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Abstract

This thesis describes a compact, wireless, wearable system that measures, for purposes
of biomechanical analysis, signals indicative of forces, torques and other descriptive and
evaluative features that the human body undergoes during bursts of extreme physical ac-
tivity (such as during athletic performance). Standard approaches leverage high speed
camera systems, which need significant infrastructure and provide limited update rates and
dynamic accuracy, to make these measurements. This project uses 6 degree-of-freedom in-
ertial measurement units worn on various segments of an athlete's body to directly make
these dynamic measurements. A combination of low and high G sensors enables sensitivity
for slow and fast motion, and the addition of a compass helps in tracking joint angles.
Data from the battery-powered nodes is acquired using a custom wireless protocol over an
RF link. This data, along with rigorous calibration data, is processed on a PC, with an
end product being precise angular velocities and accelerations that can be employed during
biomechanical analysis to gain a better understanding of what occurs during activity.
The focus of experimentation was baseball pitching and batting at the professional level.
Several pitchers and batters were instrumented with the system and data was gathered
during several pitches or swings. The data was analyzed, and the results of this analysis
are presented in this thesis. The dynamic results are more precise than from other camera
based systems and also offer the measurement of metrics that are not available from any
other system, providing the opportunity for furthering sports medicine research. System
performance and results are evaluated, and ideas for future work and system improvements
are presented.

Thesis Supervisor: Joseph A. Paradiso
Title: Sony Career Development Associate Professor of Media Arts and Sciences, MIT
Media Lab





A Wearable, Wireless Sensor System for Sports Medicine

by

Michael Tomasz Lapinski

The following people served as readers for this thesis:

Thesis Reader
Dr. Paolo Bonato

Assistant Professor of Physical Medicine and Rehabilitation
Harvard Medical School

Director, Motion Analysis Laboratory
Spaulding Rehabilitation Hospital

Thesis Reader
Dr. Eric Berkson

Clinical Associate in Orthopedic Surgery
Massachusetts General Hospital





Acknowledgments

In no particular order:

Asia, Dad, Mom, Dan Hyatt, Eric B, Mike R, Joe P, Zach, Jim Rowe and the Boston Red

Rox, Leslie from Texas Instruments and Slayer

Also the Boston Red Sox and the Things That Think Consortium at the MIT Media Lab

which supported this work.





Contents

Abstract 3

List of Figures 11

List of Tables 15

1 Introduction 17
1.1 Synopsis ................... ............... .. 17
1.2 Motivation ...... ............. .......... ...... 18
1.3 Prior Work .................. ................. 19

1.3.1 Commercial Camera Systems ................... ... 19
1.3.2 Inertial Measurement Unit Based Systems . .............. 22
1.3.3 Clinical Basbeall Studies ..... .............. ..... 24

2 Hardware Systems 27
2.1 Summary ...... ............. ................. 28
2.2 Node High Level Design ................... ......... 29
2.3 Requirements ................... ............ .. 29
2.4 Gyroscopes ................... ............. .. 30
2.5 High-G Accelerometers ................... ......... .. 30
2.6 Low-G Accelerometer ................... ......... .. 31
2.7 Digital Compass ................... ........... .. 31
2.8 802.15.4 Radio ................... ............ .. 33
2.9 Microcontroller ................... ........... .. 35

3 Software Systems 37
3.1 Firmware ...... ............. ......... ........ 37

3.1.1 Basestation Firmware ................... ....... 39
3.1.2 Node Firmware ......... . ... ....... 42

3.2 PC Host Application ................... ........... 50
3.3 RF Protocol ................... ............. .. 55

4 Experiments 61
4.1 Initial Testing ................... ............ .. 61
4.2 Red Sox Spring Training ................... ......... 62



5 Calibration 69
5.1 Calibration Table and Node Brackets ....... ........ . ..... . 71
5.2 Gyroscope Calibration .................. ..... . . . . 74
5.3 High-G Accelerometer Calibration ...... . . .......... . . 77
5.4 Broken Node Calibration . ................. .......... . 80

6 Results 81
6.1 Batters ....... ....... .. .. ............ . ..... 82

6.1.1 Bat Speed Estimation ............. .. ........ .84
6.1.2 Batter Peak Time Differences ...... ......... .. .... 89
6.1.3 Ball Impact Detection ................ ....... 91

6.2 Pitchers ...... . .... ..... ............. . ....... 94
6.2.1 Shoulder Internal Rotation .. .. . .... .... ... .. . 96

7 Conclusions 103
7.1 Summary ...... .... .. . ...... .... ........ 103
7.2 Evaluation and Future Work ..... ............. ..... 104

7.2.1 Hardware Evaluation . . . ..... . .... ... .... 104
7.2.2 Software Evaluation ........... . ........ ...... . 106
7.2.3 High Level Evaluation ..... ........... . ... . . 106

A Schematics and PCB Layouts 109

B MSP430F2618 Firmware 121

C Camera Synchronization 133

Bibliography 135



List of Figures

1-1 Marker Instrumented Player (markers glow due to camera flash) ...... 20

2-1 sportSemble Node(left) and basestation(right) . ................ 27

2-2 sportSemble Node Block Diagram . .................. ..... 28

2-3 Similar motions as recorded by +10G and ±120G accelerometers, showing

the 10OG accelerometer being clipped due to lack of range. . ........ . 30

2-4 HMC6343 Compass orientation with respect to gravity . ........... 32

3-1 sportSemble high level system architecture . .................. 38

3-2 Basestation State Machine . .................. ........ 39

3-3 Table of local commands between USB Host and basestation . ....... 40

3-4 Table of network commands between USB Host and nodes ......... . 40

3-5 Table of network replies between nodes and USB Host . ........... 41

3-6 Memory Map of MSP430F2618 ................... ...... 43

3-7 Node State Machine ................... ........... 46

3-8 Analog Sensor Flash Structure ................... ...... 48

3-9 Compass Flash Structure ................... ......... 48
3-10 Low-G Accelerometer Flash Structure ................... .. 48

3-11 PC Host Application Screen Capture after connection to the USB basestation 51

3-12 RF configuration GUI ....... .. .. .... .. ......... 56

3-13 RF Protocol Slotting ................... ........... 56
3-14 RF_CONFIGCMD Packet ................... ........ 58

3-15 SAMPLE_2_FLASH Packet ................... ...... . 58

3-16 NEXTPACKET Packet ................... ......... 58

3-17 Node Response to NEXT_PACKET ................... ... 59

3-18 Node Response to SAMPLE_2_FLASH ................... .. 59

4-1 sportSemble Pitcher Configuration ........... .. . ... . . . 62

4-2 sportSemble Instrumented Bat, before applying take to keep it in place . . 63

4-3 Node body placement. Note, the waist node is around the waist or on the bat. 63

4-4 sportSemble Nodes Ready for Action ................... ... 64

4-5 Stalker Sport Radar Gun ................... ......... 67

5-1 Calibration Table for Sensemble Nodes ................... .. 70

5-2 Bracket Beam Breaker and IR Photodiode with Z axis denoted. . ..... . 72



5-3 Calibration Table with X and Y axes denoted. . .... ........... . 73
5-4 Prototype Brackets ............................... . 74
5-5 Node Calibration Data For All Gyroscopes ..... . . . . . . . . .... 75
5-6 Table of Node Calibration Data For 6 Node for Gyroscopes ...... ... . 76
5-7 Node Calibration Data For X Axis Accelerometers . . . . . . . . ...... 79
5-8 Table of Node Calibration Data For X Axis Accelerometers . . . . . . . . . 79

6-1 Accelerometer vector magnitudes for a single batter's swing, with no ball
contact. ......................... . .. ........ 82

6-2 Gyroscope vector magnitudes for a single batter's swing, with no ball contact. 83
6-3 Peak Body Segment Speed as a Percentage of Peak Bat Speed Per Player . 84
6-4 Peak Body Segment Speed as a Percentage of Peak Bat Speed Standard

Deviations Per Player ........ ..................... . 85
6-5 Peak Body Segment Speed for All Players as a Percentage of Peak Bat Speed 86
6-6 Peak Body Segment Speed for All Players as a Percentage of Peak Bat Speed

Standard Deviations .... . . . ....................... . 87
6-7 A single swing showing different segment speeds over time . ......... 88
6-8 Peak Body Segment Time Differences Per Player. NOTE: Negative values

indicate peak was reached before, Positive after . . . . . . . . . . ..... . . 90
6-9 Swing with ball impact, no pre or post impact peaks present. (Gyroscope

Data) ........ .. . ....... ..... .. .... 91
6-10 Swing with ball impact. The impact appears to occur before the peak bat

speed is reached. (Gyroscope Data) .............. ...... . 92
6-11 Free swing with no ball impact. (Gyroscope Data) . ....... . .. . 93
6-12 Swing with ball impact, no pre or post impact peaks present. (Uncalibrated

Accelerometer Data) ................... ......... .. 93
6-13 Swing with no ball impact. (Uncalibrated Accelerometer Data) ....... 94
6-14 Accelerometer vector magnitudes for a single pitch. ........ .... . . 95
6-15 Gyroscope vector magnitudes for a single pitch. ........ ......... 95
6-16 Shoulder Internal Rotation as defined by Werner et al.[1] ........ . . . 96
6-17 Shoulder Internal Rotation Vector Method as defined in [2] . ........ 97
6-18 Shoulder internal rotation data for one pitch. The Werner data is a portion

of the Vector data ...... ......... .. ........... 98
6-19 Pitcher Shoulder Internal Rotation as Measured Using the Werner Method

and Standard Deviations ................. ............ . 99
6-20 Average Pitcher Shoulder Internal Rotation Measured as a Vector and Stan-

dard Deviations ....... .............. ........... 100
6-21 Werner Shoulder Internal Rotation as a Percentage of Vector Shoulder Inter-

nal Rotation....... . ............................ 101

A-1 sportSemble Main Board Schematic . .................... . 110
A-2 sportSemble Main Board Top Layer PCB Layout ..... .......... 111
A-3 sportSemble Main Board Bottom Layer PCB Layout . ............ 112
A-4 sportSemble Main Board Ground Layer PCB Layout .......... . . . . 113
A-5 sportSemble Main Board Power Layer PCB Layout . ............. 114



A-6 sportSemble Main Board Bill of Materials ................... 115
A-7 sportSemble High G Board Schematics ................... .. 116
A-8 sportSemble High G Board Top Layer PCB Layout . ............. 117
A-9 sportSemble High G Board Bottom Layer PCB Layout . ........... 118
A-10 sportSemble High G Board Bill of Materials . ................. 119





List of Tables





Chapter 1

Introduction

SportSemble is a wearable, wireless inertial sensor network designed and built for the pur-

pose of measuring multipoint acceleration and angular rate (and inferring relevant clinical

evaluative/descriptive and biomechanical parameters) associated with high speed, high per-

formance athletic activity. Its core is based around high range inertial measurement units

and a wireless data gathering infrastructure. Each identical node provides several streams

of data at a high sampling rate and the entire network is flexible enough to handle any type

of activity. Data sampling occurs at 1000Hz, and sportSemble's data probably uniquely at

these rates provides a nearly direct measurement of the velocities, forces and torques the

human body experiences during bouts of physical activity. The system is a tool that can be

used by sports medicine doctors to further their understanding of motion, aid in avoiding

injury and help in rehabilitation from injury. Other applications for this technology, in

addition to sports medicine, are in health monitoring, immersive gaming, and interactive

dance ensemble performance.

1.1 Synopsis

This thesis provides detailed documentation of sportSemble's design, implementation, ex-

perimentation and data processing engine. The rest of this Introduction will describe the



motivation behind building sportSemble and cover other systems and work in this area of

research. The Hardware Systems chapter will explain the requirements that shaped what

hardware was used and detail the hardware design. The following chapter, Software Sys-

tems, gives and in-depth description of the firmware for the basestation and wireless nodes,

the PC side software and the RF protocol developed for sportSemble. Next, the Experi-

ments chapter will go through initial experimentation and the procedures used in a larger

3-day experiment that was performed with professional athletes. Chapter 5 is Calibration,

and covers the process of calibrating the sportSemble nodes to ensure that data was reli-

able. After this the Results, chapter will describe the data processing engine and present

the biomechanical parameters that resulted from experimentation. The final chapter, Con-

clusions, will asses the system as a whole and suggest what work can be done in the future.

1.2 Motivation

To understand the motivations for this project, let us take a look at some statistics from

just one sport, baseball. In 1973, 50% of pitchers reported shoulder or elbow pain sufficient

enough to keep them from throwing[3]. By 1999 that number had grown to over 75% [4].

Andrews[5] reports that from the periods of 1995-1999 and 2000-2004, the need for elbow

surgery in professionals increased twofold (for college pitchers fourfold and for high-school

pitchers sixfold).

Due to the extreme speeds at which sports like pitching occur, there do not exist any off the

shelf products that can accurately measure the dynamics (and directly infer the forces and

torques) at which the body is moving during peak activity. It is because of this that sports

medicine doctors do not have any true understanding of what happens to the body during

extreme physical activity, other than data available from optical systems in a laboratory

setting. A better understanding of the forces, torques and speeds enables the creation of

precise biomechanical model of, for example, the shoulder and elbow. Using these models

to understand the difference between proper and improper motion would give athletes the

opportunity to avoid getting injured and coaches the ability to train athletes with techniques



that avoid injury. Further, if there is a patient history of such motion in existence, it would

be possible for physical and occupational therapists to better help athletes by refining rehab

protocols that accurately define the forces and torques on a body segment over time.

Even further, a system such as this can recognize that an athlete is beginning to fatigue

and is in danger of injuring themselves. If this can be recognized, then the athlete can be

advised as to what motion is 'safer' or be advised to stop the activity, thus avoiding injury.

Another step further, if athletes can be characterized and compared in a scientific manner,

it is then possible to recognize traits which lead to better performance, hence such data

could act as an aid in selecting up and coming athletes.

The author sees three different facets to the motivation for creating a system such as this.

Being someone who has had several sports injuries, the first is a personal motivation. This

is an opportunity to help normal people who participate in sports avoid getting injured

and if they do get injured to help them recover, thus aid in improving their quality of life.

The second facet of motivation is the one in the area of advancing clinical medicine and

the ability to further medical research and understanding of the body. SportSemble will

be used as an enabling tool to help sports doctors and therapists do what they do better.

The third is a strategic motivation: if a system like sportSemble can do what is described

above, professional sports teams could decide earlier which athletes have the potential to

be the next star, and concentrate financial resources on them.

A system such as sportSemble should not be limited to only baseball pitching and batting,

therefore one of its key design principles has been to make it as generic as possible, such

that it can be placed on any athlete at any venue anywhere and easily used.

1.3 Prior Work

1.3.1 Commercial Camera Systems

There are two well-known commercially available camera systems that have been used to

attempt to do what sportSemble does. While there are several different optical tracking



Figure 1-1: Marker Instrumented Player (markers glow due to camera flash)

systems on the market, the author has access to two of these, which appear to be the sports

industry standards. These systems are available from XOS Technologies[6] and Motion

Analysis[7]. Both of these are passive systems that are based on marker tracking technology

and high speed video cameras. A single participant is instrumented with several markers

(Figure 1-1) and a set of high speed video cameras records their motion.

Each of these systems has drawbacks with regard to sports medicine applications. From the

authors viewpoint (and as observed by his medical collaborators), a primary drawback is

that any rotational and acceleration force values that they produce are very rough estima-

tions output from numerical differentiation (typically ±75% accurate [8]). These values are

very coarse because they are only based on the instantaneous position of the tracked mark-

ers and probably does not properly leverage multi-point estimators like Kalman filters[9]

or interpolating differentiators. SportSemble seeks to measure these parameters directly

(forces and torques are proportional to acceleration and angular rate) with much smaller

error bounds. The second critical shortcoming of these systems is the rate at which they

update. Considering the peak acceleration of a baseball pitch lasts about 0.003 seconds

and the cameras typically used record at 180Hz maximum (a sampling interval of 0.0056



seconds), it is very likely that the camera will miss or only record a portion of the peak ac-

celeration (higher speed cameras exist [10] 1, but their cost and long setup time in a non-lab

environment make them prohibitive). While camera systems are acceptable for generating

3D visualizations of an athlete's motion, they do not offer a reliable way of recording all

the kinds of data needed for sports medicine purposes and for biomechanical analysis.

Further, these systems are cumbersome to transport due to the sheer number of cameras

necessary. For the XOS system, for example, each marker must be tracked by at least

4 cameras at all times (to maintain accuracy). So a configuration for 1 baseball pitcher

required a system of 12 cameras2 . It also required 2 working days to configure the system

at the site where it was deployed, due to the very sensitive nature of these optical systems.

SportSemble seeks to sidestep all of these problems by using inertial measurement units to

directly measure angular rates and accelerations. This gives sportSemble a typical setup

time of less than 5 minutes for any athlete for any sport, since the unit needs only be

strapped to the body and their positions measured, as mentioned in Section 4.2. The

sportSemble system can easily be used on the mound, in the playing field, or on the court

without external infrastructure or limitations on lighting, etc. Further, sportSemble can be

left on an individual player and allows for measurement over long periods of time.

Recent work by Raskar and collaborators [11] have developed a very fast multipoint optical

motion capture system that instruments subjects with small photodiodes attached to radio

transmitters and illuminates them with dynamic structured light coming from an array of

masked LEDs. Although this is an extremely promising system for fast, easily set up optical

motion capture, it is still uncommercialized.

Even with these drawbacks, the author believes that in its current form at this point in

time, that both of these systems are complementary. SportSemble cannot yet generate fluid

3D models of an athletes motion that players and coaches like to look at, although ongoing

work integrating the inertial measurements and using the onboard compass data aims to

achieve this capability.

