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Abstract

Over the last ten years, the rapid growth of low-cost airlines and the
development of web-based distribution of airline tickets have transformed the
competitive environment in the airline industry worldwide. The relaxation of
fares rules by low-cost airlines has disrupted the pricing and revenue
management models of large network airlines. A better understanding of
passenger choice behavior is now required to support the development of new
strategies to compete more effectively in the current marketplace.

In order to avoid the risk of bias associated with stated preference data, we focus
in this research on how to develop a model of airline passenger choice based on
booking data. Previous studies based on booking data have been limited to the
sole choice of an airline itinerary and did not account for heterogeneity of
behavior, a major characteristic of airline markets. This is due to the properties of
booking data. For instance, only the chosen alternative is recorded in airline
bookings and no information is available on other travel alternatives available at
the time of the booking. Similarly, booking records contain no information on
trip purpose that is traditionally used to segment airline markets. In this
dissertation, we develop a modeling framework to overcome these limitations
and extend booking-based passenger choice models to the joint choice of an
airline itinerary and fare product.

Booking data was combined with fare rules and seat availability data to
incorporate the impact of pricing and revenue management and reconstruct the
choice set of each booking. Characteristics of the traveler and the trip were
retrieved from the booking records and used to replace trip purpose. They were
included as explanatory variables of a latent class choice model in which several



factors can be used simultaneously to segment the demand without necessarily
dividing the bookings into many small sub-segments. In addition, a new
formulation of a continuous function of time was proposed to model the time-of-
day preferences of airline travelers in short-haul markets. Instead of being set to
a full 24 hours, the duration of the daily cycle was estimated to account for the
low attractiveness of some periods of the day such as nighttime.

Estimation results over a sample of 2000 bookings from three European short-
haul markets show that the latent class structure of the model and a continuous
function of time led to a significant improvement in the fit of the model
compared to previous specifications based on a deterministic segmentation of the
demand or time-period dummies. In addition, the latent class model provides a
more intuitive segmentation of the market between a core of time-sensitive
business travelers and a mixed class of price-conscious business and leisure
travelers.

This research extends the scope of potential applications of passenger choice
models to additional airline planning decisions such as pricing and revenue
management. In particular, parameter estimates of the model were applied to
forecast the sell-up behavior of airline passengers, a major input required by the
newly proposed revenue management models designed to maximize revenues
under less restricted fare structures.
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Chapter 1 Introduction

The rapid growth of low-cost airlines over the last decade has changed the

competitive landscape in many airline markets around the world. At the same

time, the development of web-based distribution channels of airline tickets has

made it easier for prospective travelers to compare the various travel options

offered in the marketplace and has amplified the impact of low-cost competition.

While the traveler has strongly benefited from new competition and the shift to

web-based distribution channels, these changes have posed a considerable

challenge to established network airlines. At the end of 2005, four out the six U.S.

network airlines operated under bankruptcy protection.

Low-cost airlines not only generally offer lower fares, they also disrupt the

pricing and revenue management strategies of network airlines by relaxing fare

rules such as the Saturday night stay requirement of many discounted fare

products. In this context, a better understanding of passenger choice behavior is

needed to support the development of new pricing and revenue management

strategies and compete more effectively in today's marketplace.

However, previous studies of airline passenger choice did not accurately

represent the major characteristics of airline markets such as the impact of

pricing and revenue management or the heterogeneity of behavior across

different segments of the market. In this dissertation, we will then focus on how

an airline can use its existing data sources to develop and estimate a model of

airline passenger choice that better reflects the characteristics the choice

environment in the airline industry.



1.1 Motivation and Research Objectives

Following the economic deregulation of the industry in 1978, the major network

airlines pioneered a scientific approach to pricing based on product

differentiation and the dynamic management of seat capacity referred to as

revenue management. While airline pricing and revenue management are based

on the heterogeneity of choice behavior across different categories of travelers,

the use of passenger choice models to directly support airline planning

applications has been relatively limited so far.

Previous studies of airline passenger choice have been based on two types of

data, stated preference and booking data. In studies based on stated preference

data, respondents are usually asked to choose between a limited set of two to

three hypothetical alternatives. These hypothetical travel alternatives are

designed to reproduce the typical impact of airline pricing and revenue

management on the passenger choice set and supposed to be representative of

the products offered in the marketplace. Nevertheless, the design of the

experiment tends to overly simplify the passenger choice set and cannot

reproduce the large number of travel alternatives viewed by prospective

travelers in a real booking search. In addition, these studies suffer from the risk

of discrepancy between the responses obtained in the context of a hypothetical

scenario and actual passenger choice behavior. This is especially true for pricing

applications when these studies are used to investigate the trade-off between

price and other elements of airline service such as schedule or amenities.

While the impact of pricing and revenue management on the passenger choice

set is modeled in a simplistic manner in studies based on stated preference data,

it is entirely ignored in previous studies based on booking data. Previous studies

based on the analysis of past booking data have been limited to the sole choice of



an airline itinerary and used for schedule planning applications. This is due to

the properties of booking data: Only the booked alternative is recorded in airline

bookings and no information is available on other travel alternatives viewed by

the passenger at the time of the booking. While the schedule of other travel

alternatives can be easily obtained from other sources such as the Official Airline

Guide (OAG), information on other attributes such as the fare are difficult to

collect as they depend on the state of the airline inventory at the time of the

booking. The airline inventory is constantly updated based on the booking

activity and the booking limits set by the airline revenue management system.

In addition, previous studies based on booking data did not take into account the

heterogeneity of behavior across bookings, a major characteristic of airline

markets. The conventional wisdom in the industry is to segment airline markets

by trip purpose: Leisure travelers are considered to be very price-sensitive while

business travelers place more emphasis on schedule convenience and service

quality. However, trip purpose is not recorded in airline bookings. As a result,

previous studies of airline passenger choice based on booking data did not

segment the market between different categories of bookings and failed to test

for heterogeneity of behavior.

The challenges brought by the rapid growth of low-cost airlines and amplified by

the development of web-based distribution channels have also raised the interest

for a better understanding of passenger choice behavior and new applications of

passenger choice models to other areas of airline planning such as revenue

management. By relaxing fare rules such as the Saturday night stay requirement,

a new generation of low-cost airlines such as Jetblue in the U.S. or Ryanair in

Europe has disrupted the foundations of the revenue-maximizing strategy

developed by network airlines since the economic deregulation of the industry in

1978.



This strategy was based on two elements: product differentiation and revenue

management. In order to attract more leisure passengers, the airlines started to

offer lower discounted fares such as the Super Saver fares introduced by

American Airlines in 1977. However, in order to prevent business passengers

willing to purchase more expensive fares, discounted fares were systematically

associated with a set of restrictions, also called fare rules, such as required round-

trip travel, minimum stay (Saturday night stay), advance purchase requirements,

change fees and non-refundability. In order to channel low-fare demand to off-

peak flights and save seats for late-booking high-fare passengers on peak flights,

product differentiation was supported by the dynamic management of airline

seat inventory, also called revenue management. The expected marginal seat

revenue (EMSR) model developed by Belobaba (1987) that has been widely used

in the industry, is based on the assumption that the market is perfectly

segmented and demand for the different fare products is independent. Thus, the

availability of lower-fare products is assumed to have no impact on the demand

for higher-fare products.

While it was recognized early on that the independent demand assumption was

unlikely to fully hold in practice, fare rules such as the Saturday night stay

requirement proved fairly effective to segment demand and prevent business

passengers from purchasing lower-priced fare products. The relaxation of fare

rules means that this assumption can no longer be considered valid in many

airline markets and seriously undermines the revenue performance of EMSR-

type models. Several alternative models have been proposed to maximize

revenues under less restricted fare structures. However, they all require as inputs

an estimate of sell-up behavior or how likely a passenger is to purchase a more

expensive fare product if the revenue management system decides to no longer

offer a lower-priced product. Discrete choice models provide a convenient

approach to estimate sell-up potential as choice probabilities can be easily



recalculated when an alternative is added or removed from the passenger choice

set. As a result, passenger choice models provide a means to capture a number of

effects including sell-up when the choice set of the passenger is modified to

reflect the potential decisions of the revenue management system.

The objective of this dissertation is then to build a model of airline passenger

choice that overcomes the limitations of previous studies and extends the scope

of potential applications to new areas of airline planning decisions such as

pricing and revenue management. Before discussing further the objectives of this

research, let us first describe in the next section the characteristics of the choice

process in the airline industry.

1.2 The Traveler Choice Process

As shown in Figure 1-1 below, the traveler's choice process for an upcoming trip

includes three major steps: Trip planning, booking search and the actual booking

itself. In the first step, the prospective traveler defines the major characteristics of

his future travel such as the purpose of the trip, the destination, the planned

travel dates and the mode of transportation. These different elements are

interdependent and can be flexible or not. For instance, if the purpose of the trip

is to attend a convention, the venue and the dates of the trip are not set by the

traveler but by the conference organizers. As a result, the traveler will have no

flexibility over the destination and probably fairly little flexibility over the travel

dates. However, if the traveler is planning a vacation sometime over the next

couple months, he will have much more control over the selection of the

destination and the potential travel dates. The traveler decisions may then be

influenced by the results of the second step of the process, the booking search.
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Figure 1-1: The Traveler Choice Process

If air is considered as a potential mode of transportation, the trip planning phase

of the process will trigger a booking search. The prospective traveler will then

contact a travel agent or go online to a travel website and initiate a search for seat

availability based on the characteristics of the trip set during the planning phase,

such as destination and travel dates. Based on the results of the search, the

traveler may revise some of his initial decisions. For instance, the traveler may

adjust the dates or even the destination of a future trip in order to take advantage

of a very attractive fare. After a number of iterations, the traveler will take one of

the following decisions: not to travel at all, consider other modes of

transportation, postpone his decision to a later time or make a booking.

At this stage of the process, the prospective traveler will then make a final

decision about the major dimensions of the booking such as the choice of an

airline, itinerary and fare product. For some travelers, the choice of an airline is



actually determined in part prior to the booking search as they are either

required to travel on a specific carrier due to corporate travel policies or they

restrict themselves to a preferred set of carriers based on airline loyalty programs

or past experience. In addition to the carrier providing the service, the traveler

will also choose the itinerary or flight schedule of his trip as well as a fare

product that will determine the price paid and the characteristics of the product

such as the range of amenities provided and the flexibility to change or cancel the

booking at a later time.

While the resulting bookings are recorded in the airline reservations system, the

different steps of the traveler choice process are mostly unobserved by the

airline. For instance, the trip planning phase of the process is fully unobserved

and the booking search process is also at least partially unobserved. While a

booking search through a travel agent will typically go unrecorded, elements of

an online booking search such as screen shots and click activity may be recorded

by some travel websites. However, an airline will potentially have full access to

this type of data for only a subset of the bookings made through its own website.

In addition, the bookings made on the airline's website may be the results of a

wider booking search initiated on another travel website that will also remain

unobserved to the airline. Actually, as shown by Brunger (2008) in his qualitative

study of online booking behavior, many travelers tend to check first one or

several of the large online travel websites such as Expedia, Travelocity and

Orbitz that market the inventory of many different carriers to gather information

before logging to the website of the airline of their choosing in order to avoid the

booking fees typically charged by these travel retailers. As a result, web analytics

are not commonly used at this point in the airline industry and not in connection

with a scientific analysis of passenger choice behavior.



1.3 Research Objectives

As mentioned earlier, we will focus in this research on how to develop a model

of airline passenger choice that will provide the foundation for a wide range of

potential applications. In order to avoid the potentially high risk of bias

associated with pricing experiments in stated preference data, we will focus on

analyzing actual choice behavior as reflected in past booking records. Booking

data will be combined with other data sources such as fare rules and seat

availability data to incorporate the impact of airline pricing and revenue

management and reconstitute the passenger choice set at the time of the booking.

This will provide the basis for the development of a booking-based model that

will explore the trade-off between the major dimensions of airline passenger

choice such as schedule convenience and price. In addition, since airline pricing

and revenue management are largely based on taking advantage of the

heterogeneity of behavior across different categories of airline travelers, elements

of the booking records such as the characteristics of the trip and the profile of the

traveler will be used to segment the demand and investigate the difference in

choice behavior across different categories of bookings.

In this research, we will focus on how an airline can exploit its existing data

sources to better understand the choice behavior of its passengers and develop

choice-based decision support tools for a range of airline planning applications.

As a result, this research is subject to the data limitations an airline is likely to

face when relying on these data sources. For instance, given that no information

is available in booking records about the different travel destinations considered

by the traveler and data potentially collected during the booking search process

is both partial and incomplete, substitution patterns across different origin-

destination markets will be ignored. However, this assumption should have a



limited impact for most applications as airlines typically forecast demand based

on historical bookings independently for each origin-destination market.

More importantly, since an airline cannot get full access to the bookings of its

competitors, the choice of an airline will be taken as given and the model will

concentrate on the other major dimensions of airline passenger choice such as the

selection of an itinerary and fare product. This assumption may be more

restrictive for some applications such as revenue management. For instance, sell-

up behavior is likely to depend substantially on the attributes of competing

travel alternatives offered in the marketplace. However, we will discuss how to

incorporate the impact of competition when applying the parameter estimates of

the model to forecast expected sell-up behavior.

1.4 Contributions

The contributions of this dissertation can be divided into three categories: A

choice set generation process that better reflects the characteristics of airline

markets, advancements in passenger choice models and applications to airline

planning decisions.

In this research, we developed a methodology to incorporate the impact of

airline pricing and revenue management on the choice set of each booking by

combining booking, fare rules and seat availability data. This choice set

generation process provides the foundation for the development of a model of

the choice of an airline itinerary and fare product based on booking data. It also

reflects much more realistically the range of travel options effectively available to

prospective travelers at the time of the booking than previous studies of airline

passenger choice.



This dissertation also provides two important contributions to the development

of passenger choice models. First, we developed an alternative to the traditional

segmentation of airline demand by trip purpose. Since it is unavailable in

booking records, trip purpose was replaced by other elements found in airline

bookings such as the characteristics of the trip (distribution channel, dates of

travel) and the profile of the traveler (frequent flyer membership). These

elements were used to estimate a latent class model of airline passenger choice

that has several advantages over previous models based on a deterministic

segmentation of the demand.

Latent classes allow the segmentation of the market using multiple factors

without dividing the bookings into a large number of small sub-segments. These

factors can be specified as explanatory variables of the class membership model

and their parameter estimates provide insight on their respective weight to the

segmentation of the market. In addition, the latent class structure of the model

was found to improve the fit of the model compared to previous specifications

based on a deterministic segmentation. It also leads to a more intuitive

segmentation of the market between a core of time-sensitive business travelers

and a mixed class of leisure and price-conscious business travelers than previous

models based solely on trip purpose.

Second, we improved the measurement of the time-of-day preferences of airline

travelers by using a continuous function of time instead of discrete time-period

dummies. We generalized the formulation of a trigonometric function of time to

better represent the time-of-day preferences of airline travelers in short-haul

markets. Instead of being set to a full 24 hours, the duration of the daily cycle

was estimated to take into account the lack of demand for nighttime flights in

these markets. This framework also provided a flexible approach to model the



time-of-day preferences of specific categories of travelers such as day trippers

that travel exclusively in the morning on outbound flights due to the short

duration of their trip.

Finally, this model of the choice of an airline itinerary and fare product extends

the range of potential applications of passenger choice models to other areas of

airline planning such as pricing and revenue management. In particular, the

parameter estimates of the model were used to forecast the sell-up behavior of

airline passengers, which is a key input to all newly proposed revenue

management algorithms designed to maximize revenues under less restricted

fare structures. The latent class choice model was found to provide lower

estimates of sell-up potential than models based on a deterministic segmentation

of the demand due to a more realistic split of business-type travelers between the

time and price-sensitive segments of the market.

1.5 Thesis Outline

The remainder of the dissertation is organized as follows.

Chapter 2 provides an overview of the changes that have occurred in the airline

industry over the last ten years, focusing primarily on the impact of growing

low-cost competition and the development of web-based distribution channels of

airline tickets on the choice environment in airline markets.

In Chapter 3, a literature review of airline passenger choice models is presented

including a discussion of the benefits and limitations of different types of data

such as stated preference and booking data.



Chapter 4 develops the modeling framework used in this research: We propose a

methodology to reconstitute the choice set of each booking based on combining

several data sources such as booking and seat availability data. We then develop

a latent class model of the choice of an airline itinerary and fare product and

propose a new formulation of a continuous function of time to model the time-

of-day preferences of airline passengers.

In Chapter 5, we describe the data collected for this research including an

exploratory analysis of the booking data as well as a detailed description of how

the data was processed to generate the choice set of each booking.

Chapter 6 presents the estimation results of the model and focuses on the

benefits of the latent class structure of the model compared to previous

specifications based on a deterministic segmentation scheme.

In Chapter 7, we describe the potential applications of the model to a range of

airline planning decisions, such as schedule planning, pricing and revenue

management. We provide an example of how the parameter estimates of the

model can be applied to forecast the sell-up behavior of airline passengers. We

propose a framework for integrating passenger choice models and competitor

availability data to obtain more accurate forecasts of sell-up potential.

Finally, Chapter 8 summarizes the findings of the research and discusses

directions for future research.



Chapter 2 Context and Motivation of the Research

In recent years, the U.S. airline industry has experienced the most significant

change since the economic deregulation of the industry in 1978. The rapid

growth of low-cost airlines and the development of online distribution of airline

tickets have put great pressure on the pricing and distribution strategies

developed by the network airlines after deregulation. In this chapter, we first

discuss the pricing strategies of low-cost airlines and their impact on the

traditional revenue models used in the industry. We then highlight the

development of online distribution of airline tickets and finally explore the

impact of these changes on booking patterns and the choice behavior of airline

travelers.

2.1 Airline Revenue Models

After 1978, the industry structured itself based on two elements: hub and spoke

networks and price discrimination. On the supply side, the airlines used hub and

spoke networks to consolidate traffic flows and serve with high frequency a large

number of medium and small markets that could not sustain frequent non-stop

service, a key driver of service quality, especially for business travelers. On the

revenue side, since they were now able to set fares freely, the airlines took

advantage of the behavioral differences between time-sensitive business travelers

and price-sensitive leisure travelers to increase revenues by segmenting the

demand and charging a different price to the business and leisure segments of

the market. In order to achieve price discrimination and prevent business



passengers from purchasing tickets at discounted fares designed to lure leisure

travelers, the airlines built a complex pricing system. Discounted fare products

were systematically associated with a set of fare rules designed to make them

unattractive to business travelers. In particular, airlines included a Saturday

night stay requirement in the set of fare rules applied to most discounted fare

products as the travel patterns of relatively few business travelers could satisfy

that requirement. In addition, this new pricing strategy was supported by the

dynamic management of aircraft seat inventory referred to as airline yield or

revenue management. The objective of revenue management is to ensure that

seats remain available, even at the last minute, for high-fare business passengers.

This is especially important as typical booking patterns show that business

passengers, willing to pay the most expensive fares, tend to book after most

leisure passengers. Therefore, on high demand flights, revenue management

systems limit the availability of lower-priced fare products and keep seats

available for expected late-booking passengers willing to purchase the most

expensive fares.

It is these two elements of the network airlines' strategy that the low-cost airlines

have challenged. In order to take full advantage of the economies of density

associated with hub operations, network airlines focused primarily on the

development of their hubs and not on the introduction of non-stop service in

point-to-point markets. As a result, some low-cost airlines such as JetBlue and

Southwest have chosen to some extent a strategy based on providing point-to-

point non-stop service. However, some other low-cost airlines also developed a

hub-based network structure. For example, Air Tran established a hub in Atlanta

where it competes with Delta. Even Southwest has developed over time a

network of focus cities in which a large portion of its flight schedule is now

concentrated and relies increasingly on connecting traffic for its growth.



More importantly, it is the revenue model i.e. the pricing and revenue

management philosophy, policy and practices developed by network airlines

that low-cost carriers have been challenging more aggressively in the recent

period. During the nineties, the spread between the cheapest and the most

expensive fare in a given market increased considerably. For instance, according

to a study by the Transportation Research Board (Meyer et al., 1999), while the

median fare in short-haul markets (less than 750 miles) decreased by more than

15%, the 95 t percentile fare increased from $287 in 1992 to $316 in 1998 and was

3.3 times the median fare in 1998 compared to 2.5 in 1992. A similar trend had

also been observed in medium and long-haul domestic markets. During the

1990s, network airlines had gradually increased their most expensive fares

designed primarily for business travelers to levels that started to appear

excessive. More and more business travelers became increasingly reluctant to

purchase these very expensive unrestricted fares and, over the years, an

increasing number of business travelers started to rely on ticketing strategies

designed to circumvent fare rules such as the Saturday night stay requirement

and make it easier to purchase cheaper restricted fare products. The growing

dispersion of airfares gave low-cost airlines the opportunity to promote a

different revenue model. For instance, David Neeleman, the founder of JetBlue

repeatedly claimed that his objective was to bring "humanity" back to air travel.

Launched in early 2000, JetBlue has become the symbol of a new era in airline

pricing practices. Although JetBlue, like all other low-cost airlines, is using

differential pricing, there are two fundamental differences between its pricing

strategy and that of the network airlines after deregulation. First, while JetBlue

still offers a large range of fares, the dispersion of its fare structure is typically

smaller in absolute terms. For instance, it initially did not charge more than $299

one way in any non-stop market including coast-to-coast markets in which

network airlines used to charge up to $1200 one-way prior to its entry.



Apart from a compressed fare structure, the second major and maybe more

fundamental difference in pricing practices between low-cost and network

airlines are the strategies used to segment the market. In order to segment the

market between business and leisure travelers, as mentioned earlier, network

airlines have relied primarily on a set of fare rules designed to make discounted

fares unattractive to business travelers. In addition to non-refundability and

change fees, most low fares on network airlines typically required a Saturday

night stay as the travel patterns of business travelers usually prevent them from

satisfying that requirement. Although most low-cost airlines such as JetBlue offer

primarily non-refundable tickets and charge a fee for changing flights, they do

not impose a Saturday night stay requirement. Actually, many low-cost airlines

sell tickets on a one-way basis removing de facto any minimum stay

requirement.

Low-cost airlines base price discrimination not on restrictive fare rules but on the

advance purchase of tickets as well as forecasts of future demand on a flight-by-

flight basis. Many low-cost airlines still impose advance purchase requirements

on their cheapest fare products. In addition, low-cost airlines also use revenue

management to determine which fare product to offer on any particular flight at

any particular time based on the current number of bookings and a forecast of

future demand. For instance, JetBlue relies primarily on advance purchase of

tickets and the level of demand for a given flight to achieve price discrimination.

This pricing strategy may be better accepted by the flying public as it translates

to some extent into a single rule, easy to understand and that a large proportion

of the traveling public may see as legitimate: The earlier you book, the cheaper

the fare. In addition, the price discrimination practices of low-cost airlines are

more acceptable to consumers as their most expensive fares are still in many

cases relatively affordable and much cheaper than those offered by network



airlines. Thanks to the success of their operating and pricing strategy, low-cost

airlines have been expanding rapidly in short-haul and medium-haul markets.

Figure 2-1 shows that low-cost carriers gained 10 points of market share in the

U.S. domestic market from 2000 to 2006.

U.S. Carrier Group Share of Domestic ASMs
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Low-Cost Carriers Market Share in the U.S. Domestic Market
(Source: Swelbar, 2007)

In addition, over the last couple years, low-cost carriers have developed rapidly

in most major U.S. urban centers, including cities outside of their traditional

strongholds in Texas and the West. They have been particularly aggressive on

the East Coast and in transcontinental markets and have gained a truly national

presence covering most of the U.S. major domestic markets. Figure 2-2 below

shows the change in low-cost airlines' market share in the 10 largest U.S.

Consolidated Metropolitan Statistical Areas (CMSA) between September 1997

and March 2004.
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Faced with the rapid growth of low-cost airlines, especially newcomers such as

JetBlue, and the growing popularity of their pricing philosophy, network airlines

as well as established low-cost airlines have responded in a variety of ways, but

all have aimed at mimicking JetBlue pricing practices on a more or less extended

scale. For instance, in August of 2002, Southwest, the first and largest low-cost

carrier in the U.S., announced a new system-wide fare cap of $299 one-way

decreasing its former cap by $100 and matching JetBlue's cap policy.

As for network airlines, they also responded in a variety of ways but their

pricing practices have been increasingly influenced by the "JetBlue" model as

low-cost airlines have continued to expand and enter new markets. The first

major shift in pricing policies by a network airline was initiated by a relatively

small carrier, America West, the only major airline founded after the

deregulation of the industry and still in existence as a stand-alone carrier at that
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time, prior to its merger with US Airways in 2006. Taking advantage of its

relatively lower cost structure compared to the rest of the industry and of its

experience of head-to-head competition with low-cost airlines such as Southwest

at its main hubs in Phoenix and Las Vegas, America West announced, in March

2002, a new system-wide low-cost style pricing policy decreasing maximum fares

by 40 to 70 % and removing Saturday night stay requirements on most coach

class fares. In February 2004, it extended this pricing philosophy to its first-class

cabin with the introduction of two additional discounted non-refundable one-

way first class fares. This initiative was followed in 2004 by a similar overhaul of

pricing practices by another relatively small network carrier, Alaska Airlines

As for larger network airlines, their initial strategy was to match selectively low-

cost airlines in competitive markets. In 2003, as low-cost airlines continued to

increase their share of the U.S. domestic market, some network airlines decided

to launch new low-cost subsidiaries to compete with low-cost airlines, especially

in leisure markets. Despite the history of failure of most former low-cost

subsidiaries of traditional network airlines such as Continental Lite, US Airways

Metrojet, Shuttle by United and its own low-cost arm Delta Express, Delta

launched in April 2003 a new low-cost subsidiary named Song. Song was

designed specifically to compete with increasingly popular JetBlue, primarily on

routes between the Northeast (Boston, Hartford, New York) and major resort

destinations in Florida. Fares on Song were sold one-way, removing de facto

minimum stay requirements, and capped at $299, mimicking JetBlue's fare

structure. Song fleet was composed of dedicated 757 aircraft taken out of Delta's

mainline fleet and refurbished with an all-coach class seating and entertainment

systems similar to those installed on JetBlue's aircraft. In 2005, the Song fleet was

expanded from 36 to 48 aircraft and Song took over Delta mainline service on

transcontinental routes from New York JFK where it also competes with JetBlue.



After filing for bankruptcy protection, Delta retreated in 2006 from that strategy

as Song service was discontinued and Song dedicated fleet was reintegrated into

Delta's mainline fleet and reconfigured with a two-class layout. Some elements

of Song service such as an enhanced entertainment system were retained and

offered on Delta's medium-haul domestic flights. Following Delta's strategy,

United launched in February of 2004 a new low-cost arm named Ted, replacing

United mainline service to leisure destinations such as Las Vegas, Phoenix,

Florida and Mexico from its hubs in Los Angeles, San Francisco, Denver, Chicago

and Washington D.C. Like Song, Ted has a dedicated fleet of A320 aircraft taken

from the United mainline fleet but reconfigured with all-coach seating and uses a

low-cost carrier style pricing structure, selling tickets on a one-way basis. In June

2008, United finally decided to discontinue Ted service as well.

In early 2005, Delta announced a system-wide "simplification" of its fare

structure in the U.S. domestic market, following an experiment at the airline

Cincinnati hub in the fall of 2004. Delta's new fare structure named "Simplifares"

still relied on selling round trip tickets but removed all Saturday night stay

requirements replacing it by a far less restrictive 1-day minimum stay

requirement. In addition, Delta decreased its standard change fee from $100 to

$50 and established a cap of $499 one-way for coach class and $599 one-way for

first-class tickets in domestic markets.

Delta's new pricing strategy, one of the most spectacular changes in pricing by a

large full-service network carrier since the deregulation of the airline industry

was harshly criticized by most of its competitors. However, other network

airlines matched Delta's pricing overhaul either system-wide (American) or on a

relatively large scale in many competitive markets (Continental, Northwest). As

a result, there is no Saturday night stay requirement associated with discounted

tickets in many U.S. domestic markets. As an illustration of the impact of these



changes, the following table shows the fare structure used by American in the

Boston-Seattle market in the fall of 2001 and in the spring of 2004 after its main

competitor, Alaska Airlines simplified its fare structure and American matched

the change.

American Airlines, October 1, 2001

Roundtrip Advance Minimum Change

Fare Purchase Stay Fee?

$458 21 days Sat. Night Yes

$707 21 days Sat. Night Yes

$760 21 days Sat. Night Yes

$927 14 days Sat. Night Yes

$1,001 14 days Sat. Night Yes

$2,083 3 days none No

$2,262 none none No

American and Alaska, May 1, 2004

Roundtrip Advance Minimum Change

Fare Purchase Stay Fee?

