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ABSTRACT

While magnetic resonance imaging (MRI) derives its signal from protons in water, additional and

potentially important biochemical compounds are detectable in vivo within the proton spectrum. The

detection and mapping of these much weaker signals is known as magnetic resonance spectroscopy or

spectroscopic imaging. Among the complicating factors for this modality applied for human clinical

imaging are limited chemical-shift dispersion and J-coupling that cause spectral overlap and complicated

spectral shapes that limit detection and separation of several brain metabolites using MR spectroscopic

imaging. Existing techniques for improved detection include so-called 2D spectroscopy, where additional

encoding steps aid in the separation of compounds with overlapping chemical shift. This is achieved by

collecting spectral data over a range of timing parameters and introducing an additional frequency axis,

fl. Spectral editing techniques attempt to enhance metabolite signal detection along fl in order to resolve

specific metabolite signals. While these techniques have been shown to improve signal separation, they

carry a penalty in scan time and more complicated reconstruction compared to conventional spectroscopy,

and are often prohibitive when combined with spectroscopic imaging. The task of this thesis is to

characterize and optimize existing 2D spectroscopy techniques for improved metabolite resolution with

reduced number of timing steps through numerical simulation and experimental validation in phantoms.

Thesis Supervisor: Elfar Adalsteinsson
Title: Associate Professor of Electrical Engineering and Computer Science; Associate Professor of
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1. Introduction

Nuclear Magnetic Resonance (NMR) was discovered independently by Felix Bloch [1]

and Edward Purcell [2] in 1946. In the 1950's, NMR was used extensively in chemistry and

physics for the evaluation of molecular structure and kinematics. In 1973, Paul Lauterbur

demonstrated using linear gradient fields to spatially map molecules in a strong magnetic field.

This opened up new applications for Magnetic Resonance Imaging (MRI), particularly in medical

diagnostics for imaging soft tissue without the ionizing radiation effects of X-ray and Computer

Tomography (CT) imaging.

In addition to anatomical imaging, magnetic resonance can also provide physiological

and biochemical information via Magnetic Resonance Spectroscopic Imaging (MRSI, also

known as chemical shift imaging (CSI)).

1.1. MRSI

MRSI is an imaging technique where one obtains a frequency spectrum of signals, e.g.

brain metabolites in vivo, from an isolated volume of tissue. MRSI is based on the MR

phenomenon of chemical shift, a subtle frequency shift in the signal that is dependent on the

chemical environment of the particular compound. It is due to this frequency shift that there is a

potential for physiological evaluation and material characterization of a volume of interest.

Chemical shift is defined as a small displacement of the resonance frequency due to

shielding created by the orbital motion of the surrounding electrons in response to the main Bo

field. By placing a sample of material in a uniform magnet, exciting it, recording the signal from

its Free Induction Decay (FID), and then Fourier transforming the FID, the resultant MR

spectrum shows resonances at different frequencies corresponding to different chemical shifts



[3]. The amount of displacement and the amplitude of the peaks in the spectrum depend on the

molecular structure of the compound of interest.

In the presence of the main magnetic field Bo, the effective field experienced by the

nucleus is

B,ff = Bo - BSo = Bo(t - o)
(1.1)

where a represents a shielding constant dependent on the chemical environment. From the

Larmor relationship, we can write the above equation as

,,ff = OC) - , o" = WO(t- )(1.2)
(1.2)

where wOa0 is the displacement of the resonant frequency. Thus the change in frequency is

proportional to the magnetic field Bo. By expressing this displacement in resonant frequency in

units of "parts per million" (ppm) with respect to a reference frequencyWo, the displacement in

frequency can be compared across scans with different main magnetic field Bo strengths. If the

resonant frequency of the sample is ws, then the chemical shift 6 in ppm is

6 -= x 106 = - x 106 ( , -- o)x 106 because a ~ < 1 (1.3)

The frequency axis in MRSI, for historical reasons, is such that the frequency decreases

from left to right. Figure 1 shows an example of such a spectrum which is the 1H spectrum of

acetic acid (CH3COOH). The three protons of the CH3 experience a different chemical shift than

the proton in the COOH group. The valency of the oxygen in the COOH group leads to an

attraction of the electron away from the proton, so that there is less shielding for the proton in

the COOH group compared to the protons in the CH3 group and the resonant frequency for

COOH deviates more from the reference frequency.



COON

12 8 4 0 -4 .4

Figure 1.'H NMR spectrum of acetic acid (CH3COOH)

1.2. J-coupling

In addition to chemical shifts caused by the shielding of electrons, subtle chemical shifts

also result from J-coupling effects within molecules. Nuclei which are close to one another in

chemical shift exert an influence on each other's magnetic field and this influence is known as J-

coupling. Consider a molecule containing two different spin-% nuclei, A and M, where their

nuclei could be either spin-up (+%) or spin-down (-%). Without any J-coupling, we would expect

one line of resonance in the frequency spectrum obtained from spectroscopic imaging of either

+2', -IA

-J-lL

Figure 2. Energy transitions for two spins Figure 3. Line splitting due to weak coupling
that are weakly coupled results in two lines of resonance separated

by the coupling constant JAm

~t::::::-::::::1~



change is allowed in one transition, so the four possible spin configurations of A and M results in

four different transitions in Figure 2- two for nucleus A and two for nucleus M [4]. Thus, the

frequency spectrum obtained from MRSI of nucleus M (or A) exhibits two lines of resonance

with reduced amplitudes instead of a single line of resonance in Figure 3. This effect is known

as line-splitting.

1.3. 2D MRS

By introducing an additional time variable, a 2D frequency spectrum of metabolites could

be obtained. The additional time variable encompasses additional information on nuclear

interactions including J-coupling information. The simplest 2D MRS sequence comprises two

900 pulses with two time variables tl and t2. Figure 5 is an example of such a sequence.

Magnetization is allowed to precess freely in tl before FID detection during t2. Repeating the

experiment for a range of tl values leads to a two dimensional set of NMR data which can be

Fourier transformed in both dimensions to obtain a 2D frequency spectrum in w1 and w2. The 2D

frequency spectrum reveals coupling information between different metabolites.

1.4. Problem statement

The spectrum in Figure 4 is an example of in vivo signal from human brain, with amount

of signal contributed from the water and the lipid groups in the scanned volume significantly

suppressed by means of applying RF pulse that was spectrally selective. This is crucial in

MRSI, since the metabolite signals of interest are of very small concentration compared to the

water and fat signals (1-10 mM for observable brain metabolites in vivo vs. ~50M for water).

Therefore, spectroscopy scans have intrinsically low SNR compared to conventional MRI of

water [5].