'Up to 1000Hz or more, however these can be used only in a very specific lab setting.
2A 12 camera system also comes with a pricetag of $350,000



1.3.2 Inertial Measurement Unit Based Systems

There have been several inertial measurement unit (IMU) based systems developed for

various purposes, but none with the intention of being applied to sports medicine that

predate sportSemble's direct predecessor[12, 8] which was used in a small pilot study. There

have been many related projects, however with applications in wearable motion analysis via

IMUs . Possibly the closest relative is the MIT Media Lab's Responsive Environments

Group's gait shoe [13, 14] project. This project used an on-shoe 3-axis gyroscope and 3-axis

accelerometer to analyze the gait of a walking human being. Another prior project in the

group is an inertial measurement unit for user interfaces[15, 16],which was a wireless six

degree-of-freedom IMU capable of recognizing gestures, which were used to control a user

interface. Other work of interest is in the area of practical motion capture in everyday

surroundings by Vlasic, Popovic et al.[17, 18]. Their system also uses gyroscopes and

accelerometers in addition to ultrasonic time of flight sensing in order to drive a graphical

model of the human body. The time of flight data is used to record the distance between

sensors worn on the body in an attempt to correct for drift in the inertial sensors. Published

work on the system is very positive, however its sampling rate of 140Hz would is too slow

for high speed activity. Further, the system depends on a user-worn backpack that holds

various support hardware needed to run it. More recent relevant work is [19], a wearable

system for providing real time feedback during exercise. The system uses ultrasound and

accelerometers to gauge arm position. The granularity of arm position is coarse - on the

level of up, middle and down. Further, the arm must be held in a given position for a

minimum of 20ms in order for position to be recorded.

In [20], a three axis accelerometer is augmented with a linear encoder and experimentation

is done in order to determine joint angles, which are estimated by extracting the gravity

vector from the accelerometer to determine tilt and fused with data from the encoder. This

is shown to be 98% accurate in a laboratory setting. Also, in [21], raw output from a 2

axis accelerometer being sampled at 25Hz is processed via an Extended Kalman Filter [9]

in order to calculate thigh flexion. Results are compared to video footage and demonstrate

that the Kalman Filter is more precise than using a median filter of various orders.



Orient-2 [22] has been shown to estimate body position using nodes equipped with 3 axes

of magnetometer, accelerometer and gyroscope. The system processes the sensor data in

situ, using a fast complementary quaternion based filter[23], on each node and transmits

the orientation data wirelessly. Another system leveraging only accelerometers and mag-

netometers (again in 3 axes) in order to do similar tracking of posture and orientation is

presented in [24]. The results are positive, however the system requires a tether and wiring

to be run across the body, again making it difficult to consider for athletics. Sampling rates

are not discussed but have the potential to be high due to the use of analog sensors and a

wired communication infrastructure.

The IDEEA LifeGait System from Mini-Sun uses wired accelerometers distributed on the

body to determine parameters of gait and motion [25].

SHIMMER [26] is a wearable, wireless platform with a 3-axis accelerometer and bluetooth

radio. It is unique from many other platforms in that it had a microSD slot that allows for

for 2 gigabytes (or more) of data storage. With the ability to store 80 days (in reality this

time is limited to 10 days due to battery life) of 50 Hz data from the 3 accelerometers is

an enabling technology for allowing rehabilitation professionals do long term classification

of various clinical scores. Its drawbacks are that each node is only outfitted with low-G

sensing, and it is not clear how node to node time synchronization is done.

Motion capture technology has long been used in the computer graphics community. One

example is a flexible fiber-optic exoskeleton named ShapeWrap[27], which senses joint angles

is available from the Measurand company. The system is wireless via a beltpack and works

well for non-athletic motion, but still requires fiber bundles to be run across a users body.

This limits motion and is too bulky for an athlete to wear and perform their natural motion.

Active magnetic systems have also been developed by Polhemus [28] and Ascension [29],

and offer an alternative to cameras. Users are required to wear magnetic pickups, but

the systems are capable of tracking position in space (a major problem in IMU based

systems). A main drawback of magnetic systems are that they have trouble with metal in

the surrounding environment and a "hard-iron" calibration needs to be done for every new



location. Further, their sampling rates become limited as the number of sensors increases,

and range is limited to the size of the magnetic field that is generated by the system. Most

such systems also tend to require the pickups to be tethered to a large beltpack.

Hybrid magnetic and inertial based systems have been developed by Veltink [30] and Xsens

[31]. These are comprised of nodes that have 3 axes of gyroscope, 3 axes of accelerometer

and, 3 axes of magnetic sensing. The system consists of a belt-worn master controller and a

magnetic source, also belt-worn. While this combination of sensors is an excellent approach,

it retains some common drawbacks of the other systems presented thus far. In addition to

every node having to be tethered, the beltpack and magnetic source are too cumbersome

for athletic activity - also the sampling rate is limited to 120Hz.

Goniometers, such as those available from Biometris Ltd. [32], are another approach to

measuring joint angles, and are available with 1 or 2 dimensional measuring capability with

a ±2 degree accuracy. These exoskeletons have been used in analyzing golf swings [33]

at a sampling rate of 100Hz. They are also used in physical and occupational therapy

to measure range of motion on various parts of the body [34] and in computer graphics

applications. The sampling rate and accuracy of these is impressive, however each such

goiniometer attached to the body requires a belt pack or master module, and an array

would require several belt packs making it difficult to perform sports activity. In addition,

the exoskeleton needs to be strapped to both sides of each joint, which can be restrictive

for athletes.

1.3.3 Clinical Basbeall Studies

In [5], the authors measured several metrics on baseball pitchers using a 6-camera system.

Relevant findings for this thesis were the angular velocity of the shoulder's internal rotation.

They found a maximum shoulder internal rotation of 6,520 degrees/second, with no margins

of errors mentioned. In[1], the same metric was measured with peak values exceeding 10,000

degrees/second, with an average of 8,286 degrees/second. Again error margins are not

discussed.



Dr. Thomas Gill, Medical Director of the Boston Red Sox, is intimately involved in the

health of professional pitchers and has been involved in two previous studies examining the

biomechanics of pitching. In 2001, Dr. Gill and his colleagues assessed shoulder kinematics

and kinetics utilizing three-dimensional, high speed video data on 40 minor league pitchers,

also published in [1]. In 2002, Dr. Gill examined the factors responsible for variance in the

amount of force pushing the elbow toward the midline of the body [35]. This study indicated

that statistically, 97.4% of the variance in elbow stress was related to four factors: shoulder

abduction angle at stride contact; the angle between the ground and the upper arm at the

point of the foot striking the ground during a pitch, elbow angle at instant of peak vulgus

stress; the angle between the upper arm and forearm at the point of peak elbow stress,

peak shoulder horizontal adduction angular velocity; the rate at which the angle between

the ground and the upper arm change; and peak shoulder external rotation torque; and the

torque of shoulder motion rotating about an axis parallel to the upper arm. These shoulder

findings are the rationale for modeling shoulder kinematics in order to understand and aid

in injury prevention and rehabilitation. A system such as sportSemble will lay the ground

work to allow for easy, reliable and automated gathering of the data that sports medicine

professionals need in order to continue research in this area.





Chapter 2

Hardware Systems

The hardware that this systems runs on is based upon Ryan Aylward's Sensemble project [12]

(hence the name sportSemble) of which the fundamentals will be described briefly. Addi-

tionally, several modifications were made to the Sensemble hardware in order to use it for

sports, and the motivation behind these changes will be described. The hardware can be

broken into two parts; wearable battery-powered wireless nodes that are worn by athletes

and a USB-powered basestation that they communicate with.

Figure 2-1: sportSemble Node(left) and basestation(right)



Figure 2-2: sportSemble Node Block Diagram

2.1 Summary

Each of the wearable battery-powered nodes has three single-axis High-G accelerometers,

three single-axis gyroscopes, a 3 axis Low-G accelerometer and a digital compass. They

measure about 2.2 inches by 2.0 inches and have a weight of 44 grams with battery and

attachment bracelet. The battery is a 145mAh lithium polymer rechargeable that was seen

to continuously power a node for up to 3 hours of use. The output from the 3 High-G

accelerometers and gyroscopes is analog and is processed by a 12-bit Analog-to-Digital

converter [36](A2D) that is onboard the microcontroller. The additional sensors (Low-g

accelerometer and compass) have a digital I2C[37] interface and share a common bus. In

addition to standard power circuitry, there is also a 805.15.4[38, 39] radio interfacing to

the microcontroller directly via a Serial Peripheral Interface(SPI) [40]; a block diagram is

in Figure Figure 2-2. Each node has a unique address, and radio communication to the

basestation is via a custom frequency hopping[41] protocol. Lastly, full schematics and

Bills of material for all hardware are available in Appendix A.



2.2 Node High Level Design

Again, for detailed information regarding the initial design decisions that were made when

the foundation hardware for sportSemble was built, refer to Chapter 2 of Ryan Aylwards

Thesis[12]. We will concern ourselves here with the requirements and design decisions made

in order to extend the Sensemble system and turn it into sportSemble. In general, the

sampling rate of Sensemble was too slow for sports applications, and the gyroscopes and

accelerometers did not have the necessary range in order to sense the extreme forces that

occur during sports activity.

2.3 Requirements

The basic needs for sensing high speed sports actions are the ability to sense at extreme

forces and the ability to sample at a very high rate. This is due to the inherent nature of such

activity. As mentioned above, a limitation of Sensemble was the range of the accelerometers

(±10 Gs) and the range of the gyroscopes (±300 degrees/sec). The target applications for

sportSemble require a minimum of ±10000 degrees/sec [42] angular velocity and ±100 Gs

of acceleration to be sensed. Further, Sensemble samples at a rate of 100Hz. This too

is not sufficient when considering, for example, that a baseball pitcher's peak acceleration

lasts for 3/1000 of a second. The target requirement of sportSemble is to sample at least

3 times during this peak acceleration, which results in a required sampling rate or 1000Hz.

There are other hardware issues that arise when attempting to sample at this rate that

will be discussed in the following sections. Luckily, many of the problems that arise when

increasing range and sampling rate can be addressed in software, these are covered in section

Section 3.1.2. As a follow on to Sensemble, Ryan made changes to accommodate some of

these needs and they are described in Chapter 7 of his thesis[12]. The main points from his

thesis will be re-iterated and the new pieces of hardware will be introduced and discussed.
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Figure 2-3: Similar motions as recorded by 10G and +120G accelerometers, showing the
10G accelerometer being clipped due to lack of range.

2.4 Gyroscopes

The Analog Devices ADXRS300[43] is a +300 degrees/sec Yaw Rate Gyroscope that was

also used in Sensemble. Due to its yaw-sensing-only ability, there was a need for 3 of these

to be mounted orthogonally on daughterboards, as shown in Figure 2-1, to cover all three

axes. The same design is preserved in sportSemble, as is the same gyroscope. The is possible

because the ADRX300 has a range than can be extended to +12000 degrees/sec, meeting

the 110000 degrees/sec requirement. This is accomplished by lowering the driving voltage

of the gyroscope from 12.5V to about 5V. The details of doing this for were provided by an

application note[44] from Analog Devices and also through personal contact with Analog

Devices engineers, and are described in detail in Section 7 of Ryan's thesis[12].

2.5 High-G Accelerometers

The high-G accelerometers that are used in sportSemble are Analog Devices ADXL193[45]

accelerometers that range from ±120 Gs or ±250 Gs; the 120G configuration is used in
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sportSemble. They are required because the common ±10 G accelerometers, such as used

in the Semsemble project, experience clipping at accelerations greater than 10 Gs. This is

visible in Figure 2-3; where two similar motions were recorded, and the 10 G accelerometer

is obviously clipping at 10 Gs, above which appears as a flat line. The ADXL193 features the

same pinout as the Analog Devices ADXL210E[46] that was used in Sensemble, but senses

on only one axis. This would have required major rework, had the single axis gyroscopes

not also required daughterboards to mount them in orthogonal positions.

2.6 Low-G Accelerometer

Extending the range of the accelerometers created a concern that each node would not

have enough resolution to accurately sense low-G motions. This prompted the addition of

a STMicroelectronics LIS302DL[47] 3-axis digital output accelerometer. The LIS302DL is

capable of a range of ±2 Gs or ±8 Gs and has an I2C[37] output. The range chosen for

sportSemble was the ±8 Gs, and it was critical for this accelerometer to have a digital inter-

face, as the chosen microcontroller did not have any more analog input channels available.

It did, however, have several unused pins that could be used for digital communication. The

drawback of 12C communication is that it is slow in comparison to just sampling an analog

channel (the maximum sampling rate of the LIS302DL is about 100Hz). This becomes

problematic when sampling at high rates, as sportSemble does, and is discussed further in

the Softwares Systems Section 3.1.2.

2.7 Digital Compass

Another addition to the original Sensemble hardware is the Honeywell HMC6343[48] 3 axis

digital compass. The technical details of the compass will follow, but first it is important

to understand why this compass is needed. The original Sensemble used the acceleration

and angular velocity reading from the sensors in order to create or modify a music stream
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Figure 2-4: HMC6343 Compass orientation with respect to gravity

for dancers, which did not necessarily require knowing anything about the position or ori-

entation of the nodes on the body. SportSemble intends to drive biomechanical models of

the body to model athletic motion. In order to do this, an initial body position needs to

be established, upon which further positions are derived from integrating gyroscope and

accelerometer data, possibly using subsequent compass data as an additional state update.

This particular compass provides not only heading information, but also pitch and roll in-

formation, as it contains its own hardware to sense tilt. Given a skeletal model with node

positions on it, the compass heading, pitch and roll data can be used as a starting point for

motion analysis.

The HMC6343[48] has a duty cycle of 10Hz and is by far not capable of keeping up with

our desired sampling rate. However, its data can be used to update node orientation,

as as needed to null any drift in the gyroscopes and accelerometers. It, like the low-G

accelerometer, has a digital I2C interface and shares the same communication bus as the

low-G accelerometer. It is important to note the node's orientation with respect to the

Earth's magnetic field, as the compass uses this to determine its heading. Figure 2-4 shows

the most common orientation that the node is in when worn on the body, and the compass's

axis orientation. The force of gravity is in the negative Y axis. Sampling the compass while

in the data gathering loop also becomes problematic due to the relatively slow speeds of

digital sensor interfaces. Again this is described in detail in section Section 3.1.2.

Y
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2.8 802.15.4 Radio

The radio used in sportSemble is a Nordic nRF2401a [49], which has a maximum bandwidth

of 1 Mbps and an output power of +4dBm. The radio uses a 1MHz channel spacing with a

channel range in the ISM band, from 2400-2527MHz. SportSemble requires a sampling rate

of 1000Hz from each of its 6 analog sensors and the maximum sampling rate from the com-

pass(10Hz) and low-G accelerometer (i00Hz). The limited bandwidth of the onboard radio

also becomes a problem if you calculate the data rate necessary per node. We start with

how many bits are needed for a single sample of the analog gyroscopes and accelerometers,

and get a RawAnalogBW:

90bits/sample =

12 bits Pitch Gyro

12 bits Roll Gyro

12 bits Yaw Gyro

12 bits X Accelerometer

12 bits Y Accelerometer

12 bits Z Accelerometer

16 bits timestamp

2 bits sample type

and the number of bits needed for a single low-g accelerometer sample RawLowGB W:

42bits/sample =

8 bits Pitch Gyro

8 bits Roll Gyro

8 bits Yaw Gyro

16 bits timestamp

2 bits sample type

(2.1)

(2.2)



and finally the number of bits needed for a compass sample CompassB W:

16 bits heading

16 bits pitch

66bits/sample = 16 bits roll (2.3)

16 bits timestamp

2 bits sample type

Going on the initial 1000Hz/100Hz/OHz sampling rates for the analog sensors, low-g ac-

celerometer and compass, respectively, we get a numbers of 90,000bps (bits per second),

420bps and 660bps of raw bandwidth needed per node per second. Each packet (of which

there would need to be 1110) would also include communication protocol overhead of:

8 bits Packet Type

32bits/packet = 8 bits Source Address (2.4)

16 bits Packet Sequence number

This bring the bandwidth in bps for each node to 126,600. If we wish to have a 5-node

network and ignore radio overhead and ignore any packet loss over the wireless medium,

the number grows to 633,000bps. This is more than the 1Mbps that the Nordic [49] radio

used in Sensemble offered, hence required a different solution. The option to use a faster

radio still does not meet the requirement of data integrity. Sensemble was intended for real

time dance performances and any packet loss(over the wireless link) in the data stream was

not recoverable (using retransmission) because of the real time nature of live performance.

SportSemble's purpose, recording data that could be used in biomotion analysis, requires

that all data be present, and any packet loss would be unacceptable. As there is no real-time

performance aspect or latency penalty in biomotion analysis, the host node can repeatedly

query the nodes for missing or damaged packets. The best solution to this scenario is to

store the sampled data locally on the microcontroller's flash memory, and download the data

after activity has completed. This concept will be explored further in the Microcontroller



section(Section 2.9).

It is important to note that there are only 3 sample types (compass, low range, high range),

hence the sample type flag is two bits. However, this would be an accounting nightmare

when it came time to manage the byte-addressed flash of any microcontroller. Thus, the

sample type requires an additional 6 bits of storage in the flash based approach.

