduction text for every role. The

information to populate the game was given in the form of an Excel spreadsheet. The tasks were

performed on both the existing Game Editor and the new Desktop editor in randomized order and were

timed as the standard of measurement.

The goal of the first testing session was to test learnability, efficiency, and error on each of the

editor applications. Learnability was measured based on how fast users were able to find and populate the

necessary options to complete the task, given minimal instructions. Efficiency was also measured by how

quickly users were able to complete the task of adding multiple game objects. Users were given

instructions on where to find game options before starting the task if they had not already discovered

them during the previous task. Having completed the tasks, users were asked to check over their work

before saving and finishing their games. The game files were then compared against a "solution" game

file using a SVN diff program in order to identify any missing information or typos made during data

entry.

In the second testing session on week later, the same users were asked to complete the same first

task from the previous session. The task was again performed on both editors and timed for

measurement. The goal this second session was to test memorability of using each editor, having

performed the same task one week prior.



6.3 Results & Findings

This section presents an overview of the feedback and results gathered from the evaluation review

and testing sessions.

* Experienced Game Designers

The Desktop Editor received a mixed reception from designers and developers. The content

tables were recognized as a useful visualization of game data but could benefit from better organization

and additional features such as spell checking, in place typing, and direct copy-paste functionality. In

general, designers found the interface a little overwhelming with the added tab pages and property panels,

but appreciated the ability to quickly flip between different game options. Another frequent comment

made was regarding more contrast being made between different parts of the interface such as

emphasizing tabs and headers and calling attention to important game options such as content table

toolbars.

The Remote Editor received very good reception and designers were excited about using the new

editing tool. The game object moving mechanic required a bit of explanation and will most likely require

more revision but overall, designers liked the organization of the application, the clean and simplistic

interface, and the functionality that the application offers. However, since no new game implementations

were in progress during the evaluation period, no feedback from field usage was obtained.

* New Game Designers

The following table lists the results from the user testing sessions of the current Game Editor and

the new Desktop Editor.



Table 6.4 Desktop Editor User Testing Results.

T r 1 -4 User 5 Ave rag

Task 1
(learnability)

Task 2
(efficiency)

Task 2
(errors)

Task 1
(memorability)

5 min (DE)
7 min (GE)

11 min
17 min

2 errors
5 errors

3 min
4 min

9 min
8 min

12 min
14 min

1 errors
6 errors

5 min
4 min

7 min
7 min

18 min
22 min

0 errors
0 errors

2 min
4 min

8 min 10 min
11 min 8 min

11 min 14 min
14 min 19 min

4 errors 2 errors
3 errors 3 errors

5 min 3 min
5 min 4 min

* Learnability

While performing the first task of setting up a new OAR game, users completed the task more

quickly on the Desktop Editor, on average. The new game setup wizard was very beneficial in expediting

the majority of the set up, particularly with respect to the title, roles, chapters, and game map. In the

cases of both editors, the slowest portion of the task was initially location how to add game objects and

where to populate their information. This was especially the case for the Desktop Editor since the

application opens on to the "Map" tab, but content such as description and dialog text is currently only

editable from the "Object Info" tab.

* Efficiency

While performing the second task of populating the OAR game, users again completed the task

more quickly on the Desktop Editor, on average. All users found the spreadsheet style content tables very

useful for quickly accessing all game object information in one location, though a couple users took a

little longer to locate how to change the content table according to chapter. Some of the users were a little

7.8 min
8.2 min

13.2 min
17.2 min

1.8 errors
3.4 errors

3.6 min
4.2 min



frustrated with the restrictiveness of the dialog forms in the Game Editor, but also found the option to

apply content to all roles and chapters more quickly than on the Desktop Editor since the buttons are

explicitly labeled on the buttons as opposed to relying on iconic buttons to identify the feature.

* Errors

With regard to errors, users made fewer mistakes on the Desktop Editor, on average. The

majority of the mistakes made while using the existing Game Editor were missing text for a particular

role or chapter. Users liked the ability to scan the content tables to find holes and typos and found the

Game Editor interface tedious to use for checking over their work. Typos were not as prevalent a mistake

since users generally just copy-pasted the text from the provided Excel spreadsheet directly into the editor

applications.