However, low SNR is not the only challenge in MRSI. Line splitting caused by J-coupling

between different nuclei of the same compound further reduces the SNR of the frequency

spectrum of the metabolites. Complicated J-coupling results in multiplets for a single metabolite

and these multiplets often overlap with the spectra of other metabolites, thus making metabolite

quantification and detection difficult.

In addition, inherent B0 and B1 inhomogeneities depend on several factors, including

main field strength, RF coil design, and subject-induced magnetic susceptibility variations, and

further complicate low-SNR metabolite estimates. Other types of signal contaminations, such as

patient movement, contribute to the challenge of obtaining spectroscopic images of high quality.

NAA

ml Cho, Cr

GIx

4 3 2 1

Figure 4. A typical human brain metabolite spectrum from a 1D spin-echo acquisition at
3T with TE/TR = 35ms/2s for a voxel size of 8cc at 1000Hz bandwidth, 20 averages and
1024 ADC points.

1.5. Contributions

Several factors complicate quantification of brain metabolites, including inhomogeneities

in the Bo and B1 fields. To enable comparison across subjects under different scanning

conditions, expressing the metabolite signals as ratios to the sum of the metabolite signal from

Cr and PCr (Cr') is a common technique, which while providing robustness to factors such as

partial voluming and B1 inhomogeneities, relies on inherent assumptions about the stability of a
17



reference signal (often Cr). Work presented in this thesis extends compartmental analysis of

absolute metabolite measures to ratio measure, with applications to human imaging at 7T in

adrenoleukdoystrophy (ALD) [6][7].

A second contribution of this thesis concerns 2D MRS. These methods require stepping

through a range of times in order to obtain a 2D metabolite spectrum, which can yield improved

spectral information for coupled or overlapping spin systems compared to conventional 1D

chemical shift spectroscopy. The number of time steps depends on the methods used and

typically ranges from 16 to 128 steps. By observing the different J-modulation effects on

metabolites of interests at different time steps, it is possible to obtain some combination of

metabolite spectra that will result in better resolution of metabolites. This work explores the

potential combination of metabolite spectra that may contribute to a better detection of

metabolites.

1.6. Organization

The remainder of this thesis is as follows. Chapter 2 contains a more detailed description

of 2D MRS and spectral editing, and the predominant methods for resolving the metabolites

Glutamate (Glu) and Glutamine (Gln). Chapter 3 contains the extension of compartmental

analysis of MRSI absolute metabolite measures to ratio measures. Chapter 4 contains the

analysis from simulated spectra of CT-PRESS, 2DJ-PRESS, TE-averaging PRESS and

concatenated spectra. Chapter 5 contains the analysis of spectra of CT-PRESS, 2D-JPRESS,

TE-averaging PRESS and concatenated spectra obtained from a 3T MRI scanner (Siemens,

Erlangen, Germany). Discussion of the results and future work is presented in Chapter 6.
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2. 2D MRS

2.1. Motivation

2D MR spectroscopy introduces a second frequency axis to chemical shift spectroscopy.

By notational convention, w2 (or f2) is used to resolve chemical shift, while wl (fl) encodes

additional physical characteristics of the underlying spins, often J-coupling or a combination of

J-coupling and chemical shift. The time variables corresponding to w1 and w2, are ti and t2. The

precise meaning of the additional frequency axis w, depends on the kind of experiment

performed. There exist a number of different 2D MRS experiments [8], and this thesis will focus

on those experiments that attempt to resolve glutamate (Glu) and glutamine (Gin) for human

brain spectroscopy at 3T. Glutamate is the most abundant amino acid found in the brain at

approximately 12 mM/kg [9], and acts as an excitatory neurotransmitter. Glu has four protons in

two methylene groups at 2.0375ppm, 2.1200ppm, 2.3378pm and 2.3520ppm, and one proton in

a methine group at 3.7433ppm that are strongly coupled with one another, giving a complex

spectrum at 3T with low-intensity multiplets. The coupling constants and chemical shifts are

summarized in Table 1. The Glu spectrum overlaps with resonances of Gin, y-Aminobutyric acid

(GABA) and N-Acetyl aspartate (NAA), making detection and quantification in vivo difficult. Gin

is a storage form of Glu and is present in the range of 2-4 mM/kg [9]. A large increase of Gin

occurs when the Glu/Gln cycle is altered with disease [10][11]. Gin has four protons in two

methylene groups at 2.1090ppm, 2.1290ppm, 2.4320ppm and 2.4540ppm and another proton

in a methine group at 3.7530ppm that are strongly coupled at 3T. The coupling constants and

chemical shifts of Glu and Gin as reported from Ref. [9] are summarized in Table 1. Separation

of Gin and Glu is very difficult at low field, and this thesis explores methods to resolve the two

metabolites.



Metabolite Group Chemical shift (ppm) Connectivity Coupling Constant J (Hz)

Glutamate 1 CH 3.7433 1-2 7.331
2 CH2 2.0375 1-2' 4.651
2' 2.1200 2-2' -14.849
3 CH2 2.3378 2-3' 8.406
3' 2.3520 2'-3' 6.875

2-3 6.413
2'-3 8.478
3-3' -15.915

Glutamine 1 CH 3.7530 1-2 5.847
2 CH2 2.1290 1-2' 6.500
2' 2.1090 2-2' -14.504
3 CH2 2.4320 2-3 9.165
3' 2.4520 2-3' 6.347

2'-3 6.324
2'-3' 9.209
3-3' -15.371

Table 1. Chemical shifts and coupling constants of protons in Glu and GIn as reported in [9]
which are used in simulation studies in chapter 4

2.2. 2DJ-PRESS

In 2DJ-PRESS [12], data is acquired as a function of tl = TE and t2 = time and Fourier

transformed in both tl and t2 domains. The timing sequence is shown in Figure 5. Because J-

coupling manifests itself in both f, and f2, the spectrum for coupled spins is tilted along the 450-

axis in the (fl, f2) plane. In post-processing, the 2D spectrum is tilted by 450 along the diagonal

to obtain the J-coupling information in f, and chemical shift information in f2. Since the signal is

distributed amongst the coupled peaks, the SNR for each peak in the 2D frequency spectrum is

decreased compared to equal concentration of a singlet.

F .tig r /4 t-2 1 -14 -t 2

Figure 5. Pulse sequence of 2DJ-PRESS [12]



2.3. CT-PRESS

In CT-PRESS [13], a refocusing 1800 pulse of the sequence is shifted within a constant

time interval between RF excitation and signal acquisition. The scheme is shown in Figure 6.