2.9 Microcontroller

Sensemble was built with a Texas Instruments MSP430F148[50, 51, 52] microcontroller. It

runs at 8MHz and has several analog and digital input/output options for communication,

hence is ideally suited for Sensembles purpose. It also meets sportSemble's needs in terms

of the added compass and low-G accelerometer and can handle the 1000Hz sampling rate

with flash write (although just barely). The one area in which it is lacking is in flash

memory, which is limited to 48k bytes. This was plenty for Sensemble, as it only stored its

program code in flash [51, 52] and all other data was transmitted wirelessly in real time. If

sportSemble were to store data on board, 48k bytes would only be sufficient space for about

4 seconds of data. Using the numbers from the radio section 2.8, of about 100,000 bits per

second of data, which is roughly 10k bytes/second, and allowing for 8k of program code,

we obtain the 4 second number. This is insufficient to meet the target number that was set

at 10 seconds of data, and led to the requirement that the microcontroller be swapped out

for another with more flash memory. The largest available flash memory in this series of

microcontroller was 64k bytes, which still did not meet these requirements. Luckily, in Q1

of 2008, Texas Instruments was introducing the MSP430F2618[53], with 116k bytes of flash

and the same peripherals as the MSP430F148. Q1 was too long to wait in order to start

development, but samples were made available late in 2007, which gave sufficient time. The

only caveat was that the chip footprint that Sensemble used was QFN64[54], and the 2618

only came in a QFP64[55] footprint. In short, the footprint of the older chip is smaller than

the footprint of the newer chip, hence the hardware had to be rebuilt. Finally, the 116k of

flash on 2618 would offer plenty of space to meet the 10 seconds of data requirement.





Chapter 3

Software Systems

The software infrastructure for sportSemble can be broken down into three categories: the

firmware running on the nodes that gathers all data and does reading/storage to memory,

the RF protocol that facilitates command and control between the basestation and the nodes

in the network, and finally the PC side application that communicates with the basestation

via USB and dictates the actual command and control of the nodes in the network. A

typical system layout for a baseball pitcher is depicted in Figure 3-1 and consists of 5 nodes

located on the body and communicates with the basestation. While this is typical for the

experiments run, it by no means is mandatory. SportSemble has been designed to allow for

any number of nodes located anywhere on the body (or possibly on athletes equipment),

with no configuration changes needed to gather biomechanical data.

3.1 Firmware

The firmware running on the nodes at a high level is simple: wait for a beacon via the

radio and react based on the command encoded in the beacon packet. Reacting can be

one of 3 things: do nothing, begin sampling data to onboard flash, or return a sample to

the basestation. The firmware for the basestation also has 3 basic functions; beaconing at
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Figure 3-2: Basestation State Machine

200Hz, receiving commands via the USB, transmitting them to the network of nodes when

appropriate, and returning the results of commands via USB to the host PC.

3.1.1 Basestation Firmware

The basestation hardware remained unchanged from the original Sensemble[12]; however,

the firmware was changed extensively. A state diagram of the basestation's main operations

is in Figure 3-2. The basestation microcontroller clock is configured to run at 24MHz, while

the main beaconing loop runs off of Timer 1. Every time an interrupt[56] is generated by

Timer 1, a beacon is sent. Each beacon contains no data, but simply ensures that all nodes

keep synchronization.

Things get more interesting when a command is received from the host PC (see Figure 3-1)

via an interrupt[56] that indicates USB data has been received - this is considered a USB



Command Short Description

KIF_ONFIG_CMD Set the Radio Frequency base channel and
I the number of channels that will be used. I

Figure 3-3: Table of local commands between USB Host and basestation

Command Hex Command Name Command Short Description

OxBA

UXt5B I AMIVFLt-Z LASH sample data to tlash memory

OxBC

UXAA I RF CONFIG CMD Set the Radio Frequency base No
channel and the number of
channels that will be used

Figure 3-4: Table of network commands between USB Host and nodes

Command. The received command is then interpreted (based on a 2 byte code stored inside

of it) to check if it is meant for all nodes in the network or if it is a local command. Local

commands are meant only for the basestation and are not broadcast to the network. A

complete list of these is available in Figure 3-3. The RFCONFIGCMD is part of the

RF Protocol and will be discussed in section Section 3.3. The IDLE command tell the

basestation to simply beacon and does nothing. The NUMNODES_CMD command tells

the basestation how many nodes are present in the network. This is necessary in order for

the basestation to know how many nodes it should wait to receive responses from before

commands are sent out into the network and replies are anticipated.

OxDE

OXAA

OxFF

Reply
Exnected

Yes

Command Hex Command name



Reply Short Description

OxBD
OxB1 FLASH_END Indicates that there are no more samples

left to be read from flash memory

Figure 3-5: Table of network replies between nodes and USB Host

Commands that are not meant for the basestation (Figure 3-4) are broadcast out to the net-

work. We will start with the simplest, that being the ERASE_FLASH command, then move

on to the others. ERASEFLASH is sent out over the wireless link, and all nodes erase their

flash memory. Once flash has been erased, nodes are ready to receive a SAMPLE_2_FLASH

command. When the basestation receives and interprets a SAMPLE_2_FLASH command,

it does two things. First, it zeros out an array of booleans that is of size NUMNODES. It

then forwards the command to all nodes in the network. Upon receipt, each node samples

until its flash memory is full, then creates a FLASHFULL packet (Figure 3-5, Figure 3-17)

and returns it along with its unique ID to the basestation. Upon receipt, the basestation

then updates the boolean (that keeps track of which node has reported flash as being full)

corresponding to the given to be true. This occurs until every boolean in the array is in

the true state (indicating that each node has sampled until its flash was full). Once this

occurs, the Host PC is notified that the basestation has received a FLASHFULL packet

from each node.

The next step is to retrieve the data from each node, which is triggered by the receipt of

a NEXTPACKET packet from the USB host. Each of these contains a sample number

indicating which sample should be sent back to the host. The basestation sends these 2

pieces of data to the nodes and again initializes the array of booleans. Only this time, the

booleans keep track of which node has responded with the requested data. The packets that

come back are of type NEXT PA CKET and are automatically placed in a buffer that is sent

back to the USB host (this includes duplicates). If a requested sample number is greater

than the number of samples a nodes has, a FLASHEND (Figure 3-18) packet is returned

from the node. The basestation continuously asks for the requested packet number until

Reply Hex Reply Name



each node has replied with that packet or until a FLASHEND packet has been received

for each node.

3.1.2 Node Firmware

The nodes operate in a manner that is similar to that of the basestation, in that they

wait for packets to be received with commands and react based upon what type of packet

is received. Each node is informed of a new packet by the radio via an interrupt[56] on

Port 1.4[53], and each received packet is handled by the nRF_data_waiting0 function in

mainRedSoxNode.c. (All source code can be found in Appendix B)

Based on the type of packet that is received, the node takes appropriate action. We will

cover all packet types listed in Figure 3-4 except the RF_CONFIGCMD, which is discussed

in Section 3.3. However, before we can begin discussing sampling and writing to flash, we

will discuss the structure of the MSP430F2618's[53] flash memory, as it proved to be quite

differently structured from other MSP430 microcontrollers.

Figure 3-6 shows the memory map of the MSP430F2618. All MSP430 series microcon-

trollers, until the introduction of the 2xlx series, had 64k bytes of flash memory or less. As

described in Section 2.9, the reason for using the MSP4302618 was because of its larger flash

memory, which enables more data storage, hence a longer sampling time. This added fea-

ture came with two problems that needed to be overcome. The first was that the extended

memory required an address space of 20 bits (compared to the previous 16 bit address

space). The second was that the interrupt vector table (which normally resides at the end

of the flash memory) was now stored in the last 64 bytes of the lower 64kb of flash memory,

as shown in Figure 3-6. This is a hardwired feature of the chip's microcode that had to be

worked around.

In order to read or write the memory in the lower 64kb of flash, standard pointer referencing

and dereferencing could be used 1:

'This code does not include the semantics for locking and unlocking the flash memory



Address Bits 19:0

Address Bits
19:16 > 0

Address Bits
19:16 = 0

Interrupt Vector Table

Adress
Space

1FFFFh

10000h
OFFFEh

OFFCOh

Extended Memory/
Upper Memory
Above 64 KB

Lower 64-KB
Memory

Figure 3-6: Memory Map of MSP430F2618
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//A Write

unsigned char * address = 0x3322; // destination address in flash

*address = OxFFFF; //dereference and write to the address

//A read

unsigned char data; //where the data will go

unsigned char * address = 0x3322; //where to read the data from

data = *address; //dereference and read address

It is important to note that the mechanism that allows us to do this is that all pointers in

the MSP430 are 16 bits. When data needs to be read or stored to an address that is greater

than 16 bits, this mechanism cannot be used. In fact, there is no way to do this in C - it

must be implemented in assembly. The read of a byte then looks like this:

.global __data20_read_char

. text

__data20_read char :

push.w R13

push.w R12

popx. a R13

;Move 8-bit char

movx.b Ox0(R13)

reta

;upper word

;lower word

;20-bit address

value at the 20-bit addr

R12 ;R12 contains the

; return

locn to R12

return value

and would be used in standard C code like this:

unsigned char __data20_readchar (unsigned long __addr);

unsigned long address = Ox1FFFF; //top byte of flash

unsigned char data = __data20_readchar (address);



Similar functions are available for writing a byte to the extended memory, and can be found

in Appendix B.

This addresses the issue of mixed 16-bit and 20-bit memory addresses, but it does not

address the issue of having to not write into the address space where the interrupt vector

is stored. This required every read and write to the flash memory to be checked for which

part of memory it was in (upper or lower) and the appropriate methods to access it be used.

Now that we have covered how to make use of the flash memory, we can move on to the

state machine that governs every node's behavior (Figure 3-7).

When a node boots up, it goes through several configuration steps and then goes into a

infinite loop in the main() function, then waits for interrupts to occur from incoming radio

packets. The notable parts of the configuration are as follows (definitions can be found in

the MSP430F2618 datasheet [53]):

* Microcontroller master clock speed - 8MHz

* UCBO in SPI Mode[40] at 400kbps; sourced from ACLK

* UCB1 in I2C Mode[37] at 100kHz; sourced from ACLK

* ADC12[Channel 0-6] with input on each respective analog channel A[0-6]

* Flash controller at 400kHz; sourced from ACLK

* PORT 2 pins 1,4,5 as digital output (for LEDs)

* PORT 2 pins 0,3,6 as digital input (for LEDs)

* Timer BO configured to run at 1000Hz; stopped

* Low-G Accelerometer - powered up running at full scale ±8 Gs with X,Y,Z axes

enabled

* Compass in run mode with an update rate of 10Hz
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Figure 3-7: Node State Machine



Once all of this has been done, the node enables interrupts and goes into an infinite while

loop, waiting for an interrupt from the radio once it receives a packet. Each received packet

is processed based on its packet type (packet structure and the RF_CONFIGCMD are

covered in Section 3.3).

The simplest command, and one that must be sent to the node before any data sampling can

occur, is the ERASEFLASH command. When an ERASEFLASH command is received

(as with all other commands, unless noted), interrupts are disabled until the command

has been processed. Once this occurs, the flash memory is erased in 512 byte segments

from memory location 0x5000 to OxFDFF and 0x10000 to Ox1FFFP. This is dependent

on the 16/20 bit addressing that was described previously in this section; 16 bit addresses

use the eraseflashsegment function and 20 bit addresses use erase_upperflashsegment

function, both of which can be found in flash. c in Appendix B.

Once flash memory has been erased, a SAMPLE2_FLASH command can be received and

processed. When a command of this type is received, interrupts are enabled, except those

that would be received from the radio. Timer B is then enabled, and the 1000Hz sam-

pling loop begins. Sampling just the 6 analog sensors (3 High-G Accelerometers and 3

Gyroscopes) is trivial. The 12 bit A2D[36] is used to do 6 conversions on the appropriate

channels. In order to maximize flash memory space, we use 3 bytes (24 bits) to store two

12 bit A2D samples, for example:

Bytel = Sample 1 First 8 Bits (3.1)

BSample 1 Last 4 Bits

Sample 2 First 4 Bits

Byte3 = Sample 2 Last 8 Bits (3.3)

The structure of the analog sensor packet is depicted in Figure 3-8 - it is simply the packed

data along with a SAMPLETYPE to identify what type of data it is. In order to simplify
2Note that one range of addresses is 16 bits wide and the other is 20 bits wide.
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Figure 3-8: Analog Sensor Flash Structure
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flash memory management, the same size packet is used to store compass(Figure 3-9) and

low-G accelerometer (Figure 3-10) data, just with a different packet type.

As we have covered sampling the analog sensors and how all sensor data is stored, now we

will discuss sampling the compass and low-G accelerometer. As mentioned previously, the

amount of time it takes to sample a digital I2C[37] sensor is much longer then that of an

analog A2D conversion. Running at 1000Hz, we have 100 milliseconds (ms) to complete

all sampling and write the data to flash. Writing the 10 bytes to flash takes about 80ms,

leaving about 20ms for sampling. The amount of time it takes to get a set of data (X, Y,

Z) from the low-g accelerometer is about 35ms and the compass takes about 50ms. Based

on this, it was obvious that directly sampling a digital sensor and writing its sample to

flash was impossible if the 1000Hz sampling rate is to be preserved. There is a solution

to this, thanks to the asynchronous nature of I2C. The approach used is to break the I2C

commands and bytes that are sent and received into stages, and execute one stage at every

iteration of the sampling loop. For example (each step is an iteration through the loop;

in each iteration, unless otherwise noted, the analog sensors are sampled and their data is

written to flash):

* send I2C start, place read command in TX Buffer [stage 1 complete]

* check for TX completion; if TX done send I2C stop [stage 2 complete; otherwise stay

in stage 2]

* check for I2C stop completion; if done send I2C start [stage 3 complete; otherwise

stay in stage 3]

* check for ACK of start; [if ACK'd stage 4 complete; otherwise stay in stage 4]

* check for RX of byte; [if no more bytes expected, stage 5 complete; otherwise stay in

stage 5;

* send I2C stop; [stage 6 complete]

* check for I2C stop completion; if done sampling is finished otherwise stay in stage 7



The process is the same for the compass and the low-G accelerometer, the only differences

are the I2C addresses used and the number of bytes that are expected to be read back.

Additionally, the compass is only polled every 100 iterations (because its maximum sampling

rate is 10Hz) and the low-G accelerometer is polled every 10 iterations (because maximum

sampling rate is about 100Hz). The sampling rate is governed by the speed at which one

can clock the I2C communication bus.

The sampling loop continues until the flash memory is full. When this occurs, a packet

of type FLASHFULL is sent back to the basestation, and we return to the main() idle

loop state (Figure 3-7). The next logical command that can be received by a node is the

NEXT-PACKET command. This command comes along with a sample number that is

being requested. This sample number needs to be translated into a flash memory address,

which is simple due to our samples all being the same size. The formula for doing this is:

Flash Address = BASEFLASHADDRESS + (REQUESTEDSAMPLENUMBER * SAMPLE_SIZE)

The flash address is then checked to ensure that it is within the appropriate bounds for

where data is stored. If it is, then the data is read from flash memory and packed along

with the REQ UESTEDSAMPLE NUMBER into a packet and sent back to the basestation,

and we return to the main() idle loop state. If the flash address is not within the bounds

(this usually occurs when we have reached the end of flash memory and there are no more

samples), a FLASHEND packet is created and returned to the basestation3 , then the

program returns to the main() idle loop state.

3.2 PC Host Application

The PC host application is the source of all command and control for sportSemble. It

is a Visual Basic application that is responsible for communication with the basestation,

controlling the network, and gathering all data from the network. The best way to describe

3 Variables such as BASE_FLASH_ADDRESS and SAMPLESIZE, along with the bounds of flash mem-
ory, are defined in flash.h, which can be found in Appendix B
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Figure 3-11: PC Host Application Screen Capture after connection to the USB basestation



the functionality of the application is to go through the buttons that the GUI has (Figure 3-

11) and detail what each does.

The logical place to start is with connecting the application via USB to the basestation.

This and all other USB based code uses Silicon Labs USBXpress API[57]. USBXpress is

linked into the GUI via a windows DLL[58] that exposes several functions that the visual

basic code uses in order to communicate with the basestation. Before the Connect USB

button is clicked, it is important to ensure that the RF Configuration for the network is

properly entered (this is part of the RF protocol and is covered in Section 3.3) and that

the number of wireless nodes that are in the network is entered into the # Nodes: text

field. Once the Connect USB: button has been clicked, the background of the lower area

of the screen will change from gray to green, and the message [Connected to USB Device]

is displayed. It is important to click the Set Num Nodes button after a connect to tell the

basestation the size of the network. The default is 5 and Set Num Nodes does not need to

be clicked if 5 nodes will be in the network.

With a successful connection to the basestation, data can be gathered, erased and down-

loaded from the nodes. The most logical first step, as always, is to erase the flash memory

of the nodes. This is accomplished by clicking the Erase Flash (OxBC) button. Click-

ing this triggers a call to the USBXpress API SIWrite0 function with an argument of

ERASEFLASH (See Figure 3-3). Erased flash can now be sampled to; sampling is trig-

gered by clicking the Sample 2 Flash (OxBB) button, this again triggers a call to SI_ Write(),

but with an argument of SAMPLE_2_FLASH. The details of what happens once these com-

mands are received by the basestation are covered in Section 3.1.1.

Getting the data back requires another command to be sent, however this time repeat-

edly. Clicking the Get Data (OxBA) triggers a loop that starts calling SIWrite0 with

NEXTPACKET as the command and the value of a counter along with it. The counter

specifies which sample is being requested from the nodes and is increased only when the

basestation has received data from each node for that specific sample number. The data

that the basestation receives from the nodes is retrieved using the SIRead( USBXpress

API function call, passing a buffer to be filled.



Since, this is a wireless system, and some packet loss is unavoidable, certain mechanisms

to ensure data integrity are in place. It is important to note that the basestation passes all

packets received to the host PC regardless of whether they are out of order or not. This

approach allows the application to decide what data to discard and what action to take next.

The basestation's behavior is described in Section 3.1.1. In general, it handles ensuring that

the requested sample number has been received from each node before allowing the next

to be requested. This may seem like the management of the process is being spread out in

many places, but is necessary because letting the host PC application manage this created

too much USB traffic and was very slow. The application continually asks for a given sample

until it receives a response from each node. If it gets a sample out of order, that sample is

simply discarded.