$374 21 days 1 day Yes

$456 14 days 1 day Yes

$559 14 days 1 day Yes

$683 7 days 1 day Yes

$827 3 days none No

$929 None none No

Table 2-1: Fare Structure in the Boston-Seattle Market
(Source: Belobaba, 2005)

Prior to the "simplification" of the fare structure, a business traveler planning a

trip wholly within a week from Boston to Seattle had to pay at least $2,083

(minus possibly a corporate discount of up to 20-30%) no matter how far in

advance the booking was made. Under the simplified fare structure, a ticket for

the same trip would cost between $374 and $929 depending on the date of the

booking and fare class availability (before a corporate discount is applied

although corporate discounts have been substantially decreased to usually less

than 10% and only the most expensive fares are typically eligible). As a result,

the "simplification" of the fare structure in domestic markets has made air travel

during the week much more affordable and may have reduced the price of

tickets substantially, especially for business travelers. An analysis by consultants

at Sabre Airline Solutions for USA Today (De Lollis, 2006) has shown that the

proportion of domestic tickets purchased that involve a Saturday night stay has



decreased from 51% in the first half of 2003 to 44% in the first half of 2006 as

fewer business travelers extended their trip into the weekend to take advantage

of lower restricted fares and some leisure travelers potentially switched to week

travel.

More recently, most network airlines, including Delta, have gradually re-

introduced Saturday night or three day minimum stay requirements for some of

their discounted fares in select markets, primarily if they have a competitive

advantage such as being the only airline offering non-stop service from a hub or

serving a particular destination. However, due to both the large presence of low-

cost competition and the competition among network airlines, deeply discounted

fares with either a one-day or no minimum stay requirement are still offered by

network airlines in many U.S. domestic markets. As reported in Business Travel

News (Boehmer, 2007), an analysis of 4000 fares in the top 40 markets for the six

U.S. network airlines by airfare consultancy Bob Harrell and Associates found

that only 3% of inventory held Saturday-night stay restrictions in September 2007

compared to 7% six months after Delta introduced Simplifares and 16% six

months prior to the launch of the fare simplification program.

Canada

In other parts of the world, such as Canada, Europe or Australia, low-cost

airlines have also expanded aggressively since 2000 and the impact on pricing

practices for short and medium-haul travel has been in many cases similar. In

Canada, the entrance of Westjet has led to a complete restructuring of the fare

structure in the Canadian domestic and the U.S. transborder market. Like its U.S.

counterparts, Westjet introduced one-way pricing leading de facto to the removal

of the Saturday night stay requirement.



Faced with this new competition in the domestic and U.S. transborder market,

Air Canada developed an innovative approach to pricing that can be viewed as a

mix between the low-cost and network airline pricing philosophies. In these

markets, Air Canada now offers the choice between 4 categories of branded one-

way fares designed to be differentiated not by fare rules but by product

characteristics such as frequent flyer point accrual, re-booking flexibility and

amenities such as advance seat selection, lounge access, upgrade eligibility or

business/first class seating. For instance, the cheapest category named Tango

offers advance seat selection for an extra $15 to $20 charge depending on the

distance flown. In addition, Tango fares are eligible for only 25% mileage accrual

and miles accrued do not count toward reaching elite status (non-status miles).

Within each category, Air Canada offers a wide range of fare levels and uses the

same techniques as low-cost airlines i.e. advance purchase requirements and

revenue management controls to determine which fare level to offer. As a result,

the new pricing model developed and implemented by Air Canada can be

viewed as a hybrid model. It is a combination between low-cost style pricing that

relies on advance purchase requirements and inventory controls to segment the

demand and fare product differentiation as in the network airline model except

that product differentiation is based here on product features rather than on fare

rules. The following table shows an example of the fare structure used by Air

Canada in the Montreal-Edmonton market in summer of 2007. Air Canada

operated two daily non-stop flights in this market and its main competitor,

Westjet, was offering a single daily non-stop flight, except on Saturdays. Up to

thirteen different fare levels in the Tango category were found on non-stop

flights in this market. The difference in fare to upgrade from the Tango to the

Tango Plus product was set at $45 in most of the cases. Similarly, a $240

difference in fare was observed between the Tango Plus and the flexible Latitude

product for all fare levels, except the two most expensive ones.



Fare Levels Tango Tango Plus Latitude Executive

Table 2-2:

$219 $274 $514 $1,358
$229 $274 $514 $1,358
$249 $294 $534 $1,358
$324 $369 $609 $1,358
$334 $379 $619 $1,358
$354 $399 $639 $1,358
$362 $407 $647 $1,358
$394 $439 $679 $1,358
$402 $447 $687 $1,358
$434 $479 $719 $1,358
$442 $487 $727 $1,358
$584 $659 $884 $1,358
$592 $667 $884 $1,358

Air Canada Fare Structure (Montreal-Edmonton Market, Summer
2007; Source: Air Canada Website)

More recently, Air Canada further refined its pricing strategy by offering a la

carte pricing that let customers customize further the product. Depending on the

product selected by the traveler, additional optional features are offered. For

instance, customers purchasing a Latitude or Tango Plus product are offered the

option to purchase an access pass to the airport lounge for an additional charge.

On the other hand, Tango customers are offered the opportunity to get an

additional discount if they elect not to accrue frequent flyer miles or if they

accept not to make any itinerary changes or cancellations after the booking.

This innovative pricing strategy has proved popular with Air Canada travelers

and seems to contribute to the airline's improved financial performance. As

reported in the Wall Street Journal (Gutschi, 2007), speaking to an industry

conference, Montie Brewer, CEO of Air Canada, declared that 48% of all

passengers who flew in the fourth quarter of 2006 bought a higher price ticket,

even if a cheaper fare product was available. In addition, 25% of the customers

that paid the lowest fare purchased an additional service such as advance seat

selection or a voucher for on-board meals and snacks.



The competitive structure of the Canadian domestic market has provided Air

Canada with a favorable environment to introduce its new pricing strategy.

Unlike the U.S. domestic market that is fragmented between six major network

and several low-cost airlines, the Canadian domestic market is dominated by two

players, Air Canada and Westjet. As a result, the pricing strategy pioneered by

Air Canada has not yet become widespread in the U.S. domestic market.

However, several U.S. network airlines are taking steps to develop a multi-

product or a la carte pricing strategy. For instance, during a meeting with

investors (Compart, December 2006), Greg Taylor, United's senior vice-president

for planning, reported that the airline is working on a plan to un-bundle its

product offering into a base fare and a range of value-added optional features

such as priority check-in and boarding, the option to change flights for a prepaid

nominal fee or an access pass to the airline lounge. The airline already offers the

option to purchase an upgrade to Economy Plus seating or a premium cabin at

check-in. American now displays on his website five types of product categories

that are differentiated by features such as refundability, flexibility to change

travel plans and the opportunity to upgrade to the first class cabin.

Even low-cost airlines are moving toward more product differentiation. For

instance, Southwest introduced in November 2007 a new product category

designed to attract more business travelers. Named Business Select, it offers

priority boarding, extra mileage accrual and free alcoholic beverages for a

premium over the standard full fare. Similarly, Jetblue introduced in February

2008 a new category of refundable fares. The low-cost airline recognized that a

single type of product does not satisfy the needs of all market segments,

especially some business travelers that are prevented from purchasing non-

refundable tickets by corporate travel policies.



Europe

In Europe, low-cost airlines started to develop in the mid-nineties after the

liberalization of the intra-European market. Early entrants focused primarily on

routes within the British Isles and linking Britain with the continent. The two

largest European low-cost airlines, Ryanair and Easyjet emerged at that time:

Easyjet was created from scratch by entrepreneur Stelios Haji-Ioannou and

launched operations in 1995 while Ryanair transformed itself from a small

money-losing Irish traditional carrier into a leading European low-cost airline

linking Ireland with Britain but also establishing a large base at London-Stansted

airport with many flights to continental Europe. Since the beginning of the

century, new players have entered the market, especially in Germany,

Scandinavia and Central Europe and Ryanair and Easyjet have expanded

aggressively on the continent establishing bases in most major European

markets.

Almost all of the 50 or so low-cost airlines that now operate in Europe follow a

pricing strategy similar to that of their North American counterparts: European

low-cost airlines typically sell one-way tickets removing de facto any minimum

stay requirement. In addition, they also offer a wide range of fares associated

with various advance purchase requirements and use revenue management to

control the availability of the different fare levels.

Like U.S. network airlines, established European flag-carriers responded to the

emerging low-cost challenge by a significant change in their pricing strategies.

As in the U.S., a few European airlines chose to set up low-cost subsidiaries. For

instance, KLM owns a carrier named Transavia that serves mostly leisure

destinations in Southern Europe out of Amsterdam and Lufthansa is a major

shareholder in German low-cost airline Germanwings. In addition, many



European flag-carriers decided to match some of the pricing practices of the low-

cost airlines by removing restrictions such as the Saturday night stay

requirement or decreasing their most expensive fares.

The most radical change came from carriers that had limited long-haul

operations and were then more exposed to growing low-cost competition in

short-haul markets. For instance, Aer Lingus, which derives more than 60% of its

passenger revenues from European short-haul operations and is faced with

intense competition from fellow Irish low-cost operator Ryanair, designed in

2001 a radical survival plan to transform itself from a loss-making traditional

flag-carrier into a profitable airline modeled after its low-cost competitors.

According to the airline annual reports, from 2001 to 2004, Aer Lingus revenues

decreased by more than 200 millions Euros (-20%) because of a substantial

decrease in average fares due to the shift in its pricing strategy. However, the

Irish airline was able to reduce its operating costs by more than 350 millions

Euros (-30%) and it achieved an 11.8% operating margin in 2004. Aer Lingus

reduced its costs by increasing labor and aircraft productivity. The number of

employees decreased by 30%, the fleet was reduced and homogenized with the

shift to a single aircraft family on European operations, distribution costs were

lowered by promoting aggressively online bookings (66% of the bookings at

year-end in 2004), aircraft productivity was increased substantially by removing

first-class seats and increasing aircraft utilization. In addition, capacity was

redeployed from the U.K. routes to Continental European markets where the

competition was less intense with the launch of more than 40 new routes

between 2001 and 2006.

On the revenue side, Aer Lingus also revamped entirely its pricing and

distribution strategy with the shift to one-way fares removing de facto all

Saturday night stay requirements and by implementing a large decrease (up to



60%) in the most expensive fares charged to business travelers. Lower fares

stimulated demand and led to an increase in load factors from 71% in 2001 to

82% in 2004 that partially compensated the decrease in average fares. In the fall

of 2004, Aer Lingus was the first airline to extend this pricing strategy to its long-

haul transatlantic operations. All transatlantic fares are now one-way and the

airline reduced its business class fares by as much as 60% in order to make

business class travel more affordable. This strategy has not been matched so far

by its larger European and U.S. competitors in the transatlantic market.

Similar pricing and distribution strategies have been developed by other small or

medium-size European carriers relying primarily on European traffic, for

instance SAS or Finnair. Larger European airlines are less exposed to low-cost

competition than their U.S. counterparts because European short-haul operations

account for a much smaller share of their total operations thanks to their

extended long-haul networks and strong cargo activity. As a result, large

European airlines have responded to the low-cost challenge by increasing their

market power through a wave of consolidation initiated by the merger between

Air France and KLM and followed by the acquisition of Swiss by Lufthansa.

Large European airlines have also restructured their fare structures in European

markets to compete more aggressively with low-cost airlines. For example, faced

with increasing competition on European routes, in particular from Easyjet that

established a base at the two main Paris airports of Orly and Roissy-Charles de

Gaulle, Air France introduced in March 2004 in most domestic and European

markets a new set of discounted round-trip fares that do not require a Saturday

night stay. These new fare products are non flexible (non-changeable and non-

refundable) and four fare levels are offered with respectively a 21, 14, 7 and 0-

day advance purchase requirement. Air France still maintained another set of

cheaper fares that require a Saturday night stay. However, this new set of fares



named "Gamme Semaine" has reduced the cost of short business trips

substantially, especially for business travelers able to plan their trips relatively

far in advance. However, the level of discount off the full unrestricted economy

class fare varies widely based on the degree of competition in specific markets.

For instance, in April 2005, the cheapest "Semaine" fare was 240 USD or 16% of a

full economy class fare of USD 1478 in the Paris-Lisbon market and the similar

fare was 483 USD (32% of a full fare of 1473 USD) in the then less competitive

Paris-Vienna market.

2.2 Distribution of Airline Tickets

Along with the introduction of new pricing practices, low-cost airlines have been

in many instances pioneers of major changes in the distribution of airline tickets.

In this section, we will first discuss the development of direct and online

distribution of airline tickets1, then describe the evolving relationships between

airlines and global distribution systems (GDS), and finally focus on the

development of large online travel agents and its impact on the marketplace.

2.2.1 Direct and Online Distribution of Airline Tickets

Due to their strong focus on cost control, low-cost airlines have been at the

forefront of the shift to direct distribution of airline tickets bypassing costly

commercial or technological middlemen such as travel agents and GDS. Many

European low-cost carriers have relied exclusively on direct distribution right

from the start (for instance, Easyjet since its launch in 1995) and their inventory

was not available through travel agents or listed in GDS. To market their

'Direct bookings are bookings made directly with the airline, either through an airport or city office, a call
center or on the airline website. Online bookings are bookings made online, either on the airline website or
through a third party online travel agent such as Expedia or Travelocity. As a result, a booking made on the
airline website is classified both as a direct and an online booking.



products, they relied initially on their call centers. However, they took advantage

of the technological advances of the late 1990s such as the development of the

Internet and the introduction of electronic ticketing that eliminated the need for

the distribution of physical paper tickets. Low-cost airlines moved quickly to

online-based distribution and eliminated paper tickets system-wide reducing

their significant distribution and processing costs. To accelerate the shift to

online distribution, they often offered customers incentives such as discounts or

extra frequent flyer credits for tickets booked on their website. These were

replaced after some time by an extra charge for bookings made through call

centers.

As shown in Table 2-3 below, online bookings accounted in 2006 for almost all

bookings on the largest European low-cost carrier Ryanair and for the majority of

the bookings on some North American low-cost airlines such as JetBlue or

Southwest. However, since their inventory is not available in many instances

through third party travel agents (traditional or online), low-cost airlines need to

build a strong brand identity associated with low fares to drive prospective

travelers to visit their website and usually incur relatively large marketing and

advertising expenses, especially when they launch new destinations.

Compelled to reduce their own distribution costs to remain competitive and to

take advantage of the same technological advances as their low-cost competitors,

network airlines have responded in a variety of ways. Like their low-cost

competitors, they rely increasingly on direct distribution of tickets through

expanded call centers and the development of their own websites. To give an

incentive to use their website, the most cost-effective of all distribution channels,

some network carriers, particularly in North America, offered bonus miles for

online bookings.



To make their website even more attractive, Northwest introduced at the end of

2004 a practice similar to that of some low-cost airlines i.e. a $5 booking fee for all

tickets booked through its call centers. Northwest's new booking fee was quickly

matched by all network airlines. In addition, many U.S. network airlines, such as

Northwest, Continental and American introduced at the end of 2004 a lowest

fare guarantee for online bookings, offering a refund and some form of incentive

such as extra frequent flyer miles or a travel voucher if a traveler finds a lower

published fare through another distribution channel. Despite all these incentives,

network airlines remain in most instances far behind their low-cost competitors

in terms of the proportion of direct and online bookings as many of their

customers, especially business travelers, still rely heavily on traditional off-line

travel agents.

In Europe, some small European carriers that do not rely heavily on long-haul

traffic and are very exposed to low-cost competition on European short and

medium-haul routes also developed aggressive strategies to increase online

bookings. For instance, in 2006, Aer Lingus derived almost 75% of its total

passenger revenues from tickets booked through its own website. As mentioned

earlier, this shift in distribution strategy has led to a substantial decrease in

distribution costs for the Irish carrier.

Carrier
Southwest
Jetblue
Continental
Ryanair
Aer Lingus

2006
70%
79%
24%
98%
73%

2004
59%
75%
16%
97%
50%

2002
50%
63%
8%

93%
28%

Table 2-3: Proportion of Sales on the Airline Website
(Source: Airline Websites and Annual Reports)



In addition to the development of their own website, network carriers have also

gradually reduced and finally eliminated altogether base commissions paid in

the U.S. to travel agents. A similar change has occurred in many European

markets. For instance, effective April 1, 2005, Air France eliminated all

commissions for tickets issued by travel agents in France, following similar

changes that occurred earlier in other European countries. In order to cover their

costs and remain profitable, off-line travel agents started to charge service fees.

They rely increasingly on corporate customers that need a broad range of

services such as account management or are required to book through travel

agents to take advantage of negotiated corporate discounts.

2.2.2 New Airline-GDS Agreements

In order to further reduce costs and compete with their low-cost competitors,

network airlines have started to look at how to decrease the fees paid to the GDS

used by many travel agents, both online travel companies such as Travelocity or

Expedia and off-line travel agents to access airline inventory and book travel on

behalf of their customers. As most GDS were initially developed by a few major

airlines, this industry was regulated in the U.S. in 1984 to prevent carriers that

owned a GDS from using it as a competitive weapon by displaying more

prominently their own inventory and barring other airlines from access to the

marketplace. In addition to unbiased display of inventory, GDS were mandated

to charge the same flat per-segment fee to any airline participating in the system.

Since the deregulation of the industry starting in 2003, this rule has been lifted

and airlines have started negotiating multi-year agreements with GDS

companies, including new pricing conditions. In exchange for access to full

content, the GDS generally agreed in these three-year agreements to reduce the

per-segment fees. However, as network airlines still relied in 2003 on GDS for the

overwhelming majority of their bookings and passenger revenues, they agreed to



limited discounts over previously regulated GDS fees and the GDS were able to

lock-in favorable economic conditions for the three years to come.

In August 2004, along with the introduction of a $5 fee for ticketing through its

call centers, Northwest announced the introduction of a $3.75 one-way "shared

GDS fee" for all domestic tickets issued by travel agents through a GDS.

Northwest argued that it paid on average $12.50 in fees on tickets issued through

a GDS and that a significant portion of these fees were given back to travel

agents by GDS companies as an incentive to use their systems. According to the

airline, this new policy was necessary to compete in the U.S. domestic market

with low-cost competitors. In response to Northwest initiative, Sabre, the largest

GDS in North America, announced retaliatory measures that would make

Northwest inventory less prominent in its displays, as now permitted after full

deregulation of the industry. Faced with the risk of a significant drop in GDS-

related bookings that include many of its most valuable bookings as off-line

travel agents are a primary distribution channel for business travelers working

for large corporations, Northwest had to renounce.

However, the high level of GDS fees remained a concern for most network

airlines. This explains the strong interest expressed for lower-cost technologies

under development by several companies dubbed GNE such as G2 Switchworks,

Farelogix and ITA Software that planned to build alternative systems to existing

GDS. In May 2005, all U.S. network airlines announced that their content would

become available on G2 Switchworks when it was due to start operating late

2005. Combined with the growing popularity of their websites, this new

distribution landscape provided the network airlines with some leverage for the

negotiation of new multi-year agreements with the GDS companies in 2006. On

the other hand, airlines remain highly dependent on GDS for access to key

segments of the market such as business travelers or sales in distant overseas



markets where their brand identity is limited and the popularity of other

distribution channels such as airline websites remains low.

Even several low-cost airlines, while still relying primarily on their own website,

recognized the potential value provided by the GDS. For instance, Southwest

Airlines announced in May 2006 a ten-year agreement with Galileo to get greater

access to managed corporate travel. Similarly, after several years of absence,

Jetblue made the strategic decision in August 2006 to participate again in three of

the major GDS. In a conference call to discuss Jetblue's 2006 third quarter results

(Compart, October 2006), David Neeleman indicated that 66% of GDS bookings

were new customers and that the average fare of these bookings was about $35

higher than Jetblue's global average fare, net of GDS fees, providing the airline

with improved access to the corporate market. Finally, Easyjet announced in

November 2007 an agreement with two GDS companies (Amadeus and Galileo)

in order to gain additional access to the European corporate travel market and to

increase the proportion of business travelers on its flights, currently estimated

around 20% of total passengers. Like for tickets booked through the phone, the

airline will add a point-of-sale fee to GDS bookings to recover the additional cost

and ensure that tickets are always cheaper on its website.

In this context, after highly publicized battles during the summer of 2006, airlines

and major GDS companies finally agreed to new five-to-seven year agreements

that include gradual reductions in GDS fees over the course of the agreement in

exchange for continued access to full airline content. As reported in Travel

Weekly (Schaal, 2006), GDS per-segment fees will initially decrease from almost

$4 to slightly above $3 with a subsequent gradual decrease to the mid-2$ range

by 2011, when most of these agreements expire. In order to reduce their

operating costs and bring them in line with an expected gradual one-third

decrease in segment fees, the GDS structured these agreements to reduce the



incentives paid to travel management companies by offering new so-called

optional programs. Under the new airline-GDS agreement, travel agents would

be charged by the airlines a $3.50 segment fee for all bookings made through the

GDS unless they join these optional programs and agree either to the payment of

a new per-segment fee of up to $0.80 or a decrease of a similar amount in

incentives.

As the alternative systems developed by the GNE were not yet fully in

operations or still had a very limited penetration among off-line travel agents

when new agreements were negotiated with the airlines, the GDS were able to

limit the decrease in per-segment fees and compensate it by a reduction in

incentives offered to travel agents. This should give them the time necessary to

adjust and reduce their own operating costs by shifting to lower-cost open-

source technologies and compete aggressively when the current set of airline-

GDS agreements expire in 2011-2013.

2.2.3 Development of Online Travel Agents and Websites

The other major change in the distribution of airline tickets is the development of

large online travel agents that market a wide range of products such as airline

tickets, hotel accommodations and car rentals sold separately or together as

packages. These online travel retailers such as Travelocity or Expedia developed

quickly at the end of the 1990s. They were later joined by competitors launched

by the airlines themselves such as Opodo, owned by nine European flag-carriers

and the European GDS Amadeus, and Orbitz, which was founded in 2001 by five

U.S. network carriers and later sold to U.S. travel conglomerate Cendant in 2004.

Third party online websites have a large impact on the distribution of airline

tickets and price transparency in airline markets. They have developed search



engines that allow prospective travelers to compare easily between fares offered

by a wide range of carriers without going through an intermediary such as an

off-line travel agent. In addition, some of these online retailers are using

powerful search engines that can in some instances find lower fares by looking

for combination of tickets on several carriers for a single trip. For instance, Orbitz

introduced an advanced search engine developed by ITA software that takes

advantage of the many one-way fares now offered in the market in response to

low-cost airline pricing practices to construct itineraries involving several

carriers if such a combination turns out to be cheaper than tickets on a single

airline.

In addition, other web companies called scrapers have developed technologies

that search quickly through both airline and online travel retailers, and let

travelers compare fares across all these sites. These companies such as Sidestep

and Kayak earn revenues through referral fees paid by the airlines or the online

travel retailers for directing prospective travelers to their website. More recently,

a new scraper travel website has gone a step further by providing travelers with

guidelines on when to book their tickets. Launched in 2006, Farecast has

developed a large historical database of airline fares and is using statistical

techniques to predict whether a fare is likely to increase or drop in the near

future.

2.3 The Impact on Booking Patterns and Airline Passenger Choice

The impact of the development of direct and online distribution on the choice

behavior of airline travelers can be somewhat uncertain. The development of

direct distribution of airline tickets may tend to reduce the universality of the

passenger choice set since airline travelers could need to contact each carrier



directly to get access to fare and schedule information. For some airlines,

schedule and fare information is available only through direct contact with the

airline since, as mentioned earlier, to reduce cost and avoid GDS fees, some low-

cost carriers do not participate in GDS. However, the quick development of large

online travel websites has allowed many travelers to have a direct access to a

wide range of airline fare and schedule information without going through a

middleman such as an off-line travel agent that may be biased due to financial

incentives from the airlines. Online travel websites such as Travelocity, Expedia

or Orbitz make it much easier for consumers to compare across travel

alternatives and choose the most attractive in terms of fare, schedule, airline and

product characteristics. As a result, many including the airlines themselves argue

that the development of online distribution has greatly increased price

transparency in airline markets. In addition, the new generation of scraper

websites further enhances price transparency by allowing prospective travelers

to compare more easily across travel websites including the sites of low-cost

carriers that do not appear on travel agent websites.

In addition, as low-cost airlines expand, their pricing strategy permeates a

growing number of markets, impacts the choice set of an increasing number of

travelers and influences over the longer-term the perception of the traveling

public regarding fares and fare product characteristics. On one hand, due to

lower fares offered by low-cost airlines, business travelers have been more and

more reluctant to purchase the highly priced unrestricted business fares charged

by network airlines. Since 2000, network airlines have experienced a significant

drop in the number of business-type fare tickets purchased, which led to a rapid

decline in yield. This forced them to overhaul their fare structures and finally

adopt at least partially the pricing practices of their low-cost competitors. On the

other hand, the removal of the Saturday night stay requirement, the decrease in

walk-up fares through the compression of the fare structure and the



development of opaque web-based distribution channels like Priceline.com to

sell distressed inventory may have influenced the behavior of many leisure

passengers as well. Leisure trips during the week such as visits to friends and

relatives as well as last-minute leisure travel have become more affordable. As a

result, low-cost airline pricing practices have removed constraints that reduced

the affordability of business trips and the flexibility of leisure trips and may have

reduced the behavioral difference between the two segments of the market.

The impacts of these changes are reflected in many of the industry-wide data and

have contributed, along with the aftermath of 9/11, to very large cumulative

losses since 2001, especially for U.S. network airlines. As shown in Figure 2-2,

while U.S. airline passenger revenues accounted for 1% of U.S. GDP in the 1990s,

this proportion has decreased substantially since 2000 and remains well below

that level despite a slight rebound over the last three years. From 2000 to 2002,

U.S. airline passenger revenues dropped by almost $25 billion in current dollars.

This shortfall more than persists today if one combines the remaining shortfall in

revenues - at about 0.2% of GDP in 2006 i.e. $26 billion - with the increase in fuel

costs that can be mitigated mostly only in the long-term through fleet renewal

and advancements in aircraft technology and is usually passed onto consumers

in other modes of transportation. Fuel costs at the industry level including all-

cargo carriers rose from around $16 billion in 2000 to $38 billion in 2005.

This relative decrease in air travel spending tends to indicate that a structural

shift occurred in the market. The shift toward lower airline passenger revenues is

primarily driven by a decrease in yield that was partially mitigated by an

increase in load factors and led to a lower decrease in revenue per available seat

mile (RASM) as shown in Figure 2-4.
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This sharp decline in yield is largely due to increased price transparency in

airline markets and the shift toward lower fares driven by growing low-cost

competition and the pricing overhaul in the industry. For instance, according to a

study by ECLAT Consulting (Swelbar, 2003), even before the overhaul of its fare

structure following Delta's pricing initiative, the proportion of United's revenues

from premium tickets (full fare economy and first class tickets) decreased from

41% in 1999 to only 20% in 2002. Similarly, a recent study of price competition in

the U.S. airline industry (Pyrgiotis, 2008) reported that the fare premium of

network airlines over their low-cost competitors in the top 856 U.S. domestic

markets decreased sharply from $90.44 in 2000 to $54.67 in 2006 as shown in

Figure 2-5. As mentioned, the decrease in yield was partially compensated by an

increase in load factors that may be related to the impact of airline revenue

management. If the fare structure is compressed and the difference between

higher and lower fares is reduced, revenue management systems will tend to

protect fewer seats for expected yet uncertain high-yield late-booking passengers

and release additional low-yield seats leading to an increase in load factors.
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In order to gain additional insight on the impact of the development of online

distribution and the growth of low-cost airlines, we studied the changes in

booking patterns in a dataset provided by Northwest Airlines. This dataset

includes all bookings (local traffic) on Northwest's non-stop flights in 22 U.S.

domestic markets for the month of June 2000 and June 2004 including code-share

passengers 2. As indicated in Table 2-4 below, these markets were classified as

either leisure or business-oriented and Northwest faced non-stop low-cost

competition in a subset of these markets.