* Memorability

During the second session, the Desktop Editor again performed better in terms of average timing,

but this was also true for the Game Editor. The reduction of time to complete the task was consistent for

both editors, so there was no large disparity between which interface was more memorable to use than the

other.

Overall, the majority of users preferred the Desktop Editor over the existing Game Editor for

completing the given tasks. Many of the usability problems identified from the testing sessions were

similar to those noticed by game designers: visual complexity and low contrast between different parts of

the interface. Though the tool tips were helpful in divulging the purpose of many features, many users

suggested utilizing more text labels for buttons and features rather than relying on tool tips and iconic

buttons.





7. Conclusion

7.1 Future Extensions

With any project, there is always a great disparity between how polished and how feature

complete a developer wants a product to be and what time and resources allow. The following is a list of

areas of improvement for the new editor applications and features that would be beneficial for the

applications to support in the future.

* Flexible Map Tool

The current Map Tool limits the game designer to capturing fixed size map images. This makes

acquiring accurate game maps very difficult and designers are often forced to use maps that are

too big or too small for the purposes of their implementation or attempt to create a map and

position it manually. The Map Tool could be improved by allowing designers to select any

region of a map and capture the image and coordinates accordingly. The image can then be

resized by the Map Tool or by the Game Engine at run time.

* In-application Help Menu

Providing quick and easy access to documentation via in-application help menus is a nice

convenience for any level of users. Help menus are also a common feature for the majority of

applications. The application documentation for the Desktop Editor and Remote Editor still

reside largely outside the context of the applications and could be compiled into a help menu

format. The challenge is then keeping all the information up to date.



. Excel Importing and Exporting

As previously mentioned, many game designers use word formatting applications such as

Microsoft Excel and Microsoft Word to plan out game content. If the OAR Game Editor

supported importing and exporting of a standardized binary or text file format, designers would

be able to completely bypass the process of manually porting text between spreadsheets and the

editor application. The ability to export game content from the Game Editor back to a document

format would be useful for designers who need to share content with other designers or

collaborators and for keeping game data in the editor in sync with game content files.

* Timeline View

The concept of a Timeline view is a way of visualizing game data according to game flow. Game

flow in an OAR game is governed by a number of factors including game chapters, game object

visibility, and object to object relationships such as triggering, anti-triggering, and containment.

This type of visualization would help designers plan out the intended progress of players and

more easily verify that all game flow related options are properly specified.

* In-application Preview

Providing in-application previews of game object content such as text and image sizing would

remove the need for the deploy-game-to-device and verify step, thus saving designers a lot of

time and effort when testing games. Previews could be implemented by embedding a handheld

device emulator into the Game Editor or by creating static handheld screens with overlaying text

and images. The difficulty of the first method depends on the availability of an emulator that can

be embedded within or used in parallel with the Game Editor. The second method would be



easier to implement but more difficult to main and ensure perfect accuracy since sizing can vary

with screen resolution.

7.2 Reflections

Though the Remote Editor has yet to be fully tested in practice, it has a lot of potential to become

a very integral part of the OAR game creation process. By enabling on-site real-time game modification,

the tool opens up more possibilities for on-location activities aside from designers gathering and testing

game data. One very promising and immediate example is the investigation into students creating their

own OAR games.

Whether the Desktop Editor stands to replace the existing Game Editor is still unclear, given that

each version of the application still has its own benefits and limitations. Like any application interface,

the new features and the Desktop Editor as a whole will require further evaluations and revisions to

achieve a clean implementation. The development of the Desktop Editor has been an interesting

experiment and a valuable exploration of new tools and methods of visualizing and working with game

data which would be useful elements to include in any future iterations of the Game Editor application.

As the scope of OAR games continues to grow, the Game Editor toolkit will also have to evolve

to accommodate all game functionality. Thus, an editing tool should not strive to find a catch-all solution

for managing the ever-growing complexity, but rather remain flexible enough to support unforeseen

changes. It is a tricky balance trying to support all possible features and functionality while trying to

maintain a simple and easily learnable interface. As discovered during this project, solutions will often

add their own set of complexities to the pool. Further iterations of revisions and evaluations will help

achieve this balance and will help progress the Game Editor to its fullest potential.