The next important question to answer is where is all of this data being stored? There are

3 files that are created with each set of data that is gathered. The path and filename to

which the data should be written is user-entered in the text field labeled Data File Location:

and defaults to C:\MIT\sportSensemble\data. The data files that are created with default

path are:

* data.txt - the main data file that contains sample numbers, node numbers and actual

sensor data from the analog sensors

* data.LOWG.txt - a secondary data file that contains low-g accelerometer data and

compass data.

* data.CAMERA.txt - external camera synchronization data. (See Appendix C)

Each of the files are comma separated, for easy parsing, and have the following format.

Main data file:

* Column 1 - Basestation TS upon receipt (the basestation keeps its own local times-

tamp to avoid duplicate packet confusion)

* Column 2 - Node ID - Source node ID



* Column 3 - Sample Number - index of the sample in flash memory

* Column 4 - High-G accelerometer X value

* Column 5 - High-G accelerometer Y value

* Column 6 - High-G accelerometer Z value

* Column 7 - Gyroscope pitch value

* Column 8 - Gyroscope roll value

* Column 9 - Gyroscope yaw value

data.LOWG file (low-g accelerometer sample):

* Column 1 - 0 to indicate low-g data

* Column 2 - Node ID - Source node ID

* Column 3 - Sample Number - index of sample in flash memory

* Column 4 - Low-G accelerometer X value

* Column 5 - Low-G accelerometer Y value

* Column 6 - Low-G accelerometer Z value

data.LOWG file (compass sample):

* Column 1 - 0 to indicate low-g data

* Column 2 - Node ID - Source node ID

* Column 3 - Sample Number - index of sample in flash memory

* Column 4 - Compass heading

* Column 5 - Compass pitch



* Column 6 - Compass roll

The last two functions of the application that are relevant are the DisConnect USB and

Send Idle Cmd- buttons. DisConnect USB is self explanatory and Send Idle Cmd is a sort

of escape clause for when you want everything to stop what it is doing and set itself to a

"stable" state.

3.3 RF Protocol

Sensemble [12] was designed, built and tested in an environment that was relatively free of

RF traffic on the channel that it used. Once it was put into an environment in which it

had to share the 2.4GHz ISM Radio band[59] with other things (ubiquitous 802.11a/b/g

and bluetooth) its RF protocol quickly fell apart. The reason for this is that Sensemble

used a single 1MHz channel that was hardcoded into the basestation and nodes. If anything

else was using this channel, especially 802.11 wireless LANs, packet loss would instantly be

experienced with losses ranging from 40-95%. In addition, large RF dropout when nodes

were occluded by the body were very problematic on stage (where there were no nearby

reflective surfaces to bounce occluded signals back to the basestation). This was clearly

unacceptable and needed to be addressed.

The best approach for dealing with this is to exploit channel diversity in order to not collide

with other devices using this channel. An even better approach is to use channel diversity

that is user-tunable to the local RF environment. This is the approach that was taken in

sportSemble, and a simple hopping algorithm was implemented that worked very effectively.

Additionally, it was possible to reconfigure the network on the fly.

The PC Host Application screen (Figure 3-11) has an area dedicated to configuring and

reconfiguring the RF Channels the network would use (Figure 3-12). The protocol takes

a base channel and a channel count as inputs and simply hops channels (incrementing by

1 after every received packet) until it reaches channel base channel + channel count. It

then starts over again at the base channel. This is a trivial algorithm that worked very



IRF Configuration (enter data before connecting USB)

Enter a Base Channel (2400-2527MHz) Reconfig (0xAA

Channel Count (Channels used = base to base + count)]

Figure 3-12: RF configuration GUI

Time

Figure 3-13: RF Protocol Slotting

well in testing, but could easily be expanded to hop in certain sequences for possibly better

performance. The mechanism for distributing the configuration is a RF_CONFIG_CMD

command(Figure 3-14), as described in Section 3.2 and Section 3.1.1, with a configuration

passed to SI_ Write() and then stuffed into the packet sent by the basestation. Upon receipt,

the basestation reconfigures itself and floods the packets several times on the current channel

that all nodes are on. Once the nodes received this packet, they also reconfigure and begin

using the specified channels. In order to test the Quality of Service(QoS) that the new

protocol provided, packet loss was used as a metric. Each packet had 4 bytes that were

reserved for 2 numbers. The first number is a counter of packets that the basestation had

sent. The second is a counter that is kept on the node that kept track of how many packets

the node had received. The basestation's number was sent out with each packet and each

reply packet contained both the basestation and node numbers. This created an easy way

to calculate packet loss and test various base channels and channel widths. In the end,

the optimum channel width was 2 channels. The optimal base channel was determined

by looking to see what 802.11 channels were being used and choosing a base that avoided

them. In the worst-case scenario when all 801.11 channels are in use, the best option is to

use base channel 2499Mhz, which is reserved and only used in Japan. This, however, is not

fully legitimate and is not advised.

As described above, the protocol hops over 1MHz channels, and it also slotted the time



that a node could respond to any packet sent based upon the node's ID Figure 3-13, and

be guaranteed that it would not collide with another node. The approach to deciding when

to respond was to calculate a hold off time before responding:

HOLDOFF = PROCESSINGTIME + (NODEID * SLOTSIZE)

SLOTSIZE is dictated by how long it takes to process a packet and how long it takes to

transmit a packet and was determined with some simple math and a bit of trial and error.

As promised in previous sections and chapters, the details of each packet type's structure

will be described. The packet length for each packet type is 20 bytes4 , whether or not all 20

are needed. This is because the nRF2401A[49] radio would need to be reconfigured on every

node and the basestation every time the packet length changed. This would require massive

amounts of bookkeeping and synchronization, and is not a technically feasible approach.

The structure of each packet that is sent by the basestation is very similar. Each packet

uses the first byte to specify the command, bytes 2 and 3 are always the basestation's local

timestamp and the last 2 bytes are always the basestation's transmitted packet count (its

use is described in the beginning of this section). The basestation local timestamp is a

counter that incremented much faster than the rate at which packets are transmitted and

was intended to be used for any very fine-grained synchronization, if needed. It has not

been needed, and remains as an artifact of over-engineering. The packet that bears mention

because it differs from the other is the one that is sent in response to a NEXTPACKET

(Figure 3-17) request. Under the normal conditions (as described in Section 3.1.1), the

reply is also of type NEXT-PACKET. When a requested sample is not in flash, the first

byte will be FLASHEND. It is important to note that the node received packet count is

stuffed into bytes 17 and 18 for QoS purposes, as is also done with the FLASHFULL packet

(Figure 3-18).

4Sensemble used 16, sportSemble added 4 in order to do QoS calculations
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Figure 3-14: RF_CONFIGCMD Packet
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Figure 3-17: Node Response to NEXT_PACKET
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Figure 3-18: Node Response to SAMPLE_2_FLASH





Chapter 4

Experiments

While sportSemble is a very flexible system that is capable of being used at any location on

the body and with any sport, it was designed and built for the purposes of being used on

baseball pitchers and batters. This design effort culminated in a single 3-day experiment

that occurred at the Boston Red Sox Spring Training in Fort Myers, Florida, in which the

nodes were attached to several players and data was gathered.

4.1 Initial Testing

Before detailing the spring training experiment, the author would like to thank Mike Vasquez

from the MIT baseball team who took some hours out of his life to be the first pitcher to

test sportSemble. The first experiments with Mike flushed out many faults in the software

infrastructure. Once these were fixed, we focused on attaching the nodes to the body in

subsequent trials. During these, it was common for a battery or node to come flying off of

Mike's body during the course of a pitch. Thanks to these first trials and Mike's patience,

a reliable methodology for attaching the nodes was developed, and the system was tested

end-to-end.



Figure 4-1: sportSemble Pitcher Configuration

4.2 Red Sox Spring Training

The Spring Training experiments took place in Fort Myers, Florida at the Red Sox Training

facilities in the Minor League batting cages. They were done in conjunction with XOS

Technologies, who were demonstrating their high-speed sportMotion camera system, with

which sportSemble was synchronized. The experiments were done over the course of 3 days

and involved 8 pitchers and 5 batters, all throwing and/or swinging at the professional level.

The configuration of the nodes on the body for a pitcher is depicted in Figure 4-1. The

node numbering scheme for a pitcher is as depicted in Figure 4-3 1.

Node 1 was originally to be placed inside of a pouch sewn into the top of a batting glove

'Node 5 can be on a batter's bat or around a batter's waist - for a pitcher it is always around the waist



Figure 4-2: sportSemble Instrumented Bat, before applying take to keep it in place

Node 1

Node 2

Node 3

Node 4

Node 5 (at waist)

Figure 4-3: Node body placement. Note, the waist node is around the waist or on the bat.
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Figure 4-4: sportSemble Nodes Ready for Action

with the fingers cut off(visible in figure 4-4). However this was deemed uncomfortable by

the pitchers, and a second option was used. This option was to place sticky velcro on

the bottom of the node, and then sticky the mating sticky velcro to a physical therapy

stimulation electrode2 . Nodes 2 and 3 were attached to the player using velcro straps.

Node 4 was attached with the same sticky velcro to a heart rate monitor chest strap. Node

5 was attached to a girdle that was cut down, and also had sticky velcro applied to it. Once

this was done, every node was wrapped with either sports pre-wrap or some other elastic
tape in order to keep them from flying off of the body(figure 4-4).

After being suited up with the sportSemble nodes the protocol for gathering data from a
pitcher was as follows:

* Pitches 1 through 10 - fastballs thrown are medium speed

* Pitch 11 - a changeup (slower ball)
2The electrodes used were Empi brand 2 inch round StimCare Carbon FM Electrodes



* As sportSemble was downloading data, keep throwing easy pitches to stay warmed up

* No more than 11 pitches to avoid player fatigue

* Players were scheduled every 30 minutes

* Players cannot wait

* No player could be 'kept' for more than 30 minutes, otherwise the next player would

be waiting (see previous)

In addition to this protocol, each player had a variety of physical and anatomical data

gathered before starting any activity. This data was:

* Name

* Age

* Height

* Weight

* Player Number

* Bats Left or Right

* Throws Left or Right

* Whether or not they had experienced any previous shoulder pain

* Whether or not they had had previous shoulder surgery

The anatomical data (other then height and weight) was a series of measurements of the

player's body and measurements of node positions on the body, taken with a measuring

tape. The measurements are first presented in medical terms then translated to lay English

below:

* Radiocarpal Joint to Node - Wrist Joint to Node on Hand



* Lateral Epicondyle to Radial Styloid - Length of Forearm

* Lateral Epicondyle to Node - Elbow to Node on Forearm

* Lateral Acromiom to Lateral Epycondyle - Length of Upper Arm

* Lateral Acromiom to Node - Shoulder Joint to Node

* Sternal Notch to Node

* Vertical Distance Between Chest Node and Waist Node

* Waist Node height Off of The ground

Batters also had some additional data gathered:

* Bat Length

* Distance From Hand Node to Bat Node

* Distance From Bat Tip to Bat Node

Once we arrived in Florida, it was decided to add one more piece of data: as each pitcher

pitched and each batter swung, the speed of the ball or bat was measured with a standard

baseball radar gun. The gun that used was a Stalker Sport 24.15GHz Digital Sports Radar

(Serial # SS79607) and is pictured in Figure 4-5. From our experiences, the radar worked

very well for recording the pitched ball speed. However, it did not work very well for

recording the batspeed and is one of the reasons why batspeed is not commonly measured

and used in baseball.

This was the planned experimental procedure. However, the adage that the best laid plans

go awry often proved to be correct. Being pressed for time, mistakes were made, things

were forgotten, and in general, especially at the beginning, things took longer than expected.

For some pitchers, less than 10 pitches of data were gathered due to lack of time. In some

instances, nodes broke, probably because of the extreme forces they were put under together

with potential circuit board warping from our lashdown strap. This resulted in data sets



Figure 4-5: Stalker Sport Radar Gun

that were sometimes incomplete or that had certain individual sensors outputting bad data.

In the worst case, an entire node had to be replaced, which cost time because the node had

to be programmed with a specific ID. Broken nodes also cause problems when it comes to

calibration (more on this in section 5.4). However, thanks to the patience of players, coaches

and support staff, several sets of good data was gathered and brought back to Boston for

analysis.
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Chapter 5

Calibration

During field experimentation, data was viewed in an ad-hoc manner to ensure that it ap-

peared to make sense and that data was actually being gathered. Before any further analysis

of the data could be done and reliable physical quantities obtained, a calibration had to be

performed on each node. Calibration ensures the node output accurately reflects input from

the real physical world. One obvious lesson learned in this project is that calibration of

systems that could possibly be damaged during their use should be done before experimen-

tation begins. As mentioned in section 4, some nodes broke during the process of gathering

player data. In some cases, the inertial components had been seen to be damaged when it

came time to calibrate, hence other means of using their data had to be found. These will

be discussed later in this chapter.

Section 2.4 describes the gyroscopes used in each sportSemble node. Each type of device

has a manufacturer's datasheet associated with it [43], which, among other things, specifies

how output voltages map proportionally onto angular velocity (degrees/second). In general,

these numbers are not highly accurate, as they vary from device to device. Also the sport-

Semble gyroscopes are amplified to give a cleaner signal, and the gyroscopes are extremely

biased to give wider dynamic range [44]. This requires a calibration to be run on each gyro

by applying a known physical angular velocity and measuring the devices output. The same



Figure 5-1: Calibration Table for Sensemble Nodes

concept applies to the high-g accelerometers; apply a known acceleration and measure the

device output.

Accordingly, the process for calibrating gyroscopes is to spin them at a known rate and

gather data, and the process for calibrating accelerometers is to move them at a known

acceleration and gather data. This approach was taken by Stacy Morris to calibrate the

IMU used in her gait shoe [14], although here we ran at much higher rates. Nonetheless,

the rotation for gyroscopes is feasible as the revolutions per minute (RPMs) are easily

achievable. The accelerometers are a bit more troublesome, as it is very difficult to linearly

accelerate an object at a constant 11OGs for a given period of time. The solution for this is

also rotation, and will be described in the following sections.



5.1 Calibration Table and Node Brackets

It was necessary to spin the nodes at a know rate for a given period of time, which was

easily enabled by a common variable speed electric drill that could spin at +2500 RPM.

A calibration table was constructed(Figure 5-1) using the following materials:

* A high quality drill (which was capable of 12500 RPM)

* A vise, to hold the drill

* An analog (ball based) mouse, to use as a beam breaker to time revolution period

* A Panavise circuit board holding vise, to hold the circuit board of the dissected mouse

* A few clamps, to keep things from vibrating out of position

* Some 2x4's

* A 2'x4' sheet of 3/4" plywood

* Several custom fabricated node brackets

* An oscilloscope

The first problem to be tackled was that of reliably measuring the rotational velocity of

whatever it was that would be spun. The solution to this was simple and cheap. A standard

analog mouse (which uses IR optical encoders internally) was taken apart and an oscilloscope

was connected to the output of one of the IR photodiode receivers(Figure 5-2). What was

left of the mouse was plugged into a desktop PC's PS2 port, in order to power it. Once

powered, every time the beam between the photodiode and it receiver was broken, there

was a voltage drop that could be easily see on the oscilloscope. Using the oscilloscope to

to measure the period of between voltage drops indicated the rate at which the beam was

being broken. This constituted a poor man's tachometer.

The next issue was to mount the drill in a manner that would keep it secure as it spun at

high speeds, and the heavy vise was an ideal candidate. From the beginning, it was obvious



Figure 5-2: Bracket Beam Breaker and IR Photodiode with Z axis denoted.

that custom brackets for the nodes would need to be fabricated to hold the nodes as they

rotated. The requirements for these brackets were that for the gyroscopes, the center of the

gyroscope be directly at the center of rotation and, for the accelerometers it was necessary

that the accelerometer's sensing axis be orthogonal to the center of rotation and, that it was

mounted at a specific radius from the center of rotation. These requirements mandated that

a custom bracket be designed for gyroscopes and accelerometers. Further, each individual

axis of gyroscope and accelerometer would need it own bracket because the sportSemble

nodes were not symmetric in any way. Attempts to create an all-in-one bracket were tried,

but were not successful. The brackets were designed in Solidworks [60] and several iterations

were required; some of the failed brackets are shown in Figure 5-4. Initially, it was desirable

to have the brackets CNC machined from aluminum, but this approach was not taken due

to the high cost of CNC machining and the long turnaround time on getting parts back

from a machine shop. The best option was to use the Media Lab's Invision SI 2 3D printer

[61], which prints using photocurable acrylic. While photocurable acrylic is weaker than

aluminum, the right design proved that it could get the job done. Also, because the printer



Figure 5-3: Calibration Table with X and Y axes denoted.

was in-house at the Media Lab, turnaround time for new bracket prototypes was only 24

hours. In addition to brackets being custom for each axis of sensing, each had a beam

breaker built into it in order to count RPMs (Figure 5-2).

Due to the irregular shape of the nodes, each bracket had different dimensions and different

parts of the node protruding as it rotated. The required that the calibration table have

3 degrees of freedom for bracket mounting, because each bracket had the beam breaker

in different locations, and each bracket had different dimensions. With this in mind, the

vise and the Panavise were each mounted to wooden blocks that slid along wooden rails

screwed to the plywood sheet. Each was secured to the rails with a clamp, in order to



Figure 5-4: Prototype Brackets

keep the assembly from moving (Figure 5-1). This provided an X and Y axis of movement

(Figure 5-3); the third axis of freedom was the ability to slide the circuit board from the

mouse up and down in the Panavise (visible in Figure 5-2). This constituted the Z axis

and was used to precisely adjust the beam breakers location, and also ensured that it was

properly splitting the path between the photodiode emitter-receiver pair. In hindsight, the

beam breaker could have been mounted on the chuck of the drill, since rotational rate is

independent of radius, and the table may have not needed so many variable axes.