Market Type
Business
Business
Business
Business
Business
Business
Business
Business
Leisure
Leisure
Business
Business
Leisure
Leisure
Business
Business
Leisure
Leisure
Business
Business
Leisure
Leisure

LCC NS Competition
No
No
No
No
No
Yes (Sun Country)
No
No
Yes (Spirit)
Yes (Air Tran, Sun Country)
Yes (Southwest)
Yes (ATA)
No
No
No
No
Yes (Southwest, America West)
Yes (Sun Country, America West)
Yes (Southwest)
No
Yes (Spirit, USA 3000)
No

Table 2-4: List of Markets in the Northwest Dataset

2 Code-share passengers are passengers with tickets sold by one airline called the marketing airline (here,
for instance, Continental Airlines) valid for travel on flights wholly or partially operated by another airline
called the operating carrier (in this case, Northwest Airlines)

Market
AUS-DTW
AUS-MSP
BOS-DTW
BOS-MSP
DFW-DTW
DFW-MSP
IAH-DTW
IAH-MSP
MCO-DTW
MCO-MSP
MDW-DTW
MDW-MSP
MSY-DTW
MSY-MSP
ORD-DTW
ORD-MSP
PHX-DTW
PHX-MSP
STL-DTW
STL-MSP
TPA-DTW
TPA-MSP

II



Figure 2-6 below illustrates the shift observed toward direct and online

distribution of airline tickets. The proportion of tickets booked through off-line

travel agents decreased from about 60% to just over 40% of total bookings while

direct bookings increased from 34% to 44% of total bookings and online bookings

increased from just 11% to over 36% of total bookings from 2000 to 2004. There

was especially a strong increase in online bookings though the airline website

NWA.com from 7 to 22% of total bookings.
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Figure 2-6: Bookings by Distribution Channel

In addition, Figure 2-7 shows that both in 2000 and 2004, bookings made through

off-line travel agents generated a much higher average fare than bookings made

through other distribution channels. However, since the proportion of air

travelers booking through travel agents fell sharply, the average fare remained

almost stable increasing by only 2.7% from $161 to $165.30 in current dollars.
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The analysis of the Northwest dataset also illustrates the influence of low-cost

airlines on fare levels and the advance purchase airline tickets. As shown in

Figure 2-8 above, the proportion of tickets with a one-way fare above $200

increased in business markets without low-cost competition but it decreased in

leisure markets with low-cost competition. This illustrates the downward

pressure on fares associated with the presence of a low-cost competitor and in

particular how low-cost competition limits the ability of a network airline to sell

relatively highly priced business fares. The presence of a low-cost competitor

also has an impact on booking curves. As shown in Figure 2-9 below, in markets

without low-cost competition, air travelers booked their tickets further in

advance in 2004 than in 2000 while they booked closer to departure in markets

with low-cost competition. Low-cost airlines usually offer more affordable fares

closer to departure. To remain competitive and defend its market share,

Northwest most likely matched its low-cost competitor fare structure leading

travelers to delay the purchase of their tickets.
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2.4 Conclusion

The rapid growth of low-cost airlines, the development of online distribution of

airline tickets along with the economic downturn of the early years of the

century and the events of 9/11 have led to a long period of turmoil and

uncertainty for network carriers and the airline industry in general. In response

to growing low-cost competition and increased price transparency in the

marketplace, all network airlines in the U.S. and many European flag carriers

initiated a major restructuring of their pricing practices in short and medium-

haul markets. They have adopted to some extent the pricing practices of their

low-cost competitors by removing fare rules such as the Saturday night stay

requirement in many markets and reducing the spread between the most

expensive and the cheapest discounted fares.

This major overhaul of airline pricing and distribution practices has an impact on

the choice set of many air travelers and has led to observed changes in booking

patterns. In addition, these elements have undermined the pricing and revenue

management practices of network airlines and a better understanding of airline

passenger choice is necessary to support the development of new pricing and

revenue management strategies. For instance, new revenue management models

designed to optimize revenues under less restricted fare structures require an

estimate of sell-up behavior in order to determine when to stop selling a cheaper

fare given expected sell-up to a higher fare. A better understanding of passenger

choice behavior may provide additional insight on the price elasticity of demand

and more reliable estimates of sell-up potential. Similarly, some airlines such as

Air Canada have developed new innovative pricing strategies that combine fare

product differentiation and fare customization with a low-cost style set of fare

rules, expanding the set of options offered to airline travelers. Passenger choice

models may also provide valuable insight to support the design of effective new



fare product differentiation and ancillary revenue strategies. The rest of the

dissertation will then focus on how to develop a model of airline passenger

choice that can be used to support a range of airline planning decisions,

including new pricing and revenue management strategies designed to compete

more effectively in the current marketplace.



Literature Review

In this chapter, we review the existing literature on airline passenger choice. We

first provide a brief overview of the literature on discrete choice models that

have been used to study choice behavior in a variety of contexts. In particular,

discrete choice models have been applied extensively to the transportation field

to enhance the understanding of traveler choice behavior and improve the

accuracy of travel demand forecasts. Then, we review more extensively previous

studies of passenger choice behavior, focusing on the strengths and weaknesses

of using different types of data. Finally, we identify some of the shortcomings of

existing research and further discuss the objectives of this dissertation.

3.1 Discrete Choice Models

Discrete choice models based on random utility theory (RUM) are the tool most

commonly used by researchers and practitioners to represent individual choice

behavior. The concept of random utility theory originated in the work of

Thurstone (1927) and was further interpreted and developed by Marschak (1960).

The idea behind random utility theory is that while the utility of each choice

alternative may be known by the decision-maker, it is not fully known by the

researcher and therefore uncertainty must be taken into account. As a result,

utility is modeled as consisting of two parts, a deterministic component observed

by the analyst and a random component that remains unknown. Manski (1977)

identified four main sources of uncertainty: Unobserved attributes of the

Chapter 3



alternatives, unobserved individual attributes of the decision-maker,

measurement errors and the use of proxy (instrumental) variables.

In addition to random utility theory, discrete choice models rely on several other

assumptions. The decision-maker is assumed to choose among a set of finite,

mutually exclusive and collectively exhaustive alternatives and to select the

alternative with the highest utility. For each alternative, the deterministic part of

the utility is specified as a function (generally a linear function) of its attributes,

such as for instance travel time and travel cost, and the characteristics of the

decision-maker (age, gender, income etc.). As mentioned above, utilities also

include a random component and the output of a choice model is then the

probability of an individual selecting each alternative. Econometric techniques,

such as maximum likelihood estimation can be applied over a sample of

observations to estimate the unknown coefficients of the deterministic part of the

utility function.

Different assumptions on the distribution of the disturbances lead to different

forms of choice models. Many of the early investigations of discrete choice

models assumed a multivariate normal distribution for the disturbances leading

to the so-called probit model. Although extremely flexible because it allows for

an unrestricted covariance matrix of the disturbances, the probit model was

difficult to estimate because the choice probabilities do not take a closed-form

solution. As a result, the multinomial logit model developed by Marley, as cited

by Luce and Suppes (1965), and McFadden (1974) is often preferred to probit due

to its mathematical simplicity and hence, its high degree of tractability. The

multinomial logit model assumes that disturbances follow an extreme value

distribution and are independently and identically distributed (i.i.d.). Logit

choice probabilities take a closed-form solution and can be easily calculated.



One of the most documented aspects of the logit model is its property known as

independence from irrelevant alternatives (IIA) that originates in the i.i.d.

specification of the disturbances. The IIA property can lead to an erroneous

representation of consumer preferences when some alternatives are very similar

and can be assumed to share some common unobserved characteristics (for

example, the now famous red bus - blue bus textbook example).

There are several ways to overcome the IIA property and one of the most

popular approaches has been to use models from the Generalized Extreme Value

(GEV) family. The GEV family is a large class of models that offers a partial

relaxation of the IIA property and is used to represent a variety of substitution

patterns across alternatives. GEV models assume that the disturbances follow a

joint extreme value distribution, which is a generalization of the univariate

extreme value distribution used in the multinomial logit model, meaning that the

logit model belongs to this larger class of models. GEV models have been

popular with researchers as they retain a good level of tractability because the

choice probabilities keep a closed-form solution. The nested logit model

introduced by Ben-Akiva (1973) is the most widely used model from the GEV

family due its simple functional form compared to other GEV models but more

complex models such as cross-nested logit models are also increasingly popular.

In addition, the development of computational capabilities over the years has

enabled the specification and estimation through simulation techniques of even

more flexible models that were previously intractable. As stated by Train (2003),

"simulation allows estimation of otherwise intractable models. (...) The

researcher is therefore freed from previous constraints on model specification -

constraints that reflected mathematical convenience rather than the economic



reality of the situation."3 In particular, with the advent of simulation-based

estimation, the logit kernel model, also called mixed logit has become

increasingly popular among choice modelers. Logit kernel is a highly flexible

model that combines the flexibility of probit-like forms and the mathematical

simplicity of the logit model. Logit kernel disturbances are composed of two

parts: The logit kernel (i.e. an i.i.d. extreme value disturbance) and another part,

often probit-like that allows for flexibility. McFadden and Train (2000) have

proved that any well-behaved RUM-consistent behavior can be represented as

closely as desired with a logit-kernel specification. As a result, the logit kernel

model can be used to represent any kind of substitution patterns. In particular,

any GEV model can be approximated by a logit kernel specification using the

appropriate choice of variables and mixing distribution. In addition to more

flexible substitution patterns, logit kernel models also allow the specification of

random coefficients to represent random taste variation and the estimation of

panel data when unobserved elements may be correlated over a set of choice

observations from the same decision-maker.

In addition to more flexible models such as logit kernel, advancements in

computer technology have sparked the estimation of hybrid choice models that

incorporate other components such as latent variables and latent classes into

choice models and make it easier to combine several sources of data, for

example, stated preference (SP) and revealed preference (RP) data. The hybrid

choice model framework draws on ideas from many researchers including Ben-

Akiva and Morikawa (1990) who developed methods to combine RP and SP

data, McFadden (1986) who proposed ideas to include latent variables and

psychometric data in choice models and Gopinath (1995) who developed the

latent class choice model that incorporates unobserved discrete latent constructs

(also called latent classes) to account for heterogeneity of choice behavior across

3 Train, "Discrete Choice Models with Simulation", Cambridge University Press, 2003



latent segments of the population. Through these extensions, choice models can

capture more realistically the complexity of many choice processes. For a more

complete description of the hybrid choice model framework, the reader is

referred to Walker (2001).

3.2 Passenger Choice Models

As mentioned in the previous section, discrete choice models are used to

represent the choice of an individual decision-maker among a finite number of

mutually exclusive and collectively exhaustive alternatives. Two of these

characteristics are actually not restrictive. An appropriate definition of the

alternatives can nearly always ensure that the alternatives are mutually exclusive

and that the choice set is exhaustive. For instance, by defining an extra

alternative such as "none of the other alternatives", the researcher can effectively

ensure that the choice set is exhaustive. However, the third condition, a finite

number of alternatives, is restrictive since it is the defining property of discrete

choice models and it separates the realm of applications between discrete choice

and regression models.

As the choice set of air travelers is usually composed of a finite number of travel

alternatives, including the option of not traveling at all, discrete choice models

can be a valuable tool to represent the choice of individual air travelers among a

set of travel options. As a result, discrete choice models have been used by

researchers to represent the choice of airline passengers among a set of travel

alternatives characterized by a range of attributes such as itinerary and fare.

Two main types of data have been used to study airline passenger choice,

revealed preference and stated preference data. RP data are real market data that



reflect actual choice behavior in the marketplace whereas SP data are stated

responses to pre-designed hypothetical scenarios and are collected through

surveys. Both types of data have strengths and weaknesses. The major advantage

of revealed preferences is that it represents actual choice behavior whereas stated

preferences are hypothetical in nature and can be subject to several types of

biases. However, stated preferences provide more flexibility due to the control

over the survey design and the opportunity to build a set of hypothetical choice

scenarios. For instance, stated preference data can be used to explore consumer

choice behavior regarding non-existing alternatives or to introduce more

variability compared to the actual existing alternatives. As a result, RP and SP

data are highly complementary and estimation techniques have been developed

to combine both types of data sources. As mentioned earlier, since the booking

search process remains largely unobserved by the airlines, no literature was

found on how to use web analytics and exploit data such as screen shots and

click activity to analyze the choice behavior of airline passengers.

3.2.1 Stated Preference Data

Although discrete choice models applied to the airline industry have relied on

either RP or SP data, the majority of studies of airline passenger choice have been

based on the analysis of stated preferences collected through surveys of airline

passengers. As mentioned earlier, very detailed data can be obtained through

surveys such as socio-economic characteristics of the traveler (age, gender,

income), travel history (previous trips, frequent flyer information), characteristics

of the trip (trip purpose, preferred departure time), even indicators to represent

attitudes toward elements such as the risk of misconnection (Theis, 2006).

Some of these elements, primarily trip purpose, have been used to segment air

travel demand and investigate the differences in behavior across market



segments by estimating separate models for each segment. For instance, based on

data collected through an on-line survey of 600 U.S. travelers, Adler, Falzarano

and Spitz (2005) estimated separate models of the choice of an itinerary for

business and non-business travelers. As expected by conventional industry

wisdom, they show that travelers belonging to these two segments of the market

have very different behavioral patterns. For instance, they estimated that while

business passengers may be willing to pay $30 for a one-hour decrease in

schedule delay4, non-business passengers are only willing to pay less than $5 for

a similar improvement.

In addition to the variety and wealth of data collected, surveys of airline

passenger choice are typically designed to reproduce to some extent the

characteristics of the choice environment in the airline industry, including the

impact of airline pricing and revenue management on the passenger choice set.

For instance, in their study of the choice of an airline, flight and fare class,

Prossaloglou and Koppelman (1999) used different sets of fare products based on

whether respondents were asked to select a travel alternative for a hypothetical

winter vacation trip planned three weeks in advance or to attend a business

meeting with three days advance notice. To reflect the traditional pricing

practices used by network carriers at the time of the study, each group of

respondents was asked to choose among three fare products. The products

presented to business travelers did not require a Saturday night stay and carried

either low or no change fees while two of the fare products proposed to leisure

travelers did require staying overnight on Saturday and all of them carried

increasingly stiff change fees.

4 Schedule delay is defined as the time difference between a passenger preferred departure time (or arrival
time) as stated by the passenger during the survey and the actual departure time (or arrival time) of the
chosen alternative.



More recently, Garrow, Jones and Parker (2007) developed a study of airline

passenger choice based on stated preference data collected through a survey of

consumers recruited while they were shopping on a travel website. Survey

respondents were presented with the choice of three hypothetical travel options

tailored to the origin and destination of their current search and characterized by

departure time, arrival time, number of connections, airline and aircraft type,

comfort (legroom) and price. In order to reproduce the dispersion of fares found

in airline markets, the survey design used a two-tier approach. They first draw

for each respondent a multiplier of a pre-defined average fare in the market

called the base fare (from 0.75 to 1.5) and then multiply it by a fare premium for

each of the three itineraries included in the respondent's choice set (from 0.85 to

1.20). As a result, the highest fare could be almost three times the lowest one,

representing the typical spread of fares found in airline markets.

Although most stated preference experiments have been designed to reproduce

the characteristics of the passenger choice environment, they have done so in a

very simplified manner. For practical reasons, these experiments only include the

choice between a restricted set of two to three hypothetical travel alternatives.

However, prospective travelers are likely to consider a large number of potential

travel alternatives in a real booking search, especially given the increased search

capabilities offered by online travel websites. As a result, none of these studies

were able to fully incorporate the impact of airline pricing and revenue

management and represent in a realistic manner the passenger choice set.

The other major weakness of stated preference data is the potential risk of bias

associated with this type of data collection. As they are usually collected through

surveys, stated preference data are subject to a risk of non-response bias,

meaning that the people that agree to participate to the survey may not have the

same distribution of attributes as the whole population. In addition, the



hypothetical nature of stated preference data may also lead to some level of

response bias i.e. a risk of discrepancy between an individual's stated responses

and his true choice behavior. This risk is increased if the design of the experiment

involves the hypothetical disbursement of money, such as asking whether an air

traveler prefers a cheaper itinerary on his second preferred carrier to a more

expensive alternative on his most preferred carrier. The risk of response bias may

be especially high in airline markets that are considered increasingly as

commodity markets due to the rapid growth of low-cost airlines. As most studies

of airline passenger choice are designed to quantify how much passengers are

willing to pay for a variety of attributes such as non-stop flights, frequency,

preferred airline or frequent flyer miles, these studies are exposed to a significant

risk of response bias.

Findings from studies of airline passenger choice based on stated preference data

have consistently indicated that both business and to a lesser extent leisure

passengers are willing to pay fairly high premiums for various attributes of

airline service such as path quality, airline and airport preferences. For instance,

Adler, Falzarano and Spitz (2005) estimated that U.S. business passengers would

be willing to pay an extra $70 for a one-hour decrease in flight time or $96 to

travel on their most preferred airline relative to their least preferred airline while

non-business travelers would be willing to pay respectively $31 and $38 for the

same attributes. Such high values tend to run contrary to airline experience:

Many airline professionals stress the paramount importance of price in the

selection of a travel alternative, especially in the current competitive and

distribution environment characterized by the strong presence of low-cost

competition and the focus of most travel websites on search by price and not by

schedule or carrier.



3.2.2 Revealed Preference Data

Although most studies of airline passenger choice are based on stated preference

data, another stream of studies has been based on the collection and analysis of

past booking data. For instance, Coldren et al. (2003) have used an extensive

sample of bookings extracted in 2000 from a leading GDS to study the choice of

itinerary in the top 500 U.S. domestic markets. Grammig, Hujer and Scheidler

(2004) also relied on booking data provided by a GDS to study the choice of

itinerary in ten German domestic markets. De Lapparent (2004) used booking

data provided by a leading European airline to study the choice of an air route

between the Paris and London metropolitan areas.

The major advantage of using booking data is that they reflect actual market

preferences and, unlike survey data, are not subject to the risk of response bias.

However, the major disadvantage of these studies is the limitations of the data

retrieved from the booking records. First, the state of the airline inventory at the

time of the booking is not recorded and only the chosen alternative is available in

airline bookings. The passenger choice set must then be reconstructed using

other sources of data such as the airline flight schedule or seat availability data.

As a result, these studies have focused on a single dimension of airline passenger

choice such as the choice of an itinerary. They usually assumed that seats were

available on all itineraries and just used the airline flight schedule to infer

relatively easily the passenger choice set. They focused on how to represent the

complexity of substitution patterns across itineraries using models from the GEV

family (Coldren and Koppelman, 2005) or probit models (Grammig, Hujer and

Scheidler, 2004) and ignored the other key dimensions of airline passenger choice

such as price. They either omitted fare from the passenger's utility function or

relied on fare data collected at some level of aggregation such as at the market

and/or carrier level. As a result, they do not provide insight on the fundamental



trade-offs such as between schedule convenience, fare and fare product

characteristics.

In addition, since trip purpose is not available in booking records, booking-based

studies of airline passenger choice did not account for heterogeneity of behavior,

a major characteristics of airline markets. However, some elements available in

airline bookings such as the characteristics of the trip or the profile of the traveler

could provide useful information to segment the bookings and be used as an

alternative to the traditional segmentation of air travel demand by trip purpose.

In their study of the choice of a flight and booking class, Algers and Beser (2001)

recognized the risk of response bias associated with stated preference data and

proposed to combine data collected through a 1994 survey of SAS passengers

with booking data extracted from the airline reservation system for the same

period. They implemented a sequential estimation method: They first estimated

the parameters of the SP model and then applied them to calculate the fitted

value of a general cost function for each alternative included in the RP dataset

and estimate a scaling parameter to correct the scale of the utility function

obtained from the SP data. While no details are provided on how the choice set

was processed for each booking record included in the RP dataset, such an

approach may offer an attractive and promising solution to the respective

limitations of RP and SP data in the context of airline passenger choice. However,

discrepancies may exist between the RP and SP datasets and they encountered

difficulties when they combined the two datasets. In particular, a major

explanatory variable of the choice of an itinerary included the SP model, the

schedule delay, could not be found in booking records and was then missing in

the RP dataset. They assumed its value to be zero for all passengers, meaning

that the actual flight departure time was always supposed to be equal to the

passenger's preferred departure time, reducing the benefits of using the RP



dataset to calibrate the SP model and potentially leading to substantial bias in the

estimation results. In addition, as no information on the characteristics of the trip

and the profile of the traveler was retrieved from the booking records, this study

did not account for heterogeneity of behavior across different segments of airline

travelers.

3.3 Implications for this Research

Discrete choice models have been successfully applied over the years to

investigate the choice of airline passengers among travel alternatives. They have

proved to be a valuable tool to gain insight into the determinants of airline

passenger choice and have been used to support airline planning decisions such

as schedule planning. In addition, previous studies also show that advanced

discrete choice models provide a more accurate representation of passenger

choice behavior. For instance, Coldren and Koppelman have shown that models

from the GEV family better reflect the complexity of substitutions patterns across

itineraries that share some common attributes such as departure time, airline and

path quality. Adler, Falzarano and Spitz have demonstrated the benefits of using

mixed logit models to capture heterogeneity of behavior with regard to several

elements of the passenger's utility function including within specific segments of

the market such as business and non-business passengers.

As mentioned earlier, while they provide the opportunity to collect very detailed

information on the characteristics of the traveler and the trip, stated preference

data of airline passengers cannot fully represent the complexity of the choice

environment in the airline industry. They are also subject to a risk of response

bias, especially since the objective of the research is in most cases to quantify how

much passengers are willing to pay for elements of airline service. An alternative



to stated preference data is to analyze the choice behavior of airline passengers

based on past booking data that reflect actual ticket purchase behavior and

market preferences. However, previous studies of airline passenger choice based

on booking data have been limited to a very partial description of the passenger

choice environment. They have focused on a single dimension such as the choice

of itinerary or route without taking into account the impact of other major

attributes such as fare and fare product characteristics on the choice behavior of

air travelers. In addition, booking-based studies of airline passenger choice did

not incorporate the heterogeneity of behavior across different segments of

travelers, a major characteristic of airline markets.

Since the limitations of stated preference data cannot be fully eliminated, the

objective of this dissertation is to develop a multi-dimensional model of

passenger choice behavior based on booking data that accounts for heterogeneity

of behavior across bookings. A methodology will be developed to reconstruct the

passenger choice set at the time of the booking, focusing, in particular, on how to

incorporate the impact of airline pricing and revenue management. In addition,

the model will exploit information available in booking records such as the

characteristics of the trip and the traveler to segment the demand and investigate

the heterogeneity of behavior across different segments of the market.





Chapter 4 Modeling Framework

In this chapter, we develop a model specification to reach the objectives of this

research and investigate the preferences of different segments of airline travelers.

We first define the major dimensions of airline passenger choice and the

dependent variable of the model. We then discuss how the choice set of each

passenger is inferred by combining booking data with several other types of data

such as seat availability and fare rules. We propose an alternative approach to

the traditional segmentation of airline demand by trip purpose based on the

specification of a latent class choice model. We finally discuss how to represent

the time-of-day preferences of airline passengers.

4.1 The Choice of an Airline Itinerary and Fare Product

The primary objective of this research is to develop a model of the major

dimensions of airline passenger choice such as price and schedule. As reported

by Smith (2006), on-going research on the choice behavior of Travelocity

customers shows that price is the most important factor in the selection of a

travel alternative, followed by flight schedule and to a much lower extent, the

airline providing the service. While Smith's research is limited to a subgroup of

the market that is not fully representative of the global marketplace as

passengers booking through online travel agents tend to be more likely to travel

for non-business purposes, it still provides a strong indication of the most

significant dimensions of airline passenger choice. It supports the conventional



industry wisdom on the major impact of price and schedule on the choice of

airline passengers.

In this research, we will study air traveler choice behavior from the airline

perspective. Unlike a travel agent such as Travelocity that markets the inventory

of several carriers, an airline does not have access to the booking database of its

competitors. However, an airline has a record of the full set of bookings on its

own network and is not limited to a potentially biased subgroup of the market.

We will then assume the choice of a particular airline as given and focus on how

an airline can exploit its booking and inventory database to study the choice

behavior of its own passengers along the remaining two major dimensions, price

and itinerary. The dependent variable of the model in this single-airline

framework is then set as the combination of an itinerary and a fare product. An

itinerary or path is defined here as a sequence of flights between an origin and a

destination point with specific departure and arrival times. A fare product is

characterized by its price and a set of fare rules that define both its features such

as the flexibility to change flights or cancel the trip and its conditions such as

minimum stay or advance purchase requirements.

The maximum number of alternatives in the universal choice set in an origin-

destination market is then equal to the number of daily itineraries in the market

multiplied by the number of fare products offered on each of these itineraries.

However, the actual choice set varies for each booking record based primarily on

the interaction between two sets of elements, airline planning decisions such as

pricing and revenue management and passenger decisions such as the date of the

booking and dates of travel.



4.2 The Passenger Choice Set

As mentioned in the previous chapter, one of the major limitations of booking

data is that the choice set of the traveler is not recorded by airlines or global

reservations systems in passenger bookings, also called passenger name records

(PNR). As a result, the choice set must be inferred for each booking by combining

booking data with other sources of data such as the airline flight schedule or seat

availability data. If the dimension of the model is limited solely to the choice of

an itinerary, it is relatively straightforward to reconstitute the passenger choice

set based on the airline flight schedule. Previous studies of the choice of an

airline itinerary based on booking data (Coldren, 2003; Grammig, 2005) made the

implicit assumption that seats were always available on all itineraries and that

the passenger choice set was then the same for all bookings in a specific

directional origin-destination market.

Since the dependent variable of the model is here the choice of an itinerary and

fare product, it becomes much more challenging to infer the passenger choice set

at the time of the booking. Other airline planning decisions beyond the flight

schedule such as pricing and revenue management have a major impact on the

availability of the various fare products at the itinerary level. In order to

incorporate the impact of airline pricing and revenue management, booking data

was combined with flight schedule, fares rules and seat availability data to infer

the choice set of each booking record.

Fare rules are often used to differentiate the different fare products and, as

mentioned earlier, include both product features such as the flexibility to change

travel plans and access conditions such as minimum stay or advance purchase

requirements. Fare rules are typically set by the airline pricing department based

on a range of criteria such as the company pricing strategy and the competition



in the marketplace. As a result, fare rules tend to be relatively stable and are

likely to remain unchanged over the course of a booking period spanning several

months.

However, airlines do not rely solely on differential pricing and fare rules to

maximize revenues, as high-demand flights tend to be popular for both low-fare

and high-fare passengers. In addition, leisure-oriented passengers purchasing

primarily lower-fare tickets tend to book earlier than higher-fare business-

oriented passengers, a trend that is often reinforced by some fare rules such as

the advance purchase requirements of many heavily discounted airfares. In order

to maximize revenues, most airlines have associated differential pricing with the

dynamic management of airline seat inventory known as revenue management.

Each fare product gets assigned to a specific booking class and booking classes

are ranked by their average expected revenue. Based on the level of current

bookings and forecasts for future demand at the booking class level, the airline

restricts the availability of lower-priced booking classes on high-demand flights

to protect seats for expected late-booking higher-fare passengers. Unlike fare

rules, these inventory controls (also called seat availability) are updated

constantly based on both the booking activity and regular adjustments made by

the airline revenue management system and staff to reflect changes in current

and expected future demand. As a result, to obtain a reasonably accurate view of

the airline inventory and availability of the different fare products at the time of

each booking, seat availability data was collected daily over the booking period

for all the itineraries considered in the booking data.

As shown on Figure 4-1 below booking, fares rules and seat availability data are

combined to reconstitute for each booking record the passenger choice set at the

time of the booking.
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Figure 4-1: Passenger Choice Set

For instance, a fare product is excluded for all itineraries in the passenger choice

set if its advance purchase requirement is longer than the time difference

between the dates of outbound travel and the date of the booking. In addition, a

fare product on a specific itinerary is eliminated from the choice set if a search in

the seat availability data indicates that, on the date of the booking, the airline was

not accepting bookings on this itinerary in the fare class associated with this fare

product. A detailed description of the fare products and the choice set generation

process is provided in Chapter 5.

4.3 Heterogeneity of Behavior

There are two major approaches to model heterogeneity of behavior across

observations: random coefficients and discrete segmentation. The basic idea of

models with random coefficients is that each observation of the sample has its

own preferences that differ from the average preferences by an unknown and,

hence random amount. However, random coefficients may not be the most
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appropriate approach to model heterogeneity of behavior in airline markets. The

differences of behavior may not be randomly distributed across observations but

are likely to be driven by specific elements that can be identified such as trip

purpose. This is typically reinforced by airline pricing strategies that are usually

designed to divide the market into a small number of fairly homogeneous

segments. For instance, the most inexpensive fare products are often associated

with rules designed to make them unattractive to business travelers such as the

Saturday night stay requirement. Consequently, an alternative approach in

which bookings are assigned to a discrete number of segments may be more

appropriate to capture heterogeneity of behavior in airline markets than random

coefficients.