Cross-peaks in the 2D Fourier representation indicating J-coupling are eliminated because

magnetization is not transferred to the cross-peaks. All magnetization is instead transferred to

the diagonal spectrum which contains signals of all uncoupled spins and diagonal peaks of

coupled spins. Thus, the SNR from the diagonal spectrum is increased compared to 2DJ-

PRESS. SNR of coupled resonances can be further increased by optimizing the timing

parameter tc for the size and number of spin couplings. However, CT-PRESS requires a

considerably larger number of tl steps compared to 2DJ-PRESS. About 128 ti steps are

required for a 1H chemical shift range of 5-10ppm with sufficient spectral resolution. It is

possible to reduce the number of TE steps by noting that only signals near the diagonal will

appear in the 2D CT-PRESS spectrum. Nyquist sampling theorem can be violated and this has

been demonstrated by Mayer et al [14].
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Figure 6. Pulse sequence of CT-PRESS [13] Figure 7. An example 2D spectrum of a
healthy rat brain. Cross-peaks are
eliminated as energy is only deposited on
the diagonal of the spectrum. [13]



2.4. TE-averaging PRESS

TE-averaging with a PRESS sequence [15] has been studied for resolving glutamate signal

(Glu) from brain metabolites at 3T. Similar to 2DJ-PRESS, metabolite data is acquired for a

range of TE but Fourier transformed only in the t1 domain. An average of the data from different

TE's is taken and this average represents the fl=0 component of a 2D J-PRESS spectrum. Glu

is reasonably resolved at 16 and 32 TE steps but the closely correlated metabolite glutamine

(Gin) is difficult to obtained directly.

2.5. Spectral Editing

Spectral editing is a method of suppressing or enhancing metabolite signals by using its

spin-spin coupling properties. Due to the effects of J-modulation, different timing parameters

result in different metabolite spectra that can be manipulated to resolve the metabolite of

interest. Spectral editing has been exploited in [16] to resolve Glu from an in vivo spectrum at

1.5T by the subtraction of metabolite spectra from TE = 12ms and TE = 60ms. However,

resolution of Gin is difficult because of the strong correlation between Glu and Gin.



3. Compartmental analysis with 1D MRSI

In 1D spectroscopy, absolute metabolite concentrations are estimated from experimental

metabolite data via models such as LCmodel [17], which attempts to account for complexities

arising from macromolecular baseline, J-coupling, multiplets and metabolite signal overlaps.

The combination of low-SNR spectroscopy with segmented structural data has been used to

provide brain metabolite estimates in separate tissue compartments [18]. Factors such as partial

voluming, coil loading and inhomogeneities in the Bo and B1 fields under different scanning

conditions are challenges to using absolute metabolite estimates for quantification purposes. To

correct for comparison across subjects under these different scanning conditions, expressing

the metabolite signals as ratios to the sum of the metabolite signal from Cr and PCr (Cr') is a

common technique. The work in this chapter extends compartmental analysis of absolute

metabolite measures to ratio measure. The detection of metabolites such as NAA provides an

indication of neuronal function and could help characterize axonal integrity in X-linked

adrenoleukodystrophy (X-ALD).

3.1. Model for Metabolite Ratio Analysis Combined with Segmented
Structural Imaging

The model for the gray and white mater contribution to the signal observed for

metabolite M is based on the following model from Ref. [19].

y, = g, .Mg + w, -M w + n, (3.1)

where y is the measured metabolite signal, gi and w; are the structural representations of the

gray and white matter, Mg and Mw are the gray and white matter contributions to the signal for

metabolite M, and ni is the additive Gaussian noise. By expressing MV/Mg as rg,,, a nonlinear



two-dimensional search for Mg and Mw is avoided so that we need only estimate one nonlinear

parameter rgw and one nonlinear parameter Mw.

Y, = MW g, -rg + W,) + n,  (3.2)

Using the method of variable projection [20], the least square solution is found first by

expressing the estimate Mw assuming rgw is known, as

N

W = N (3.3)

where

f, = g, . r + w, (3.4)

and N is the total number of spectroscopic voxels used in the analysis.

The estimated gray to white ratio F,, is found by evaluating Eq.5 after substituting Eq. 3

into Eq. 2.

N

min y, -M I f (3.5)
rg t=l

Upon finding the optimum value forF w , M~ was found via Eq. 3, and Mg determined via Eq. 6.

Mg = MW • rA g  (3.6)

We would like to obtain a model for the signal observed for the metabolite M as a ratio to

the signal observed for Cr'. Using Eq. 1, the ratio r of the signal observed for metabolite M to

the signal observed for Cr', then becomes

Y,M g, .-M + w, -M, + n,
r, - g (3.7)

y,1cr g, .Cr'g + w, Cr w + ncr,
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g, Mg w, M n(3.8)
r,= + + (3.8)

g, Crg +w, Cr' +n,c. g, Cr'g +w, •Cr' +n,c g, •Cr'g +w, Cr' +nc,

g, Mg M, +nIM
r -- + _+_ (3.9)

Cr , n =, Cr +- Crg, g, .Cr , + w, .Cr', + nc , (
+ + ' w, + g, +Cr g Cr g Cr Cr

The model for the metabolite ratio observed in a particular voxel r, for the metabolite M is

r= +g w (3.10)= Cr, Cro

g = g' 1 w = w, (3.11)
Cr ' Crg •+w -- W w,+g, .

g, +w, Cr I w, +Cr Cr',

We aim to determine the optimal values of the global quantities Mg /Cr'g and Mw /Cr'w for

each subject, which are the gray and white matter contributions to the metabolite M expressed

as ratios to the gray and white matter contributions to the metabolite Cr'. Mg /Cr'g and Mw /Cr'w

indicate the amount of metabolite signal ratio r for particular g" and w;" in a certain voxel. Cr'g

and Cr'w were obtained by estimating r,, = Cr'g / Cr' using the absolute metabolite data of Cr'

from each voxel of the subject. This estimate of rgw was then used to determine g," and wi". With

gi" and wi" expressed as shown, the procedure for finding the optimal values of Mg /Cr'g and Mw

/Cr'w is equivalent to the procedure for finding the optimal values of Mg and Mw of Eq. 1 where g;

is substituted by gi" and wis substituted by w'".



Method

All imaging was done on a 7.OT MRI scanner (Siemens AG, Erlangen, Germany). The

spectroscopic VOI for the 2D 'H MRSI was selectively excited using PRESS (TE = 35ms, TR =

2s) with CHESS water suppression and six spatial outer volume suppression pulses for fat

suppression. A spectroscopic voxel size of 2.3cm3 resulted from partition the FOV of 20cm with

16 x 16 phase encoding steps. The spectra bandwidth was 4000Hz and the water suppression

bandwidth was 120Hz. The structural image at a resolution of 0.56 x 0.56 x 1 mm 3 = 0.31 mm3

were acquired with an axial MPRAGE sequence with timing parameters TE/TR/TI =

3.6/2500/1100 ms.