5.2 Gyroscope Calibration

Reiterating the previous section; each gyroscope available commercially has published for-

mulas that convert an output voltage to angular velocity. These published formulas are

known to be of limited accuracy (with no published statistics on error margins). In addi-

tion, any amplification, signal conditioning, and bias change to the device will also have an

effect on the output that is not reflected in the datasheet. Based on this, a calibration is

necessary to have confidence in the data gathered. Each node has 3 separate gyroscopes on



Figure 5-5: Node Calibration Data For All Gyroscopes

orthogonal axes; pitch, roll and yaw, and each required calibration. As mentioned previ-

ously, the calibration procedure required that the node be rotated about the center of each

gyroscope on each axis at a known controlled rate, and data be gathered. In order to do

this, a calibration table needed to be built along with specialized brackets for the nodes.

The calibration table is described in depth in section 5.1.

The calibration involved 6 nodes. Each node was rotated at the following rates (mapped to

RPMs for the calibration table):

+10,000 degrees/second - 1,667 RPM

Nodes Calibration Data(Pitch Axis)
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Slope X-Intercept

I New - Roll
1 New - Yaw
1 Old - Pitch
I Old - Ro Il
I Old -Yaw
2 - Pitch
2 - Roll
2 - Yaw
2-2 - Pitch
2-2 - Roll
2-2 - Yaw
5 Pitch
5 Roll
5 Yaw
5-2 Pitch
5-2 Roll
5-2 Yaw

I 7.146 2221 .9999

I 7217 2 13 .999q2 I

BROKEN

6.994 2135 .9998

I 4.681 2249 .992 1 I

1 11.62 2202 .9973 I

Figure 5-6: Table of Node Calibration Data For 6 Node for Gyroscopes

Node & Axis



* ±9,000 degrees/second - 1500 RPM

* ±6,000 degrees/second - 1000 RPM

* ±3,000 degrees/second - 500 RPM

* ±1,000 degrees/second - 167 RPM

* 0 degrees/second - 0 RPM

During the constant rotation, the nodes gathered a 10 second set of data. This data

(Figure 5-5) was averaged for each speed and each node's data created a line. This indicated

that the gyroscope's output is linear, as expected, and that further gyroscopes only needed

2 or 3 sets of data to be gathered instead of the 11 that were initially needed. These

2 or 3 sets of data would lie along a line with a given slope and offset when graphed,

which is exploited to determine the angular velocity of any gyroscope output. There are,

however, two caveats. First, each of the lines from a given gyroscope have a different slope

and, second, each of the lines have different 0 degrees/second intercept (See Figure 5-6).

Although the lines in Figure 5-5 look similar, the differences are significant (especially in

applications that repeatedly integrate the gyroscope signal to get angular displacement),

hence each gyro is calibrated separately.

While Figure 5-5 appears to show very similar slopes and 0 degrees/second intercepts is it

important to note that if there is an error of .5 degrees it is not a major issue in calculating

a single 0.001 second sample. However, if you make a .5 degree mistake and sum 1 second

of data, you are off by 500 degrees. This turns into a major issue and requires any analysis

to use individual gyroscope-specific slopes and 0 intercepts in any calculations.

5.3 High-G Accelerometer Calibration

The high-g accelerometers have the same issues as described above, and also needed cal-

ibration. To do this, we spin each accelerometer with its sensing axis orthogonal to the



center of rotation, producing centripetal acceleration. Since a rotating calibration table

(Section 5.1) had already been built to calibrate the gyroscopes, it was prudent to attempt

to use it for the accelerometers also. The question was whether or not the table could match

the outputs of the accelerometer (llOGs), in order to test across the full range.

The formula for determining the desired rotational velocity is:

30 9.8 r* G
RPM = (-) (

where G is the number of desired Gs and r is the radius of the center of the given accelerom-

eter from the center of rotation. This formula is derived using some elementary physics [62]

and is based on calculating the formula for the instantaneous acceleration vector for a

particle in uniform circular motion.

An attempt was made to use existing gyroscope brackets in order to achieve the desired G

forces, but it failed because the rotational velocity necessary exceeded the capabilities of the

calibration table. As a result, new brackets had to be designed that would provide a larger

radius of rotation. The final radius that was used was 29.5 millimeters, which provided

110 Gs at 1,825 RPM. The new brackets have not yet been tested, as time did not allow,

therefore only calibration data for the X-axis is presented here (Figure 5-7 and Figure 5-8).

The Y and Z axes are trivial to calibrate now that a good process is in place to do so.

Indeed, as expected, the accelerometers were also seen to be linear, hence only 2 or 3 sets of

data were needed from each accelerometer to determine slope and 0 G intercept. Figure 5-7

shows some low-G departures from the calculated slope, this is attributed to the drill not

spinning consistently at very low RPMs.

One mistake that was made, that the author realized as he wrote this document, was the

mounting of the drill and brackets in the calibration table for this accelerometer calibration

were not parallel to the Earth's surface. Thus, the Earth's gravitational field would be

present in the data that was gathered. Considering that 10,000 data points were gathered,

over 10 seconds, and averaged in each calibration step, gravity becomes statically insignif-

icant in this case, as positive and negative inclinations cancel. At opposing points in the



Node Calibration Data (X-Axis)

Figure 5-7: Node Calibration Data For X Axis Accelerometers

Node & Axis

1New- X
1 Old - X
2-2 - X
5-X
5-2 - X

Slope X-I nte rcept R2

.0670 2210 .9999

.064133 2232 .9975

.0633 2232 .9975
.0%6 '201.99

Figure 5-8: Table of Node Calibration Data For X Axis Accelerometers
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circular rotation, one would have +1G added to its reading and the other point would have

-1G added to its reading. Thus, they would cancel each other when averaged.

5.4 Broken Node Calibration

Four nodes had individual sensors broken or were rendered completely unusable, because of

mechanical failures, during experimentation. Unfortunately, the nodes were not calibrated

before experimentation. This data could not simply be discarded because it is critical. It

did not have to be ignored, thanks to the linearity of the gyroscopes and accelerometers.

The approach for reliably determining the characteristic output of a given sensor was quite

simple. Given that the slopes of the output of Pitch, Roll, Yaw and X, Y, Z sensors were

quite similar, the slopes of all calibrated nodes were averaged. This average slope was used as

the slope of what is called an averaged node, which denotes any node that lacked calibration

data. The variance in the slope data was only +2 percent. The 0 intercepts (discussed in

paragraph 2 of section 5.2) were determined by taking a minimum 2,000 (normally 4,000-

10,000) hand-selected data points of the node in question when it was at rest, to determine

the gyroscopes output at rest. This resulted in a process of using a generic (average) slope

and a gyroscope specific 0 intercept to simulate each broken gyroscope's output.



Chapter 6

Results

Data gathered during experiments (Section 4) that has been married with calibration(Section 5)

data produces real world angular velocities and accelerations. It is now of interest to do

some analysis and extract features from this data that are relevant to the sports medicine

community. The author, not being a sports medicine doctor, turned to medical profession-

als, and with their guidance determined interesting questions to be asked of this data. These

questions and the resulting answers are divided into the two following sections: Batting and

Pitching.

Before continuing, it is important to review what potential results are not present in this

thesis. Accelerometer data was only minimally used, due to a rigorous calibration not

being available at the time result data was being created. This calibration is now complete,

and the calibration data is available in Section 5.3, enabling ongoing work to employ the

accelerometer information.

There was hope to use a stick figure model to generate joint angles over time. This was not

possible for two reasons. First, there was no ability to define starting geometry, from which

to begin using gyroscope data to drive a model of joint angles. The starting geometry was

supposed to be provided from the XOS Camera system, which was running in parallel with

sportSemble during experimentation. A synchronization system was built (See Appendix
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Figure 6-1: Accelerometer vector magnitudes for a single batter's swing, with no ball con-
tact.

C), however the gathered data from the XOS System was not available in reasonable time

for the completion of this thesis. The compass data could have also been used, however

it was not properly functioning at the time of experimentation. The second reason why

joint angle determination was not feasible is that the gyroscope's sensitivity at low angular

velocity was poor, and any slower rotations were buried in noise, leading to lost data.

These ideas are now used as part of ongoing analysis and refactoring of the hardware

platform for the purposes of future experimentation.

6.1 Batters

From the batting experiments, there are three major questions that lead to many minor

ones. Most of them focus around the metric of bat speed, which, in baseball, is thought to

be indicative of how far, and where, the ball will go.

The first, considering that it is undesirable to mount a node on the bat (because the massive

G forces at impact would most likely destroy the inertial hardware as was seen in a previous
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Figure 6-2: Gyroscope vector magnitudes for a single batter's swing, with no ball contact.

Media Lab study [63]), to get bat speed, is can the node be removed from the bat, and can

the data from other nodes be used to get bat speed? Is this data consistent per player? Is

it consistent enough across all players to allow for generalization to a single generic player?

How scattered is the data?

A second question is what are the time differences between the peak velocities of different

body segments? A sub-question here is are these differences similar per player? Are they

similar across all players? Can they be generalized to distinguish between a good swing

and a bad swing? These questions are currently unanswered in the baseball community,

but there are indications that these factors affect the end product, i.e., where the ball goes.

The third question, for data that was gathered from a batter hitting a ball off of a tee, is

can the point of impact in relation to the peak speeds be determined? If so what does it

mean when the ball is struck before the peak is reached? What does it mean if the ball

is struck after or at the peak? While there is some speculation on the author's part that

this may determine where (left, right, center field) the ball goes, this is a research question

posed by his medical collaborators as, until now, no system has been capable of attempting

to measure this.
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Peak Body Segment Speed as a % of Peak Bat Speed
70

* Player 1

* Player 2

Player 3

" Player 4

Hand Forearm Upper Arm Chest

L__ _____________________________ 

j

Figure 6-3: Peak Body Segment Speed as a Percentage of Peak Bat Speed Per Player

6.1.1 Bat Speed Estimation

As a refresher we will review the experiment; details are in Section 4. Five batters were

instrumented with sportSemble nodes, each took 6 swings with a node on the bat, and the

data was recorded. This data was analyzed and bat, hand, forearm, upper arm and chest

speeds were extracted. The assumption that was made was that the arms are fully extended

at the peak of the swing and all calculations were based on anthropometric data gathered on

each player (Section 4.2) and the momentary angular velocity of each body segment. The

calculation is done by multiplying the known radius(from the player's body measurement

data) at which the node is placed by the gyroscope's angular velocity and converting it to
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Peak body Segment Speed as a % of Peak Bat Speed STDEV
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Figure 6-4: Peak Body Segment Speed as a Percentage of Peak Bat Speed Standard Devi-
ations Per Player

miles per hour (MPH).

Speed = AngularVelocityinRadians * Radius

The author is fully aware that there is a margin of error that this introduces due to players

not being fully extended throughout the duration of the swing. In order to avoid this error,

joint angle data would need to be available, which unfortunately is not reliably calculated

from the data set of these tests. This will be left as a part of future work to be performed.

We will now move onto actually looking at some of our data. An example swing with speeds

in MPH is shown in Figure 6-7, where it is interesting to note that while the bat speed is
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Figure 6-5: Peak Body Segment Speed for All Players as a Percentage of Peak Bat Speed
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Figure 6-7: A single swing showing different segment speeds over time

much higher then hand speed, the bat's angular velocity is, in fact, lower (Figure 6-2). The

idea that is employed in order to do bat speed estimation is to, first, find the peak speeds

of each body segment during the swing, and then to look at the ratio between each body

segment's speed to this peak bat speed. A graph of this data is presented in Figure 6-3, along

with a graph of the standard deviations in Figure 6-4. Before looking at the actual data it is

important to note how closely to their average each player's data is clustered. The highest

deviation is 5% (forearm of Player 1 Figure 6-4), with the next highest being 3% (Hand,

Player 3). This indicates that individual player's swings are very similar in terms of bat and

body segment speeds. This is a positive indicator, which brings the author to the natural

conclusion that if there were a set of data for each individual player, it would be possible to

have a very good estimate(+5%) of bat speed for the player without having to instrument

the bat. This is a step closer for a system such as this to be used during real game play,
as any modifications to player equipment are prohibited by most sports sanctioning bodies.

With this in mind, we look at the actual data. The values between players are more variable.

For example, hand speed ranges from 38 to 65 percent of bat speed. Considering that bat

speeds are around 200MPH this is quite a large range. It is necessary to take the entire

available dataset and create similar graphs, as shown in Figure 6-5 and Figure 6-6. Here
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again, the actual data of the hand being 54% and the forearm 40% of the bat's speed is not

as important as how variable this data is. The standard deviations of this data set, at the

hand, are below (±2.7%) that of the maximum for individual players and 3 times(±15%) at

the forearm. While the data is more variable, it is not wildly so, leading to the conclusion

that, with error bounds of +2.7%, sportSemble is capable of estimating bat speed for a

generic player, not requiring any player specific data, without having to instrument the bat.

For individual players, sportSemble looks to be capable of doing the same with an accuracy

up to +1.7% with an uninstrumented bat. Please note that for individual players a series

of swings would need to be measured in order to have a dataset to estimate from.

6.1.2 Batter Peak Time Differences

The second set of questions about batting that will be addressed has to do with the timing of

a players swing, most importantly which body segment peaks occur when (in relation to each

other)? The time differences between each individual batter's peaks are shown in Figure 6-

8. Before discussing the data, there are two important things to note. First, certain players

are missing data for given comparisons. This is due to failure in the gyroscopes on those

body segments which resulted in unreliable data. Second, an explanation of the difference

between a negative and positive value is necessary. A negative value is one indicating an

event occurring before another (I.e. Chest Peak Minus Bat Peak being negative indicates

that the chest reached its peak speed before the bat) A positive value indicates that the

peak occurred after. For example, Hand Peak Minus Chest Peak values are positive for all

players, which means that the hand reached its peak velocity after the chest.

An examination of the data shows that the the chest always reaches its peak velocity well

before (100 ms) the bat does, while all other body segments reached peak velocity after

the bat has hit its peak. What this means in terms of swing quality is unknown and bears

further investigation and experimentation. In general, the data is very similar per player,

except for Player 4. This may be indicative of a different batting style. With a larger

population of batters, it will be possible to make these distinctions.
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Figure 6-9: Swing with ball impact, no pre or post impact peaks present. (Gyroscope Data)

6.1.3 Ball Impact Detection

The last of the batting questions has to do with being able to detect the point of the swing at

which the ball was hit with the bat. The caveat here is that the bat cannot be instrumented

with a node because the impact forces would be so large that the MEMS gyroscopes and

accelerometers could be destroyed. The first and most important question is whether or

not this is possible. To answer the question, a comparison was made between a batter's

free swing with no ball impact and swings of the bat when the ball was hit off of a tee.

An examination of about 50 swings showed a very clear distinction between the two, as is

visible by comparing Figure 6-11, Figure 6-9 and Figure 6-10.

Figure 6-10 shows a swing that appears to have ball impact before peak velocity is reached.

The impact is denoted by the deep 'valley' before or, the middle of where the dominant

peak should be. This in comparison with the free swing (Figure 6-11). Please note that the

free swing also has a small 'valley', as most free swings do. However, these valleys are not

nearly as pronounced as the ones in the swings with impact. Such significant 'valleys' are

not present in any free swing data, but are present in all tee hit data. Some unanswered
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Figure 6-10: Swing with ball impact.
speed is reached. (Gyroscope Data)

The impact appears to occur before the peak bat

questions remain regarding why the 'valley' in Figure 6-9 is so wide, but the answer to that

is out of the scope of this thesis.

An additional piece of validation that was performed was to compare the same impact

swings gyroscope data with some uncalibrated accelerometer data. The purpose here was

to see if there existed similar 'valleys' in the accelerometer data. Figure 6-9 and Figure 6-12

are the same hit of a ball off of a tee, one set of data being from gyroscopes and the other

from accelerometers, respectively. Figure 6-11 and Figure 6-13 are free swings, again one set

of data if from gyroscopes and one from accelerometers, respectively. Examining the swing

with impact a similar valley is present in the accelerometer data as in the gyroscope data.

As the hit looks to be much sharper in the accelerometer data, it's probably a more reliable

means of determining the impact time. The repeated peaks in Figure 6-12 are probably due

to the dynamic structure of the impact and its effect on sensor mounting; more investigation

is necessary. Note also the large qualitative differences in the overall contour of the swings

with (Figure 6-10, Figure 6-12) and without (Figure 6-11, Figure 6-13) ball hits. This

indicates, perhaps, that the player dynamically adjusts their swing to hit the ball.
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Figure 6-11: Free swing with no ball impact. (Gyroscope Data)
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Figure 6-12: Swing with ball impact, no pre or post impact peaks present. (Uncalibrated
Accelerometer Data)
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Figure 6-13: Swing with no ball impact. (Uncalibrated Accelerometer Data)

The ability to detect this interesting because it has not been possible with any other system1 .

Having this piece of data opens the doors for studying how the point of impact (pre-peak,

at peak, post-peak) effects where the ball goes and how far it travels. In order to do this,

further experimentation is necessary because initial experiments were held in batting cages

and it was impossible to determine where the ball flew and how far.