Unlike models with random coefficients that capture random taste variation

across observations, models based on a discrete segmentation group

observations into meaningful segments that have similar needs, capabilities and

preferences. The advantage of discrete segmentation models is that heterogeneity

of behavior can be related to a set of specific causal variables. This approach has

usually been applied to study heterogeneity of choice behavior in airline markets

as demand for airline travel is typically segmented by trip purpose: Business

travelers are assumed to select a travel option that best fits their schedule with

less emphasis on cost while leisure travelers shop for air travel primarily based

on price. In addition, business travelers usually have less flexibility and control

over their schedule as they travel to attend business meetings with clients or

business partners and are, in many instances, not able to plan their travel needs a

long time in advance.

As mentioned earlier, most previous studies of airline passenger choice based on

stated preference experiments have collected data on trip purpose and used that

criterion to assign observations into two groups on a deterministic basis. For



instance, Prossaloglou and Koppelman (1999) and Adler et al. (2005) segmented

the market between business and leisure travelers while Garrow, Parker and

Jones (2007) divided their sample between reimbursed business travelers on one

hand and self-pay business and leisure travelers on the other hand. Separate

models were then specified for each of the segments (Prossaloglou and

Koppelman, Adler et al.) or interaction variables were used for specific elements

of the passenger utility function such as price and schedule-related explanatory

variables (Garrow et al.).

4.3.1 Deterministic Segmentation

Since trip purpose is not recorded in airline bookings, previous studies of airline

passenger choice based on booking data have ignored heterogeneity of behavior.

However, while trip purpose remains unobserved in booking data, other

elements of the booking record may be correlated with trip purpose and provide

valuable information to segment airline bookings. There are two types of data

included in booking records that may prove useful to segment the demand: the

traveler's profile and the characteristics of the trip.

The traveler's profile does not depend on a single trip and includes both socio-

economic characteristics of the traveler and travel-related characteristics such as

frequent flyer membership and status. Gender is the only socio-economic

characteristics of the traveler that is easily available in booking records. Gender is

in many instances explicitly requested and recorded or can be inferred with a

good level of accuracy from the passenger's first name. Frequent flyer

information is also recorded in the PNR, if the traveler has provided his frequent

flyer number at the time of the booking. As members of airline loyalty programs

are required to provide their frequent flyer number to accrue credits, it can be

assumed that most active frequent flyer members will actually do so while



making their travel arrangements. The frequent flyer number may also be used

to determine the status of the traveler in the airline loyalty program. Most airline

loyalty programs usually divide members between three or four tier levels based

on their recent activity and reward them with increasing benefits such as extra

mileage accrual or additional services such as priority check-in or complimentary

lounge access. In many instances, the frequent flyer status is also explicitly

included in the booking to enable customer service representatives to better

serve the needs of the most loyal travelers at each step of their trip.

In addition to the traveler's profile, characteristics specific to the trip can be

exploited to segment air travel demand. In particular, for roundtrip tickets, the

dates of outbound and inbound travel can be used to determine whether the trip

included or not a stay at the destination over the weekend. Travel wholly within

a week is expected to be strongly correlated with business travel as business

travelers tend to return home before the weekend, especially in short-haul

markets. In addition, the airline fare structure tends to reinforce this trend as

many leisure travelers are strongly discouraged to travel within a week in order

to access cheaper fare products that require a stay over the weekend. The

distribution channel of the ticket may also provide a fairly strong indicator of trip

purpose. The distribution channel of the ticket, while not directly recorded in the

PNR, can be inferred from the identification number of the booking agency (also

called office identification number). While many non-business travelers have

shifted to online and direct channels of distribution, especially for simple travel

needs such as a roundtrip ticket in a short-haul market, many business travelers

still rely on traditional travel agents that provide a range of travel management

services such as billing, enforcement of company travel policies or access to

discounted corporate fares. As a result, although trip purpose is not recorded in

airline bookings, these elements may provide an alternative to the traditional

segmentation of air travel demand by trip purpose. Figure 4-2 below summarizes



the data that was extracted from booking records and used to capture

heterogeneity of behavior in airline markets.
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Figure 4-2: Heterogeneity of Behavior

While all these factors may contribute to segment demand, in practice, only a

subset of them can be used under the conventional deterministic approach found

in the literature as the number of segments would otherwise become too large.

For instance, if three criteria are used such as week travel, distribution channel of

the ticket and frequent flyer membership, the bookings need to be divided into

eight segments. It may not be possible to identify differences in choice behavior

for each of these segments due to the limited size of the sample or because

sufficient variation in choice behavior may not exist across such small sub-

segments. As a result, we will focus primarily on estimating univariate two-

segment models. Estimation results will be compared to determine which

criterion is the most effective to segment airline demand using a combination of

goodness-of-fit measures and interpretation of the estimation results. In addition,

a number of multivariate segmentation schemes will also be explored and

compared to the latent class choice model described in the next section.
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4.3.2 Probabilistic Approach: The Latent Class Choice Model

As mentioned in the previous section, the use of multiple factors to segment

airline bookings under a deterministic approach automatically leads to an

increase in the number of segments that may become too small to identify

differences of choice behavior across bookings. As a result, a probabilistic

approach based on latent classes provides the opportunity to use all the

information available in a booking record without necessarily increasing the

number of classes.

Latent classes are unobserved segments. Since we cannot directly identify to

which class a particular booking record belongs, a probabilistic assignment

process is used also called the class membership model. A range of observed

factors that may affect class membership can be specified as explanatory

variables of the class membership model. Since trip purpose is unobserved in

airline bookings, latent classes appear to be an attractive and flexible approach to

model heterogeneity of behavior for studies based on booking data. Several

criteria extracted from booking records such as characteristics of the trip and the

traveler's profile can be specified as explanatory variables of the class

membership model while assigning the bookings to as few as two latent classes.

Even if data on trip purpose were available, latent classes may still provide a

valuable approach over a deterministic segmentation by trip purpose by

supplementing it with other elements such as distribution channel of the ticket or

elements of the traveler's profile.

4.3.3 Heterogeneity of Behavior within a Segment of Airline Demand

In addition to the difference in choice behavior between different segments of the

market, such as business and leisure-style travelers that relate to the trade-off



between price and schedule and the entire utility function, heterogeneity of

behavior may also relate to a specific part of the utility function. For instance,

day trippers are likely to have specific time-of-day preferences due to the short

duration of their trip. For day trip bookings, the choice of an outbound itinerary

is restricted to morning flight departures so that the traveler may have sufficient

time to conduct his activities at the destination and travel back at the end of the

day to the origin city and all other itineraries should be excluded from the

passenger choice set. Even within this framework, the time-of-day preferences of

day trippers may still differ from the rest of the travelers. Day trippers are

expected to have a stronger preference for an early morning departure in order

to have as much time as possible during their short stay in the destination city.

However, differences in behavior may not be significant between day trip and

overnight bookings regarding the rest of the utility function such as the disutility

associated with the lack of flexibility to change travel plans of some fare

products.

Unlike trip purpose, which is unobserved in airline bookings, duration of stay

can be inferred from the dates of inbound and outbound travel and day trippers

identified for all roundtrip tickets. For models based on a deterministic

segmentation of airline demand, interaction variables will be added to the part of

the utility function related to the choice of an itinerary to determine whether the

time-of-day preferences of day trippers differ from other bookings. Additional

interaction variables may also be used to test whether day trippers have specific

behavioral characteristics associated with other parts of the utility function.

For latent class choice models, there are two potential options to explore the

heterogeneity of behavior associated with day trippers. The first option is to

introduce a day trip dummy into the class membership model. This may be

appropriate if the day trip dummy is expected to supplement other variables and



better capture heterogeneity of behavior across the different classes. However, no

parameter estimates of the specific preferences of day trippers will be obtained.

In order to capture the specific preferences of day trippers, interaction variables

are introduced into the class-specific choice models. This second option seems

especially attractive if the heterogeneity of behavior is related to a specific part of

the utility function such as the time-of-day preferences. Parameter estimates of

the specific preferences of day trippers can then be obtained for each latent class.

Finally a combination of the two options can be used to test whether specific

preferences of day trippers can be identified within each latent class while a day

trip dummy may improve the class membership model and capture additional

heterogeneity of behavior across latent classes.

In addition to heterogeneity of behavior that can be related to some specific

variables such as a day trip dummy, there may remain additional heterogeneity

of behavior for which a particular causal effect cannot be easily identified.

Random coefficients will then be used within the class-specific choice models to

test whether additional random taste variation can be identified.

4.4 Model Specification

As mentioned earlier, as the passenger choice set includes a finite number of

travel alternatives, discrete choice models will be used to study the preferences

of airline passengers. The choice model is combined with a class membership

model to segment the market and assign bookings to latent classes. Finally,

random coefficients will be added to test whether remaining random taste

variation is observed within latent classes. The proposed model specification

integrates these three components into a latent class model of airline passenger

choice as shown in Figure 4-3 below.



Explanatory Traveler's profile
Airline Pricing and Variables I and characteristics
RM of the trip

"N Attributes of the
c Salternatives

Choice Set Latent Classes

Random
- - coefficients

Utilities

Choice of Itinerary
and Fare Product

Figure 4-3: The Latent Class Model of Airline Passenger Choice

As discussed earlier, each travel alternative in the choice set is defined as a

combination of an itinerary and fare product. For instance, a trip on a non-stop

flight departing from the origin city at 7:30 a.m. and arriving at the destination

city at 9:00 a.m. at a non-refundable fare of 200 EUR will be considered as one

potential travel alternative. A trip on the same flight but at a higher refundable

fare of 400 EUR will be considered as another travel alternative.

For a given booking b and a travel alternative i, i = 1, 2, ... , Jb where Jb is the

number of alternatives in the choice set Cb of booking b, the basic form of the

airline passenger latent class choice model can be written as follows:

S

P(i/XM,Xc)= LP(s/XM)P(i/Xc,s) Vi EC
Class (4.1)

I I I

Class Membership Choice



Where s = 1, 2, ..., S are latent classes of bookings

XM is a vector of explanatory variables of the class membership

model

Xc is a vector of explanatory variables of the class-specific choice

models

Given membership in class s, the class-specific choice model is written as follows:

S=b 1 if Uib Ujb for j = 1, 2, ... , Jb

0 otherwise

U ib = XCib/C + 8 ib (4.2)

Where yib indicates the chosen travel alternative and Uib is the utility of travel

alternative i for booking b. Xcib is a (1XK) vector of the explanatory variables of

the choice model, pc is a (Kxl) vector of parameters and Eib is a random

disturbance.

The assumption that the disturbances are i.i.d. extreme value leads to the logit

model specification. The class-specific choice probability of travel option i can

then be expressed as follows:

P(i/XCib'S'Cb Jbe V s e S (4.3)
S eXCjb,sfC,s

j=p

Where Pcs are the unknown parameters of the class-specific choice models



If random coefficients are added, 3c,s becomes a random vector with variance

Epc,s and distribution f(pc,s). The choice probabilities of this logit kernel model

with random coefficients become:

XCib,sPCs

P(i / XCib, s, C b )= e f(f c,)dc, V s e S (4.4)
Se XCjb,s,s,

j=1

The parameters that need to be estimated in this model include the mean class-

specific parameters Pc,s and the parameters of the variance-covariance matrix

Epc,s. If the coefficients are assumed to be independent, only the standard

deviation of each coefficient is estimated.

A multinomial logit model (MNL) specification is also used for the class

membership model. However, it should be noted that, unlike for class-specific

choice models, the MNL-type class membership model cannot be interpreted as

derived from random utility theory. The probability of belonging to latent class s

is then written as follows:

P(s/ XMb) eXMb,slM (4.5)

SeXMb,tPM
t=1

Where PM are the unknown parameters of the class membership model

These three components are integrated together to form a latent class choice

model with random coefficients:

S eXMb,spM XCib,sPC,s

P(i/XMb,XCb b S Jbf (flC,s)dc,
s=l IeXMb,t PM eXCjb,sfC,s (4.6)

t=1 j=1



In addition to parameter estimates of the class membership model, a set of

parameter estimates of the choice model is then obtained for each latent class.

The Latent Gold Choice software by Statistical Innovations that is designed for

the estimation of latent class choice models was used to estimate the parameters

of the model. For models without random coefficients, parameter estimates were

obtained through maximum likelihood estimation techniques using a

combination of the expectation-maximization (EM) and Newton-Raphson

algorithms. The estimation process starts with a user-defined number (250) of

EM iterations. The software then switches to a Newton-Raphson algorithm. The

software exploits the advantages of both algorithms, i.e. the stability of EM at the

beginning of the estimation process when it is far away from the solution with

the speed of the Newton-Raphson when it is close to the optimum.

The specification of random coefficients in Latent Gold Choice is fairly

restrictive: Random coefficients are always assumed to be normally and

independently distributed. Since the multi-dimensional integral does not take a

closed-form, it is approximated by means of Gauss-Hermite numerical

integration. Due to the computational burden associated with this numerical

procedure, a maximum of three random coefficients can be specified. For a

complete description of the algorithms used by Latent Gold Choice, the reader is

referred to the software's technical guide (Vermunt and Magdison, 2005).

4.5 Time-of-Day Preferences of Airline Travelers

While we have discussed so far the general structure of the model, we focus in

this section on a specific part of the utility function, more specifically on how to

model the time-of-day preferences of airline travelers. We first present the

conventional approach based on time-period dummies. We describe an



alternative approach in which dummy variables are replaced by a continuous

function of time over a 24-hour period. We then propose to estimate the duration

of the cycle to better fit the time-of-day preferences of specific types of markets

such as short-haul markets. We finally discuss how this new approach can be

used to model the time-of-day preferences of specific types of bookings such as

day trips.

4.5.1 Conventional Approach: Time-period Dummies

Another limitation of using booking data is that a passenger preferred departure

or arrival time, i.e. the departure time or arrival time that would best fit his

schedule requirements for the trip is not available in booking records. While such

data has often be collected in stated preference data, only actual flight departure

and arrival times on the booked itinerary are recorded in airline bookings while

departure and arrival times for other itineraries can be obtained from the airline

flight schedule. As a result, the time-of-day preferences of airline passengers are

modeled in this research based on the observed flight schedule set by the airline

and not on the underlying passenger ideal departure and arrival times.

The conventional approach to represent passenger preferences for a specific

departure or arrival time (also called here time-of-day preferences) is to divide

the day into a finite number of time periods and specify in the utility function a

dummy variable for each period. For instance, Coldren et al. (2003) divided the

day into one-hour periods, except for night departures that were grouped into

two longer periods, a 10 p.m. to midnight and a midnight to 5 a.m. period. As

many network airlines tend to group flight departures at hub locations into

connecting banks with flights arriving from all destinations at similar times at the

beginning of the bank and leaving at similar times at the end of the bank after

passengers connect between flights, an alternative could be to group flight



departure times by connecting banks. However, since time is continuous, a

continuous function of time may provide a more precise estimate of the time-of-

day preferences and offer an attractive alternative to discrete time-period

dummies.

4.5.2 Continuous Function of Time

In their study of the choice of time of day in activity and tour based models,

Abou Zeid et al. (2007) recognize that, since time is a continuous variable, the

effect of any time-related variable included in the utility function should also be

continuous. They propose to replace time-period dummies by a continuous

function of time. Since time of day is cyclic with a cycle length of 24 hours, this

function should be periodic so that the utility function takes the same value at

time h and time h + 24 hours. They propose to take advantage of the properties

of the trigonometric operators and use a function of the following form:

27zh 4h 6,zh
U(h)= , sin( ) + 2 sin( )+ l 3 sin( )

24 24 24
2nh 4nh 6,zh

+y cos( )+ y 2 cos( -)+ y 3 cos( )+... (4.7)
24 24 24

where / 1, P 2, ... , y 3 are unknown parameters to be estimated and h is the flight

departure time.

It can be easily verified that such a function satisfies the property U(h)=U(h + 24)

for 0 < h < 24. In particular the utility function takes the same value at the

beginning and end of the daily cycle ensuring its continuity. As suggested by

Ben-Akiva and Abou-Zeid (2007), the number of estimated parameters is

determined empirically based on the resulting profile of the utility function and

the statistical significance of the parameters.



However, there may be unattractive periods of the day where demand for air

travel is extremely low. This could distort the parameter estimates of a

continuous function of time defined over a full 24-hour daily cycle. For instance,

in short-haul markets, very few passengers are expected to want to travel during

nighttime. While only the flight departure time is recorded and no data on the

passenger ideal departure time is available in airline bookings, previous studies

of airline passenger choice based on stated preference data have shown that

extremely few passengers want to depart during the night in this type of market.

For instance, in their recent study of the choice of an airline itinerary based on a

survey of visitors of an online travel website, Garrow et al. (2007) collected data

on passenger ideal departure time for outbound travel in U.S. domestic markets.

They classified the markets into three categories, East-West, West-East and

North-South/South-North to account for the impact of time differences on time-

of-day preferences. Figure 4-4 below shows the ideal departure time for

passengers traveling in North-South/South-North markets where there is no

time difference between the origin and destination cities and the average

passenger length of haul is expected to be fairly short.

% obs
(N=396)
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Figure 4-4: Passenger Ideal Departure Time in U.S. North-South Markets

(Source: Garrow, Parker and Jones, 2007)

As shown in the figure above, very few passengers stated that their ideal

departure time was between midnight and 6 a.m. In addition, the travelers

36% 2S%
-10-I



sampled for this survey were using a travel website designed to search for the

lowest fare in the marketplace. They may not necessarily be representative of the

distribution of time-of-day preferences of the whole population traveling in these

markets. As a result, airline travelers as a whole may be even more reluctant to

travel at night than this specific segment of bargain-hunters.

As a result, we propose to adjust the duration of the cycle to an "effective" travel

period d, equal to or less than 24 hours and starting at time s. Then, Equation

(4.7) becomes:

2 (h - s) 4(h - s) 6 (h - s)U(h) = , sin( - s) + in( + 63 sin( -s)
d d d

27(h - s) 47r(h - s) 67(h - s)
+ y, cos( ) + 2 COS( ) + Y3 CO ( ) +... (4.8)

d d d

Where 1- e d 24

0 <s<e

with e and 1 the departure times in hours of respectively the earliest and latest

itineraries in the market.

It can be verified that the value of the utility function is equal at the beginning

and end of the cycle, U(s) = U (s+d). While a continuous function of time could

potentially take different values at the beginning and end of the cycle when the

duration of the cycle is less than 24 hours, this ensures that this property remains

true if the duration of the cycle is estimated to cover a full 24 hour period.

Since the duration d and the start time s of the cycle are included inside the sinus

and co-sinus functions in Equation (4.8), the passenger utility function is not

linear in the parameters any more. As Latent Gold Choice does not support a



utility function of this type, s and d cannot be estimated directly using this

software. However, it was found that the start time of the cycle s has no impact

on the time-of-day preferences of airline travelers. This means that the value of

the continuous function for any flight departure time such as a 7 a.m. flight

departure is the same whether the cycle started at 5:30 or 6 a.m. When the start

time of the cycle is modified, observed flight departure times are all shifted by

the same amount of time relative to the start of the cycle. Their position relative

to each other in the daily cycle remains then unchanged. Since it cannot be

identified, we selected the start time of the cycle at a local minimum so that the

continuous function starts and ends at a local low point. In addition, a trial and

error method was used to search for the cycle duration d that maximizes the log-

likelihood of the model while the other parameters of the model were estimated

using Latent Gold Choice.

As mentioned earlier, interaction variables will be used to capture the specific

time-of-day preferences of day trip bookings. For a model specification based on

time-period dummies, a second set of dummies specific to day trippers is

introduced. However, the number of time-periods will be reduced to cover only

the morning part of the day as outbound day trippers are observed to travel

exclusively on morning flight departures. If a continuous function is used as an

alternative to time-period dummies, a function specific to each type of booking is

included in the utility function. The duration and start time of the cycle are then

estimated for each category of bookings. For instance, the duration of the cycle is

expected to be much shorter for day trip bookings. As a result, estimating the

duration of the cycle provides a flexible approach to model the time-of-day

preferences of specific categories of travelers such as day trippers.



4.6 Summary

In this chapter, we focus on how an airline can exploit its existing data to analyze

the choice behavior of its own passengers. As a result, we take the choice of a

particular airline as given and develop a model of the two major remaining

dimensions of airline passenger choice, the choice of an itinerary and fare

product. We discuss how booking data can be combined with other data sources

such as seat availability data to incorporate the impact of airline decisions such

as pricing and revenue management and reconstruct the choice set at the time of

the booking. In addition, we develop an alternative to the traditional

deterministic segmentation of airline demand by trip purpose and propose to use

latent classes to segment the market based on a range of factors extracted from

the booking records such as the profile of the traveler and the characteristics of

the trip. We also propose a generalized formulation of a continuous function of

time, in which the duration of the daily cycle is estimated rather than set to a full

24 hours to represent the characteristics of time-of-day demand in specific types

of markets and categories of bookings.

In the next chapter, we analyze the data collected for this research and describe

in more detail how it was processed to reconstruct the choice set of each booking.



Chapter 5 Data Collection and Choice Set Generation

As mentioned in the previous chapter, several sources of data are needed to

estimate the choice of an airline itinerary and fare product. In this chapter, we

will first describe how data was collected and the different types of data obtained

for this research. We will then focus on an exploratory analysis of the booking

data with an emphasis on the elements of the booking records that may provide

an alternative to trip purpose to segment the demand in airline markets. Finally,

we will describe in more detail how the different types of data are combined to

reconstruct the passenger choice set for each booking in the dataset.

5.1 Data Collection Process

As shown in Figure 5-1 below, four types of data were collected to support this

research on passenger choice models. Three of them were used to incorporate the

impact of airline decisions such as scheduling, pricing and revenue management

on the passenger choice set. Passenger decisions were obtained from the booking

data and include the date of the booking, the dates of travel and flight itinerary

and the fare product selected. These decisions were combined with the airline

decisions to reconstruct the passenger choice set at the time of the booking for

each record included in the dataset.
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Figure 5-1: Data Sources

5.1.1 Booking Data

Booking data for this research was obtained through a partnership with

Amadeus, the leading European global distribution systems (GDS) used by

many travel agents worldwide to book airline tickets on behalf of their

customers. In addition to the distribution of airline tickets through its network of

affiliated travel agents, Amadeus offers airlines a range of additional services

depending on their level of participation. In particular, Amadeus offers airlines

the opportunity to outsource all their ticketing activities in its Amadeus System

User (ASU) program also called Altea Sell. By becoming an Amadeus System

User, participating airlines still make their own pricing and inventory control

decisions but pass this information regularly to Amadeus who manages all

communications with the various distribution channels on the airline's behalf,

completes all ticketing transactions and sends the final booking records back to

the airline. This means that, for ASU airlines, Amadeus has a record of every

booking including tickets booked by travel agents affiliated with a competing

GDS or made through direct distribution channels such as the airline's website.
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In order to have a complete set of bookings, data was collected for a few

European short-haul markets out of Paris, in which major airlines offering non-

stop service participate in the ASU program. In this study, we will focus on

booking data collected for a major European airline in three markets connecting

Paris with three German business destinations: Dusseldorf (DUS), Frankfurt

(FRA) and Stuttgart (STR). The distance and flight time is similar on these three

routes: 257 miles to DUS, 291 miles to FRA and 312 miles to STR. Rail travel from

Paris to these cities was, at the time of data collection, fairly unattractive with

either no direct service (DUS) or a 6-hour minimum travel time (FRA, STR).

The booking data was processed through several steps to obtain a dataset that

fulfills the needs of this research. First, only local demand in these three origin-

destination markets was considered and all passengers traveling on flights

between Paris and these cities connecting from or to other destinations were

eliminated. In addition, the final dataset includes only travelers originating in

Paris as the fare structure depends on the direction of travel meaning that the

fare products offered for travel originating in Germany are different than for

travelers leaving starting their trip in France. Data was collected for two periods

at the end of May 2005 (May 26 - May 31) and at the beginning of July 2005 (July

1 - July 7). A total of 2015 bookings are included in the dataset, 574 in the PAR-

DUS, 909 in the PAR-FRA and 532 in the PAR-STR market.

While all tickets were sold on a roundtrip basis, only the outbound leg of the

journey was considered in order to reduce the number of alternatives to a

tractable size and get a sufficient number of bookings for each alternative in the

universal choice set. Although this may seem as a strong assumption, its impact

is largely mitigated as different fare products can be combined on the inbound

and outbound legs of the journey. In addition, even if a fare product requires a

roundtrip purchase, the itinerary and fare information are presented on the



airline's website sequentially for each leg of the journey which means that the

prospective traveler selects an itinerary and fare product on a leg by leg basis. A

different fare product was actually observed on the outbound and inbound legs

of the trip for 5% of the bookings in the dataset. For all roundtrip tickets, the

equivalent one-way fare for the outbound leg was calculated as half of the

roundtrip price of the fare product selected for that part of the trip.

5.1.2 Flight Schedule

Only non-stop itineraries were considered as the structure of the airline network

is such that very few connecting itineraries are available in the markets

considered. In addition, in such short-haul markets, travel time on connecting

itineraries is extremely unattractive compared to non-stop flights. Like many hub

network carriers, the airline structured its flight schedule around six connecting

banks in order to offer short connection times at its major hub. As a result,

similar departure times are observed in all three markets under consideration.

Flight departure times were inferred from the booking records and cross-checked

with the flight schedule provided in the Official Airline Guide (OAG). Table 5-1

below provides a list of daily non-stop flights with their departure time from

Paris. Since local demand is fairly large in the Paris-Frankfurt market and the

airline relies exclusively on narrow-body aircraft to serve short-haul European

routes, two flights were scheduled by the airline during the early morning bank

to serve peak demand leaving from Paris in the morning and three flights during

the early afternoon bank to have sufficient capacity for passengers returning

from Frankfurt in the late afternoon peak period (5 to 7 p.m.).



Schedule Bank
Early Morning

Late Morning
Midday
Early Afternoon

Late Afternoon
Evening

7:20 AM

10:20 AM
1:05 PM
3:35 PM

6:30 PM
8:35 PM

7:00 AM
7:35 AM
9:45 AM
1:05 PM
3:25 PM
4:00 PM
4:50 PM
6:25 PM
8:10 PM

7:25 AM

10:30 AM
12:45 PM
3:30 PM

7:05 PM

Table 5-1: Flight Schedule (Source: OAG)

5.1.3 Fare Rules

As already discussed, airlines use differential pricing to segment the demand

and take advantage of the differences in behavior between business and leisure

travelers to increase load factors and revenues. They offer a range of fares (also

called fare structure) and discounted fare levels are typically associated with a

set of restrictions or fare rules designed to make them unattractive to business-

type travelers.

The list of fares offered in these markets and their fare rules were obtained from

Sabre, another GDS company and accessed through the Travelocity website. The

airline was using a similar fare structure in many European short-haul markets

from Paris, including the three markets considered in this research. This fare

structure is a mix of the traditional pricing strategy of network airlines with a set

of fare products that require a weekend or Saturday night stay and a low-cost

airline pricing strategy with a set of non-flexible discounted fare products that

supplement the unrestricted fare with several price points associated with

different levels of required advance purchase.

I DUS FRA STR



The fare structure includes the following four categories of products:

- A Weekend fare product that is restricted to a departure on Friday or

Saturday with a return on the following Sunday or Monday but requires

only a very short one-day advance purchase.

- Traditional discounted fare products requiring a Saturday night stay with

five price levels depending on the advance purchase requirement.

- Discounted fares valid for travel during the week but that are non-flexible

and can neither be changed nor cancelled. Several price points are offered

depending on the advance purchase requirement. This new set of fare

products was introduced in March 2004 in European short-haul markets

in response to growing low-cost competition.

- Fully flexible fares, either published (S) or available at a discount for

eligible travelers through corporate contracts (BFIRME & SFIRME).

Table 5-2 below provides a list of all fare products with their respective fare rules

and equivalent one-way fare in the directional Paris-Frankfurt market.

Product Fare Product Fare Code OW Fare AP Maximum Cancellation Change

Category (FRA) (Days) Stay Fee Fee

Table 5-2: Fare Structure

"



5.1.4 Seat Availability Data

As discussed in the previous chapter, the airlines have combined differential

pricing with the dynamic management of seat capacity to protect seats for late-

booking high-fare demand. As a result, airlines have built over the years

sophisticated revenue management systems designed to manage in real-time the

supply of seats available to each fare product on each flight or itinerary based on

current booking activity and forecasts for future demand. The state of the airline

inventory, also called fare class or seat availability is constantly updated by the

airline reservations system based on current booking activity and updates made

by the airline revenue management system and staff and communicated to all

distribution channels, including the GDS such as Amadeus.

In order to incorporate the impact of revenue management, seat availability data

was collected daily by Amadeus over a 3 month period prior to the booking data

collection. For instance, for bookings collected for travel in the July 1-7, 2005

period, seat availability data was collected every day from April 1, to July 7, 2005

for all non-stop flights in the three markets under consideration departing

between July 1 and July 7. Table 5-3 below shows an example of seat availability

data for flight 1306 from Paris to Dusseldorf departing at 7:20 a.m. on July 4, 2005

at various stages of the booking process.