Gray matter composition of voxels
assigned as gray matter only
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Figure 8. Gray matter composition determined from segmented structural data assuming
rectangular solid voxels for spectroscopic voxels assigned as containing gray matter only.

We demonstrate the use of the model for the metabolite ratio for data obtained from

twelve ALD patients and nine healthy subjects. The gray and white matter composition of each

of the subject's structural image was determined by a combination of automated segmentation

using Freesurfer [21][22] and manual segmentation, and registered to the spectroscopic data.
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We assumed an idealized rectangular function for the point spread function of the structural

acquisition and for the spectroscopy. In a previous analysis [7][23], only spectroscopic voxels

manually assigned as containing 100% white matter (predominantly white) or 100% gray matter

(predominantly gray) were used. Figure 8 and Figure 9 illustrate the gray and white matter

composition as determined from segmentation of the spectroscopic voxels that were previously

manually assigned as containing 100% white matter or 100% gray matter. For the voxels

assigned as containing 100% gray matter, the gray matter content is significantly overestimated.

Figure 9. White matter composition determined from segmented structural data assuming

rectangular solid voxels for spectroscopic voxels assigned as containing white matter only.

For the voxels assigned as containing 100% white matter, the assignment approximates the

content better. This is due to the fact that the anatomy of the selected VOI is such that gray-

matter voxels of full volume are less common than those of white matter. To better reflect the

content of gray and white matter and their corresponding changes in metabolite concentrations,

we incorporated segmented structural data for the same set of spectroscopic voxels into the

analysis of ratios for the following four metabolites, NAA' (N-Acetyl-Aspartyl-Glutamate(NAAG)
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+ NAA), myo-Insitol (Ins), Cho' (Glycero-phosphoryl-choline (GPC) + Phosphoryl-choline (PC))

and GIx (Glu and Gin). This corrected metabolic segmentation has relevance to the monitoring

of demyelination and axonal degeneration in X-ALD.

3.3. Results and Discussion

Figure 10, Figure 11, Figure 12 and Figure 13 are examples of the analysis applied to

NAA', Ins, Cho' and GIx of ALD patients. The z-axis shows values of the metabolic ratio ri and

the x and y-axis shows values of gi" and wi" respectively. The red crosses ('x') in the figure are

obtained by manually assigning spectroscopic voxels as either 100% gray or 100% white. The

averages of ri for both the 100% gray-matter and 100% white matter voxels are shown in purple

('.'). Based on the segmentation, most of these spectroscopic voxels are mixed-volume and

their composition is represented by the black triangles in the figure ('V'). Using these mixed-

volume data and applying our model, we obtained an estimate Mg /Cr'g and Mw /Cr for each

ALD patient and averaged these values across the patients. With the averaged Mg /Cr'g and Mw

/Cr', the metabolite ratio ri is expressed as a function of g," and w" in Eq. (3.1) and represented

by the blue line ('-') in Figure 10. The green lines ('-') of Figure 10 indicate one standard

deviation from the averaged values.

The same procedure in obtaining Figure 10, Figure 11, Figure 12 and Figure 13 is

repeated for obtaining Figure 14, Figure 15, Figure 16, and Figure 17 for the control subjects.

The Mg /Cr'g and Mw /Cr'w obtained from this analysis offers a comparison metric for changes in

metabolite levels between ALD patients and healthy subjects and we demonstrate its use as

such a metric in Figure 18 where an ANOVA test was done and a significant decrease of NAA'

in both the gray and white matter of ALD patients was found.
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Figure 18 Comparison between ALD and control subjects for the global values of
NAA'/Cr shows a significant decrease in both gray (p = 0.084) and white matter
(p=0.016) in ALD patients. P-values are obtained from an ANOVA test.



4. Numerical simulations of idealized excitation for 2DJ-
PRESS and CT-PRESS

2D MRS methods of 2DJ-PRESS and CT-PRESS were simulated with a software

package SPINEVOLUTION [24] according to timing parameters given in Ref. [15] and Ref. [13].

The performance of these 2D MRS methods were compared with the 1D spin-echo method at

TE=35ms, in terms of the accuracy of the estimation of the concentrations of the following

metabolites creatine (Cr), N-acetylaspartate (NAA), glutamate (Glu) and glutamine (Gin).

Metabolite NAA is included because part of its spectra centered at 2.008 ppm overlaps with the

Glu multiplet centered at 2.05ppm and may potentially complicate the estimation of Glu and Gin.

Metabolite Cr is added in the study because it consists only of 2 singlets and serves as an

appropriate control metabolite across the 1D and 2D MRSI methods. Simulation input files for

the simulated spectra of Glu of the 2DJ-PRESS, CT-PRESS and 1D spin-echo acquisitions are

included in the appendix.

4.1. 2D-MRS and 1D methods

In TE-averaging PRESS, the fl=0 component of the 2D spectrum from a 2DJ-PRESS

experiment forms a 1D spectrum from which Glu is resolved [15]. In addition to evaluating the

performance of this 1D TE-averaged spectrum in estimating individual metabolite

concentrations, the performance of a spectrum obtained from the concatenation of individual

FID's obtained from each TE value of the 2DJ-PRESS experiment was evaluated. In the rest of

this thesis, this concatenated spectrum is referred to as 2DJ-PRESS-concatenated. The

performance of the 1D spectra obtained from individual TE steps of the 2DJ-PRESS experiment

was also analyzed and compared with the TE-averaged spectrum and the spectrum obtained

from the concatenated FID's.



In CT-PRESS, the projection of the 2D spectrum onto the fl axis results in a 1D

spectrum from which metabolites are reported reliably resolved [13]. The performance of this

projected 1D-spectrum was compared with the performance of the spectrum obtained from the

concatenation of individual FID's at each t1 step of the CT-PRESS experiment. In the rest of

this thesis, this spectrum is referred to as CT-PRESS-concatenated. In addition, the

performance of the 1D spectra from each individual tl step were evaluated and compared with

the spectra obtained from the concatenated FID's and the projected spectrum.

4.2. Simulation with SPINEVOLUTION

The pulse sequences for the 2DJ-PRESS, CT-PRESS and 1D spin-echo experiments

were implemented in script files which were in turn inputted to the SPINEVOLUTION program.

The simulation implemented as single voxel experiments and was executed with very short

rectangular 900 and 1800 RF pulses of length 0.5us, assuming a 3T main magnetic field.

TE= 14ms 31ms 8.5ms 8.5ms
------------------ ------- :-->;

1800 1800 i1800

900) ADCBandwidth = 1880Hz
2000 points

1800 pulse moves within this
interval in At1 steps

Figure 19. Timing parameters for the CT-PRESS experiment. PRESS was implemented
with TE = 14ms. The location of the last 1800 pulse is varied within a fixed interval and
the ADC readout starts at a fixed time relative to the 900 excitation pulse.