8. References

* Accot, J. and Zhai, S. "Beyond Fitts' law: models for trajectory-based HCI tasks." Proceeding of

the SIGCHI conference on Human factors in computing systems. (1997): 295-302.

* Bailey, J.E. and Pearson, S.W. "Development of a tool for measuring and analyzing computer

user satisfaction." Management Science. 29.5 (1983): 530-545.

" Billinghurst, M., Haller, M., and Thomas, B.H. Emerging Technologies of Augment Reality:

Interfaces and Design. Hershey: Idea Group Publishing, 2007.

* Hackos, J.T. and Redish, J.C. User and Task Analysis for Interface Design. John Wiley & Sons,

Inc., 1997.

* Hersh, H. and Rubinstein, R. The Human Factor. Bedford: Digital Press, 1984.

* James, G. "Book 4 - Coding." The Tao of Programming. Santa Monica: Info Books, 1987.

* Klopfer, E. and Squire, K. "Environmental Detectives - The Development of an Augmented

Reality Platform for Environmental Simulations." Educational Technology Research and

Development. (2005)

* Milgram, P. and Kishino, F. "A Taxonomy of Mixed Reality Visual Displays." IEICE

Transactions on Information Systems. E77-D(12) (1994): 1321-1329.

* "The Model-View-Controller Design Pattern" The Cocoa Fundamentals Guide. 22 July 2008.

Apple Computer, Inc., 2006.

<http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/

CocoaDesignPatterns/chapter 5 section_4.html>

* Nielsen, J. "Usability 101: Introduction to Usability." 23 August 2003. useit.com. 15 July

2008. < http://www.useit.com/alertbox/20030825.html>.

* Norman, D. Design of Everyday Things. New York: Basic Books (Perseus), 1988.



* Norton, M. "Augmented Reality Game Pilot Final Report." (2007) Unpublished manuscript,

Massachusetts Institute of Technology, Cambridge, MA.

* Pape, C. "Games Atelier - A Challenge for Collaborative Experience." (2008) Unpublished

manuscript, WAAG Society Amsterdam.

* Reason, J. Human Error. Cambridge University Press, 1990.

" Stenton, S. P., et al. "Mediascapes: Context-Aware Multimedia Experiences." IEEE Multimedia.

14.3 (2007): 98-105.

* "What is Usability?" Usability.gov.15 July 2008. U.S. Department of Health & Human Servies.

<http://www.usability.gov/basics/whatusa.html>.



A. Game Designer Survey & Interview Questions

The following list of questions was given to game designers as part of the user and tasks analyses.

- What type of computers do you normally use? (i.e. desktop, laptop, Apple, Windows, OS Version, etc.)

- What type of computers (machine specs) do you use to run the Editor?

- Do you have experience using any other editing applications? Which ones? (i.e. Word, Excel,
Photoshop, etc.)

- How familiar are you with playing OutdoorAR games? Creating OutdoorAR games?

- How long have you been using the AR Game Editor?

- How many people work on designing each game?

- What is the time scope of each AR project? How many iterations does each game through?

- Please describe the steps that are typically performed when creating (designing AND building) an AR
game from start (receiving curriculum/criteria for game) to finish (deploying finished game). The
more detailed response the better.

- What step(s) require the most effort/work? Again, the more specific, the better.

- How are tasks divided up among the designers?

- What would you consider the biggest weaknesses/annoyances of the current editor? (not a wish list,
just design flaws)

- If you could improve one thing about the existing Game Editor application, what would it be?





B. User Testing Briefing & Tasks

The following briefing and tasks were given to users during the evaluation testing sessions.