Availability Date
4 APR 2005
5 MAY 2005

6 JUNE 2005
13 JUNE 2005
20 JUNE 2005
27 JUNE 2005

Advance Purchase Seat Availability
90 Y9S9B9K9R9M9H9Q9T9V9L9X9U9W9E9A9N919

60 Y9S9B9K9R9M9H9Q9T9V9L9X9U9W9EOAONOIO

30 Y9S9B9K9R9M9H9Q9T9V9L9X9U9W9EOAONOIO

21 Y9S9B9K9R9M9H9Q9T9V9L9X9UOWOEOAONOIO

14 Y9S9B9K9R9M9H9Q9T9V9L9X9UOWOEOAONOIO

7 Y9S9B9K9ROM9H9QOT9V6L6X6UOWOEOAONOIO

Table 5-3: Example of Seat Availability Data



Each fare product gets assigned to a booking class based on the first letter of the

product code and the seat availability data shows the maximum number of seats

available for each class. For instance, 30 days before departure, the NAP30 and

EAP21 products were unavailable and the WAP14 was the cheapest available

product from the Saturday Night Stay category. Similarly, for passengers

traveling within a week, the AWEEK21 product was unavailable and UWEEK14

was the cheapest available product at that point of the booking process.

5.2 Exploratory Analysis of the Booking Data

In this section, we describe in more detail the booking data collected for this

research. We will first analyze the distribution of the booking data along the two

major dimensions of airline passenger choice modeled in this research, itinerary

and fare product. We will then analyze elements of the booking records that will

be used to segment bookings such as the characteristics of the trip and the profile

of the traveler both across the whole dataset and by fare product category.

A corporate discount was used in 1049 bookings or 52% of the bookings of the

dataset. Since no information is available in booking records on eligibility for a

corporate discount, all eligible travelers were assumed to select a corporate

discount fare product. This means that for corporate discount bookings, all other

fare products are excluded from the passenger choice set and the dependent

variable is reduced to the sole choice of an itinerary. While the implications of

this assumption will be further discussed in Section 5.3, corporate discount

bookings are excluded from the analysis of the distribution of bookings by fare

and fare product category but are included in the rest of the exploratory analysis

relative to the distribution of bookings by flight departure time, characteristics of

the trip and traveler profile.
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5.2.1 Analysis of the Booking Data by Fare and Schedule

The distribution of bookings by fare category is similar in all three markets and is

largely oriented toward business travel during the week. Even after excluding

corporate contract bookings, Flex and Week fare products account for over 60%

of the bookings in these markets as shown in Figure 5-2 below.
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Figure 5-2: Distribution of Bookings by Fare Product Category

Given the relatively large number of Week and Flex bookings in these business-

oriented markets, the average fare including taxes and charges over the entire

dataset is 243.19E one-way with a standard deviation of 109.69E. As shown on

Figure 5-3 below, about 60% of the bookings had a ticket price of 200 Euros and

above in all three markets considered.
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Figure 5-3: Distribution of Bookings by Ticket Price

Similarly, the distribution of bookings by flight departure time reflects the strong

orientation of these markets toward business travel. Early morning departures

tend to be the most popular departure time for outbound travelers in these

markets. While early morning flights require an early arrival at the airport in

most cases before 6:30 a.m., they allow these early bird travelers to reach the

destination airport by 8:30 a.m. and to conduct business activities at their final

destination by the middle of the morning. Afternoon and late afternoon flights

are the second most popular departure time, while fewer travelers selected a

midday or evening flight departure.
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Figure 5-4: Distribution of Bookings by Flight Departure Time

5.2.2 Profile of the Traveler and Characteristics of the Trip

The profile of the typical travelers in these markets also tends to reflect the

orientation toward business travel. As mentioned earlier, two elements of the

traveler's profile were retrieved from the booking records: Gender and the

membership and status in the airline loyalty program. As shown in Figure 5-5, a

large proportion of the travelers in all three markets are of the male gender. In

addition, many travelers in the dataset belong to the airline loyalty program. A

large proportion of travelers in these markets, about 40% of all travelers, have

reached elite status in the airline loyalty program. This means that many

travelers in these markets fly on a frequent basis with the airline, an element that

is usually related to business-type travel.
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Figure 5-5: Gender and Frequent Flyer Information

As shown on Figure 5-6 below, over 80% of the bookings in these markets were

made through a traditional offline travel agent. Traditional European network

airlines, unlike their low-cost competitors, were still in mid-2005 at the early

stage of the development of online and direct distribution channels. This is also

an indication of the business orientation of the market as many business travelers

are required to book through a travel agent, especially if they want to take

advantage of a corporate discount. Similarly, as business travelers tend to be less

able to anticipate their travel plans and book tickets a long time in advance, the

analysis of the booking curves shows that a large proportion of the travelers

booked their tickets in the last two weeks before departure (Figure 5-7).
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5.2.3 Analysis of the Booking Data by Fare Product Category

While the analysis of the booking data at the market level reveals the strong

orientation of these markets toward business travel, we will focus in this section

on the characteristics of the bookings by fare product category. As expected, the

Saturday Night Stay and Week categories have the highest average advance

purchase as travelers are required to book early in order to take advantage of a

larger discount (Figure 5-8). While the average advance purchase of the Weekend

fare product that requires only 1-day advance purchase is lower than for the

Saturday Night Stay category, it is largely higher than for the Flex category. This

suggests that, while some of the week and non-week travelers anticipate their

travel plans to take advantage of lower fares, week travelers also tend on average

to book their tickets later than non-week travelers.

In addition to advance purchase behavior that is partially driven by the airline

fare structure, fare product categories also differ with regard to characteristics of

the trip such as the distribution channel of the ticket or elements of the traveler's

profile such as frequent flyer membership. As expected, the proportion of loyalty

program members is higher for the fare product categories designed primarily

for business-type week travelers. Also as expected, the proportion of bookings

through a traditional offline travel agent is the highest for the Flex category.

However, the proportion of offline travel agents bookings is lower for the Week

than for the Saturday Night Stay category. This suggests that the Week category

attracts at least partially some technology-savvy price-sensitive week travelers

whose needs may not have been previously satisfied with flexible albeit more

expensive fare products.
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Figure 5-8: Characteristics of the Bookings by Fare Product Category

While the characteristics of the bookings vary widely across fare product

categories, the large proportion of corporate discount and non-discounted Flex

bookings shows the strong orientation of these three European short-haul

markets toward business travel during the week. In the next section, we will

describe in more detail how some of the characteristics of the bookings analyzed

in this section, such as the advance purchase of the ticket, are combined with

airline decisions such as pricing and revenue management to reconstruct the

passenger choice set for each booking.
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5.3 Choice Set Generation Process

As discussed earlier, while the universal choice set in a market includes all

possible combinations of an itinerary (a non-stop flight departure) and a fare

product, the actual choice set varies for each booking based on the interaction

between airline decisions such as pricing and revenue management and the

characteristics of the bookings, primarily the dates of travel and the date of the

booking (see Figure 5-1). In this section, we describe in more detail how the

choice set is generated for each booking in the dataset.

As shown in Figure 5-9 below, the passenger choice set was generated through a

five-step process.

Booking Loop I

Fare Rules

Seat Availability

Dominance Rules

Corporate Contract

Day Trip

Next Booking

Figure 5-9: The Five-Step Choice Set Generation Process
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Step 1: Apply the Fare Rules

As mentioned earlier, the airline is using fare rules to differentiate fare products,

segment demand and increase revenues. Two elements of the booking record

were considered to apply the fare rules set by the airline pricing department:

dates of travel and date of the booking.

The dates of outbound and inbound travel are used to determine if the trip

satisfies the minimum stay and maximum stay restrictions of some fare

products,. For instance, if the dates of travel show that the trip did not include a

Saturday night stay, all fare products from the Saturday Night Stay category

were eliminated from the choice set. Similarly, the Weekend product was

eliminated unless the date of outbound travel was a Friday or Saturday with a

return on the following Sunday or Monday. Finally, all Saturday Night Stay

products were eliminated if the duration of stay exceeded one month.

In addition, the dates of travel were combined with the creation date of the

booking to determine whether the advance purchase requirements of some fare

products were satisfied. Fare products that required an advance purchase longer

than the time difference between the creation date of the booking and the date of

outbound travel were also eliminated from the choice set.

Step 2: Incorporate the Seat Availability Controls

For each booking, the seat availability data was searched to determine on the

date the booking the availability of each fare product on all itineraries in the

choice set: Products with no available inventory were eliminated. No booking in

the dataset was observed to occur more than three months prior to travel, when

the collection of seat availability data for future departures started.
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Step 3: Observed Dominance Rules

In addition to airline pricing and revenue management decisions, a set of three

dominance rules was observed from the booking data.

First, while several fare products of a same category may potentially be available

on the same itinerary, the cheapest fare product was always chosen as it is

cheaper and has similar characteristics to other products in the category. As a

result, only the cheapest available fare product within a category was included in

the choice set and all other products of the same category were eliminated.

Second, when the dates of travel of the booking and seat availability controls are

such that the Weekend fare product is included in the choice set on at least one

itinerary, it was always selected. The attractiveness of the Weekend product is

due to both its low fare and, unlike heavily discounted fare products from the

Saturday Night Stay category, the possibility to book it even at the last minute

subject to seat availability. As a result, for many travelers, the alternative fare

product from the Saturday Night Stay category is likely to be much more

expensive explaining the systematic preference observed for the Weekend fare

product. As a result, if a Weekend fare product is included in the choice set on

any itinerary, all other fare products were eliminated and the model reduces to

the sole choice of an itinerary.

The third observed dominance rule relates to bookings with dates of travel such

that products from the Saturday Night Stay category may be included in the

choice set. For such bookings, products from the Week and Flex categories are

eliminated for all itineraries in which a Saturday Night Stay product is available.

Week fare products are always less attractive as they are less flexible and more

expensive than the product from the Saturday Night Stay category with the same
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level of advance purchase requirement. In addition, the large difference in price

explains why the Saturday Night Stay fare product is always preferred to the

Flex fare when both are offered on the same itinerary. However, the Flex product

was selected in five observations where the Saturday Night Stay product was not

available on the chosen itinerary but was included in the choice set on other

itineraries.

Step 4: the Corporate Contract Assumption

As mentioned earlier, since no data is available in booking records on the

eligibility for a corporate discount, it is assumed that all eligible travelers have

booked a corporate discount Flex product. As a result, if a corporate discount

fare product is selected, all other fare products are eliminated from the choice set

and the model is reduced to the sole choice of an itinerary. While this may be

viewed as a strong assumption, especially since corporate discount bookings

account for 52% of the bookings in these markets, its impact is somewhat

mitigated as corporate discount products are highly attractive for passengers

traveling wholly within a week. As discussed below, corporate contract fares

provide full flexibility to change or cancel travel plans for either a low premium

over the discounted Week fare products or even a cheaper fare in many

instances.

For 97.4% of corporate discount bookings, fare products from the Weekend and

Saturday Night Stay categories are excluded from the choice set as the dates of

travel do not satisfy the fare rules of these products. For all these bookings, only

a potentially somewhat cheaper albeit totally non-flexible fare product from the

Week category would potentially be included in the choice set along with the

corporate discount alternative. Moreover, the corporate discount product is the

dominant alternative if a BFIRME fare product was purchased less than 14 days
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in advance as it is cheaper and offer more flexibility than the UWEEK7 and

RWEEK products from the Week category. Similarly, a SFIRME fare product is

dominant if it was purchased less than 7 days in advance as it is cheaper than the

RWEEK alternative. The corporate discount fare product was then dominant in

49.2% of all corporate discount bookings, mitigating the impact of this

assumption.

Step 5: Day Trip

Unlike previous steps in which select fare products were removed from the

choice set, in this step, specific itineraries are eliminated to account for the

characteristics of day trip bookings. Day trip bookings occur when the outbound

and inbound legs of the trip are booked for travel on the same day. In that case, it

is observed that either an early or a late morning outbound itinerary is always

selected so that the traveler may have sufficient time to conduct his activities at

the destination and travel back at the end of the day to the origin city. As a result,

for day trip bookings, all other itineraries are eliminated from the choice set.

To illustrate the different steps of the choice set generation process, the following

two bookings were extracted from a similar dataset. Both trips were booked on

June 22, 2005, for departure on Thursday, July 7, 2005. Let us first apply the fare

rules based on the dates of travel and date of the booking. Since the trip was

booked 15 days in advance, all fare products that require more than 15 days of

advance purchase from the Saturday Night Stay (NAP 30 and EAP 21) and Week

(AWEEK21) categories are eliminated from the choice set for both bookings.

However, while she returned on Saturday, July 9, 2007, he stayed over Saturday

night at the destination city and returned on Monday, July 11, 2007. As a result,

all Saturday Night Stay fare products are eliminated from her choice set while

fare products from this category remain included in his choice set.
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Let us then incorporate the seat availability controls set by the airline. The seat

availability data on June 22, 2005 for travel on July 7, 2005 is displayed in the

lower middle part of Figure 5-10 for the first three flights of the day. Revenue

management controls restricted the availability of fare products from the

Saturday Night Stay and Week categories on the two later flights as only Flex

fare products remained available. As a result, all remaining Saturday Night Stay

and Week products were eliminated from the choice set for these two flights

while they remained available on the first flight of the day.

Let us then apply the three dominance rules described above. First, fare products

from the Saturday Night Stay (QAP7 and MSXO) and Week (UWEEK7 and

RWEEK) categories were eliminated from the choice set on flight 1 as a cheaper

product of the same category was available. Since the dates of travel of the

bookings did not satisfy the requirements of the Weekend fare product, this

dominance rule did not apply. Finally, products from the Week and Flex

categories were eliminated on Flight 1 from the choice set of the traveler

returning on Monday, July 11, 2007. However, it should be noted that Flex fare

products were not eliminated from the choice set on Flights 2 and 3 as no

product from the Saturday Night Stay category was available on these flights.

Finally, since neither of these bookings involved a corporate discount fare

product or a day trip, the last two steps of the choice set generation process did

not apply to this specific example.

Given their respective choice set, she selected the UWEEK14 product from the

Week category on Flight 1 departing at 6:40 a.m. for a one-way fare of 178.58E

while he chose the WAP14 fare product on the same flight and paid a one-way

fare of 116.08C.
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Booking Date:
June 22, 2005 (AP=15)

Outbound Departure Date:
Thursday, July 7, 2005

Inbound Departure Date:
Saturday, July 9, 2005

/'

Flight 1, 6:40 a.m.:
Y9S9B9K9H9R9M9T9Q9V9L9X9U9W9E9AONOIO

Flight 2, 7:45 a.m. :
Y9S9B9K4H4ROMOTOQOVOLOXOUOWOEOAONOIO

Flight 3, 10 a.m. :

Booking Date:
June 22, 2005 (AP= 15)

Outbound Departure Date:
Thursday, July 7, 2005

Inbound Departure Date:
Monday, July 11, 2005

FLIGHT I FLIGHT 2 FLIGHT 3
NWKEND N N N
NAP30 N N N
EAP21 N N N
WAP14 Y N N
QAP7 N N N

MS)O N N N
AWEEK21 N N N
UWEEKI4 N N N

UWEEK7 N N N
RWEEK N N N
BFIRME N N N
SFIRME N N
S N Y Y

Choice: Flighti, UWEEK14, Y9S9B4K3H3ROMOTOQOVOLOXOUOWOEOAONOIO 116.08
178.58 EUR OW

Figure 5-10: An Example of the Choice Set Generation Process

: Flighti, WAP14,
EUR OW

fhniw

5.4 Summary

In this chapter, we have described how several sources of data are combined to

incorporate the impact of key airline decisions such as pricing and revenue

management and reconstruct the passenger choice set at the time of the booking.

In addition, the analysis of the booking data has shown the strong orientation of

these European short-haul markets toward business travel and the interactions

between the airline fare structure and the characteristics of the trip and the

profile of the travelers.

In the next chapter, we will use this dataset to estimate a latent class model of the

choice of an airline itinerary and fare product and we will discuss how the trends

found in the exploratory analysis of the booking data are reflected in the

estimation results of the model and the choice preferences of the travelers.
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MS)D N N N
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UWEEK7 N N N
RWEEK N N N
BFIRME N N N
SFIRME N N N
S Y Y Y



Chapter 6 Estimation Results

In the previous two chapters, we have developed a latent class model of the

choice of an airline itinerary and fare product and discussed how different

sources of data were collected and processed to incorporate the impact of airline

pricing and revenue management on the passenger choice set. We present here

the estimation results of the model based on booking data collected in three

business-oriented European short-haul markets. We first introduce in more detail

the explanatory variables of the model and the methodology used for hypothesis

testing and model selection. We then analyze the estimation results of a two-class

latent class model of airline passenger choice with a continuous function of time.

We discuss why such a model specification is preferred over a deterministic

segmentation of the bookings between week and non-week travelers as well as

the benefits of using a continuous function of time over time-period dummy

variables. We finally discuss potential extensions of the model such as the

addition of random coefficients.

6.1. Model Variables

As mentioned in Chapter 4, the dependent variable of the model is the

combination of an itinerary and a fare product. As the airline fare structure in

these markets includes 13 fare products and only non-stop flights are considered,

the number of alternatives in the universal choice set varies from 117 in the PAR-

FRA (9 daily flights) to 78 in the PAR-DUS (6 daily flights) and 65 in the PAR-

STR markets.
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6.1.1 Class-Specific Choice Model

The explanatory variables of the choice model include the attributes of the travel

alternatives along the two dimensions considered in this research, itinerary and

fare product.

As only non-stop flights are considered in this study and flight times are similar

for all flights in a market, the attributes of an itinerary is reduced to the flight

departure time. A continuous function of flight departure time with an

adjustable duration of the cycle is used to model the time-of-day preferences of

the passengers as described in Equation (4.8). As suggested by Ben-Akiva and

Abou-Zeid (2007), the number of parameters included in the trigonometric

expansion is determined empirically based on whether the resulting profile of

the function matches our expectations of the typical time-of-day preferences of

outbound airline travelers in short-haul markets. A trial and error method with

half-hour increments is used to determine the duration of the cycle that

maximizes the log-likelihood of the model. As mentioned in Chapter 4, a

different function is used for overnight and day trip bookings to model the

specific time-of-day preferences of day trippers.

Regarding the choice of a fare product, attributes of the alternative include the

fare paid by the traveler, expressed on a one-way basis including taxes and

surcharges. In addition to the fare, other attributes include the fare rules set by

the airline pricing department. As discussed earlier, there are two types of fare

rules. Some fare rules are conditions that have to be satisfied to access specific

fare products such as minimum and maximum stay or advance purchase

requirements. These fare rules are not included as explanatory variables in the

utility function as their impact is incorporated in the choice set generation

process. The other type of fare rules includes features of the products such as the
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flexibility to modify the booked itinerary and/or cancel the trip. As indicated in

Table 5-2, fare products from the Saturday Night Stay and Week categories are

associated with restrictions on modifying itineraries or canceling the trip, while

the Flex fare product allows for unlimited changes to the passenger itinerary and

is fully refundable. The flexibility to change travel plans is then used by the

airline to differentiate fare products and segment the demand, in particular for

week travelers as fare products from the Week category are highly restricted

with no changes or cancellations permitted in most instances.

In order to capture the disutility associated with the lack of flexibility to change

travel plans, one option is to include a dummy variable for each fare product in

the passenger utility function. Since the Weekend and corporate discount

products are excluded from the analysis of the choice of a fare product, a total of

ten different fare products are considered and a maximum of nine dummy

variables can be included in the utility function with the fully unrestricted Flex

fare used as a base. The coefficients of these dummy variables are expected to be

negative reflecting the disutility associated with these rules relative to the fully

unrestricted Flex fare.

Since some of the fare products offered by the airline carry the same set of rules,

an alternative approach is to group fare products by fare rule. The advantage of

consolidating products by fare rule is that an estimate of the disutility value of a

specific fare rule is then obtained. These estimates provide a metric to evaluate

the effectiveness of the airline pricing strategy. The rules regarding the flexibility

in travel plans were combined with the advance purchase requirements of the

fare products. This is to reflect that the uncertainty in travel plans and hence the

need to change an itinerary or cancel the trip tends to increase with how long in

advance a fare product has to be booked and the traveler needs to anticipate its

travel plans.
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Grouping the fare products into categories is equivalent to constraining the value

of product-specific dummy variables to be equal across all the products in a

category. A likelihood ratio test can be used to determine whether such a

restriction is valid from a statistical point of view. Based on the estimation results

of an extensive set of potential groupings and likelihood ratio tests, fare products

were classified into the following four categories and three dummy variables

were included in the utility function to capture the impact of fare rules on the

choice behavior of airline passengers:

- Fare products that are not fully flexible and require at least 21 days of

advance purchase (NON-FLEX & 21AP).

- Fare products that are not fully flexible and require either 7 or 14 days of

advance purchase (NON-FLEX & 7-14AP).

- Fare products that are not fully flexible but do not require any advance

purchase (NON-FLEX & OAP).

- Fully flexible fare product (used as a base).

Table 6-1 below provides a list of the fare products included in each of the four

categories used in the model.

Explanatory Variables
NON-FLEX + 21AP

NON-FLEX + 7-14AP

NON-FLEX + 0AP
FLEXIBLE

Saturday Night
NAP30
EAP21

WAP14
QAP7
MSXO

Table 6-1: Fare Product Classification
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Week
AWEEK21

UWEEK14
UWEEK7
RWEEK

Flex
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Thus, the utility function of class-specific choice models contains three set of

explanatory variables:

- The attributes of the fare products described above (FARE, and NON-

FLEX & 21AP, NON-FLEX & 7-14AP, NON-FLEX & OAP).

- A continuous function of time for the overnight bookings including the

variables from the trigonometric formulation (SIN2PI-OV, COS2PI-OV,...)

and the duration of the overnight cycle (DUR-OV).

- A similar function for the day trip bookings (DUR-DT & SIN2PI-DT,

COS2PI-DT,...).

6.1.2 Class Membership Model

In addition to the attributes of the alternatives, other elements of the booking

records were extracted to segment demand and capture heterogeneity of

behavior across air travelers. As mentioned earlier, demand for air travel is

usually segmented by trip purpose. However, since trip purpose is not observed

in booking records, characteristics of the trip and the traveler are used as

substitutes to segment demand. They are used as explanatory variables of the

class membership model and include:

- Frequent flyer membership (FFP MEMBER): A dummy variable is used to

indicate whether the traveler belongs to the airline's loyalty program.

- Week travel (MON to FRI): If the outbound travel started on or after

Monday and inbound travel occurred on or before Friday of the same

week, this dummy variable will be equal to 1.

- Distribution channel of the ticket (OFFLINE TA): A dummy variable is

added to indicate if the ticket was booked through an offline travel agent.
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6.2 Hypothesis Testing and Model Selection

The development of a model specification is an iterative process that relies on

rigorous statistical methods as well as a priori assumptions and judgmental

assessment by the model-builder. In this section, we describe the statistical tools

that were used to support the development of the latent class model of airline

passenger choice proposed in this research and compare it to model

specifications similar to those found in the literature.

Our analysis was based on two sets of tools, tests of hypotheses and measures of

goodness of fit. In addition to the asymptotical t-test used to assess individually

the significance of the parameters, the likelihood ratio test was used to compare

across model specifications when the hypotheses are nested. The hypotheses are

said to be nested if a model also called the restricted model is a special case of a

more general model called the unrestricted model under the assumption that the

restrictions can be expressed as linear constraints on a subset of the parameters

of the unrestricted model. The likelihood ratio test compares the values of the log

likelihood functions for the restricted and unrestricted model. The statistic for the

likelihood ratio test follows asymptotically a chi-squared distribution with r

degrees of freedom and is equal to:

-2 (Log L (R) - Log L (U)) (6.1)

Where Log L (R) is the log likelihood of the restricted model

Log L (U) is the log likelihood of the unrestricted model

r is the number of independent restrictions imposed on the

parameters of the model
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If the value of the test statistic is lower than the critical value obtained from the

chi-squared distribution with r degrees of freedom for a specific level of

confidence, the assumption that the restrictions are true cannot be rejected.

As mentioned in the previous section, a model specification in which fare

products are grouped by fare rules is a special case (restricted) of a model with

one dummy variable for each fare product if we assume that the value of the

dummies is the same across all products grouped into a category. For instance,

grouping the three non-flexible fare products requiring at least 21 days of

advance purchase (NAP 30, EAP 21 & AWEEK 21) into a single category can be

expressed as follows:

INAP30 = fEAP21 = / AWEEK21 (6.2)

In order to test this set of two independent restrictions, two estimation runs are

needed: One for the unrestricted model with a dummy variable for each of the

three fare products and one for the restricted model with a common dummy for

all three products. If the test statistic shown in equation (6.1) is less than 5.99, we

cannot reject the null hypothesis that the coefficients of these three fare products

are equal at a 0.05 level of significance. The likelihood ratio test would then

support grouping these three fare products into a single category and estimate

jointly the disutility associated with their characteristics such as the lack of

flexibility to change travel plans without penalty.

Similarly, a likelihood ratio test can also be applied to test for heterogeneity of

behavior across observations. If observations are grouped into several market

segments on a deterministic basis, the model with all the observations pooled

together can be considered as a special case of the model with deterministic

segments under the assumption that each parameter of the model is of equal

value across the different segments. As a result, a likelihood ratio test can be
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used to determine whether or not a model with a deterministic segmentation of

the observations is needed to capture heterogeneity of behavior. For a more

complete description of hypothesis testing, the reader is referred to Ben-Akiva

and Lerman (1985), Chapter 7.

When the hypotheses are non-nested meaning that one of the two models is not a

special case of the other, likelihood ratio tests cannot be used and we relied on

goodness of fit measures to compare competing models. Everything else being

equal, a model with a higher maximum value of the log likelihood function is

considered to be better. However, since the log likelihood will always increase or

at least stay the same when new variables are added to the utility function, the

maximum value of the likelihood function cannot be used to compare models

with different number of parameters. Thus, goodness of fit measures need to be

adjusted for the number of parameters used in the model. Akaike (1973, 1974)

proposed the Akaike Information Criterion (AIC) that penalizes the maximum

log-likelihood of the model by the number of estimated parameters:

AIC = Log L (P*) - k (6.3)

Where Log L (f3*) is the maximum log likelihood of the model

k is the number of estimated parameters of the model

The Akaike criterion is similar to the adjusted value of the likelihood ratio index

also commonly called Rho-bar-squared and designated in this dissertation as

Rho-bar-squared AIC:

Rho-bar-squared AIC = 1- Log (6.4)
Log L(O)

Where Log L (0) is the log likelihood of the model with no parameters
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However, Gourerioux and Monfort (1995) show that the foundations of the AIC

are not fully satisfactory and they consider the AIC to be inconsistent in the

following sense. They take the example of two nested normal linear models Mi

and M2 and show that the probability of preferring Mi over M2 using the AIC

does not converge to 1 when Mi is the true model.

Various modifications of the AIC have been proposed. Using Bayesian

arguments, Schwarz (1978) proposed the Bayesian Information Criterion (BIC)

that penalizes the log likelihood of the model as a function of both the number of

estimated parameters and the number n of observations in the dataset.

BIC = Log L(') log(n) (6.5)
2

Similarly, the BIC can be expressed as a likelihood ratio index and will be called

Rho-bar-squared BIC:

k
L(f*) - k log(n)

Rho-bar-squared BIC = 1- 2 (6.6)
L(O)

The penalty associated with the number of parameters is higher in the BIC than

in the AIC as soon as the number of observations is greater than 8. Unlike the

AIC, the BIC is consistent.

These goodness of fit measures were used to provide guidance on the number of

latent classes as models with the same specification other than the number of

classes cannot be considered as nested. As mentioned in Walker and Li (2006),

the BIC is often favored to determine the number of latent classes. Given that

2015 bookings are included in the sample, the BIC will penalize each parameter

of the model by about 3.8 units of log likelihood compared to just one unit for the
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AIC. As a result, the BIC will tend to favor more parsimonious model

specifications and suggest that a lower number of classes should be used.

However, these statistics should be used in conjunction with an examination of

the estimation results to determine the number of latent classes that provides the

most satisfying behavioral interpretation, for instance, in terms of how the

classes can be interpreted and compared to a priori assumptions on the

segmentation of the market.

6.3 Estimation Results

The estimation results of a two-class latent class model of airline passenger

choice are presented in Table 6-2 below. We first examine the estimation results

of the class membership model. We then focus on the estimation results obtained

for the class-specific choice models starting with the parameters relative to the

choice of a fare product. We finally use the parameter estimates of the

continuous function of time to calculate the fitted value of the function and

discuss the time-of-day preferences of outbound travelers in these short-haul

markets.