Cross-referencing Figure 19, the press sequence was implemented with TE = 14ms, and

128 t, steps were taken with Atl = 0.133ms. The spectra bandwidth in both f, and f2 were

1880Hz. The 2DJ-PRESS experiment was implemented with TE ranging from 35ms to 185ms in
34



increments of 10ms and at a spectra bandwidth of 5000Hz with 2000 ADC points. The TE-

averaged spectrum and concatenated spectrum are obtained from this 16-step 2DJ-PRESS

experiment. In order to study the effects of shorter TE times, a 38-step 2DJ-PRESS experiment

was simulated with TE ranging from 5ms to 190ms in increment of 5ms and a spectra

bandwidth of 5000Hz with 2K ADC points.

TE= 35ms;45ms...
---------- ------------>:,

1800 1800

90o ADC Bandwidth = 5000Hz
2000 points

Figure 20. Timing parameters for the 16-step 2DJ-PRESS experiment. PRESS was
implemented with varying 35ms< TE < 185ms in 10ms increments. ADC readout is
shifted along with the varying TE

TE = Sms; lOms ....
--------------- >

1800 1800

9001 { ADC Bandwidth = 5000Hz
2000 points

Figure 21. Timing parameters for the 38-step 2DJ-PRESS experiment. PRESS was
implemented with varying 5ms< TE < 190ms in 10ms increments.

A separate input file was written for each of Cr, NAA, Glu and Gin incorporating their

respective chemical shift and J-coupling constants reported in [9]. The relaxation times of Cr-

CH3 and Cr-CH 2 were inputted as T1 = 1.29s and T2 = 165ms, and T1 = 890ms and T2 =

126.5ms respectively. The relaxation times of NAA were inputted as T1 = 1.365s and T2 =

265ms. These relaxation times were obtained by averaging the reported relaxation times for
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each metabolite at 3.0T across different brain regions [25]. For Glu, relaxation times were

inputted as T1 = 1.2s [26] and T2 = 200ms [27]. The relaxation times for Gin were simulated to

be the same as Glu due to the lack of published studies on T1 and T2 times of Gin at 3.OT.

4.3. Estimation using simulated spectra

Using the spectra of Cr, NAA, Glu and Gin from simulation, a series of estimation

problems are set up in order to evaluate the performance of 2DJ-PRESS and CT-PRESS on

estimating individual metabolite concentrations.

In an estimation problem for spectroscopic data obtained from a scanner, individual

metabolite concentrations in the scanned object are estimated with a priori information

regarding the chemical shifts, phase and T1 and T2 relaxation times of each metabolite. This

information is obtained either from separate reference acquisitions or from simulated spectra.

The metabolite spectra simulated in SPINEVOLUTION were applied as a priori information and

grouped together to form a matrix of basis functions 4) for estimation. To simulate spectroscopic

data x obtained from the scanner, individual metabolite spectra were weighted in their

approximate physiological concentration ratios of the brain and added to noise to form a

simulated spectroscopic data. Cr, NAA, Glu and Gin were weighted in the concentration ratio

10: 12.5: 12.5: 3 and white Gaussian noise was added to the combined spectrum such that

SNR of NAA = 20. Once this matrix of basis functions 0, and the spectroscopic data vector x

were formed, the estimation problem was solved by linear least-squares method for the

individual metabolite concentrations cl, a2, a3 and A4.

S= Re (4.1)

Var(d) = E[(ak- a'z] = [e[( )-n ] (4.2)



The accuracy of the estimation can be assessed by determining the bias and variance of

the estimates. It has been shown that the estimates & are unbiased and that the variances of the

estimates are of the form of Eq. 4.2 [28] where n is the noise vector added to the spectroscopic

data. The variances of the estimates A depend on the orthogonality and energy of the basis

functions from Cr, NAA, Glu and Gin in the matrix P, which we evaluate in the next section.

Numerical values of the bias and variances were obtained from 3000 monte-carlo trials with

different realizations of the noise with the same standard deviation.

Figure 22. The set-up and solution of the estimation problem from simulated spectra. Simulated
basis functions are weighted and added with noise to form the simulated spectroscopic data.



Orthogonality of basis functions from simulated spectra

The orthogonality between two spectra is determined by the amount of overlap between

them. It is expected that the estimates & of the individual metabolite concentrations will become

less accurate with greater overlap and reduced orthogonality. In this section, the differences in

orthogonality of all pairings of metabolites generated from the 2DJ-PRESS, CT-PRESS and 1D

spin-echo at TE=35ms sequences were analyzed. Orthogonality is defined and calculated by

the inner product between the simulated spectra.
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Figure 23. Inner product of noise-free 1D spectra obtained from 2D-JPRESS, CT-PRESS and
1D spin-echo at TE = 35ms simulations.

Figure 23 shows the values of the inner products evaluated between different

metabolites generated from different 1D spectra obtained from the 2DJ-PRESS, CT-PRESS

and 1D-spin-echo experiments, namely the TE-averaged spectrum, CT-PRESS projected

spectrum and spectra of the concatenated FID's from 2D-PRESS and CT-PRESS. The

orthogonality measure in Figure 23 supports known chemical shift information of the overlap

between metabolite spectra. Of the 4 metabolites, Glu and Gin has the greatest spectral

overlap, followed by NAA and Glu and NAA and Gin. This order of spectral overlap is reflected
38
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in the values of the inner product s of the basis functions generated from all the schemes except

for that of the projected spectrum from CT-PRESS. The projected spectrum from CT-PRESS is

successful at maintaining orthogonality between Glu and Gin at a tradeoff of reduced

orthogonality between NAA and Gin, and NAA and Glu.
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Figure 24. Inner product of noise-free metabolite
2DJ-PRESS experiment.

basis functions for each TE step of a 38-step

The inner product of metabolite basis functions from each individual FID of each step of

the 2DJ-PRESS and the CT-PRESS experiment was also evaluated and shown in Figure 24

and Figure 25. From Figure 24, the orthogonality of the basis functions varies as a function of

TE, and this variation is especially great for the three pairings of NAA & Gin, NAA & Glu and Glu

& Gin which gave the largest inner product values and least orthogonality in Figure 23. In

particular, TE times between 50ms and 85ms gave the greatest orthogonality between Glu and

Gin which we aim to detect independently. This TE range between 50ms and 85ms indicates an

optimal subset of TE time steps necessary to obtain good signal separation of Glu and Gin.
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Figure 25. Inner product of noise-free metabolite basis functions for each tl step of a
128-step CT-PRESS experiment.