6.2 Pitchers

Discussions with our physician collaborators on what to look for in pitcher data were very far

ranging, and some triage was made accommodate the timeframe of this thesis. The highest

priority went to calculating shoulder internal rotation, which is defined as the rotation

along the axis of the humerus during a pitch. As with batting, it is of interest to determine

the consistency between pitches and between pitchers and to compare to known velocities

published in the literature.

laccording to discussions with medical collaborators

94



Pitching G Forces
.. .. .... ... .... .. .. .. .. .. .. .. .. .. .. .. ... ... ... ... ... .... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. ..

u

9

8

7

6

4

3

2

1

Time 1/1000 sec

Figure 6-14: Accelerometer vector magnitudes for a single pitch.
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Figure 6-15: Gyroscope vector magnitudes for a single pitch.
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Figure 6-16: Shoulder Internal Rotation as defined by Werner et al.[1]

6.2.1 Shoulder Internal Rotation

Shoulder internal rotation is the rate at which the humerus bone rotates along an axis

parallel to it during a pitch, and is a commonly used metric in sports medicine. Peak

shoulder internal rotation occurs during the acceleration phase of the pitch. During the

typically 30ms of this phase, shoulder internal rotation has been calculated between 6,400

to 10,000 degrees/second [5, 1, 64]. Camera-based systems attempt to determine this metric

however the error bounds that they produce render the data not very useful. For example,

published numbers from a study [8] give peak shoulder internal rotation as 7,536±5634

degrees/second. In other words the margin of error is ±75%. SportSemble's margin is

no more then ±5%, in calibration data. Other errors, such as slight mistakes in body

segment measurement may add to this, however it is nowhere near 75%. This is because

sportSemble can measure this rate directly, opposed to a camera systems estimation, that

require a derivative to be taken across optical position measurements. This was discussed

in Section 1.2.



Figure 6-17: Shoulder Internal Rotation Vector Method as defined in [2]

Before discussing data, it is necessary to define the term Shoulder Internal Rotation as

there are two different approaches to calculating it. In general, it is one of the metric's used

in the biomechanical analysis of pitching. The first as utilized by Werner, [1] is depicted

in Figure 6-16. This measures along one axis, which is parallel to the humerus bone. The

second approach is a combination of the first (the axis that is illustrated in Figure 6-17) and

the axis that is orthogonal to the humerus bone. The second approach uses all 3 possible

axes of rotation in order to calculate a vector representation of the angular velocity. These

calculations are almost trivial to perform with data from sportSemble because the pitch axis

of the sportSemble node that is located on the upper arm (Section 4.2) is exactly parallel

to that of of the axis defined in the Werner method. Further, the two other orthogonal

axes defined in the second method are measured via the roll and pitch axes of the upper

arm sportSemble node. We will examine data using both techniques, as neither is has been

defined as a de-facto standard.

The metrics that were investigated were per pitcher averages and standard deviations. We
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Figure 6-18: Shoulder internal rotation data for one pitch. The Werner data is a portion of
the Vector data

will also compare the two methods of measurement by taking their ratio. Looking at per-

pitcher averaged data for the vector method, the standard deviations (Figure 6-20) have

a minimum of 108 degrees/second and a maximum of 743 degrees/second with a minimum

value of 1706 degrees/second and a maximum of 7861 degrees/second. The minima and

maxima are taken from the entire data set for all players, not on a per player basis.

The Werner method has a high standard deviation (Figure 6-19) of 454 degrees/second and

low of 159 degrees/second with a maximum value of 5233 degrees/second and a minimum

of 229 degrees/second. Looking at the minima and maxima, the numbers appear to be

very variable, which may be attributed to different pitching styles or the variability in the

different recorded ball speeds of the pitches. Pitch speeds ranged from 66-83 MPH, as

measured by radar discussed in Section 4.2. However there does not appear to be a direct

correlation between the two methods of measurement. The Werner method graphed as a

percentage of the vector method (Figure 6-21), with the exclusion of Players 1 and Player

6, shows that the the single axis is about 47% of the 3-axis measurement. It is interesting

to note that Player 1 had 99.6% of their internal rotation on the one axis, whereas Player 6



Figure 6-19: Pitcher Shoulder Internal Rotation as Measured Using the Werner Method
and Standard Deviations

only had 35%. This also may be indicative of different pitching styles, although the average

ball speeds were consistent, namely 79 MPH and 80 MPH, respectively, for each pitcher.

In the published literature [5, 1, 64], shoulder internal rotation has been calculated between

6,400 to 10,000 degrees/second. The values provided by sportSemble (Figure 6-20, Figure 6-

19) fall within these known bounds while having much smaller margins of error.
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Figure 6-20: Average Pitcher Shoulder Internal Rotation Measured as a Vector and Stan-
dard Deviations
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Figure 6-21: Werner Shoulder Internal Rotation as a Percentage of Vector Shoulder Internal
Rotation
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Chapter 7

Conclusions

7.1 Summary

This thesis presents and documents a wireless inertial sensor network, its associated pro-

cessing infrastructure, and how it can be applied in measuring biomechanical data for the

purpose of understanding the phenomena the body experiences during high-speed activity.

The system satisfies the requirements of measuring and recording a high range of angular

velocity and acceleration at a sampling rate of 1000Hz and has been calibrated in order to

compare its measurements with those published by the sports medicine community. Ad-

ditionally, the system is not limited to a single sport or activity, and is flexible enough to

handle almost any motion of the human body.

The network is made up of small 55x50x13mm nodes that are worn on the body; the

experiments performed were baseball pitching and batting related, and nodes were placed

on the waist, chest, upper arm, forearm, hand and bat. Each node contains 3 axes of

high range gyroscope and accelerometer in addition to 3 axes of low range accelerometer

and a digital compass with tilt compensation. A user-customizable, frequency-hopping

TDMA wireless protocol running at 200Hz was developed to ensure that wireless data

would be delivered reliably to a basestation that is connected to a PC or laptop via USB.

A processing infrastructure records all data to files, and a post processing infrastructure
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processes gathered data with calibration data in order to provide precise inertial data to

users.

The system has been tested with amateur collegiate pitchers, and experiments were per-

formed with several professional-level baseball batters and pitchers. Processed data has

been provided in the form of metrics that are relevant to current research in the sports

medicine community.

7.2 Evaluation and Future Work

The experience that was gleaned in fielding sportSemble gave valuable lessons in designing

and using subsequent systems. This section is entitled Future Work also, as evaluation

points directly at what should be with the system next to improve it.

7.2.1 Hardware Evaluation

The fact that the essential system functioned for 3 days of data gathering during the spring

training experiments and produced usable data shows that it met basic design goals. How-

ever, not everything went as smoothly as was desired. The first problem that comes to

mind is the wireless protocol's inability to cope with single lost nodes. For example, if

node 3 is lost and data cannot be gathered, nodes 4 and 5 are also lost. This is due to the

iterative nature of the wireless protocol, and can be fixed in software. The second learning

experience for the author was to calibrate hardware before bringing it out into the field,

especially in such extreme kinematic environments. Even with professional soldering and

X-Ray inspection, some of the solder joints lifted (or the chips themselves were damaged),

rendering them useless for calibration, which occurred after experimentation. This was not

a major problem, as the sensors are linear, and fairly consistent, hence calibration can be

inferred with quiescent data before and after motion. Next, the hardware platform needs to

be augmented with a different low range accelerometer (or the software protocol interrogat-

ing the current device needs revision), as the one that was used had very poor resolution and
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provided data that was not usable. There is no low-range gyroscope on the current hardware

platform, and one is necessary to obtain useful data for slower movements (necessary for

any kind of tracking). This became obvious when a 3D animation that was driven by the

gyroscope data was created and viewed. High speed motions were accurately represented

in the animation, however when looking at low speed motion, it was very obvious that not

all data was being properly captured. The appropriate range of the low-rate gyroscope will

need to be studied. Inertial components with logarithmic output would nicely address the

issue of needing low and high rate sensors, however none are in existence that are known

of. The usage of low-rate and low-G inertial components would also require study of what

the effects of saturation are - a key issue here is the time it takes for the low-rate/low-G

sensor to return to linear output after being saturated for a period of time. Overlapping

information from the high range systems can be leveraged to smooth such transitions.

While the wireless protocol handled download of data from all nodes in about 35 seconds,

this is still considered too long to wait. There are several approaches in order to solve this.

The simplest would be to use the existing wireless radio for time synchronization, event

demarcation, and add additional on board storage (in the form of flash memory or an SD

Card) in order to store a long session of data and download it to a PC once the session was

over. The second would be to use a faster radio than the 1MBps Nordic radio that was used.

Another issue with the radio was that it sometimes could not communicate when occluded

by the body, which would be solved by using a radio with a higher output power or lower

carrier frequency. The third and most ideal method to gather data would be to stream the

it in real time with a fast radio for the purposes of quick examination, while simultaneously

storing data to onboard flash. The compass that was on each node also did not function,

which requires rework of the protocol used to interrogate it. The best test for a complete

set of hardware would be to do a full 3D joint angle reconstruction and compare it to the

output of a camera system. Finally, if sportSemble could be built in a smaller form factor,

with less weight, it would be less intrusive to an athlete's motion.
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7.2.2 Software Evaluation

During the course of data analysis, several (14, not counting support functions) Matlab

scripts were created in order to process raw data and transform it into data that could be

input into Excel spreadsheets (which, unlike Matlab, are universally used by collaborators)

to get what could be considered a finished product. In the process of using these, it became

very apparent that a single unified infrastructure is necessary to perform data acquisition

and analysis.

Further, it is also desirable to compare results with the existing camera-based motion cap-

ture systems and possibly augment their 3D animations with direct inertial data to create a

better hybrid system. SportSemble has all of the features in hardware and software needed

to do this and synchronization with the XOS Optical system was performed during ex-

perimentation (See Appendix C). However the way that both systems represent their data

did not allow for a tractable (in terms of time-to-develop) way to use this synchronization.

Ideally both systems should output some standard file format, such as C3D [65], that could

be input into commercial biomechanical analysis software packages.

7.2.3 High Level Evaluation

Here we examine what sportSemble provided and did that has not yet been done and look

at what other data sportSemble can provide. First and foremost, sportSemble provides dy-

namic precision that no other system can offer because it is directly measuring acceleration

and angular velocity, which are more closely related to forces and torques than position

measurements, which need to be doubly differentiated.

The shoulder internal rotation data that was presented falls within the error ranges that

have been published, although our data has much smaller margins of error. Bat speed

estimation offers a promising avenue for estimating bat speed with an uninstrumented bat,

but requires a larger sample population in order to generalize to a generic bat speed equation.

Analyzing time differences between peak speeds of body segments during the course of a
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swing is something that had never been done before, and also offers the first quantitative

suggestion of analyzing the timing of a batter's swing to determine the differences between

good and bad swings. SportSemble is the first system to provide ball impact information

in relation to swing timing. In addition to these metrics, many others, such as shoulder

distractive force and torques in the elbow and wrist joints, are available from the data that

sportSemble provides. All that is needed are more sophisticated models and processing

software, now being developed, that will provide joint angles over time.

One piece of data that is hard to quantify, but is missing from the performed experiments,

is the input of professional coaches that would be indicative of the quality of a given pitch

or a given swing. This data would be invaluable in extracting what features a good or bad

pitch/swing have. In terms of batting, a quantitative metric that is missing is how far the

ball that was hit tracked and what part (left, right, center) of the field is landed in. This

data would aid in testing the (hypothesized) relationship between the swing impact point

and where the ball goes. The gathered data and presented metrics are only a representation

of the potential of sportSemble, and may lead to the development of new metrics and new

protocols that may aid in technique, training, and rehabilitation of athletes at all levels.
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Appendix A

Schematics and PCB Layouts
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Figure A-2: sportSemble Main Board Top Layer PCB Layout
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Figure A-3: sportSemble Main Board Bottom Layer PCB Layout
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Figure A-4: sportSemble Main Board Ground Layer PCB Layout
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Figure A-5: sportSemble Main Board Power Layer PCB Layout
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Component list
Source Data From:

Project:

Variant:

Report Date: 8/1/2008
Print Date: 01-Aua-08

Description Footprint Quantity Name Designator

apacitor 0402 7 C1, C2. C3, C26, C27, C31. C32
,apacitor CC1005-0402 1 C4
'apacitor 0402 9 C5, C6. C7, C8, C9. C10 C11, C12, 013
apaciior TC3528-1411 1 014
apaior CC2013-005 1 C15
3apacitor 0603 1 016
Dapacitor 0402 1 C17
Zapacidtor 0402 1 C18

Dapacitor 0603 1 019
apacitor CC2012-0805 1 C20

'apacitor 0805 4 C21, C22 C23 C24
Zapacitor 0603 1 C25
3apacitor 0402 2 C28, C29

3apacitor 0402 1 C30
'apacior 0402 2 C33, C34

apacitor (mindor SIM Model) CC1005-0402 2 C35, C36
3apacitor 0402 1 C37
'apacitor (Semiconductor SIM Model) CC1005-0402 1 C38

.ED Fairchild RGB 1 D3
)efault Diode SOD-523 2 D4, D5
.ener Diode SOD323 1 DZ1

eader 6-Pin. Dual row HDR2X6 1 Ji

Just Pads 6PIN_DaughterBoardConn_HORIZ 2 J2, J3
cower Switch EG-Swich 1 J4
3attery Connector ZH-Conn 1 J5
JTAG Connector HiroseST-18 1 J6

'ads Only CapElectrode 1 J7

nductor CDRH74 1 L1

nductor IndctorRBS 1 L2

hick Film Chip Resistor, 1 Ohm to 2.2M Ohm Range, 5% Tolerance 0402 Size 20402 1 R1
).063 W
esistor CR100 -0402 1 R2

lesistor CR1005-0402 1 R3

aesistor CR1005-0402 1 R4

osicstor CR1005-0402 1 R5

edsistor CR1005-0402 1 R6

Sesistor CR1005-0402 1 R7

tesistor CR1005-0402 6 R8, R9, R10, R11., R12, R13
tesistor 01608-0603 1 R14

reistor CR1005-0402 5 R15, R16, R17. R18. R19

Resistor CR1005-0402 3 R20, R21, R36

Resistor CR1005-0402 1 R22

Resistor CR1005-0402 4 R23 R24, R25, R34

Resistor CR1005-0402 3 R26 R29, R31

Resistor CR1005-0402 3 R27 R28, R30

Resistor CR1005-0402 1 R32

Resistor CR1005-0402 1 R33
Resstr CR1005-0402 1 R35

Resistor 0402 1 R37
Resistor 0603 2 R38, R39

10k 0402 1 R40

.TC 1474 Step Down Converter MS8 1 U1

3yroscope BGA32_ADXRS300 1 U2

rc 1073 Voltage Regulator SOT-23A 1 U3

rLV2474 Op Amp HTSSOPi4 2 U4, U5

ASP430F2618 QFP64_MSP430F147 1 U6

.T6221 OpAmp DFN8 1 U7

1-Axis Compass LCC36 1 U8

3-Axis Dighal Out Accelerometer LGA14 LGA-14 1 U9

,rystal XTAL-ECX19A 1 X1

8:25:C
8:49:!

Figure A-6: sportSemble Main Board Bill of Materials
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Component list
Source Data From:

Project:

Variant:

Report Date: 8/2/2008 7:51:58 PM

Print Date: 02-Aug-08 7:56:42 PM

Description Footprint Quantity Name E Designator

Zapacitor C1608-0603 2 C1, C2
.apacitor tSnin or' 'otlM CC1005-0402 3 C3, C4, C5
'apacitor C1005-0402 1 C6
Capacitor CC1005-0402 2 C7, C8
Zapacitor C1608-0603 2 C9, C10
Zapacitor CC1005-0402 1 C11
Zener Diode SOD-323 1 D1

6PIN_DAUGHTERBOARDCONNVert 1 J1
Thick Film Chip Resistor, 1 Ohm to 2.2M Ohm Range, 5% Tolerance, 0402 Size, 2-0402 1 R1
3.063 W
Resistor CR1005-0402 2 R2, R3
Resistor CR1005-0402 1 R4

LCC8_ADXL203 2 U1, U2
BGA32 ADXRS300 1 U3

Figure A-10: sportSemble High G Board Bill of Materials
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Appendix B

MSP430F2618 Firmware
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0 /***********************************main. **+***+***********************

*********** **++++++**** **+++++*******/

#include <msp430x26x.h>
#include "mainRedSoxNode.h"
#include "nRF2401.h"
#include "flash.h"
#include "initRedSoxNode.h"
#include "i2c devices.h"

10 //ID should start from 1 and should not exceed MAX.NUM.NODS
const unsigned char ID = 1;

/**************** RADIO CONFIG **************/
/.

nRF Configuration Bytes:
Byte 0: 16 Bit payload length for RX channel 2
Byte 1: 16 Bit payload length for RX channel 1
Byte 3-5: Address for RX channel 2
Byte 6-10: Address for RX channel 1

20 Byte 11, upper 6 bits: Address width in # bits
Byte 11, lower 2 bits: CRC settings
Byte 12: Various settings including Two Channel Receive, RF power output
Byte 13, upper 7 bits: Frequency channel selection
Byte 13, lower 1 bit: RX?