6.3.1 Class Membership Model

In addition to the intercept, three dummy variables are used as explanatory

variables of the class membership model. They indicate respectively whether the

booking was made through an offline travel agent, the traveler is a member of

the airline's loyalty program and the trip occurred within a week meaning that

the trip started on or after Monday and ended on or before Friday of the same

week.
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LATENT CLASS 1
75.3%

LATENT CLASS 2
24.7%

Class
Membership

Choice
Model

Summary
Statistics

INTERCEPT
FFP MEMBER
MON to FRI
OFFLINE TA

FARE

NON-FLEX & 21AP
NON-FLEX & 7-14AP
NON-FLEX & OAP

DUR-OV = 16 HOURS
SIN2PI-OV
SIN4PI-OV
SIN6PI-OV
SIN8PI-OV
COS2PI-OV
COS4PI-OV
COS6PI-OV
COS8PI-OV

DUR-DT = 9 HOURS
SIN2PI-DT
COS2PI-DT

Log L (0)
Log L
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC

Est.

-4.60
1.00
3.34
3.64

-0.0125

-2.46
-2.23
-1.33

0.33
0.55
0.09
0.24

-0.15
0.68
-0.33
-0.03

-1.51
1.75

Std. Er.

3.66
0.50
3.67
3.59

0.0052

1.07
0.67
0.25

0.10
0.12
0.10
0.08
0.05
0.10
0.08
0.13

0.12
0.34

t-stat I Est.

-1.3
2.0
0.9
1.0

-2.4

-2.3
-3.3
-5.3

3.3
4.6
1.0
3.0
-2.8
6.9
-4.3
-0.2

-13.1
5.1

4.60
-1.00
-3.34
-3.64

-0.0273

-3.71
-1.52
-0.01

0.18
0.10
-0.54
0.24
0.13
0.04
-0.29
-0.17

-1.16
5.19

-3516.81
-3142.41

34
0.0968
0.0697

Two-Class Latent Class Model of Airline Passenger Choice
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Std. Er. t-stat

3.66
0.50
3.67
3.59

0.0075

1.25
0.84
0.47

0.15
0.22
0.17
0.13
0.09
0.14
0.13
0.23

0.52
3.27

1.3
-2.0
-0.9
-1.0

-3.7

-3.0
-1.8
0.0

1.2
0.5
-3.3
1.9
1.5
0.3
-2.3
-0.8

-2.2
1.6

Table 6-2:
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Given that three dummy variables are included in the class membership model,

they define a set of eight underlying categories of bookings also called covariate

patterns. For each covariate pattern, the likelihood that a booking belongs to each

latent class is calculated as the logit probability associated with the parameter

estimates of the class membership model.

For one of the two latent classes also called here Latent Class 1, the parameter

estimates are positive for all three explanatory variables of the class membership

model while the parameter estimate of the intercept is negative. As the sum of

the coefficient estimates for these three parameters largely exceeds the absolute

value of the intercept, bookings that exhibit all three characteristics used in the

class membership model are more likely to belong to Class 1 than to Class 2. On

the opposite, a booking that does not share any of these three characteristics is

more likely to belong to Class 2. Figure 6-1 below shows the probability of

belonging to Class 1 for the eight different covariate patterns.

0.0'% 0.1%

7.5%-B

99.9%

ON

FFP

MON to FRI

Offline TA

Figure 6-1:
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1

0

0

Latent Class

FFP +
MON to FRZ Offline TA MON to FRZMON to FRZ

0 0 1

1 0 1

0 1 0

1 Membership Probabilities

FFP + Offline TA
Offilne TA + MON to FRZ ALL

1 0 1

0 1 1

1 1 1
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Covariate patterns can be grouped into three categories. On one hand, bookings

made both for travel within a week and through a traditional offline travel agent

(ALL and Offline TA + MON to FRI covariate patterns) are estimated to almost

always belong to Class 1. On the other hand, bookings from the two covariate

patterns that do not involve any of these two variables (NONE and FFP) are

almost always classified as belonging to Class 2. Finally, bookings that belong to

the other four covariate patterns are estimated to be split to various degrees

between the two latent classes of the market.

Class 1 can then be considered to reflect primarily business-type travel as

business travelers tend to travel within a week and rely more frequently on

traditional offline travel agents to book their tickets while Class 2 appears to be

primarily oriented toward leisure travelers. The quasi-deterministic probabilities

found here for half of the covariate patterns reflect the strong segmentation of the

demand typically observed in airline markets. This trend is reinforced here by

the airline pricing strategy since the underlying fare structure requires staying

over for the weekend at the destination to book the most heavily discounted fare

products.

Class 1 groups slightly over 75% of the observations as a large number of

bookings belong to the two covariate patterns that combine an offline travel

agent distribution channel and week travel. This is consistent with a priori

expectations as these markets are strongly oriented toward business travel as

discussed in the exploratory analysis of the booking data in Chapter 5. As shown

in Figure 6-2 below, these two covariate patterns represents almost 70% of all

bookings included in the dataset. However, if corporate contract bookings for

which the model reduces to the sole choice of an itinerary are excluded from the

analysis, the distribution of bookings by covariate patterns is less concentrated

and the proportion of bookings belonging to these two covariate patterns falls to
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slightly below 50%. Furthermore, if we analyze the distribution of bookings by

covariate patterns and fare product category, over 80% of the travelers that

purchased a Flex fare belong to these two covariate patterns versus only about

50% of the travelers who purchased a non-flexible business fare from the Week

category. About 35% of the bookings of a product from the Week category are

then estimated to belong to Class 2, compared to only 10% for bookings made by

travelers that purchased the Flex fare product.

100%/

80%

60%

40%

20%

no/

Full Dataset Non-Nego Flex Week

[ NONE + FFP E MONFRI + Offline TA + 1 ALL +
FFP & MONFRI + Offline TA & MONFRI
FFP & Offline TA

Figure 6-2: Distribution of the Bookings by Covariate Patterns

The quasi-deterministic class membership probabilities observed for half of the

covariate patterns is reflected in the high value of the standard errors obtained

for two explanatory variables of the class membership model, the offline travel
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agent and the MON to FRI dummies. As a result, the value of the t-statistic for

these two variables is under 1.65, meaning that they are not significantly

different from zero, even at a 90% confidence level. As discussed in Galindo-

Garre et al. (2004) and Vermunt et al. (2006), the maximum likelihood estimates

of the parameters lie on the boundary of the parameter space when estimated

model probabilities are equal to 0 or 1. Occurrence of boundary estimates causes

the standard errors of the parameters to go toward infinity and the confidence

intervals and significance tests become meaningless. These corner solutions occur

frequently in latent class models, especially if the sample is relatively small and

some covariate patterns are relatively sparsely populated as is here the case.

As a result, the estimation results should be interpreted primarily based on the

relative magnitude of the coefficients rather than on their t-statistic. The offline

travel agent and the MON to FRI dummies have coefficient estimates of similar

magnitude while the frequent flyer member dummy is also positive but has a

much lower estimated value. This is line with our expectations as business

travelers tend to travel mostly within a week and use much more frequently the

services of a traditional travel agent to book their trip than the rest of the

travelers. They are also expected to be more likely to belong to the airline's

loyalty program as business travelers tend to travel more frequently and should

benefit more from the rewards of an airline frequent flyer program. However,

this effect is not expected to be that strong as membership in airline loyalty

programs is complementary and some leisure travelers may also be able to

accumulate enough to obtain a reward such as a complimentary award ticket.

Finally, as mentioned earlier, the quasi-corner solution obtained here for half of

the covariate patterns reflect our a priori expectations on the strong segmentation

of airline markets.
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In addition to the three explanatory variables included in the class membership

model, three additional parameters were tested but excluded based on a

likelihood ratio test as shown in Table 6-3 below. Similarly, these parameters

would also be dismissed using goodness of fit measures such as the Rho-bar-

squared AIC or the more restrictive Rho-bar-squared BIC.

Class Membershio Model
Max Log-likelihood
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC

3 Variables
-3142.41

34
0.0968
0.0697

Likelihood Ratio Test = 3.02 < X2(0.95,3)= 7.82

6 Variables
-3140.90

37
0.0964
0.0669

Table 6-3: Number of Explanatory Variables of the Class Membership Model

These additional explanatory variables include a male dummy variable which

means that gender does not appear to significantly influence class membership,

even in these markets that are strongly oriented toward business travel. This may

reflect the growing presence of women in the corporate world. The use of two

dummies to differentiate between standard and elite members of the airline's

loyalty program also did not add sufficient explanatory power over a single

variable grouping together all participants to the airline loyalty program. Finally,

a day trip dummy was also dismissed. As discussed below, the behavioral

characteristics of day trippers were captured using a specific set of explanatory

variables in the class-specific choice models. However, the addition of a day trip

dummy was not found to capture additional heterogeneity of behavior across

latent classes.

6.3.2 Fare and Fare Product Characteristics

All the parameter estimates relative to the choice of a fare product are of the

expected sign. The fare coefficient is negative and significant for both latent
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classes of the market. Three dummy variables were included in the utility

function to represent the lack of flexibility to change travel plans of some fare

products in interaction with their required level of advance purchase. As

expected, they are also all negative as the fully flexible but more expensive fare

product is used as the base. In addition, the magnitude of these coefficients

increases with the advance purchase requirements. This is also in line with our

expectations meaning that the disutility associated with the lack of flexibility to

change travel plans increases as travelers are required to further anticipate their

travel plans and are likely to face a higher degree of uncertainty about their

future schedule.

All but one of these parameters are significant at the 90% confidence level. The

parameter estimate for fare products that do not require any advance purchase

has a very slightly negative value and is not significantly different from zero for

the leisure-oriented Latent Class 2. This is not unexpected as most leisure-style

travelers are likely to have fairly little uncertainty over their travel plans when

making a booking so close to the departure date. Consequently, they are

expected to place little value on the flexibility to change travel plans.

In order to compare how the disutility value of the lack of flexibility to change

travel plans varies across latent classes, the ratio of these coefficients to the fare

coefficient is calculated and reported in Figure 6-3 below. It represents the

estimated monetary value of the lack of flexibility to change travel plans for each

of the three levels of required advance purchase. It can also be interpreted as

how much airline travelers are estimated to be willing to pay for the opportunity

to change their travel plans without penalty depending on how early they were

required to purchase their ticket. The values obtained are largely higher for Class

1 than for Class 2 for all levels of required advance purchase meaning that

business-style travelers are always willing to pay more for the flexibility to
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change their travel plans without penalty than leisure-style price-sensitive

travelers. This is in line with our expectations as business travelers tend to have

less control over their schedule and are more likely to need to either cancel or

modify their inbound or outbound itinerary.

LATENT CLASS 1

178.62 E

LATENT CLASS 2

I
106.74 £ 135.78 e

21 DAYS 7

Figure 6-3

& 14 DAYS 0 DAYS 21 DAYS 7 & 14 DAYS 0 DAYS

ADVANCE PURCHASE

Willingness to Pay for the Flexibility to Change Travel Plans
without Penalty

The estimated value of this disutility varies between almost nothing for Class 2

travelers for fare products that require no advance purchase to about 200 euros

for Class 1 travelers that purchased a product with at least a 21-day advance

purchase requirement. Based on these estimates, the average value of this

disutility was calculated using sample enumeration techniques over all bookings

from the Saturday Night Stay and Week categories. The average estimated value

of the lack of flexibility to change travel plans was found to be around 108 euros.
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This estimate is compared with the fare difference charged by Air Canada in

markets of similar length of haul between the fully flexible Latitude and the

Tango Plus fare product that is non-refundable and carries a $40 CAD change

fee. The fare difference between the Latitude and the Tango Plus fare product is

advertised to start as low as $100 CAD on the airline's website. Based on a

sequence of booking queries on the Air Canada website (www.aircanada.com),

the fare difference between the Latitude and the Tango Plus product was found

to vary between $100 CAD and $180 CAD (about 68 to 122 euros s5) in select

Canadian domestic markets of less than 500 miles depending mostly on the level

of competition in the marketplace. For instance, the difference in fare was found

to be only $100 CAD in the heavily contested Montreal-Toronto market (313

miles) but is set to $160 CAD in the Montreal-Mont Joli market (330 miles) that is

served solely by Air Canada regional affiliate, Air Canada Jazz. The fare

difference between the Latitude and Tango Plus product was not found to vary

with the level of advance planning of the trip in these short-haul markets.

These values seem slightly lower compared to the estimated value of the

flexibility to change travel plans obtained in the model. On one hand, the

Latitude fare product is a bundle and while the flexibility to change travel plans

is its major characteristics, it also includes a few extra features such as a

complimentary snack and some limited extra mileage accrual although these

elements can probably be valued around $10 to $15 CAD. On the other hand, the

non-flexible Tango Plus product carries a $40 CAD change fee (about 27 euros)

that is much lower than the 60 euros change fee or the full loss of the ticket value

that apply to non-flexible fare products in the markets considered in this

research.

5 At an exchange rate of 1.4667 CAD to one Euro obtained on November 24, 2007 on the Yahoo website,
http://fr.finance.yahoo.com/convertisseur.
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No information is publicly available on the methodology used by Air Canada to

set the prices of its different fare products in general and the premium of the

Latitude over the Tango fare product in particular. The approach used by Air

Canada is likely to be extremely different from the passenger choice models

developed in this research. However, given the large difference in change fees,

the estimated value of the willingness to pay for the flexibility to change travel

plans without penalty provided by the model seems to be fairly consistent with

the range of values currently observed on the Air Canada website for markets of

similar length of haul.

As mentioned earlier, several alternatives were considered to model the disutility

associated with the lack of flexibility to change travel plans. In order to test

whether the different fare products can be grouped based on similar fare rules, a

likelihood ratio test is used as described in Section 6-2. Table 6-4 below shows

the value of the log likelihood for the unrestricted model in which a dummy

variable is used for each fare product and for the restricted model in which the

fare products are consolidated into the four categories as shown in Table 6-1.

Fare Product Cateaories
Max Log-likelihood
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC

10 Categories
-3134.68

46
0.0956
0.0589

Likelihood Ratio Test = 15.45 < X2(0.95,12) = 21.03

4 Categories
-3142.41

34
0.0968
0.0697

Table 6-4: Number of Fare Product Categories

Given that these restrictions are used for each latent class of the model, the

restricted model has a total of 12 fewer parameters than the unrestricted model.

Based on a likely ratio test, we cannot reject the hypothesis that the coefficients

are of equal value within the four categories used in the restricted model. The

134



same conclusion is reached from model selection criteria such as the Rho-bar-

squared AIC and Rho-bar-squared BIC.

Other scenarios were tested such as classifying the products into six categories

by separating totally non-flexible products that can be neither changed, nor

cancelled and semi-flexible products that require paying a fee to modify or cancel

the booking. However, this scheme was also rejected based on a likelihood ratio

test in favor of the scenario in which the fare products are grouped into four

categories with no distinction between these two types of fare rules. This

suggests that airline travelers do not place a significantly different value on the

disutility associated with totally non-flexible and semi-flexible products. This

matches our expectations as most semi-flexible products belong to the Saturday

Night Stay category and are likely to be purchased by price-sensitive leisure

travelers. These travelers may have a fairly low level of uncertainty about their

travel plans and more importantly may be very reluctant toward any additional

charge such as a change fee.

Furthermore, the consolidation of the fare products into a smaller set of

categories by reducing the number of levels of required advance purchase was

also rejected based on likelihood ratio tests.

6.3.3 Time-of-Day Preferences

We now consider the parameters of the continuous function of time used to

represent the choice of an itinerary. We first use the parameter estimates to

calculate the fitted value of the continuous function of time and discuss the time-

of-day preferences of the travelers based on the resulting profile of the function.

We then compare this approach to previous models based on the specification of

time-period dummies.
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6.3.3.1 Continuous Function of Time

As discussed in Section 6.1, the flight departure time is used as the sole attribute

of the alternatives to model the choice of an airline itinerary and a continuous

function of time is specified to represent the time-of-day preferences of airline

travelers. A separate function is used for overnight and day trip bookings as day

trippers are expected to have a stronger preference for early morning departures

in order to have as much time as possible to conduct their activities during their

short stay at their destination.

For each type of booking, the number of parameters included in the

trigonometric formulation was determined by trial and error based on both an

empirical analysis of the resulting profile of the utility function and the statistical

significance of the parameters. A trigonometric formulation with eight

parameters was preferred for overnight bookings based on the profile of the

function. For day trip bookings, only two parameters could be identified as the

number of observations is reduced to a relatively few morning flight departures.

A trial and error method with half-hour increments was also used to determine

the duration of the cycle that maximizes the log-likelihood of the model. A 16-

hour duration was found for overnight bookings while a shorter 9-hour cycle is

used for day trip bookings. The estimated values of the parameters are reported

in Table 6-2 for each latent class of the model.

The parameter estimates can then be used to calculate the fitted value of the

function for any flight departure time. For Class 1 and overnight bookings, the

value of the continuous function of time is calculated as follows:
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2h. 4h 6h. 8h
U (h) = 0.33 *sin( 2)+ 0.55 * sin( ) + 0.09 * sin( ) + 0.24* sin( 8)rh

16 16 16 16
2h. 4rh 6ch. 8fh.

- 0.15 * cos( -) + 0.68 * cos( ) - 0.33 * cos( 6) - 0.03 * cos( 8)
16 16 16 16

(6.7)

The willingness to pay for a specific departure time is then obtained by dividing

this fitted value by the estimate of the fare coefficient.

As discussed in Chapter 4, the start time of the cycle has no impact on the value

of the function for a specific flight departure time and is selected at a local

minimum so that the function starts and ends at a local low point. For overnight

bookings, the start time of the cycle was set at 5 a.m. for Class 1 and 7 a.m. for

Class 2 based on half-hour increments. Figure 6-4 below shows the estimated

willingness to pay curves for overnight bookings.
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Flight Departure Time
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Willingness
Bookings
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to Pay for a Flight Departure Time for Overnight

As expected, business-oriented (Class 1) outbound travelers tend to prefer either

a morning departure to be able to conduct their business activities during the
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day at the destination or a late afternoon departure so that they can take

advantage of most of the day at the origin city before heading to the airport.

The time-of-day preferences of Class 2 travelers have some similarities and

differences with those of Class 1 travelers. Class 2 travelers also value morning

flight departures, but with a peak point about 30 minutes later than Class 1

travelers. They also have a preference for late afternoon flights although the peak

period starts later than for Class 1 travelers, is wider and extends into the

evening. As they mostly travel for pleasure, many Class 2 travelers may have to

work for a full day before going to the airport and catch a flight in the evening

while Class 1 travelers may be able to leave the office earlier, catch a previous

flight and arrive early enough for a late dinner in the destination city. In addition

to peaks in the morning and in the afternoon, the willingness to pay curve of

Class 2 travelers has a third peak in the early afternoon. This probably

corresponds to leisure-oriented travelers that take the afternoon off to benefit

from a cheaper fare on a low-demand flight in the middle of the day and spend a

full evening at the destination.

The other major difference between Class 1 and 2 travelers is the magnitude of

their respective willingness to pay curves. As shown in Figure 6-3, price-

conscious Class 2 travelers are willing to pay far less for a specific departure time

than business-oriented Class 1 travelers. This is consistent with our expectations

of the behavioral differences between time-sensitive business travelers and price-

sensitive leisure travelers. However, the estimation results also indicate that

Class 2 travelers are not entirely focused on price and are willing to pay a

premium for a specific flight departure time although only about one third that

of core business Class 1 travelers.
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In addition to differences in the time-of-day preferences of overnight bookings

across latent classes, differences in behavioral characteristics were also found

within each class between day trip and overnight bookings. As day trip bookings

primarily belong to Class 1, Figure 6-5 below shows the willingness to pay

curves for overnight and day trip bookings for Class 1 travelers.
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Figure 6-5: Willingness to Pay for a Flight Departure Time - Overnight and
Day Trip Bookings (Class 1)

For day trip bookings, the duration of the cycle is reduced to 9 hours as day

trippers are observed to select only morning flight departures. There are two

differences between the willingness to pay curves of day trip and overnight

bookings: The peak of the curve is reached about 30 minutes earlier and the

magnitude of the peak is higher for day trip bookings. This matches our

expectations as outbound day trippers are likely to have a stronger preference for

an early morning flight departure in order to maximize the time available during

their short stay in the destination city.
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The addition of a function of time specific to day trip bookings improved

substantially the fit of the model as shown in Table 6-5 below. The maximum

log-likelihood of the model improved by more than 30 units although the

number of parameters increased by five including the duration of the cycle for

day trip bookings. The use of a function of time to represent the specific time-of-

day preferences of day trippers is then supported by model selection criteria

such as the Rho-bar-squared AIC and the more restrictive Rho-bar-squared BIC.

Day Trip Booking Variables
Max Log-likelihood
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC
Likelihood Ratio Test

All
-3136.68

42
0.0961
0.0627

Time-of-Day (TOD)
-3142.41

34
0.0968
0.0697

11.46 < X2 (0.9 5,8 ) = 15.51

Table 6-5: Day Trip Bookings Explanatory Variables

However, no statistically significant difference was found between day trip and

overnight bookings regarding other parameters of the class-specific choice model

based on a likelihood ratio test or model selection criteria. As a result, parameters

specific to day trippers were not added to the rest of the utility function.

6.3.3.2 Time-Period Dummies

For models with time-period dummies, the day was divided into six time periods

as the airline schedule is organized around six connecting banks with flights

leaving to all destinations at about the same time within a bank. Since no flight

departures are observed in the nighttime, it is not possible to identify the

parameters for time-periods for that part of the day. As a result, nighttime (11

p.m. to 5 a.m.) is excluded. We make the implicit assumption that the utility

value of nighttime flight departures tends to minus infinity, as in models with a

continuous function of time for flight departures outside of the estimated cycle.
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LATENT CLASS 1
74.4%

LATENT CLASS 2
25.6%

Est.

Class
Membership

Choice
Model

Summary
Statistics

Table 6-6:

INTERCEPT
FFP MEMBER
MON to FRI
OFFLINE TA

FARE

NON-FLEX & 21AP
NON-FLEX & 7-14AP
NON-FLEX & OAP

OVERNIGHT BOOKINGS
EARLY MORNING 5-8a
MORNING 8a-11a
MIDDAY 11a-2p
AFTERNOON 2-5p
LATE AFTERNOON 5-8p
EVENING 8-11p

DAY TRIP BOOKINGS
EARLY MORNING 5-8a
MORNING 8a-11a

Log L (0)
Log L
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC

-4.60
1.00
3.34
3.64

-0.0131

-2.58
-2.28
-1.36

0.67
0.00
-0.60
0.11
0.51
-0.68

1.90
0.00

Std. Er.

3.66
0.50
3.67
3.59

0.0052

1.06
0.68
0.26

0.11
0.00
0.18
0.12
0.12
0.20

0.14
0.00

t-stat I I

-1.3
2.0
0.9
1.0

-2.5

-2.4
-3.3
-5.3

5.9
0.0
-3.4
0.9
4.2
-3.4

13.6
0.00

-3516.81
-3200.99

24
0.0830
0.0638

Two-Class Latent Class Model with Time-Period Dummies
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Est.

5.51
-4.20
-1.25
-4.00

-0.0272

-3.73
-1.62
-0.03

-0.50
0.00
-0.01
-0.17
0.45
0.32

0.33
0.00

Std. Er.

7.87
8.12
1.24
8.29

0.0074

1.20
0.79
0.47

0.26
0.00
0.18
0.18
0.16
0.19

0.55
0.00

t-stat

0.7
-0.5
-1.0
-0.5

-3.7

-3.1
-2.0
-0.1

-1.9
0.0
-0.1
-1.0
2.7
1.7

0.6
0.00
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A different set of dummies is used for overnight and day trip bookings. In order

to have a common base for both types of booking, the morning period (8 to 11

a.m.) is used as the base. For overnight bookings, five dummies are included in

the utility function while a single dummy variable is used for day trip bookings

as day trippers were never observed to select afternoon flights. Estimation results

of the model with time-period dummies are shown in Table 6-6 above.

First, the use of time-period dummies has little impact on the estimated value of

the rest of the parameters. Parameter estimates of the fare and fare product

characteristics are very similar to those obtained in the model with a continuous

function of time. For models with time-period dummies, the willingness to pay

for a flight departure can be calculated directly by dividing for each period the

parameter estimate of the dummy by the fare coefficient. As the morning period

is used as a base, the willingness to pay values should be interpreted relative to a

morning flight departure.
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Figure 6-6: Willingness to Pay for a Flight Departure Time - Continuous
Function of Time and Time-period Dummies (Class 1 Overnight
Bookings)
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Figure 6-6 above compares the willingness to pay curves of both model

specifications for overnight Class 1 bookings. The resulting time-of-day

preferences are similar for models with a continuous function of time and time-

period dummies. For instance, Class 1 travelers are found to prefer early

morning and late afternoon flights in both model specifications. However, a

continuous function of time leads to a more precise measurement of willingness

to pay values across flight departure times while time-period dummies appear to

provide a form of average value of the passenger willingness to pay for a specific

departure time for each period of the day.

This more precise measurement of the time-of-day preferences provided by a

continuous function of time is reflected in the large improvement in the fit of the

model over a specification with time-period dummies. The maximum value of

the log-likelihood function is improved by almost 60 points although ten

additional parameters are used including the estimated duration of the cycle for

both day trip and overnight bookings. This large improvement in the fit of the

model more than compensates for the increase in the number of parameters

according to both the Rho-bar-squared AIC and Rho-bar-squared BIC.

The magnitude of the impact of a continuous function of time over the log

likelihood of the model may be related to how flight departures are scheduled in

these airline markets. Given that the observed departure times are concentrated

over a couple of connecting banks, the number of time-period dummies that can

be identified is relatively limited. This leaves a large potential for improvement

in the fit of the model when a continuous function of time is introduced. It has

the capability to provide a more precise estimate of the time-of-day preferences

of airline travelers despite the relatively low level of variability in observed flight

departure times. As flight departures are scheduled around connecting banks in
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many airline markets, this approach is particularly useful to investigate the time-

of-day preferences of airline travelers.

However, a continuous function of time may reproduce too closely the patterns

observed in the dataset and have limited prediction capabilities. This may be

especially true as the duration of the cycle is determined to maximize the log-

likelihood of the model. In order to verify whether a continuous function of time

provides a genuine improvement in the fit of the model, we tested whether this

approach is subject to a risk of overfitting.

Overfitting occurs when a model has so many parameters that it fits the data

perfectly and yet it performs very poorly to predict future data drawn from the

same distribution. In order to detect overfitting, a validation study is used. The

dataset is divided into two parts, a smaller test set that comprises generally 25 to

30% of the observations and a larger training set. The model is estimated over the

training set and the prediction capabilities of the model are assessed on the test

set using goodness of fit criteria such as the maximum log likelihood of the

model. For a more complete description of the validation methods available to

detect and prevent overfitting, the reader is referred to Moore (2001).

In order to test for overfitting, the dataset was divided into two subsets based on

the second letter of the passenger's first name. If the letter was either an A, B, C

or a D, the booking was assigned to the test set. Otherwise, the booking was

included in the training set. The test set included 522 observations, about 26% of

the total number of bookings in the dataset. The model was estimated on the

training set and the coefficient estimates were applied to calculate the choice

probabilities for each booking and the log likelihood of the test set. Table 6-7

below shows the values of the log-likelihood obtained over the training and test

sets for models with time-period dummies and a continuous function of time.
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Time-period Dummies Continuous Function
Training Set Log L -2389.27 -2342.24
Test Set Log L -816.92 -808.71
Training + Test Set Log L -3206.19 -3150.95
Number of parameters 24 34
Rho-bar-squared AIC 0.0815 0.0944
Rho-bar-squared BIC 0.0624 0.0673

Table 6-7: Log-Likelihood of the Model Calculated over the Test Set

As expected, the use of a continuous function of time leads to an improvement of

the log-likelihood of the model over the training set. More importantly, it also

leads to an increase in the log-likelihood calculated over the test set compared to

a model with time-period dummies. Thus, the use of a continuous function of

time to represent the time-of-day preferences of airline travelers does not appear

to be subject to a risk of overfitting.

As a result, a model specification with a continuous function of time is preferred

over earlier models with time-period dummies. It has the ability to provide a

more precise estimate of the time-of-day preferences of airline travelers despite

the low variability of flight departure times observed in many airline markets. In

addition, it provides a more scientific approach to determine the duration and

start time of the cycle. Unlike models with time-period dummies in which the

length and breakpoints of each period are selected arbitrarily, the duration of the

cycle is estimated by maximizing the log-likelihood of the model and the start

time of the cycle is selected at a local minimum of the function.