Variations in the inner product values for each tl step in a CT-PRESS experiment are

more subtle than that for 2DJ-PRESS experiment. For increased orthogonality between Glu and

Gin, the earlier tl steps perform better in terms of inner product values. It is noted that the

maximum value of the inner product between Glu and Gin is 0.32 for CT-PRESS, compared to

0.58 for 2DJ-PRESS in Figure 24.

4.5. Bias and variance in estimates j of metabolite concentrations

In this section, we evaluate the accuracy of the estimates of metabolite concentrations

determined from a priori information of a matrix of basis functions and spectroscopic data built

from simulated spectra appropriately weighted and combined. Plotted in Figure 26 is the

average of the metabolite concentration estimates & obtained from the estimation problem

applied to each tl step of the 2D-JPRESS and CT-PRESS simulation, averaged across 3000

trials with random realization of noise. A as calculated from Eq. (4.1) is an unbiased estimate

of the metabolite concentrations and this is supported by the results shown in Figure 26. The

standard deviation associated with estimating Gin high because of the low relative metabolite

concentration and spectrum overlap with Glu.



1.3
1.2

1.1

0.9

0.8

0.7

0.6

0.5
Cr NAA Glu Gin

2DJPRESS M CTPRESS

Figure 26. Average of estimates a of metabolites of interest for a 38-step 2D-JPRESS
and 128-step CT-PRESS simulation shown with corresponding standard deviation bars.

The variation in standard deviation of the metabolite concentration estimates i with each

individual tl step of the 38-step 2DJ-PRESS for the four metabolites are shown in Figure 27,

Figure 28, Figure 29 and Figure 30. The standard deviations are normalized with the signal

energy of the respective metabolite basis function for the first TE step. For Cr and NAA, the

variation in standard deviation is due mainly to the increasing T2 decay of metabolite signal as

TE increases. Glu and Gin however exhibit peaks and troughs that could be exploited in

selecting a subset of TE times for better separation of Glu and Gin. It is noted that the standard

deviations of concentration estimates for Cr and NAA are much lower than that for Glu and Gin,

with the standard deviation for the estimation of Cr concentration being approximately 15 times

lower than for Glu. The standard deviations of metabolite concentration estimates obtained from

the spectrum of concatenated FID's of the 16-step 2DJ-PRESS experiment, TE-averaged

PRESS and 1D spin-echo experiment at TE = 35ms are included for comparison purposes. The

standard deviation of the concentration estimate for each metabolite for the 2DJ-PRESS-



concatenated spectrum represents an average of the standard deviation obtained across the

individual TE's.
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Figure 27. Standard deviation of the estimate of concentration of Cr normalized with the signal
energy in the basis function of the metabolite Cr. Standard deviation shows variation with TE of
a 38-step 2DJ-PRESS sequence.
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Figure 28. Standard deviation of the estimate of concentration of NAA normalized with the
signal energy in the basis function of the metabolite NAA. Standard deviation shows variation
with TE of a 38-step 2DJ-PRESS sequence.
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Figure 29. Standard deviation of the estimate of concentration of Glu normalized with the signal
energy in the basis function of the metabolite Glu. Standard deviation shows variation with TE of
a 38-step 2DJ-PRESS sequence.
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Figure 30. Standard deviation of the estimate of concentration of Gin normalized with the signal

energy in the basis function of the metabolite Gin. Standard deviation shows variation with TE of
a 38-step 2DJ-PRESS sequence.
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Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35 illustrates the variation in

standard deviation of the metabolite concentration estimates A with each individual tl step of the

CT-PRESS simulation for the four metabolites. As with the plots for 2DJ-PRESS, the standard

deviations are normalized with the signal energy of the respective metabolite basis function for

the first t, step. Due to the constant time interval during which the last 1800 pulse is shifted in

CT-PRESS, variations in standard deviation with t, are more subtle that seen for the 2DJ-

PRESS experiment. A zoomed-in view shows variation in standard deviation that correlates

with the variation in signal energy of the basis functions of each metabolite for individual t,

steps. This variation in standard deviations of the metabolite concentration estimates may also

be exploited for better separation of Glu and Gin but will not have as large an improvement due

to the small scale of the variations. It is noted that the standard deviations of concentration

estimates for Cr and NAA are much lower than that for Glu and Gin, with the standard deviation

for the estimation of Cr concentration being approximately 30 times lower than for Glu.
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Figure 31. Standard deviation of the estimate of concentration of Cr normalized with the signal
energy in the basis function of the metabolite Cr. Standard deviation shows little variation with tl
step of the CT-PRESS sequence.
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Figure 32. Zoomed view of the standard deviation of the estimate of concentration of Cr
normalized with the signal energy in the basis function of the metabolite Cr. Standard deviation
shows little variation with tl step of the CT-PRESS sequence.
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Figure 33. Standard deviation of the estimate of concentration of NAA normalized with the

signal energy in the basis function of the metabolite NAA. Standard deviation shows little

variation with t1 step of the CT-PRESS sequence
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Figure 34. Zoomed view of the standard deviation of the estimate of concentration of Glu
normalized with the signal energy in the basis function of the metabolite Glu. Standard deviation
shows little variation with t1 step of the CT-PRESS sequence.

std( _Gin)
50.00
49.00
48.00
47.00
46.00
45.00
44.00 -- individualTE
43.00 4.... concatenated TE
42.00
41.00
40.00

0 20 40 60 80 100 120 140

TE

Figure 35. Zoomed view of the standard deviation of the estimate of concentration of Gin
normalized with the signal energy in the basis function of the metabolite Gin. Standard deviation
shows little variation with tl step of the CT-PRESS sequence.
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5. Experimental analysis of 2D-JPRESS and CT-PRESS

This chapter focuses on the analysis and processing of data acquired from 2D-JPRESS and

CT-PRESS pulse sequences implemented on a 3T MRI scanner. The scans were carried out on

home-made phantoms containing the same metabolites of Cr, NAA, Glu and Gin that were

evaluated with simulated spectra. This work is in preparation for the estimation of metabolites

concentrations in vivo or in a phantom containing a mix of metabolites, where the FID and

spectra acquired for each metabolite is taken to be the basis function for that metabolite in the

estimation problem.