Briefing

Thank you for participating in this study! Today you will be creating your own Outdoor Augmented

Reality game. But before you begin, here is a little bit of background information about what these games

are exactly:

Outdoor Augmented Reality (OAR) games are games played at a specific geographic location using

handheld devices with location tracking capabilities. You can think of OAR games as a mix between

role-playing games and scavenger hunts. Players assume a certain character role and must explore the

area to gather clues from virtual game objects displayed on the handheld device. These game objects are

triggered by walking into its hotspot and can provide the player with information as text, audio, video,

pictures, and other types of media. However, before you can start playing a game, you need to create one.

The goal of these testing sessions is to assess the interface of the applications, not you as a user. If you

have any questions or problems while completing tasks please do not hesitate to ask for help.

Testing Session Task 1

Using the specified editor application, create a new game and populate it with the information provided in

the table. For clarification, a description for each of the game settings is included in the table.



Game Object 1

Name: Tim the Beaver
Type: NPC
Image: tim.jpeg
Description: MIT's loveable mascot. Tim is a very sociable creature and can be spotted giving hugs,taking pictures, and hanging out with students at most school functions.

Game Obiect 1 L rmation

Why the long face?

Guess that research isn't
starting out so smoothly
for you huh?

Hope this PhD comic strip
cheers up your day!

phdComic.html

How did that physics
exam go?

Are you checking out the
hockey game tonight?
The Tech is taking on the
toughest game of the
season!

They took away your
funding?!

Looks like info session
pizza dinners for the next
couple months...

Oh hey wait up! I think
you dropped this...

dropform.jpeg

Testing Session Task 2

Using the specified editor application, add additional game objects to the game you have created.
Populate the new game objects with the information provided in the table.

Game Introduction

Welcome to MIT
Orientation!

Your mission, should you
choose to accept it, is to
survive the coming year
at MIT.

same as above

If you make it through
your mission, you will be
duly rewarded with a
shiny new Brass Rat.

If you fail... well, there's
always next year.

same as above

In the coming year your
strength and stamina will
be put to the test.
Endless psets, grueling
exams, restless nights...
best of luck and welcome
to the Institute.

same as above

Grumpy Grad
Student

Unwearied
Undergrad

Role Pge 1 age 2Page
"-""-';: '";r~- -"~i"I~'-

I : i ;:! Y !I



Game Object 2

Name: Heavy Textbook
Type: Item
Image: book.jpeg
Description: MIT is some back breaking work, literally. Better hit the books for that coming exam...

before the books hit you!

Game Obiect 2 Dit 'mation

Welcome to advanced
quantum computational
philosophy.

Welcome to 6.003 Signals
and Systems.

Your first problem set is
due tomorrow.

Congratulations, you have
received funding for the
semester as a Teaching
Assistant. Read through
this textbook and prepare
the semester's worth of
recitation material by
next week.

gizmoball.avi

Game Obiect 3

Name: Student Center
Type: Gate
Image: studcenter.jpeg
Description: Also known as Stratton Center, the student center is the central hub of MIT. Inside you

will find a number of food vendors, the campus convenience store, and the largest
Athena cluster on campus.

Role Fl Term Spring Term

Grumpy Grad
Student

Unwearied
Undergrad

Contains:
nothing

Contains:
Heavy Textbook
(code: 1861)

Contains:
nothing

Contains:
Tim the Beaver
(code: 314159)

Unwearied
Undergrad

;'*~ ~'"" I

~/rlMn ni~;n~t ~ /7~Mf/l;MyMnMf IV1~~CYM~f;AM



Game Obiect 4

Name: Ice Cream Study Break
Type: Checkpoint
Image: icecream.jpeg
Description: Feeling stressed? Take a little time off for a cold, frosty one. What's YOUR flavor?

Game Obiect 4 Code Information

Code:
IHTFP

Code:
Beaver Fever

Code:
Punt and Tool

Wrap-up Task

Congratulations! You have successfully created an Outdoor Augmented Reality game. Before you
finish, please go back and check over your work for any missing information or typos. A clean game
implementation is always reviewed several times before being put to action.

Post-Mortem

Which application interface did you prefer for Task 1?
Which application interface did you prefer for Task 2?
Which application interface did you prefer to use overall?
Was there anything in either application that you really liked or disliked?
What would you have changed in either of the interfaces (think mechanics and flow)?

I