Estimating the duration of the cycle appears as the major driver of the successful

specification of a continuous function of time in short-haul markets. In addition

to a substantial decrease in the fit of the model, a continuous function of time

with a 24-hour cycle did not lead to a profile of the time-of-day preferences that

matched our expectations, especially for day trip bookings. Since the schedule

constraints of day trippers are such that flight departure times are concentrated
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on a short period of the day in the morning, the specification of a function of time

with a 24-hour cycle leads to unrealistic high values of the willingness to pay for

morning flight departures while unrealistic low values are obtained for the rest

of the day. As a result, the use of a continuous function of time with an estimated

duration of the cycle provides a flexible approach to model the time-of-day

preferences of specific groups of travelers or specific types of airline markets.

6.4 Segmentation of Airline Demand

As mentioned earlier, demand in airline markets is traditionally segmented by

trip purpose. Since trip purpose is not recorded in airline bookings, it is replaced

by several factors available in airline bookings that are presumably more or less

strongly correlated with trip purpose. In order to include several factors without

dividing the dataset into a growing number of small sub-segments, bookings are

assumed to be distributed over a limited number of latent classes. A probabilistic

class membership model is used to estimate how each booking is likely to belong

to the different latent classes based on its observed characteristics. In this section,

we will first focus on how we determined the number of latent classes used in

the model. We will then discuss the benefits of the latent class model of airline

passenger choice by comparing its estimation results to previous model

specifications based on a deterministic segmentation of airline demand. We will

finally conclude by examining whether additional heterogeneity of behavior can

be captured by using random coefficients within the class-specific choice models.

6.4.1 Determining the Number of Classes

As mentioned earlier, the number of classes is determined based both on model

selection criteria and on whether the parameter estimates of the model define
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latent classes that can either be easily interpreted or tend to match a priori

assumptions on the segmentation of the demand. Table 6-8 below shows the

maximum value of the log-likelihood function for models with a number of

latent classes varying from one to three. All selection criteria indicate that a

model with several classes is preferred over a model with a single class. In

addition, the Rho-bar-squared BIC that is often used in latent class choice models

to determine the number of classes suggests that the two-class model is superior

while the Rho-bar-squared AIC favors a model with three classes.

Number of Classes 1 Class Two-Class Three-Class
Max Log-likelihood -3236.33 -3142.41 -3080.61
Number of Parameters 16 34 52
Rho-bar-squared AIC 0.0752 0.0968 0.1092
Rho-bar-squared BIC 0.0624 0.0697 0.0678

Table 6-8: Goodness of Fit Measures by Number of Latent Classes

The estimation results of the class membership model for the three-class model

shows that Class 1 gets split into two sub-classes (also called here Class 1A and

1B) while the size and parameter estimates of Class 2 remains almost unchanged

compared to the two-class model. As shown in Table 6-9 below, all the

parameters of the class membership model have the same sign for both sub-

classes. No major difference in the distribution of bookings by fare product

category is observed between the two sub-classes as bookings for the fully

flexible and non-flexible products from the Week category are split among the

two sub-classes in proportion similar to their respective size. In addition, around

one-third of bookings of products from the Week category remain classified as

belonging to Class 2 as in the two-class model meaning that price-conscious

business travelers are not recaptured into one of the other two sub-segments.
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SEGMENT SIZE

INTERCEPT
OFFLINE TA
FFP MEMBER
MONFRI

FLEX BOOKINGS
WEEK BOOKINGS

Latent Class 1A
57.3%

Est. Std. Er. t-stat
-2.40 2.91 -0.8
1.47 2.89 0.5
0.61 0.25 2.4
2.71 0.88 3.1

68.9%
50.2%

3-class Model
Latent Class 1B

20.8%
Est. Std. Er. t-stat
-3.78 5.57 -0.7
3.63 5.55 0.7
0.58 0.23 2.5
0.72 0.87 0.8

21.4%
15.8%

Latent Class 2
21.9%

Est. Std. Er. t-stat
6.18 3.24 1.9
-5.10 3.22 -1.6
-1.19 0.42 -2.9
-3.43 1.71 -2.0

9.7%
34.0%

Table 6-9: Estimation Results of the Class Membership Model for the Three-
Class Model

Thus, the split of business-style travelers into two sub-classes cannot be easily

interpreted and does not match a priori assumptions such as the expected

behavioral differences between business travelers that book fully flexible

products and price-conscious business travelers that prefer a discounted non-

flexible product. A model specification with two latent classes is then preferred.

6.4.2 Deterministic and Latent Segmentation of the Demand

In order to assess the benefits of using latent classes, the estimation results of the

two-class model are compared to a deterministic benchmark. In this benchmark

model, the bookings are divided deterministically across two segments defined

by one of the three variables of the class membership model. Segmentation

between bookings for travel within a week (MON to FRI) and non-week

bookings was found to provide the best fit to the data.

Estimation results of the deterministic model are presented in Table 6-10 below.

Similar behavioral patterns are observed for the latent class model and the

deterministic benchmark. For instance, the disutility associated with the lack of

flexibility to change travel plans increases with advance purchase requirements

in both models. In addition, week travelers are willing to pay more for the

flexibility to modify their travel plans without penalty than non-week travelers.
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MON to FRI
74.8%

Est.

Choice
Model

Summary
Statistics

Table 6-10:

FARE -0.0145

NON-FLEX & 21AP
NON-FLEX & 7-14AP
NON-FLEX & OAP

DUR-OV = 16 HOURS
SIN2PI-OV
SIN4PI-OV
SIN6PI-OV
SIN8PI-OV
COS2PI-OV
COS4PI-OV
COS6PI-OV
COS8PI-OV

DUR-DT = 9 HOURS
SIN2PI-DT
COS2PI-DT

Log L (0)
Log L
Number of parameters
Rho-bar-squared AIC
Rho-bar-squared BIC

-2.48
-1.98
-1.19

0.26
0.49
0.08
0.17
-0.14
0.67
-0.33
-0.08

-1.44
1.86

Std. Er.

0.0045

0.89
0.56
0.21

0.09
0.11
0.09
0.08
0.05
0.09
0.07
0.13

0.10
0.33

t-stat

-3.2

-2.8
-3.5
-5.6

2.8
4.4
0.9
2.2
-2.8
7.1
-4.4
-0.6

-13.7
5.6

I I Est.

-0.0177

-2.94
-1.46
-0.19

0.26
0.32
-0.46
0.39
0.10
0.17
-0.35
-0.01

-0.29
-0.97

-3516.81
-3172.75

30
0.0893
0.0654

Deterministic Segmentation of Airline Bookings by Week and Non-Week Travel
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OTHER
25.2%

Std. Er.

0.0063

1.09
0.72
0.47

0.13
0.18
0.13
0.11
0.07
0.12
0.11
0.20

1.34
8.71

t-stat

-2.8

-2.7
-2.0
-0.4

2.0
1.7
-3.5
3.7
1.4
1.4
-3.1
-0.1

-0.2
-0.1
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The profile of the time-of-day preferences is also similar for both model

specifications as shown in Figure 6-7 below. However, the magnitude of the

parameter estimates tends to be greater for the latent class model. For instance,

the magnitude of the morning and afternoon peaks is greater for the latent class

model although the peaks are observed at similar times for both models.

Similarly, Class 1 travelers are willing to pay more for the possibility to change

their travel plans without penalty than week travelers in the deterministic model.

A reverse trend is observed for the other segment of the market: Class 2 travelers

are not willing to pay as much as a non-week travelers for the flexibility to

change their travel plans at no additional cost.
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Figure 6-7: Time-of-Day Preferences in the Latent
Benchmark Models

Class and the Deterministic

Thus, the latent class choice model appears to provide a more polarized

segmentation between time-focused business travelers and a class of leisure-

oriented and price-conscious business travelers. This is due to the impact of the

two additional explanatory variables of the class membership model that have

the same sign as the MON to FRI dummy and contribute to further segment the
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bookings between the two latent classes of the market. This results into a large

improvement in the fit of the model of almost 30 units of log-likelihood.

The deterministic model may be viewed as a special case of the latent class model

in which the value of the parameter estimate of the MON to FRI dummy tends to

infinity while the other parameters of the class membership model are equal to

zero. However, standard statistical tests such as the likelihood ratio test are only

valid to test whether the value of a parameter is equal to a finite value of interest.

As a result, model selection criteria were used to compare the fit of the latent

class choice model and the deterministic benchmark.

Although the latent class model includes four additional parameters used as

explanatory variables of the class membership model, this increase in the number

of parameters is more than compensated by the improvement in the maximum

log-likelihood of the model according to both the Rho-bar-squared AIC and BIC.

Similarly, the latent class model was also found to be preferred to models with a

higher number of deterministic segments according to both of these criteria.

While model selection criteria were used to compare the latent class choice

model to a deterministic benchmark, a likelihood ratio test can be used to

determine whether the observations should be divided into deterministic market

segments. As mentioned earlier, a model in which all the observations are pooled

together is a special case of a model with two deterministic segments if the

estimated value of each parameter is equal across segments. The statistic of the

likelihood ratio test is calculated based on the value of the maximum log-

likelihood for the model specifications with and without market segmentation as

shown in Table 6-11 below. Based on the test statistic, we can reject the

hypothesis that the value of the parameters is equal across segments and the

model should account for heterogeneity of behavior across bookings.
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Segmentation None Week Travel
Max Log-likelihood -3236.33 -3172.65
Number of parameters 16 30
Rho-bar-squared AIC 0.0752 0.0893
Rho-bar-squared BIC 0.0624 0.0654
Likelihood Ratio Test = 127.36 > X2

(0.95,14)= 23.69

Table 6-11: Deterministic Segmentation of Airline Bookings

Based on model selection criteria, the latent class model of airline passenger

choice is preferred to a deterministic benchmark in which bookings are

segmented between week and non-week travelers. In addition, the latent class

model was also found to be preferred to model specifications with multivariate

deterministic segmentation schemes as the number of estimated parameters is

increasing quickly when the bookings are divided in a large number of

increasingly small market segments. As a result, latent classes provide a

parsimonious way to segment the bookings into many underlying latent sub-

segments using a wide range of factors available in booking records without

increasing rapidly the number of estimated parameters. It also leads to a more

distinct segmentation between a core of time-focused business travelers and a

mixed class of price-conscious business and leisure travelers.

6.4.3 Random Coefficients

So far, two types of heterogeneity of behavior have been captured by the model.

Heterogeneity of behavior across different segments of the market was captured

through the latent class structure of the model. In addition, characteristics of the

trip were included in the utility function of class-specific choice models to

capture systematic taste variation within each latent class of the model.

However, there may be additional heterogeneity of behavior remaining within

each latent class. Random coefficients will be used to test whether random taste

variation can be found in class-specific choice models.
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As mentioned earlier, a maximum of three independent normally distributed

random coefficients can be specified in Latent Gold Choice. In practice, only an

even lower number of random coefficients could be estimated due to

computational limitations. To limit computational time, models with a single

random coefficient were successively estimated. For random coefficients,

estimates are obtained for both the mean and standard deviation of the

parameters. Table 6-12 below shows the estimated value of the standard

deviation for the three coefficients used to represent the characteristics of the fare

products for both latent classes of the model.

Latent Class 1 Latent Class 2
Est. Std. Er. t-stat Est. Std. Er. t-stat

SIGMANON-FLEX & 21AP 2.82 2.34 1.2 0.35 1.79 0.2
SIGMANON-FLEX & 7-14AP 3.53 3.11 1.1 0.00 1.01 0.0
SIGMA NON-FLEX & OAP 0.00 2.03 0.0 1.19 0.91 1.3

Table 6-12: Latent Class Choice Model with Random Coefficients

According to their t-statistic, none of the standard deviations of these random

coefficients is significantly different from zero. Regarding the rest of the utility

function relative to the time-of-day preferences of airline travelers, the value of

the standard deviation of the coefficients of the continuous function of time

cannot be interpreted individually. However, no significant random taste

variation was found for the coefficients of a model with time-period dummies.

As a result, the heterogeneity of behavior in these markets appears to be

captured primarily by the class membership model and interaction variables in

the class-specific utility function. This is due to the characteristics of the fare

structure used by the airline in these markets that largely leads to a bimodal

distribution of the bookings based on whether or not the trip qualifies for

products from the Saturday Night Stay or Weekend categories. However, in
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airline markets with less restricted fare structures, random coefficients may

prove useful to supplement the latent class structure of the model and capture a

broader level of heterogeneity of behavior that cannot be easily related to

observed characteristics of the bookings.

6.5 Summary

In this chapter, we have shown the benefits of a latent class model of airline

passenger choice compared to previous deterministic segmentation schemes

found in the literature. A range of factors extracted from the booking records

could be used as explanatory variables of the class membership model and

contributed to segment the demand without dividing the bookings into a large

number of increasingly small sub-segments. It also led to a greater differentiation

between a core of time-focused business travelers and a mixed class of price-

conscious business and leisure travelers.

We have also shown the benefits of using a continuous function of time to model

the time-of-day preferences of airline travelers over previous models based on

time-period dummies. We proposed a generalized formulation of a continuous

function of time in which the duration of the cycle is estimated providing a

scientific approach to model the specific characteristics of time-of-day

preferences in short-haul airline markets and sub-segments of the demand such

as day trip bookings. Compared to time-period dummies, a continuous function

of time provides a more precise measurement of the time-of-day preferences of

the travelers. This is especially beneficial in many airline markets due to the low

level of variability observed in flight departure times as the flight schedule is

structured around a few connecting banks.
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In the next chapter, we will discuss how the latent class model of airline

passenger choice developed in this research can be used to support a range of

airline planning decisions such as schedule planning, pricing and revenue

management. In particular, we will focus on the impact of the latent class

structure of the model on the predicted behavior of airline passengers and

ultimately the planning decisions suggested by the model.
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Chapter 7 Applications

In previous chapters, we have developed and estimated a model of the choice of

an airline itinerary and fare product that incorporates the impact of pricing and

revenue management on the passenger choice set and captures heterogeneity of

behavior across several segments of the market. In this chapter, we discuss how

this model can be used to support a range of airline planning decisions such as

schedule planning, pricing and revenue management. In particular, we will

show how the parameter estimates of the model can be applied to forecast the

proportion of airline passengers willing to sell-up to a more expensive fare

product. Sell-up estimates are required by new revenue management methods

designed to maximize revenues in less restricted fare structures now common in

many airline markets. We will discuss whether the specification of a latent class

model of airline passenger choice leads to different estimates of sell-up behavior

compared to a deterministic benchmark model.

7.1 Introduction

As mentioned earlier, discrete choice models may be used to support a wide

range of short to medium term airline planning decisions. Actually, the impact of

any planning decision that involves either a change in the attributes of the

alternatives or the passenger choice set can be analyzed using discrete choice

models. Changes in the attributes of the alternatives include, for instance, an

increase or decrease in the price of a fare product or a change in flight departure

time. Pricing decisions such as a new set of fare rules or a new revenue
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management algorithm will impact the availability of the various fare products

and the passenger choice set.

The use of discrete choice models to support airline planning decisions has been

very limited up to now. Since previous studies of airline passenger choice using

booking data have focused on the choice of an airline itinerary, the few airline

applications developed so far have been related to schedule planning. However,

the relaxation of fare rules such as the Saturday night stay requirement due to

the growing competition of low-cost airlines and the development of more

complex product offerings based on a menu of optional services have brought

the need for a better understanding of passenger choice behavior. Discrete choice

models can provide valuable insight into the willingness to pay of airline

passengers for different elements of airline service and the price elasticity of the

demand for various segments of the market. The development of a model of the

choice of an airline itinerary and fare product that incorporates the impact of

fares rules and seat availability on the passenger choice set extends the scope of

potential applications of discrete choice models in the airline industry beyond

schedule planning to pricing and revenue management.

The rest of this chapter is organized as follows. Section 7.2 and 7.3 discuss how

discrete choice models can be applied to support airline planning decisions in

schedule planning and pricing. In Section 7.4, we show how the parameter

estimates of the model can be used to forecast the sell-up behavior of airline

passengers that is a key input to the new revenue management methods under

development to optimize revenues under a less restricted fare structure. Finally,

Section 7.5 concludes with a brief discussion of future research directions that

could provide benefits for some of the applications described in this chapter.
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7.2 Schedule Planning

Schedule planning has been the first area of application of consumer choice

models in the airline industry. Schedule planning decisions include setting the

flight schedule, increasing or decreasing frequency or even introducing new non-

stop service in a market. Demand forecasts at the itinerary level are used by the

airline planning department to evaluate these decisions and adjust the airline

schedule. Itinerary-level demand forecasts are usually obtained in two steps.

First, a demand forecast at the market level is produced based on historical data

and other elements such as economic growth. Second, this total market demand

is allocated to the itinerary level using an itinerary share model.

Many itinerary share models use a demand allocation methodology called

quality of service index (QSI) (Coldren, 2005b). In QSI models, the share of an

itinerary is proportional to an overall index summarizing the "quality" or

attractiveness of each itinerary. Quality is defined as a weighted function of

various service attributes such as elapsed time, number of stops or connections

or airline preferences. The weights of the different variables of the model are

obtained exogenously through statistical techniques or based on the analyst

knowledge or intuition. The share of an itinerary is then equal to the quotient of

the itinerary's QSI over the sum of the QSI for all itineraries in the market.

QSI models have two major drawbacks. First, the preferences weights are usually

obtained exogenously and independently from each other. As a result, these

models ignore the interactions that are likely to exist among itinerary

characteristics such as between elapsed time and number of connections. Second,

the preference weights are defined at the aggregate market level or even at a

higher degree of aggregation and do not capture the specific characteristics and

behavior of individual passengers.
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In order to model preferences at the individual booking level, the Boeing

Commercial Airplane Group (1993) developed a new itinerary share model

called the Decision Window Model. In this model, each passenger gets assigned

a decision window that represents his range of preferred travel times for. Two

parameters define a decision window: its width and position. The width of a

decision window depends both on the shortest elapsed time in the market and

the characteristics of the traveler. For instance, decision windows are on average

shorter for business travelers than for leisure travelers as passengers traveling on

business tend to be more time-sensitive. The position of the decision window is

defined such as to reproduce the typical time of the day distribution of demand

in every market. All itineraries that fall within the boundaries of the window are

equally schedule-attractive to the passenger and are preferred to other

itineraries. Travelers choose among itineraries included in their time window

based on a rating that includes elements such as number of stops and preferences

for a particular airline.

Although Boeing's approach models the choice of an itinerary at the booking

level, its decision rule is based on a rating system that has the same drawbacks as

QSI models. As mentioned by Coldren (2005b), discrete choice models provide

an attractive alternative to QSI models as they use statistical techniques to

simultaneously estimate the parameters of the explanatory variables and the

share of each itinerary based on disaggregated booking-level data. His research

shows that the implementation of a logit-based itinerary share model by a major

U.S. carrier led to a substantial improvement in the carrier's forecasting accuracy

compared to previous QSI-based models. Coldren further explored the

complexity of substitution patterns across itineraries using models of the GEV

family. However, his model did not incorporate heterogeneity of behavior across

bookings as no information was collected on the characteristics of the trip and

the profile of traveler.
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Although the model developed in this research does not allow for the type of

substitution patterns provided by models from the GEV family, it improves on

previous itinerary share models in three ways. Since it simultaneously models

the choice of an airline itinerary and fare product, it captures the impact of fare

product characteristics on substitutions patterns across flight departures. The

mix of products is likely to vary across flight departures due to differences in

passenger mix and the impact of revenue management. For instance, morning

and late afternoon flights in short-haul markets appear particularly popular with

business passengers while midday flights may attract more leisure demand. The

revenue management system tends to reinforce the variations in passenger mix

across flight departures by saving seats for late booking high-yield demand on

peak flights and channeling low-yield demand to off-peak flights.

In addition, the model developed in this research incorporates the impact of

heterogeneity of behavior on substitution patterns across flight departures.

Heterogeneity of behavior is expected to have a significant impact as the

estimation results of the model show that core business passengers and day

trippers are willing to pay a much higher premium to fly on their preferred

departure time than the rest of the flying public. Combined with variations in

passenger mix, our model has the potential to substantially improve the accuracy

of itinerary share forecasts by capturing the different time-of-day preferences of

the two segments of the market.

Finally, this model provides forecasts of expected demand at the itinerary-

product level, a lower level of aggregation than previous models based solely on

the choice of an itinerary. As a result, a revenue forecast can be obtained for each

itinerary based on a weighted average of revenue by itinerary-product forecasts

rather than by multiplying the total itinerary demand by the average fare in the

market. Although the accuracy of itinerary-product forecasts is expected to be
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lower than forecasts at the itinerary level especially if the size of the sample is

fairly limited, this more disaggregate approach may improve the accuracy of

revenue forecasts. While a model of the choice of an itinerary and fare product is

expected to provide an enhanced tool to support schedule planning decisions, it

also extends the range of potential applications to additional airline planning

decisions such as pricing as discussed in the next section.

7.3 Pricing

Prior to the economic deregulation of the airline industry starting in the U.S. in

1978 and spreading later throughout many parts of the world, airfares were

regulated by the government and airlines competed primarily on service such as

flight schedule and in-flight amenities. In each market, a single standard fare was

set by the regulatory authority and some limited discounts were allowed for

specific categories of travelers such as children or senior citizens. Freed from

government control over pricing, the airline industry quickly adopted a

differential pricing strategy. The airlines took advantage of the variations in the

sensitivity to time, price, comfort and service across travelers to offer several fare

products, carry additional passengers and increase revenues.

In order to prevent passengers willing to purchase the most expensive fare

product from buying lower-priced products, discount fares were systematically

associated with a set of restrictions such as non-refundability, advance purchase

and minimum stay requirements designed to make them unattractive to business

travelers. A few studies (Boeing, 1988) have shown that these "fences" were

relatively successful at discouraging business travelers from purchasing fare

products designed for the price-sensitive leisure segment of the demand.

Although differential pricing is rooted in economic theory as described by
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Belobaba (1998) and has been widely adopted by airlines and other industries

worldwide, fares are in most cases set in response to the competitive

environment and not based on a scientific analysis of the price-sensitivity of the

demand.

This relatively simple competition-based approach to airline pricing is due to the

fact that differential pricing was associated with the dynamic management of

airline seat inventory, also known as revenue management, which restricts the

availability of lower-priced fare products. As a result, the lowest available price

offered in a market not only depends on the list of published fare products

established by the airline pricing department but also on the number of seats

available for sale for each product set by the airline revenue management system

and staff.

Although a well designed fare structure would likely improve the effectiveness

of the airline revenue management system, the impact of how the fares are set is

relatively limited when a large number of price points are used. For instance the

potential incremental revenue of setting a mid-end fare to $102 instead of $100 is

low compared to the benefits of deciding whether the airline should continue

selling this fare or close it down in favor of a more expensive fare product with a

price of $130 in a particular market. In addition, the revenue management system

takes into account the expected revenue of each fare product when setting seat

availability controls. Finally, increasing the price even by a small amount may be

detrimental to the airline's market share if the competitors in the marketplace fail

to match the increase. This is especially true for low-fare products as that part of

the demand is extremely sensitive to price and the availability of low-fare

products generally indicates that demand for some particular flights is likely to

be fairly low relative to capacity.
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This explains why much of the scientific attention has been focused on how to

improve airline revenue management models rather than on airline pricing itself.

In addition, Boyd (2007) argues that revenue management science can remain

less complicated than it would otherwise be thanks to the division between

pricing and revenue management. As a result, revenue management scientists

can focus on whether lower-priced or higher-priced products should be made

available without getting concerned about setting the actual prices. The division

between competition-based pricing and science-based revenue management has

shown to provide a good approximation to the very complex problem of pricing

airline seats.

Even when a major overhaul of the airline fare structure is planned, airlines seem

to rely mostly on trial and error rather than on a scientific approach. For

instance, Delta Airlines first introduced its new fare structure dubbed

"Simplifares" in markets out of its Cincinnati hub in 2004 before rolling it out in

all U.S. domestic markets in January 2005. As mentioned in Chapter 2, in

addition to fewer products and a compressed price differential between the most

and least expensive product, Simplifares replaced the Saturday night stay

requirement, one of the most effective fences used for more than two decades, by

a much less restrictive one-day minimum stay. As expected, the other major

airlines responded by matching Delta's new fare structure either system-wide or

in competitive markets. Faced with a large decrease in average fares that was

only partially offset by an increase in passengers, Delta gradually removed the

various features of Simplifares, once again increasing the number of fare

products used in domestic markets and reintroducing a three-day minimum stay

in many markets where the presence of low-cost competition is relatively minor.

While airline pricing has remained largely driven by competition, there is a

growing need for a more scientific approach to airline pricing due to the
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development of a new product strategy sometimes referred to as un-bundling or

a la carte pricing. As mentioned in Chapter 2, airlines such as Air Canada have

started to market product packages that are differentiated not by a set of

restrictions designed to make them unattractive to some categories of travelers

but by a set of product features designed to match the needs of the various

segments of the market. In addition, this multi-product strategy is completed

with a menu of options that can be added and subtracted to further tailor each

product to the needs of the traveler.

This strategy is getting more and more attention in the industry both among

network airlines and low-cost carriers. For instance, Southwest Airlines (Reed,

2007) recently introduced a new product dubbed "Business Select" that offers

priority boarding, extra frequent flier credits and a complimentary cocktail on-

board for a $10 to $30 premium over the standard full fare. The airline expects

Business Select to generate a $100 million in extra revenues and is part of a wider

strategy designed to bolster revenues and offset the impact of high labor and

increasing fuel costs. The airline has set the ambitious goal of achieving a $1

billion increase in incremental revenues by 2009 through a series of initiatives

designed to generate ancillary revenues or attract more business travelers paying

higher fares, a very significant figure for a company with revenues slightly under

$10 billion in 2007.

A more scientific approach to the pricing of these new product features may help

the airlines achieve their ambitious goals of large incremental revenues. Unlike

airline seats, most of these product features are not subject to capacity constraints

and their pricing cannot be supported by the use of standard revenue

management techniques. They are also, at least for now, less subject to the

competitive pressures of the marketplace as they are not part of the standard

price displayed by the major travel websites such as Travelocity or Expedia.
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Actually, most of these product features are only available on the airline's

website and proposed to a more captive segment of the market relative to

travelers using other distribution channels.

Discrete choice models can be used to measure the value different categories of

travelers place on these features and can provide valuable insight and guidance

on how to price this new component of the airline product offering. For instance,

the estimation results of our model provide an estimate of the passenger

willingness to pay for the flexibility to change travel plans. Furthermore, our

estimation results show that the value of flexibility tends to increase with the

level of advance planning of the trip. These results provide guidelines on how to

price product packages that offer this type of feature such as Air Canada's

flexible Latitude product. For instance, this suggests that Air Canada may be able

to increase the sales and revenues of its Latitude product by replacing its current

flat fee structure by a scheme in which the price to upgrade to the Latitude

package depends at least in part on how far in advance the ticket is booked.

However, the range of applications in airline pricing may be relatively limited

for models based solely on booking data. As discussed in Chapter 4, discounted

fare products carry two types of fare rules, product features such as the flexibility

to modify or cancel a ticket and conditions such as minimum stay or advance

purchase requirements. While explanatory variables can be included in the

utility function to represent the features of a product, the disutility value of

conditions cannot be captured by the model as they are embedded into the

passenger choice set. In addition, discrete choice models based on booking data

cannot be used to explore the value of new product features considered by the

airline. As a result, the flexibility provided by stated preference data may be

useful for many airline pricing applications. Stated preference experiments can
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be designed to explore the value of fare rules that restricts the access to

discounted fare products and can include non-existing product features.

Stated preference data should nevertheless be combined with booking data to

reduce the risk of bias associated with the hypothetical nature of the experiment

as discussed in Chapter 3. This is especially important as pricing applications

involve exploring the trade-off between the characteristics of products and the

hypothetical disbursement of money. As a result, the full potential of discrete

choice models for applications to airline pricing decisions may only be realized

by combining booking and stated preference data. However, we will discuss in

the next section how discrete choice models based on booking data can provide a

valuable tool to support the development of new revenue management

techniques designed to maximize revenues under the new pricing strategies now

commonly used in the industry.

7.4 Revenue Management

7.4.1 Revenue Management for Less Restricted Fare Structures

As mentioned earlier, airline pricing decisions are divided into two steps. The

airline pricing department manages the list of fare products offered in each

market and sets fare levels and fare rules based mostly on market conditions.