5.1. Method

Figure 36. Concentrated solutions of Cr, NAA, Glu and Gin at 98mM, 251mM, 500mM and 180mM
respectively were injected into different ping-pong balls of diameter 40mm. The opening was sealed
with wax before wrapping the phantom with Parafilm

Solutions of Cr, NAA, Glu and Gin were made by dissolving the powder form of creatine

monohydrate, N-Acetyl-L-aspartic acid, L-Glutamic acid (Sigma-Aldrich, Missouri, USA) and L-

Glutamine (Hyclone Laboratories Inc., Utah USA) respectively in water to create concentrated



metabolite solutions. The pH of each solution was adjusted to around 7.0 with sodium hydroxide

and potassium phosphate monobasic (Sigma-Aldrich, Missouri, USA). 0.1% of sodium azide

(Sigma-Aldrich, Missouri, USA) was also added to each metabolite solution. The concentrations

and pH of each solution are summarized in Table 1. The concentrations of the solutions of Cr,

NAA, Glu and Gin are multiple times than they would be in a regular spectroscopy phantom for

increased SNR [29]. Phantoms were made by injecting the metabolite solutions into individual

ping-pong balls (diameter 40mm) and sealing the opening with wax. Several layers of Parafilm

were wrapped around each ping-pong ball to reduce evaporation from micropores. The

phantoms are shown in Figure 36. Due to Gin being unstable in solution Error! Reference

source not found., the spectroscopy scan was done within 6 hours of the making of the

phantoms.

Metabolite Concentration pH Concentration relative to standard
(mM) spectroscopy phantom [29].

(Multiplicative factor)
Cr 98 6.8 9.8
NAA 251 6.9 20.1
Glu 500 7.0 40.0
Gin 180 7.4 60.0

Table 2. Concentrations and pH of individual metabolite solutions injected into phantoms

All imaging was done on a 3.0 T MRI scanner (Siemens AG, Erlangen, Germany) and

with a 32-channel head-coil for increased SNR. A spectroscopic voxel of size 20mm x 20mm x

20mm was placed in the center of the ping-pong ball, away from the air bubble at the opening

where the solutions were injected. The voxel for the 2D-JPRESS MRS was excited using

CHESS water suppression at 16 TE steps ranging from 35ms to 185 ms and TR = 2s. 4

preparation scans and 20 averages for each TE step resulted in a total scan-time of 10:48min.

The voxel for CT-PRESS MRS was excited with CHESS water suppression and PRESS at TE =

35ms and TR =2s. 4 preparation scans and 20 averages for each TE step resulted in a total

48



scan-time of 21:28min. The spectra bandwidth was at 1000 Hz with 1024 ADC points and the

water suppression bandwidth was at 35 Hz for both pulse sequences. The application of the

last 1800 pulse was varied in 32 tl steps in increments of 4ms shown in Figure 37. This violates

Nyquist sampling but metabolites spectrum are successfully recovered because the signal in a

2D CT-PRESS spectrum is only along the diagonal [14]. The CT-PRESS projected spectrum

was obtained by unwrapping the 2D spectrum along fl and integrating the spectra along f2within

a ±13Hz interval around the diagonal spectra. The CT-PRESS concatenated spectrum was

obtained from the concatenation of the 32 FID's from each of the t, step.

TE = 35ms 20.5ms 7 ms
S---------------------- k ---------- -> ;--- >

1800 1800 1800

ADC Bandwidth = 1000Hz
90 1024 points

LFI

1800 pulse moves within this
interval in Atl = 4ms steps

Figure 37. Timing parameters for the CT-PRESS experiment implemented on scanner. PRESS
was implemented with TE = 35ms. The location of the last 180o pulse is varied in 32 steps
resulting in undersampling in tl.

5.2. Orthogonality of basis functions from scan

Basis functions for each metabolite were formed from the spectra of the 2D-JPRESS

and CT-PRESS acquisition for each ping-pong ball phantom. The orthogonality between two

spectra of each pairing of metabolites is evaluated and shown in Figure 38. Orthogonality is

defined and calculated by the inner product between the spectra of various pairings of different

metabolites. As shown in Figure 38, the orthogonality measure supports known chemical shift

information of the overlap between metabolite spectra, where the orthogonality between Glu

and Gin is the least, followed by the orthogonality between NAA and Glu, and NAA and Gin. It is



noted that the projected spectrum from CT-PRESS and the TE-averaged spectrum provides the

greatest orthogonality of the Glu and Gin spectra while the 1D spin echo at TE = 35 provides

the least orthogonality.

1.0000
.9 CTPRESS projected

0.9000
spectrum

0.8000

.700oo ICTPRESS concatenated

0.6000oo spectrum

0. o.sooo 2DJPRESS concatenated

. 0.4000 - spectrum

0.3000 TE-averaged spectrum

. 1D spin echo at TE = 35

Cr & NA Cr& Glu Cr& Gin NAA & Gin NAA &GI Glu &GIn

Figure 38. Inner product of spectra obtained from 2D-JPRESS, CT-PRESS and 1D spin-echo at

TE = 35ms acquisitions at 3.OT scanner

The inner products of metabolite spectra from each FID of individual t1 steps of the 2D-

JPRESS and the CT-PRESS experiments were also evaluated and shown in Figure 39 and

Figure 40. For both 2D-JPRESS and CT-PRESS, the orthogonality of the basis functions varies

as a function of t, and this variation is especially great for the three pairings of NAA & Gin, NAA

& Glu and Glu & Gin which also gave the greatest inner product values and least orthogonality

in Figure 38. In particular, TE times between 55ms and 75ms of the 2D-PRESS experiment

gave the greatest orthogonality values for the pairing of Glu and Gin. The TE range between

55ms and 100ms indicates an optimal subset of TE time steps necessary for good signal

separation of Glu and Gin. Variations in the inner product values with the 32 tl step in a CT-

PRESS experiment are of the same scale as that for the 2DJ-PRESS experiment. t, value

between the 9 th and 14 th step of the CT-PRESS experiment produced Glu and Gin spectra with

increased orthogonality.
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Figure 39. Inner product of metabolite basis functions for each TE step of a 16-step 2DJ-PRESS
experiment implemented on a 3.0 T scanner
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6. Experimental analysis of 2D-JPRESS and CT-PRESS

MRS involves the detection and mapping of much weaker signals from brain metabolites.

Limited chemical shift dispersion and J-coupling causes spectral overlap and complicated

spectral shapes that limit detection and separation of several brain metabolites. The first part of

this thesis combines 1D spectroscopy with segmented structural data in the compartmental

analysis of ratio measures of metabolite concentrations.

The second part of this thesis studied the effectiveness of 2D-JPRESS and CT-PRESS,

which employ additional encoding steps in a second time axis tj at estimation of metabolite

concentrations. The additional encoding steps result in a penalty of increased scan time and this

work attempted to evaluate and analyze the effects of different tj times on the orthogonality

between metabolite spectra and variances in the estimates of metabolite concentrations, both

through simulations and experiments on a 3T MRI scanner.

6.1. Discussion

There is an observable variation in orthogonality and standard deviation in the metabolite

concentration estimates from the simulation and experiments done on the 3T MRI scanner for a

2DJ-PRESS sequence. Focusing on the orthogonality of Glu and Gin spectra, simulation data of

the 2DJ-PRESS sequence shows that the greatest orthogonality occurs around 55ms - 85ms.