,/
//CHANNEL 99
unsigned char TXCONFIG_BYTES[15] = {RF_PACKET_BIT_LENGTH,RF-PACKETBITLENGT
OxBB,OxBB,OxB BB,OxBB,OxBB,OxBB,OOxBDxBB,OxBB,OxBB,OxAl,0x6F,OxC6};

const int TX_CONFIG_BYTES LENGTH - 15;

//unsigned char TXSHORTCONFIG.BYTES[1] = {0242};
unsigned char TX_SHORT_CONFIG_BYTES[1] = {OxC6};
const int TX_SHORT_CONFIG_BYTES_LENGTH = 1;

unsigned char RX_CONFIGBYTES[15] = {RFPACKET_BIT_LENGTH,RF_PACKET_BITLENGT
OxxB OxBB,OxBB,OxBB,0xBB,OxBBOxBB,OxBB,OxBBxBB ,OxAl,Ox6F,OxC7};
const int RX_CONFIG_BYTES_LENGTH = 15;

40 //unsigned char RXSHORTCONFIGBYTES[1] = {(043};
unsigned char RX_SHORT_CONFIG_BYTES[1] = {OxC7;
const int RX SHORT_CONFIG_BYTES_LENGTH = 1;

unsigned char ADDR_BYTES [5] = {OxBB,OxBB,OxBB ,OxBB ,OxAA};//basestation addres
const int ADDRBYTES LENGTH = 5;

//used to store the message received from the basestation
unsigned char RX_MESSAGE[RF_PACKET_BYTE_LENGTH];
int RX_MESSAGE_LENGTH = 0;

50 /***************** END RADIO CONFIG **************/

//data packet structure (packed into 10 bytes plus 6 dummy bytes when
//TX for compatability with 16B radio comm)
//ID, AccX, AccY, AccZ, GyrP, GyrR, GyrY
unsigned char DATAPACKET[RFPACKET_BYTE_LENGTH];

unsigned int FlashReadIdx = MAX_ADDR;
unsigned char flash-state = 0;
unsigned char flash_cycle = 0;

//mtl Radio Code
unsigned char current_channel;
unsigned int TS_BYTEO;
unsigned int TS_BYTE1;

70 unsigned int rxcnt;
unsigned int configRXCnt;
unsigned int txcnt;

unsigned char nRF_BASE_CHANNEL - 99;
unsigned char nRFCHANNELCOUNT = 2;

7/denotes state of the system
//states are in mainRedSoxNode.h
unsigned char SYSSTATE;

//external variable pointing to flash
//extern long * flashPtr;
extern unsigned long flashPtr;

//try to figure out radio state
#define RX 0
#define TX 1
extern int RADIO_STATE;

90 int RADIO_CONFIG;

//unsigned int sarmplecount - 0;
//unsigned int sentSample0Count =

//Button click variables
H, //unsigned int isButtonClicked = 0;

//unsigned int btnClickedSentCnt = 0;

//variable to keep track of when to sample compass and low g accell
100 unsigned long compassLowGCtr - 0;

unsigned char LOW_GDATA [3;//low g accel data
unsigned int I2CAccelStage = 0;
unsigned char I2CAccelREG;

unsigned

unsigned

unsigned

unsigned

char COMPASS_DATA[6];
int compassByteCtr = 0;
int compassStage - 0;
int compassIdleCtr = 0;

void main(void) {
int i,temp ,delay;

//set up MSP430
CONFIG()O;
CONFIGSPIO();
CONFIGI2C();
CONFIGSPI1 ();
CONFIGIO();

120 CONFIGADC();
CONFIG_FLASH ();



nRF_RESET();
nRF_SetStdByMode();

//configl2CA ccel ();
//configl2CCompass () ;

CONFIGTIMERBO ();

//samplel2CCompass () ;

//mtl
current_channel - nRFBASECHANNEL;
rxcnt - 0;
configRXCnt = 0;
SYS_STATE = Ox03; //start in unknown state
txcnt = 0;
compassLowGCtr = 0;

//initialize the interval to be timed - DEPENDS ON RF PACKET
7/SIZE AND TIME SPENT IN DATA WAITING
//large interval temp is between RX of broadcast and preparation
//for next broadcast
//should be somewhat less than BROADCASTINTERVAL
//tradeoff between power consumption and tolerance to node/basestation
//clock skew

150 //second arg of CONFIGTIMER-LAJNT must be less than temp
temp - BROADCASTINTERVAL - Ox0200; //maximum timer arg is 9487 - max
//num nodes should be 26

// added 100 to the original 330 value to make it 430 because 4 bytes
//added to payload.
if(ID > 0 && ID <= MAX_NUM_NODES){

delay = 225+(ID*430); //225 and 330 are offset based on a minimum
//overhead time of 1095 usec

CONFIG_TIMERAINT(temp,delay,0);
}

//give nRF time to go to PWrLUP mode before going to stand by
for(i=0;i<5000;i++) {}
nRFCONFIG(RXCONFIG_BYTES ,RX_CONFIG_BYTES_LENGTH);
RADIO_CONFIG = RX;

for(i=0;i<100;i++) {} //debug
//HACK the nRFSetTXRX will flip this state
RADIO_STATE - TX;

170 nRF_SetTXRXMode();

//initialize header for RF packets
DATAPACKET[O] = ID;

for(i = O; i < 6; i++)

COMPASS_DATA[i] - 0;

LedDriver(1,0,0); //dim red led

//enable interrupts
_EINT();

while(l) {
//enter low power mode
//LPMO;

} // end main()

void ERROR(void){
while (l);

void sampleLowGAccel(void){
//WRITE5 TO BYTES 10, 11, 12 of DATAPACKET
DATA_PACKET[4] = 0;
DATA_PACKET[5] = 0;
DATA_PACKET[6] = 0;

DATA_PACKET [1]
DATA_PACKET [2]
DATA_PACKET [3]

DATA_PACKET[4] -
DATAPACKET [S] =
DATA_PACKET[6] =
DATAPACKET [7]
DATAPACKET [8]

= 0;

= 0;

= 0;
readl2CAccelRegister(OUTX);
readl2CAccelRegister(OUTY);
readl2CAccelRegister(OUT_Z);
= 0;
= 0;

void sampleCompass(void) {
//WRITES TO BYTE 13,14 of DATAPACKET
samplel2CCompass ();
DATA_PACKET [13] = COMPASS_DATA [0];
DATA_PACKET [14] = COMPASSDATA [I;

void sampledata(void) {

220 unsigned int adcl,adc2;

//50us to complete conversions
ADC12CTLO I= ADC12SC; // Start conversion
while(!(ADC12IFG & Ox40));
adcl = ADC12MEM2;
adc2 = ADC12MEM4;
DATA_PACKET [] = adcl>>4; //analog 4 - AccX high byte
DATAPACKET [2 = (adcl<<4) I (adc2>>8); //AccX low nibble and AccY high nibble
DATA_PACKET[3] - adc2; //analog 6- AccY low byte

230 adcl - ADC12MEM5;
adc2 = ADC12MEM6;
DATA_PACKET[4] = adcl>>4; //analog 7- AccZ high byte
DATAPACKET[5] = (adc<<4)I(adc2>>8); //AccZ low nibble and GyrP high nibble
DATA_PACKET [6] = adc2; //analog 8- GyrP low byte
adcl = ADC12MEMO;
adc2 = ADC12MEM3;
DATAPACKET[7] = adcl>>4; //analog 1 - GyrR high byte
DATA_PACKET[83 - (adcl<<4) I (adc2>>8); //GyrR low nibble and GyrY high nibble
DATA_PACKET[9]3 adc2; //analog 5 - GyrY low byte

240 //adcl = ADC2MEM1;
/DATAPACKET[10] = adcl>>4; //analog2 - Aux high byte

//DATAPACKET[11] = adcl<<4; //Aux low nibble
180



/**
* RX.MESSAGE[O] = command value
* RX.MESSAGE[1] = Timestamp byte 1
* RXMESSAGE[2] = Timstamp byte 2

250 * RXMESSAGE[3-15] = command specific data

void nRF_data_waiting(void) {

_DINT();
//LedDriver(0,4,4);//Red LED off
//clear the interrupt flag
PIFG &= ~BIT4;

260 //Start timers for standard mode right away, reset timers when entering
//new mode
TACTL 1= MCO; // Start timing the RF interval

//GMMN1ED NO SUCH FUNCTION EXISTS????
//nRFSHOCKBURSTBLOCKINGREAD(RXMESSA G 9RXMESSAGELENGTH) ;
//read the received data
nRF_READ_FROM_EXPECTED_PACKET(RX_MESSAGE ,8);

//if the system is in the middle of gathering data to flash record
270 //new timestamp, enable interrupts& ret

7/NEED A STOP FOR THIS
if(SYSSTATE == SAMPLE_2_FLASH && RX_MESSAGE [0] == SAMPLE_2 FLASH){

TS_BYTEO = RX_MESSAGE [1];
bt\ TSBYTE1 = RX_MESSAGE [2;

_EINT();
return;

}

//when we hear a packet we hop up to the next channel and reply on that
280 //channel. if its a network config packet we do not increase the current

channel (may not need this)
if(RX_MESSAGE[O] -- RF_CONFIG_CMD )

nRFSetupChannelBytes(0);
else
nRFSetupChannelBytes(1);

//network reconfig packet
if (RXMESSAGE[O] == RF_CONFIG_CMD ){//8h configRXCnt = 0)

//network configuration packet - OxAA
//TACTL 8-- MCO; 7/stop TimerA because we will not be replying

290 handleAAPkt ();
} //sample data and send it back packet
else if(RX_MESSAGE[O] == OxAF){
handleAFPkt();

} else if(RXMESSAGE[O] == STOP_SAMPLE_2_FLASH){
SYS_STATE = STOP_SAMPLE_2_FLASH;

} else if(RX_MESSAGE[O] == SAMPLE_2_FLASH){
if(SYS_STATE == FLASH_FULL){

7/set the data packet up to reply FLASH-FULL as status and keep
//sending that

300 //once the host PC has heard back from all the nodes that flash is
/full it

//will start getting the data from the nodes.
7/get ready for TX
nRF_CONFIG(TX_SHORTCONFIG_BYTES , TXSHORT CONFIGBYTES LENGTH);

RADIOCONFIG = TX;

DATA_PACKET [0] = FLASHFULL;
DATA PACKET[l] = ID;
DATAPACKET [2] - 0;
DATA_PACKET[3] = 0;

310 DATA_PACKET[4] = 0;
DATA_PACKET[5] = 0;

} else {
TACTL &= -MCO; //for the duration of sample & write to flash remain

//in rx mode
// PIE &- ~BIT4; //disable interrupts for the NRF
// P1IFG &= ~BIT4; //clear any pending

nRFCONFIG(TX_SHORT_CONFIG_BYTES ,TX_SHORTCONFIGBYTESLENGTH);
320 RADIO_CONFIG = TX;

handleSample2FlashPkt ();

//TACI7, I= MCO;

else if(RX MESSAGE[O] == ERASE_FLASH){
TACTL &= "MCO; 7/stop TimerA because we will not be replying during

//flash erase
handleEraseFlashPkt ();

330 TACTL 1= MCO;
}
else if(RX_MESSAGE[0] == SYS_IDLE) {

//Node Idle Mode
//get ready for next TX
SYS_STATE = SYS_IDLE;
nRF_CONFIG(TX_SHORT_CONFIG_BYTES ,TX_SHORTCONFIGBYTESLENGTH);

RADIO_CONFIG = TX;

handleSysIdlePkt();

} else if(RX_MESSAGE [O == NEXT PACKET){
340 //TX MODE

nRF_CONFIG (TX_SHORT_CONFIG_BYTES,TX_SHORT_CONFIG_BYTES LENGTH);
RADIO_CONFIG = TX;

handleNextPacketPkt();

} else
ERROR();

//LedDriver(1, 4, 4);
_EINT(0;

350

* Use Timer Al to set radio to TX mode and send data
* Use Timer AO to set radio back to RX mode

7/Cross Works
360 //void TimerA1 (void) __interrupt [TIMERALVECTOR]{

__interrupt void Timer_Al(void);

TIMERA1_ISR(Timer_Al)

_interrupt void Timer_Al(void) {
int i, flag;



DINT () ;
if(SYSSTATE == FLASH-FULL)
LedDriver(l, 1 , 0);

else
370 LedDriver(O, 1, 0);

txcnt++;
DATA_PACKET[181 = txcnt >> 8;

DATA_PACKET[19] = txcnt;

flag = TAIV; //have to manually reset Al
//set TX mode
nRFSetTXRXMode();

//write packet to nRF buffer
nRFSHOCKBURST_BLOCKING_WRITE(DATA_PACKET , RFPACKET_BYTE_LENGTH,ADDRBYTES,
ADDRBYTES_LENGTH);

//take CE low to start TX, then enter standby
nRF_SetStdByMode();

//prepare return to receive mode
for(i=0;i<950;i++) {}//wait for TX to occur 195us + TOA
//LedDriver(4,4,0);

nRF_CONFIG(RX_SHORT_CONFIG_BYTES , RX_SHORTCONFIGBYTES LENGTH);
RADIO_CONFIG = RX;
//config leaves nRF in standby
LedDriver(O, 0, 0);
_EINT();

/** set radio to RX mode after a TX **/
400 __interrupt void Timer_AO(void);

//Crossworks void Timer.AO (void) -- interrupt[TIMERALVECTOR] {
TIMERAO_ISR(TimerAO)
-interrupt void Timer_AO(void) {

_DINT();

if(SYS_STATE == FLASH_FULL)
LedDriver(l, 0, 1);

else
LedDriver(O, 0, 1);

//turn off/reset timer AO
TACTL &- -MCO;
//Return to receive mode
nRF_SetTXRXMode();
_EINT();

/c
420 * Running at 1000Hz

__interrupt void TimerBO(void);
// Crossworks void Timer.BO (void) -- interrupt[TIMERBaLVECTOR] {
TIMERBO_ISR(Timer_BO)
__interrupt void Timer_BO(void){
unsigned char status = 0;

int i;
//.DINT();
//P1OUT I= BIT1; //TESTING TIMEING

430 status - TBIV;
//LedDriver (1, 0, 0);

//this is annoyign code that does I2C commands as other sensors are being
//sampled
if(compassLowGCtr%215 == 0 && compassStage == 0){

DATAPACKET[1] = OxFF;
DATAPACKET [2] OxFF;

440 DATA_PACKET[3] - OxFF;
DATAPACKET [4] = COMPASSDATA [0;
DATA_PACKET [5 = COMPASS_DATA[13;
DATA_PACKET [6 = COMPASS_DATA [2];
DATA_PACKET [7 = COMPASS_DATA[3];
DATA_PACKET [8 = COMPASS_DATA[4];
DATA_PACKET [9 = COMPASS_DATA[5];

DATA_PACKET[10] - OxFF;
DATA_PACKET[11] - OxFF;

450 compassStage = 1;

}else if(I2CAccelStage == 0 && compassStage == 0
&& compassLowGCtr < 83 && 0){

//83 is hand tuned to make sure a low g accel
//read doesnt start when the compass is due to start
//low g accel read take 16 cycles of a 1000Hz timer

//record previous data
460 //for(i = 1; i <= 11; i++)

// DATAPACKFT[i] = 0;
DATAPACKET[1] = 0;
DATAPACKET[2] = 0;
DATAPACKET[3] = 0;
DATA_PACKET [4 - LOW_G_DATA [];
DATA_PACKET [5] = LOW_G_DATA [1];
DATA_PACKET[6] = LOW_G_DATA[2];
DATAPACKET[7] = 0;
DATAPACKET[8] = 0;

470

//compassLowGCtr = 0;
I2CAccelREG = OUT_X;
I2CAccelStage - 1;

} else
sample_data();

compassLowGCtr++;

480 if(compassStage > 0){
switch (compassStage){
case 1:
readCompassSendStart();
compassStage = 2;
break;
case 2:
if(readCompassCheckTX() == OxO1)



compassStage = 3;
break;

490 case 3:
if(readCompassCheckSTPTX() -- OxO1)
compassStage = 4;

break;
case 4:
if(readCompassCheckStart2TX() == OxO1)
compassStage = 5;

break;
case 5:
if(compassIdleCtr==1) {

500 compassIdleCtr - 0;
compassStage = 6;

} else {
compassIdleCtr++;
PIOUT 1= BITi;

}
break;

case 6:
if(readCompassCheckByteRX() == OxOl){

510 COMPASS_DATA[compassByteCtrl = UCB1RXBUF;
compassByteCtr++;
if(compassByteCtr == 6) {
UCB1CTL1 I

= 
UCTXSTP; //send stop

PIOUT &= -BIT1;
compassByteCtr = 0;
compassStage = 7;

break;
520 case 7:

if(readCompassCheckSTPTX2() == 0x01)
compassStage = 0;

break;
}

}else if(I2CAccelStage > 0){
switch(I2CAccelStage) {

case 1:
readl2CAccelRegSendStart(I2CAccelREG);

530 I2CAccelStage = 2;
break;
case 2:
if(readl2CAccelRegCheckTX() == OxO1)
I2CAccelStage = 3;

break;
case 3:
if(readI2CAccelRegCheckStart() == OxO1)
I2CAccelStage = 4;

break;
540 case 4:

if(readl2CAccelRegCheckStop() == OxOl){
if(I2CAccelREG == OUT_X){
LOW_G_DATA[O] = UCB1RXBUF;
I2CAccelREG = OUT_Y;
I2CAccelStage = 1;

} else if(I2CAccelREG == OUT_Y){
LOWG_DATA[21 = UCBlRXBUF;

I2CAccelREG = OUTZ;

I2CAccelStage = 1;

550 } else {
LOW_G_DATA[2] = UCB1RXBUF;
I2CAccelStage - 0;

}
}
break;

status = mtl_write_sample_toflash(DATA_PACKET, 1, 1);

if(status -- FLASH_FULL){

TBCTL &= -BIT4; 7/Stop timer b
TBCTL &= "BITO; //clear interrupt flag...
SYS_STATE = FLASHFULL; //let everything else know the flas

DATA_PACKET[O] = FLASH_FULL;
DATA_PACKET[1] = ID;

570 TACTL I- MCO;
PIlE I= BIT4; //reenable interrupts for radio.
LedDriver(O, 1, 0); //back to red led

//PlOUT &= -BIT1;
//.EINT();

}

void handleSysIdlePkt (void){

LedDriver(0,0,0);

//Process Message
if(RX_MESSAGE[1] == OxFF II RX_MESSAGE[1l == ID){

//we have a message
if(RX MESSAGE[21 == Ox01){

LedDriver(RX_MESSAGE[3],RX_MESSAGE[4] , RXMESSAGE[5]);

DATA_PACKET O] = RX_MESSAGE[O];
590 DATAPACKET[1] = ID;

//DATAPACKET[2] = isButtonClicked;
//if (isButtonClicked = 1)
// btnClickedSentCnt++;

//if (btnClickedSentCnt >= 10){
// isButtonClicked = 0;
// btnClickedSentCnt = 0;

//}

600
void handleNextPacketPkt(void){

int po = 0;
int i;
unsigned long addr;

i = RX_MESSAGE[4];
i = i << 8;
i += RX_MESSAGE[5];

h is full.