Then, the airline revenue management system takes these as given and sets limits

on the availability of lower-priced products to protect seats for expected future

demand of higher-priced products. The basic revenue management decision is

then whether to accept at a given point in time a booking request for a specific

fare product or reject it in anticipation of future, yet uncertain higher-fare

demand. Revenue management systems require both a forecast of future demand
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and a resource allocation mechanism to decide whether or not to accept booking

requests given the remaining seat capacity at the time of the request.

Littlewood (1972) proposed the first scientific approach to the seat allocation

problem for a two-class model based on the concept of expected marginal

revenue. Along with other assumptions, Littlewood's decision rule assumes that

the airline is able to achieve perfect segmentation of the market and that demand

for the higher-priced product does not depend on the availability of the lower-

priced product. In his Ph.D dissertation, Belobaba (1987) extended Littlewood's

rule to the n-class framework in a model known as expected marginal seat

revenue (EMSR) that also relies on the independent demand assumption. Most

airline revenue management systems developed in the late eighties and the

nineties were based on EMSR-type models.

While the use of well-designed fare rules can provide a good level of

segmentation of the market, it was recognized early on that the independent

demand assumption does not hold fully in practice. A passenger that is able to

satisfy the rules of a lower-priced albeit more restricted fare product may also be

willing to purchase a higher-priced product if the lower-priced product is no

longer available, an effect called here sell-up. In his dissertation, Belobaba

proposed a modified version of the EMSR model that accounts for sell-up across

adjacent classes by adjusting downward the fare of the lower-priced class based

on the probability of sell-up to the higher class also called sell-up rate. Belobaba

and Weatherford (1996) generalized this framework by accounting for sell-up to

all higher classes. However, in these models, demand forecasts for higher-priced

products do not depend directly on the availability of a lower-priced product.

Brumelle and McGill (1990) proposed a decision rule for a two-class model that

explicitly accounts for the impact of the availability of the lower-priced product

on the demand for the higher-fare product.
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These models were not widely adopted by the airline industry for two reasons.

First, as discussed earlier, fare rules such as the Saturday night stay and advance

purchase requirements proved fairly effective at preventing passengers with a

high willingness to pay from purchasing deeply discounted tickets. Second, little

guidance was provided on how to estimate the sell-up rates required by these

models. Thus, much of the attention of the airline revenue management

community switched on how to maximize revenues at the network level.

However, as mentioned in Chapter 2, the expansion of low-cost airlines has led

to the relaxation of fare rules in many markets, especially the Saturday night stay

requirement. This has greatly reduced the performance of EMSR-type models.

When the independent demand assumption is increasingly violated, fewer

bookings for the higher-priced product are observed which, in turn, leads to

lower forecasts for future high-price demand. This results in lower protection

levels and even fewer bookings for high-end products. This pattern leads over

time to a progressive decline in the sales of higher-priced products and a

substantial decrease in airline revenues called the "spiral-down effect". Boyd et

al. (2001) first demonstrated the impact of the spiral-down effect using

simulation techniques while Cooper et al. (2006) provided a formalized approach

of the problem.

The development of a la carte pricing and a multi-product strategy initiated by

Air Canada and used by an increasing number of airlines does not reduce the

need for a revenue management model that does not rely on the independent

demand assumption. This new pricing strategy provides the industry an

alternative to segment the demand without imposing a Saturday or minimum

stay requirement to discounted products. The extra features used to differentiate

across the various product packages are typically priced as an add-on to the most

basic product. However, a range of price points is used within each product
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category and revenue management is used to set what can be viewed as the price

of using seat capacity in a specific market. Since the different price levels within a

product category are not differentiated by anything but price and possibly some

advance purchase requirements, the success of this strategy remains highly

dependent on the ability of the revenue management system to maximize

revenues under a less restricted fare structure in which the independent demand

assumption does not hold.

As a result, most of the airline revenue management research in recent years has

focused on how to maximize revenues given a less restricted fare structure.

Talluri and Van Ryzin (2004) proposed a model to maximize revenues for the

single flight-leg problem under a general model of consumer choice and Liu and

Van Ryzin (2008) extended this approach at the network level. Fiig et al. (2005)

proposed an adjustment to the displacement adjusted virtual nesting (DAVN)

model widely used in the industry to set revenue management controls at the

network level to account for the different levels of product differentiation across

markets. Gallego, Li and Ratliff (2007) proposed an extension of the decision rule

of Brumelle et al. to the n-class problem. Like previous models proposed in the

early nineties, all these models require an estimate of the sell-up rates across fare

products.

7.4.2 Estimating Sell-up Behavior

Belobaba et al. (2006) proposed a methodology to estimate sell-up behavior

directly from observed bookings. They calculate at different points of the

booking process the sell-up rate from the lowest-priced to a particular product p

as the quotient of observed bookings for product p and higher-priced products

over the sum of all bookings. They use a series of ordinary least squares

regressions to estimate an average value of the sell-up rate at various stages of
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the booking process based on an exponential demand assumption. However,

these models have proved fairly difficult to calibrate.

Discrete choice models provide a flexible alternative means to evaluate the sell-

up behavior. Observed bookings are not used to estimate sell-up potential

directly but to calibrate a model of airline passenger choice. The choice

probabilities for each travel alternative can easily be re-calculated based on the

parameter estimates of the model when the passenger choice set is modified.

Discrete choice models can then be used to capture a number of effects such as

sell-up behavior. For instance, sell-up behavior can be modeled through

removing a lower-priced product from the passenger choice set and replacing it

by a higher-priced product on the same itinerary.

In order to estimate sell-up behavior, a model of the choice of a fare product is

then needed. In order to provide more accurate predictions of sell-up potential,

the model should also incorporate the impact of pricing and revenue

management on the choice set of each booking. The model developed in this

research is then well-suited to estimate the sell-up behavior of. The parameter

estimates of the model were applied to forecast the sell-up rate for a pair of fare

products from the Week category. The sell-up rate from the AWEEK21 (168 EUR)

to the UWEEK14 (217 EUR) product was calculated for an early morning

departure that is highly valued by many business-oriented travelers.

The following five-step process was used to calculate the expected sell-up rate:

- Step 1: Select all bookings for which a AWEEK21 product was chosen on

an early morning flight departure.
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-Step 2: For each booking, calculate the choice probabilities and the total

share of the lower-priced product (AWEEK21). First we calculate the

value of the utility function for each of the alternatives in the passenger

choice set. For instance, for an overnight booking by a week traveler, the

utility value of the AWEEK21 product on the 7:35 a.m. flight departure in

the Paris to Frankfurt market is given by Equation (7.1) below:

U(A WEEK21,7: 35AM) = -0.0145*16104- 2.48+ 0.26* sin 7 5 83 ) +0.49*sin(7583)
16 16

+ 0.08*sin 6 (7.583))+ 0.17* sin( 7 .583) )0.14 os7. 5 83)) + 0.67* cos(4-7.58 3)  (7.1)
16 16 16 16

-0.33*cos( n (7.5 8 3)) -0.08*cos A( 7.58 ))
16 16

The share of the lower-priced product SAWEEK21 is then equal to the sum of

choice probabilities for the AWEEK21 product over all bookings b selected

in the first step of the process:

U(AWEEK21,7:35 AM)

SAWEEK 21 = (7.2)
b eU(j)

j=1

Where Jb is the number of alternatives in the choice set of booking b

Step 3: Adjust the choice set by replacing the AWEEK21 product by the

higher-priced UWEEK14 product.

Step 4: For each booking, calculate the choice probabilities given the

adjusted choice set. Equation (7.1) becomes:
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e 7 .5 8 ) +0 .4( 4 7.5 8 )U(UWEEK4,7: 35AM) = -0.0145" 21304- 2.48+ 0.26 * sin (7 583 ) + 0.49* sin(4 583)

16 16

+0.08*sin e.583))+0.17*sin 58 0.14 cos 7583)) + 0.67 cos(4(7.583) (7.3)
16 16 16 16

-0.33*cos f( 7.583))- 0.08*cos 7.58)
16 16

The share of the higher-priced product (UWEEK14) is then equal to:

e U(UWEEK14,7:35AM)

SUWEEK14 =Jb (7.4)
b ev(j)

j=1

Step 5: The sell-up rate is equal to the share of the higher-priced product

(SAWEEK21) divided over the share of the lower-priced product (SUWEEK14).

Figure 7.1 below shows the estimated sell-up rate obtained for a model based on

a deterministic segmentation of the demand between week and non-week

bookings and the two-class latent class choice model developed in this research.

The expected sell-up rate is lower for the latent class model than for the

deterministic benchmark model. While the bookings for this non-flexible

business-type product are classified as primarily time-sensitive week bookings

by the deterministic benchmark model, they get split by the latent class model

between the two latent classes reflecting the higher degree of price sensitivity of

these business travelers. As a result, the airline revenue management system will

protect fewer seats for the higher-priced product if sell-up behavior is estimated

according to the latent class model.
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AWEEK21 to UWEEK14 (168 to 217 EUR)
Early Morning Flight Departure

DETERMINISTIC (MON TO FRI) LATENT

Figure 7-1: Estimated Sell-up Rates

However, these estimates are highly dependent on some assumptions of the

model. For instance, some travelers may decide not to travel at all if the lower-

priced product is no longer available. This effect is ignored as the model is based

on observed booking data and no information is available on prospective

travelers that did not find a travel alternative that satisfied their needs and

budget and chose not to travel. More importantly, the impact of competition is

not taken into account as the model takes the choice of a particular airline as

given and focuses on the choice of an itinerary and fare product. Competition is

expected to have a large impact on sell-up behavior. Passengers will be less likely

to purchase a higher-priced product and may spill to the competition if a cheaper

alternative is available on another airline, in particular at a similar departure

time. As a result, in order to provide a more realistic estimate of sell-up rates, the

impact of competition should be incorporated.
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Gallego, Li and Ratliff (2007) proposed to create a pseudo-alternative and

calibrate its utility value to represent the competition in an aggregate manner

based on the respective market share of the airline and its competitors. However,

the development of screen scraping techniques provides the airlines with the

means to obtain a fairly accurate picture of the attributes of travel alternatives

offered by the competition. The use of competitor availability data has sparked

some debate in the revenue management community, with some fearing that this

could trigger a spiral-down in fares if every airline starts matching its

competitors on a real-time basis. While the use of competitor availability data to

directly match the competition does not incorporate the complexities of the

network effects specific to each airline and could potentially have a negative

impact on airline revenues, competitor availability data may be a very valuable

resource to capture the impact of competition on sell-up behavior.

Since an airline cannot fully access the bookings of its competitors, the calibration

of a passenger choice model is likely to remain based on its own booking records.

However, competitor availability data could be used to calculate for each

booking the choice probabilities for the travel alternatives offered both by the

airline and its major competitors. Sell-up rates could then be obtained by

replacing in the choice set a lower-priced product by a higher-priced alternative

while maintaining competitor availability and prices constant. As a result, this

approach could provide a more accurate estimate of sell-up potential that

captures the impact of competition at the disaggregate booking level. By using

competitor availability data to estimate sell-up behavior, the airlines may prevent

over-protecting seats for higher-priced demand that spills to the competition and

fails to materialize while at the same time avoiding the risks of a large

downward pressure on fares associated with a large-scale real-time matching

strategy of competitor availability and prices.
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7.4.3 An Integrated Approach to Choice-based Revenue Management

Figure 7-2 below presents an integrated framework of a choice-based revenue

management system. In this framework, the airline's booking and seat

availability data are used to calibrate a choice model of itinerary and fare

product. Real-time competitor seat availability data is then used to extend the

passenger choice set to the travel alternatives offered by the competition and

parameter estimates of the model are applied to forecast sell-up behavior.

Estimated sell-up rates are then used to feed a choice-based revenue

management optimizer designed to maximize revenues under a less restricted

fare structure in which demand for higher-priced products is assumed to depend

in part or entirely on the availability of lower-priced products.

Booking and Seat
Availability Data

Choice of Itinerary Competitor Seat
& Fare Product Availabilitv Data

Predicted
Sell-up Behavior

Choice-basedRM Forecaster RM Otimizer I1
I

Seat
Availabilit

Figure 7-2: Structure of a Choice-Based Revenue Management System

While the performance of this integrated choice-based approach to revenue

management remains unknown, simulation studies (Belobaba, 2007) based on
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the Passenger Origin-Destination Simulator (PODS) have shown that the revenue

losses associated with the relaxation of fare rules can be partially recovered by

combining an estimate of sell-up behavior with a choice-based revenue

management optimizer. This integrated approach may have the potential to

further reduce the revenue losses associated with a less restricted fare structure

by improving the accuracy of the sell-up estimates. Simulation studies are then

needed to assess the revenue performance of this framework.

7.5 Summary

As mentioned earlier, discrete choice models can be applied to analyze the

impact of any airline planning decision that involves a change in either the

attributes of the alternatives, the passenger choice set or both. By modeling the

choice of an airline itinerary and fare product, the model developed in this

research has the potential to both improve existing applications in schedule

planning and extend the scope of applications to other areas of airline planning

such as pricing and revenue management.

The development of a multi-product strategy along with a menu of optional

product features designed to segment demand in lieu of rescinded fare rules

such as the Saturday night stay requirement has raised the need for a more

scientific approach to airline pricing. Discrete choice models can provide a

valuable tool to support the pricing of these product packages and their various

options. However, the range of applications in pricing could be expanded by

combining booking and stated preference data to test the market response to

product features embedded in the passenger choice set or new non-existing

products considered by the airline.
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In addition, the calibration of a choice model of airline itinerary and fare product

that incorporates the impact of pricing and revenue management on the

passenger choice set has the potential to improve the estimation of sell-up

behavior if combined with real-time competitor availability data. More accurate

estimates of sell-up behavior are needed to improve the performance of revenue

management algorithms designed to maximize revenues for less restricted fare

structures and contribute to recover the losses associated with the relaxation of

fare rules such as the Saturday night stay requirement.

In the next chapter, we will discuss in more detail further research directions to

improve the accuracy of the model and some of the steps needed to implement

the choice-based revenue management framework described in this chapter.
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Chapter 8 Conclusion

In the preceding chapters, we developed and estimated a model of the choice of

an airline itinerary and fare product that incorporates the impact of airline

pricing and revenue management on the passenger choice set and captures the

choice behavior of different segments of airline travelers. We then discussed how

this model can provide a valuable tool to support new pricing and revenue

management strategies under development to offset the negative revenue impact

of relaxed fare rules and increased price transparency in the marketplace. This

chapter concludes this dissertation by summarizing the important findings of

this research and their relevance to the current revenue challenges faced by both

network and low-cost airlines. We then discuss future research directions to

improve the accuracy of the model and provide a better representation of the

choice environment in the airline industry.

8.1 Research Findings and Contributions

Previous studies of airline passenger choice based on booking data have been

restricted to the sole choice of an airline itinerary and have ignored the

fundamental trade-off between itinerary, fare and fare product characteristics

when air travelers select a travel alternative for a future trip. This is due to the

properties of booking data, in particular the lack of information on the

availability of other fare products at the time of the booking. In this research,

booking data was combined with other data sources to model the joint choice of

an airline itinerary and fare product and explore the trade-off between price and
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schedule in airline markets. Since only the booked itinerary and fare product are

currently recorded in airline bookings, booking data was combined with fare

rules and seat availability data to incorporate the impact of pricing and revenue

management on the passenger choice set and represent more accurately the

choice environment in the industry. For each booking, the choice set was inferred

by applying the fare rules such as minimum stay and advance purchase

requirements and checking seat availability on the date of the booking. The

choice set generation process also incorporated the characteristics of specific

categories of bookings. For instance, only morning flights were included in the

choice set of outbound day trippers. A sample of slightly over 2000 bookings in

three short-haul European markets was developed and used for this research.

While such a process proved effective to infer the choice set for a limited number

of bookings and produced a unique dataset to test the model proposed in this

research, any large-scale implementation would require developing a new

approach to data collection and management. Ideally, information about the

choice set should be collected and attached to the passenger name record created

at the time of the booking. Online travel retailers such as Travelocity already

collect that type of data by recording snapshots of the screens viewed by the

site's visitors (Smith, 2006). However, to get a more complete view of the

marketplace, choice set information needs to be collected for all distribution

channels including bookings made through offline travel agents. In part as a

result of this research, Amadeus has initiated a project to collect choice set data

and store it directly in all booking records for airlines hosted in its new inventory

system called Altea Plan. Competing GDS are also making the technology

investments to collect choice set information for both web-based and non-web

bookings. These efforts should provide the basis for a potential large-scale

implementation of the model developed in this research.
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Previous studies of airline passenger choice based on booking data also ignored

the heterogeneity of behavior across different categories of travelers, a major

characteristic of airline markets. Airline pricing strategies are typically designed

to segment the market between time-sensitive business and price-sensitive

leisure travelers. However, information on trip purpose is not available in airline

bookings. In order to replace trip purpose, several elements of the booking

records that tend to be correlated with trip purpose were used such as the

characteristics of the trip and the profile of the traveler. A latent class choice

model was specified to capture heterogeneity of behavior in the dataset.

Compared to deterministic segmentation schemes, latent classes provide the

flexibility to segment the demand based on several factors without dividing the

bookings in a large number of small sub-segments. In addition, these various

factors are included as explanatory variables of the class membership model and

their relative contribution to the segmentation of the demand can be evaluated

based on the estimated value of their parameters.

Estimation results of the latent class model of airline passenger choice showed

that characteristics of the trip such as travel wholly within a week or booking

through a traditional travel agent were the two most significant drivers of

heterogeneity of behavior followed to a lesser extent by the membership in the

airline loyalty program. Other elements such as gender were not found to

contribute significantly to the segmentation of the demand in these markets. Two

classes of travelers were identified, the former being more time and product-

sensitive while the choice behavior of the latter was more influenced by price.

This is in line with the traditional segmentation of airline markets between time

and service-sensitive business travelers and price-sensitive leisure travelers.

However, compared to previous models based on a deterministic segmentation

of the demand by trip purpose, the latent class choice model was found to split
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the bookings between a core of time-sensitive business travelers and a mixed

class of leisure and price-conscious business travelers willing to give up the

flexibility to change travel plans in exchange for a discount off the fully flexible

albeit more expensive fare product. These non-flexible discounted fare products

that do not require an overnight stay during the weekend were introduced by

the airline in response to growing low-cost competition in European short-haul

markets. By capturing the differences in choice behavior between sub-segments

of business-type travelers, the estimation results of the model support the

development of such a multi-product pricing strategy to defend market share in

a more competitive marketplace while limiting the impact on revenues.

Latent classes also provide an attractive and flexible framework to capture

heterogeneity of behavior in airline markets as it mimics typical airline pricing

strategies based on product differentiation. The latent class choice model was

found to improve the fit of the model over a deterministic benchmark according

to model selection criteria such as the AIC and BIC. The benefits of the multi-

criteria approach to segmentation provided by latent classes should become even

greater as airlines evolve from traditional pricing strategies based on fare rules to

more sophisticated multi-product and a la carte pricing strategies designed to

better serve the specific needs of the different segments of the market.

In addition, the model developed in this research also improved the

measurement of the time-of-day preferences of airline travelers. A generalization

of a trigonometric continuous function of time was proposed to incorporate the

specific characteristics of time-of-day preferences in short-haul markets. In this

new formulation, the duration of the cycle is estimated rather than set to a full 24

hours. This approach takes into account the lack of demand for nighttime flights

in short-haul markets and results in a profile of time-of-day preferences that is

consistent with previous studies. In addition, a continuous function of time was
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found to provide a more precise measurement of the time-of-day preferences and

a substantial improvement in the fit of the model compared to previous

specifications based on time-period dummies. This new formulation also

provides a flexible approach to model the time-of-day preferences of specific

categories of travelers such as day trippers for which demand for outbound

travel is concentrated in the morning.

The model of the choice of an airline itinerary and fare product developed in this

research provides the foundation for a range of airline planning applications. It

has the potential to improve the prediction capabilities of existing itinerary-based

choice models used for schedule planning applications by incorporating the

trade-off between fare and schedule and the impact of heterogeneity of behavior.

More importantly, it expands the scope of potential applications to additional

airline planning decisions such as pricing and revenue management that are

essential to meet the revenue challenges faced by the industry.

It provides a scientific approach to the development of a multi-product and a la

carte pricing strategy that is increasingly popular among both network and low-

cost carriers. For instance, the estimation results of the model suggest that the

value of the flexibility to change travel plans tends to increase with the level of

advance planning. This type of insight could be used by the airline pricing

department to set the premium of a product package offering that kind of

feature. Estimation results of the model were also applied to evaluate the sell-up

potential from a lower-priced to a higher-priced product, a major input to the

new revenue management models being designed to maximize revenues in a less

restricted fare structure. Compared to previous model specifications based on a

deterministic segmentation of the demand, the latent class structure of the model

was found to provide lower estimates of sell-up behavior reflecting the higher

level of price-sensitivity of some business-type passengers.
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8.2 Future Research Directions

This research has focused on the development of a model of the choice of an

airline itinerary and fare product that incorporates the impact of pricing and

revenue management on the passenger choice set. A latent class model was

estimated based on a sample of actual bookings to illustrate how an airline can

exploit its existing data sources to better understand the choice behavior of

different categories of travelers. While this dissertation can be viewed as a proof-

of-concept of the potential benefits of a booking-based multi-dimensional model

of airline passenger choice, the findings of this research should be further

validated by applying the model to a larger set of more heterogeneous bookings.

As described in Chapter 5, the data collected for this research focused on a

particular set of three business-oriented short-haul markets that are largely

dominated by traditional network airlines. In these markets, bookings were

found to be divided between two fairly homogeneous groups. In addition, data

was collected over a short period of time resulting in a relatively limited sample

size. By applying the same methodology to a larger dataset collected over a

longer period of time, additional effects could be captured such as the impact of

seasonality or day-of-the week.

More importantly, the validity of the approach should be tested over a wider

range of markets that differ with regard to some major characteristics such as

length of haul, business/leisure mix, fare structure or penetration of low-cost

competition. Bookings are expected to be more heterogeneous in markets with a

more balanced distribution of the demand between business and leisure travelers

or a higher degree of low-cost competition. A larger number of latent classes

could then be potentially identified, especially if a larger sample is used to
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estimate the model. Additional heterogeneity of behavior could also potentially

be captured within each latent class through random coefficients.

In addition to testing the validity of the model under various market conditions,

extensions to the model may also provide the means to relax some of the

assumptions made in this research and improve the accuracy of the model.

Regarding the choice of an itinerary, some assumptions can be fairly restrictive

and extensions of the model could provide substantial benefits, especially for

schedule planning applications. For instance, only non-stop flights were included

in the passenger choice set and connecting itineraries were not considered.

The impact of this assumption is minor in the short-haul markets selected for this

research as connecting itineraries are very unattractive in these markets.

However, as the model is applied to a more diverse set of markets, including

markets with different lengths of haul, connecting itineraries should be

considered. The number of connections and elapsed travel time are expected to

have a significant impact on passenger choice behavior in many medium and

long-haul markets, especially on the trade-off between price and itinerary. Some

passengers may be willing to pay a premium for traveling on a non-stop flight

rather than on a connecting itinerary, especially time-sensitive business-style

travelers. As a result, connecting itineraries should be included in the choice set

and explanatory variables should be added to estimate the impact of the number

of connections and the total travel time for each segment of the market.

In addition to connecting itineraries, the model should also be extended to allow

for more flexible substitution patterns across itineraries compared to the logit

specification used in this research. For instance, adjacent flight departures are

expected to be closer substitutes than flights departing in the morning and in the

evening, especially for time-sensitive business travelers. As described in Ben-
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Akiva and Lerman (1985), the IIA property of the multinomial logit model only

applies within each market segment and not to the bookings as a whole. As a

result, the use of a latent class model to account for heterogeneity of behavior

mitigates to some extent the impact of the IIA property. As additional

heterogeneity of behavior could be captured through the use of a larger and

more diverse dataset and a higher number of latent classes could potentially be

identified, the impact of the IIA property would be even further reduced and a

logit-based model could still yield relatively realistic forecasts of passenger

choice behavior.

However, the impact of the IIA property within each latent class of the model

may still be significant, especially for the time-sensitive segment of the market. In

order to overcome the limitations of the IIA property, a nesting structure in

which itineraries are grouped based on their departure and/or arrival times

could be introduced to better represent the complexity of the substitution effects

across itineraries. Similarly, itineraries could also be grouped by path quality to

reflect the potential higher degree of substitution among non-stop versus

connecting itineraries. A nested structure could be introduced through a choice

kernel from the generalized extreme value family (GEV). Alternatively, this

could also be modeled using a mixed logit specification. As mentioned in

Chapter 3, McFadden and Train (2000) have shown that any choice model

consistent with random utility theory can be approximated by a mixed logit

model by using an appropriate set of variables and mixing distribution. Such an

approach could be especially attractive if a mixing distribution is already used to

test for random taste variation within each latent class.

The use of additional data sources such as survey, stated preference and

competitor availability data has also the potential to enrich and further improve

the accuracy of the model. Survey data provide the opportunity to collect
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additional information unavailable in booking records and mitigate some of the

limitations associated with the sole use of booking data. For instance, data could

be collected on characteristics of the trip such as trip purpose or characteristics of

the traveler such as age and income that would supplement the information

already contained in booking records and contribute to a more precise

segmentation of the demand. Similarly, survey participants could be asked about

their preferred departure or arrival time supplementing information on the

actual flight departure and arrival times found in airline bookings. Preferred

departure time information could be used to model the impact of schedule delay

on the time-of-day preferences of airline travelers and would improve the

accuracy of the model, especially for schedule planning applications.

In addition to more information about the profile of the travelers, surveys of

airline passengers provide the opportunity to conduct stated preference

experiments that could be very valuable, especially for pricing applications. As

mentioned earlier, the impact of some fare rules that restrict the access to specific

fare products such as minimum stay requirements cannot be captured easily in

models based solely on booking data as they are embedded in the passenger

choice set. Stated preference experiments provide a means to capture these

effects directly by designing scenarios in which passengers are asked to choose

between alternatives that carry or not the fare rule of interest. Stated preference

experiments can also be used to capture the impact of new non-existing product

features. This could provide a valuable tool to support the introduction of a la

carte pricing strategies that are becoming increasingly popular in the industry.

However, stated preference data should be combined with booking data to

mitigate the risk of response bias. This is especially true for pricing applications

for which stated preference experiments are typically used to explore the

passenger willingness to pay for extra product features.
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Data on the state of the competition could also be very useful, in particular for

revenue management applications. As discussed earlier, the potential for sell-up

to a higher-priced product is expected to depend on the attributes of travel

alternatives (price, schedule, path quality) offered by major competitors

operating in the market. Competitor availability data is typically publicly

available either through a GDS for participating carriers or through the airline

website for non-participating carriers and can be captured automatically through

scrapping techniques. Ideally, the attributes of the travel alternatives available on

competitors should be recorded in each booking as part of the choice set

information along with data on the different alternatives offered by the airline.

Travel alternatives on competitors cannot be included in the choice set for

estimation purposes as booking records are proprietary. As a result, an airline

cannot get full access to the bookings of its competitors although partial

information can be obtained through the Market Information Data Tapes (MIDT)

that can be purchased from GDS companies for tickets booked through their

systems. However, travel alternatives on competitors should be included in the

choice set at a disaggregate booking level to predict sell-up behavior in a

competitive environment as described in the framework proposed in Chapter 7.

Simulation studies should be used to determine the relative revenue

performance of the choice-based approach developed in this research compared

to other methodologies used to estimate sell-up behavior for the various

optimization algorithms proposed to maximize revenues with less restricted fare

structures.

Finally, the dynamics of the interaction between passenger choice behavior and

airline planning decisions could be a very interesting and promising area of

future research. In this dissertation, we have used past booking data to calibrate

a passenger choice model and support a range of airline planning decisions such
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as schedule planning, pricing and revenue management. However, these airline

decisions will in turn modify the passenger choice set and ultimately affect the

choice behavior of future travelers. As a result, simulation studies could be a

very valuable tool to identify these dynamic effects and determine whether the

interaction between airline passenger choice and planning decisions converges to

an equilibrium.

Enriched with stated preference and competitor availability data, the latent class

model of airline passenger choice developed in this research has the potential to

provide an effective choice-based decision support tool for many airline planning

applications including pricing and revenue management decisions. Some of

these applications have been envisioned for a long time. For instance, the use of

passenger choice models to capture effects such as sell-up behavior and support

revenue management decisions was already proposed in early works on revenue

management such as Belobaba (1987). As the challenges brought by increased

competition and escalating energy and environmental-related costs continue to

add pressure on this low-margin industry, airlines will increasingly need to

exploit every opportunity to increase revenues through a science-based new

pricing strategy and a new generation of choice-based revenue management

systems. The calibration of passenger choice models as illustrated in this research

will then be crucial to support the development and optimize the performance of

these new revenue-enhancing strategies.
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