610 //if (RX.MESSAGE[4] -- Ox00 & RXMESSAGE[5] = Ox01)
// sentSampleOCount++;

//if (sentSample0Count -- 10)
// sentSampleOCount++;

if(RX_MESSAGE [4 == 0)
LedDriver(0,0,1);

DATA_PACKET [0) = RX_MESSAGE [0];
620 DATA_PACKET[l] = ID;

DATA_PACKET [2 = RX_MESSAGE[4] ;
DATA_PACKET [3) - RX_MESSAGE [5];

addr = (unsigned long) ((unsigned long)UPPER_FLASH_TOP -
((unsigned long)SAMPLE_SIZE * (unsigned long)i));

//standard memory arch, get rid of UPPER and make LOWER to use

if(addr > UPPER_FLASH_TOP)
po++;

630

640

//for msp430f2618 need to dick around with the interrupt vector being in
//the middle of flash

if(addr-SAMPLE_SIZE < (unsigned long)UPPER_FLASH_BASE) { //addr is the
//top of the sample, if entire sample doesnt fit start at the top of
//lower mern subtract the number of whole samples that are in the upper
//memory then start reading samples from LOWERFLASILTOP

i = i - (UPPER_FLASH_TOP - UPPER FLASH_BASE)/SAMPLE SIZE;

addr - (unsigned long) (LOWER_FLASH_TOP - (SAMPLESIZE * i));

//this erases upper flash memory
longAddr - (unsigned long) UPPER_FLASH_TOP;
for(i - 0; i < UPPER_SEGMENT COUNT+1; i++){

mtl_erase_upperflashsegment(longAddr);
longAddr -= 512;

}

680 //this erases lower flash memory
addr = (char *) LOWER_FLASH_TOP;
for(i = 0; i < LOWERSEGMENT_COUNT+1; i++){

mtl_erase_flash_segment(addr);
addr -- 512;

}
flashPtr = (unsigned long) UPPER_FLASH_TOP;

LedDriver(1, 0, 0);
EINT();//just in case

690 1

7

i = mtl_read-samplefromflash(addr);

if(i == FLASH_END){
DATA_PACKET[4] = FLASHEND;
DATA_PACKET [5] = FLASH_END;
DATA_PACKET [6 = FLASHEND;

/***** handle command to sample to flash ***/
void handleSample2FlashPkt(void){

SYSSTATE = SAMPLE_2_FLASH;
//starting timer b will start flash gathering process
start_timer_B();

void handleEraseFlashPkt(void){
int i;
char * addr;
unsigned long longAddr;

_DINT();//just in case

LedDriver(l, 1, 0);

//reset flash ptr
670 //erase segment by segment

/*** Network Configuration Packet ***/
void handleAAPkt (void){

configRXCnt++;
nRF_BASECHANNEL = RX_MESSAGE [5;
//bytes 3 t& 4 becase USB packet is shifted to insert timestamp
nRF_CHANNEL COUNT = RX_MESSAGE [4];

00 current_channel - nRF_BASE_CHANNEL;

/****

* byte 5 has the base channel because somethign was fucking it up along the
*way...

/*** Sample and Respond withing RF interval **/
710 void handleAFPkt(void){

//mtl

//save timestamp to tx back to base
TS_BYTEO = RX_MESSAGE [1];
TSBYTE1 = RX_MESSAGE [2;
rxcnt++;

// Standard Low Latency Mode
7/get ready for next TX
nRFCONFIG(TXSHORT_CONFIGBYTES ,TX_SHORT_CONFIG_BYTES_LENGTH);

720 //config leaves nRF in standby
DATA_PACKET[O]=ID; 7/set packet header to node ID
//sample IMU and pressure sensors
sample data(); //100us to complete conversions with capacitive sensing on
LedDriver(2,2,0);
//Process Message
if(RX_MESSAGE[1] -- OxFF II RX_MESSAGE[1] -- ID){

//we have a message
if(RX_MESSAGE [2 == OxO1){

LedDriver(RX_MESSAGE[3] , RX_MESSAGE[4] , RXMESSAGE [5]);
730 }



* Increase channel, deal with wraparound, and set all configuration bytes for
* the radio properly.

void nRFSetupChannelBytes(int increaseChannel){
740 unsigned char configByte;

if(increaseChannel) {
if(current_channel == nRF_BASE_CHANNEL + nRF_CHANNEL_ COUNT)

current_channel = nRFBASECHANNEL;
else
current channel++;

}

configByte = current_channel << 1;

750 //assume that we are padded with O's
TX_CONFIGBYTES [14 = configByte;
TX_SHORTCONFIG_BYTES [0] configByte;

//flip bit for RX mode
configByte 1= Ox01;
RX_CONFIGBYTES[14] = configByte;
RXSHORT_CONFIGBYTES [0] = configByte;

760 __interrupt void Pl_interrupt(void);
f-r PORT1_ISR(Pi_interrupt)

//Crossworksvoid Plinterrupt(void) __interrupt [PORTLVECOR] {
__interrupt void Plinterrupt (void) {

DINT ();

if((P1IFG & BIT4) != 0)//{
nRF_data_waiting();

//} else if ((PlIFG t BIT1) != 0){ //Button pressed
770 // P1IFG &= ~BIT1; //clear interrupt

// isButtonClicked = 1;

else
ERROR ();

_EINT();

780
void start_timer_B(void){
TBCTL 1= BIT4;

//disable radio interrupts.
PilE &= -BIT4; //disable interrupts for the NRF
P1IFG &= -BIT4; //clear any pending



0 ; ****************************************

File: Ext Intrinsics.asm
Author: Bhargavi Nisarga, Texas Instruments Inc
Date: July 2007

Routines to access the upper memory above 64-KB data area
Accessed out of C as standard extern Calls.

These assembler functions are mainly to used to access the upper memory above
64 KB as a data area or access the 20-bit SFRs in lower 64 KB. 70

Note: This assembler file should be included in the project while exceuting
C programs which interface the global functions listed in this
assembler file.

; *******************************************************
.global

.global

.global

.global

__data20_read_char
__data20_readshort
data20-writechar

__data20_write short
.global __datal6_write_addr
.global __datal6_readaddr

; "unsigned char __data20_read_char(unsigned long __addr)"
This function is used to access the upper memory above 64-KB as a data area
An unsigned char present at the upper memory above 64 KB is read.

; Passing parameter : unsigned long __addr - the 20-bit address is stored in
; integer as two words; lower word in R12 and upper word in R13
Return parameter : unsigned char - the 8-bit char return value is the data

30 ; present at the 20-bit address location is returned in R12

.text
__data20Oreadchar:

push.w R13 ;upper word
push.w R12 ;lower word
popx.a R13 ;20-bit address
;Move 8-bit char value at the 20-bit addr locn to R12
movx.b OxO(R13), R12 ;R12 contains the return value
reta ; return

"unsigned short __data20_readshort(unsigned long __addr)"
This function is used to access the upper memory above 64-KB as a data area.
An unsigned short interger present at the upper memory above 64 KB is read.

; Passng parameter : unsigned long __addr - the 20-bit address is stored in long
integer as two words; lower word in R12 and upper word in R13

Return parameter : unsigned short - the 16-bit return value is the data
present at the 20-bit address location is returned in R12.

-------- ==-========--=-=-==============--=======-=====-=--======---=============

50 .text
__data20_readshort:

push.w R13 ;upper word
push.w R12 ;lower word
popx.a R13 ;20-bit address
;Move 16-bit short value present at the 20-bit address
;(in R13) location to R12
movx.w CR13, R12 ;R12 contains the return value
reta ; return

120
60 ;=-===========================

"void __data20_writechar(unsigned long __addr, unsigned char __value)"
This function is used to access the upper memory above 64-KB as a data area in
address order to write a 8-bit char value into the extended memory whose 20-bit
is passed to the function as a 32-bit long integer.
Passing parameter : unsigned long __addr - the 20-bit address location to which

a char value is to be written is stored in long integer as
two words; lower word in R12 and upper word in R13;
unsigned short __value - the 8-bit char value stored in

R14, is the data that is to be written into the 20-bit
address location.

Return parameter : Void

.text
_data20_write char:

push.w R13 ;upper word
push.w R12 ;lower word
popx.a R13 ;20-bit address
;Write the 8-bit char value in R14 onto the 20-bit
;address (in R13) location
movx.b R14,0xO(R13)
reta ; return

Svoid __data20_writeshort(unsigned long __addr, unsigned short __value)"
This function is used to access the upper memory above 64-KB as a data area in
order to write a 16-bit short integer into the extended memory whose 20-bit
address is passed to the function as a 32-bit long integer.
Passing parameter : unsigned long __addr - the 20-bit address location to which

a char value is to be written is stored in long integer as
two words; lower word in R12 and upper word in R13;
unsigned char __value - the 16-bit char value stored in R14,

is the data that is to be written into the 20-bit addr locn.
Return parameter : Void

.text
__data20_writeshort:

push.w R13 ;upper word
push.w R12 ;lower word
popx.a R13 ;20-bit address
;Write the 16-bit short value in R14 onto the 20-bit
;address (in R13) location
movx.w R14,0xO(Ri3)
reta ; return

"void __datal6_writeaddr(unsigned short __addr, unsigned long __value)"
; This function is used to access 20-bit SFRs in lower 64 KB. An unsigned long
value having 20-bit data can be written into the lower 64-KB memory location
that can store a 20-bit value.
Passing parameter : unsigned short __addr - the 16-bit address location, in

the lower 64-KB memory space that can store a 20-bit value
is stored in register Ri2;
unsigned long __value - the long integer contains the 20-bit
value in two words; lower word in R13 and upper word in R14.

Return parameter : Void

.text
__datal6_writeaddr:

push.w R14 ;upper word
push.w R13 ;lower word
popx.a R14 ;20-bit address
;Move the 20-bit address in R14 to a 16-bit address



;(in R12) location, i.e. move a 20-bit value to a
;20-bit SFR in the lower 64-KB memory location
movx.a R14, OxO(R12)
reta ; return

; "unsigned long __data16_read-addr(unsigned short __addr)"
This function is used to access 20-bit SFRs in lower 64 KB. A 16-bit unsigned
short address that contains 20-bit address value is read.

130 ; Passing parameter : unsigned short __addr - the 16-bit address location of the
20-bit SFR , which can stores a 20-bit value, in the lower

64-KB memory space is stored in register R12
Return parameter : unsigned long __value - the 20-bit value that was present

at the 16-bit address location in the lower 64 KB memory, is
returned an a long integer contained in two words; lower
word in R12 and upper word in R13.

.text
__datal6_readaddr:

140 ;R12 has the 16-bit address of a 20-bit SFR
pushx.a QR12 ;push 20-bit addr to stack
;pop as two words
pop.w R12 ;lower word in R12
pop.w R13 ;upper word in R13
reta ; return

.end ; End of assembler code

C



0 //flash.c
//Handle the on chip flash memory
//Configuration is handled in initNode

#include <msp430x26x.h>

#ifndef flash
#include "flash.h"
#define flash

//start mtl flash code
unsigned long flashPtr = (unsigned long) UPPERFLASHTOP;

//extern functions to do extended memory stuff on msp4302618
unsigned char __data20_read_char(unsigned long __addr);
void __data20_writechar(unsigned long __addr, unsigned char __value);

20 /**
* DATAPACKET[O] - node id, dont write
a DATAPACKET[1-9] - A/D data from sensors
* DATAPACKET[10-12] = low g accell X, Y, Z
* DATAPACKET[13-14] = Compass heading
* OLD- OLD -- DATAPACKET[0O-11] - Timestamp RX'd at 100Hz from basestaion

unsigned char write_sample_to_flash(unsigned char packet[], int writeLowG,
int writeCompass){

S /ASSUME INTERRUPTS ARE DISABLED
30 //dont write node id

char * addr;
int i;
if(flashPtr-SAMPLE_SIZE > (unsigned long)UPPER_FLASH_BASE){

//OK to write sample to upper flash
FCTL3 = FWKEY; //unlock

FCTL1 = FWKEY + WRT;

for(i - 1; i <= SAMPLE_SIZE; i++){
__data20_writechar(flashPtr , packet[il);

40 while(FCTL3 & BUSY);
flashPtr--;

}
FCTL1 = FWKEY;
FCTL3 = FWKEY + LOCK; 7/lock

} else if(flashPtr-SAMPLESIZE < (unsigned long)UPPER_FLASH_BASE &&
flashPtr-SAMPLESIZE > (unsigned long)LOWER_FLASH_TOP)
flashPtr = (unsigned long)LOWER_FLASH_TOP;

//ensure we wont overwrite the bottom of our alowed flash
if((flashPtr-SAMPLE_SIZE) > ((unsigned long)LOWER_FLASH_BASE) &&
flashPtr-SAMPLE SIZE < (unsigned long)LOWER_FLASH_TOP) {
FCTL3 

= 
FWKEY; //unlock

FCTL1 - FWKEY + WRT;

flashPtr--;

FCTL1 = FWKEY;
FCTL3 - FWKEY + LOCK; //lock

} else if(flashPtr < LOWER_FLASH_TOP)
return FLASH_FULL;

return 0;

extern char DATA_PACKET[];

unsigned char readsamplefrom_flash(unsigned long addr){
int i;
char * shortAddr;

if(addr-SAMPLESIZE > (unsigned long) UPPERFLASHBASE){
//this sample is in the upper flash area.
for(i = 0; i < SAMPLE_SIZE; i++)

80 DATA_PACKET[i+4] = __data20_read_char(addr-i);
} else if((addr-SAMPLE_SIZE) > (unsigned long)LOWER_FLASHBASE) {

//lower flash area
shortAddr = (char *) addr;
for(i =0; i < SAMPLE_SIZE; i++)
DATA_PACKET[i+4] = *(shortAddr - i);

} else
return FLASH_END;

return (unsigned char) OxO0;
90 1

void eraseflashsegment(char * addr){
if(LOWER_FLASH_BASE <= (unsigned int)addr && (unsigned int)addr <= LOWER_FLASH_TOP){

FCTL1 = FWKEY + ERASE;
FCTL3 = FWKEY;
*addr = 0;
//Ryans code didnt do this ....
while(FCTL3 & BUSY);

100 FCTL3 = FWKEY + LOCK;

void erase_upper_flash_segment(unsigned long longAddr){
if(UPPERFLASHBASE <= longAddr && longAddr <= UPPER_FLASH_TOP){
FCTL1 = FWKEY + ERASE;
FCTL3 = FWKEY;

__data20_write_char(longAddr, (unsigned char) 0);
//Ryans code didnt do this ....

110 while(FCTL3 & BUSY);
FCTL3 = FWKEY + LOCK;

#endif

for(i = 1; i <= SAMPLESIZE; i++){
addr = (char *) flashPtr;
*addr = packet[i];

60 while(FCTL3 & BUSY);



0 //flash.h

void erase_flash_segment(char *);
void _erase_upper_flashsegment(unsigned long);
unsigned char write_sample_toflash(unsigned char [], int, int);
unsigned charreadsample_from_flash(unsigned long);

//if changing this change mainRedSoxNode.h too!!
#define FLASH_FULL OxBD
//if changing this change flash.h too

10 #define FLASH END OxB1

#define LOWER FLASH_TOP OxFDFF
#define LOWER_FLASH_BASE OxSO00 //MSP430F148
//#define FLASHBASE Ox2000 //MSP430F149

//MSP430F2618 has its main memory divided by the interrupt vector in the middle, lame
#define UPPER_FLASH TOP OxlFFFF
#define UPPERFLASH_BASE Ox1O000

20 #define UPPERSEGMENT COUNT ((UPPER_FLASH_TOP-UPPER FLASH BASE)/512)
#define LOWER_SEGMENT COUNT ((LOWER FLASH_TOP-LOWER_FLASH_BASE)/512)
#define SAMPLE_SIZE 11 //11 byte samples will be written to flash

/**** Flash structure F149
see output of compiler to see where to place flash data and where te code is writen



Appendix C

Camera Synchronization

In order to facilitate validation of future sportSemble work, namley joint angle calculations

and any 3D representation driven by sportSemble data, it was necessary to synch sportSem-

bles data stream with a data stream from a known system, XOS Technologies Sport Motion

was the chosen system. XOS was kind enough to augment on of thier cameras with a BNC

adapter that carried a digital signal out of thier system. The signal was synchronous with

the shutters on their high speed cameras, it would be raised high for the duration of the

open shutter and would be held low when the shutter was closed. Counting these pulses is

what enables synchronization.

A standard coaxial cable was run from the BNC connector on the camera to a second

BNC connector on the sportSemble basestaion. The shielding of the cable was connected

to ground, and the center wire was connected to a digital I/O pin on the basestation's

microcontroller.

The basestation's firmware used a counter to count the pulses from XOS's camera, it also

managed resetting, recording, and sending counter values to the host PC. The counter

behaved as follows; with any FLASHERASE command it was reset, remember once it

was reset digital pulse that came in was recorded and the counter was incremented by 1.

These are analagous to individual frames in video data that XOS can provide. When a
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SAMPLE2_FLASH command is sent the value of the counter is stored in memory, this

is the frame number in an XOS video file that is equal to the start time of sportSembles

data recording. The counter continues to be incremented while bothe systems record data.

When a FLASHFULL packet is recieved from a sportSemble node the counter value is also

stored in memory. This second counter value denotes what frame number in the XOS video

marks the end of sportSembles data stream. Once this occurs the basestation sends both

of the counter values to the PC host application and they are recorded in a file.

Knowing how many frames into the video sportSemble started recording, and how many

frames into the video sportSemble stopped recording allows for synchronization of the tho

data sets.

There is on caveat, before a new video is started in the XOS system the cameras shut-

ters are opened and closed several times with no frames being recorded to the video file.

This problem is simply worked around as the number of unrecorded frames is always the

same, 226. When doing any data synchronization it is necessary to subtract 226 from both

recorded counter values.
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