The simulation results approximate the range of 55ms - 75ms indicated from experiments done

on the scanner. Simulation of the 128-step CT-PRESS sequence shows that the variation in

orthogonality and standard deviation in metabolite estimates are more subtle and would improve

at earlier tj steps. To reduce the scan-time for the CT-PRESS experiment done on the 3T MRI

scanner, an under-sampled 32-step CT-PRESS sequence was implemented and used. The

variation with t1 of the orthogonality of Glu and Gin spectra for the 32-step CT-PRESS sequence



is more substantial than that for the 128-step CT-PRESS sequence. It is noted that the

orthogonality between the Glu and Gin spectra were the greatest in the range of 16ms<tl<20ms

between the 9th and 1 1 th step. The range of t1 steps for the 2D-JPRESS and CT-PRESS

represents a possible subset of optimal t1 times for which the total scan-time can be shortened

while maintaining quality of separation of Glu and Gin.

In addition to evaluating orthogonality and standard deviation at each tl step for CT-

PRESS and 2D-JPRESS, the 1D spectra that result from averaging across TE's from the 2D-

JPRESS spectra (TE-averaged spectrum), projecting the 2D CT-PRESS spectrum onto the fl

axis (CT-PRESS projected spectrum), concatenating all available FID's from each t1 step (2D-

JPRESS concatenated and CT-PRESS concatenated spectra), and the 1D spin echo at TE =

35ms were also studied. Results from experiments done on the scanner shows that the CT-

PRESS projected and TE-averaged spectra performed the best in terms of orthogonality

between Glu and Gin spectra. These findings were not predicted by the same orthogonality

evaluation done on the simulated 2D-JPRESS and CT-PRESS sequences. This may be due to

a greater robustness of the CT-PRESS projected and TE-averaged technique to non-ideal

conditions than the 1D spin-echo and concatenated spectra. While the simulated spectra of the

basis functions from the 2D-JPRESS and CT-PRESS sequences are ideal and noise-free, the

spectra obtained from the scanner include noise contributions as well as magnetic field

inhomogeneities.

6.2. Future work

A potential subset of optimal t, times has been identified for both the 2DJ-PRESS and

CT-PRESS sequences. This subset of t, times will be tested in the estimation of metabolite

concentrations in phantoms containing a mix of metabolites similar to physiological



concentration ratios. Reduced sampling of this subset of range of tl time for application at higher

field strengths will be explored in further analysis.



7. Appendix

7.1. Simulation input files for SPINEVOLUTION

Examples of the simulation input files for Glu of the 1D-spin-echo, 2DJ-PRESS and CT-

PRESS experiments are presented in this section. In all of the examples below, lines containing

only asterisk represent the default setting and are omitted. To avoid repetition, the T1 and T2

relaxation parameters of only the first numbered proton of Glu at chemical shift 3.7433ppm are

shown, and the T1 and T2 parameters of the rest of the protons are represented by (.... ....... ).

7.1.1. 1D spin- echo experiment at TE=35ms

This example is of a 1D spin-echo experiment at TE = 35 ms for Glu at 3T Bo field

strength with very short rectangular 900 and 1800 pulses. Acquisition is at 5000Hz bandwidth

and 2000 ADC points are collected. T1 and T2 relaxation is implemented throughout the

sequence.

****** The System ***********************
spectrometer(MHz) 128
channels H1
nuclei H1 H1 H1 H1 H1
cs_isotropic 3.7433 2.0375 2.1200 2.3378 2.3520 ppm
j_coupling 1 2 7.331
j_coupling 1 3 4.651
j_coupling 2 3 -14.849
j_coupling 2 5 8.406
j_coupling 3 5 6.875
j_coupling 2 4 6.413
j_coupling 3 4 8.478
j_coupling 4 5 -15.915
******* Pulse Sequence *****************************

CHN 1
timing(usec) 0.5 17500 0.5 17500 (200)2000D1
power(kHz) 500 0 1000 0 0
phase(deg) 0 0 90 0 0
freq_offs(kHz) 0 0 0 0 0
******* Variables ***********************************

ppm_ref_offs 1 = 0

variable T1SQ 1 1 = 1230
variable T2SQ 1 1 = 200

variable TlSQ 1 2 = 1230



variable T2SQ 1 2 = 200

******* Options *************************************
rho0 Flz

observables Flp
line broaden(Hz) 0 0
FFT dimensions

7.1.2. 16-step 2DJ-PRESS experiment

This example is of a 2D-JPRESS experiment as shown in Figure 20 for Glu at 3T B0 field

strength with TE ranging from 35ms to 185ms in increments of 10ms. The sequence is

simulated with very short rectangular 900 and 1800 pulses, and T1 and T2 relaxation is

implemented throughout the sequence. Acquisition is at 5000Hz bandwidth and 2000 ADC

points are collected.

****** The System ***********************

spectrometer(MHz) 128
channels H1
nuclei H1 H1 H1 H1 H1
cs isotropic 3.7433 2.0375 2.1200 2.3378 2.3520 ppm

j_coupling 1 2 7.331

j_coupling 1 3 4.651

j_coupling 2 3 -14.849

j_coupling 2 5 8.406

j_coupling 3 5 6.875

j_coupling 2 4 6.413

j_coupling 3 4 8.478
j_coupling 4 5 -15.915
******* Pulse Sequence *****************************

CHN 1
timing(usec) 0.5 8750 (2500)16D1 0.5 17500 (5000)16D1 0.5 8750 (2500)16D1 (200)2000D2
power(kHz) 5000 0 1000 0 0 1000 0 0 0
phase(deg) 0 0 0 0 0 0 0 0 0 0
freq_offs(kHz) 0 0 0 0 0 0 0 0 0 0
******* Variables **********************************

ppm_ref_offs_1 = 0
variable TlSQ 1 1 = 1230

variable T2SQ 1 1 = 200

variable T1SQ 1 2 = 1230

variable T2SQ 1 2 = 200

variable TlSQ 1 3 = 1230
variable T2SQ 1 3 = 200

variable TlSQ 1 4 = 1230

variable T2SQ 1 4 = 200
variable TlSQ 1 5 = 1230

variable T2SQ 1 5 = 200

variable T1SQ 1 6 = 1230



variable T2SQ 1 6 = 200
variable TlSQ 1 7 = 1230
variable T2SQ 1 7 = 200
(............ )
******* Options *************************************
rho0 Flz
observables Flp
line broaden(Hz) 0 0 0 0
FFT dimensions

7.1.3. 128-step CT-PRESS experiment

This example is of a CT-PRESS experiment as shown in Figure 19 for Glu at 3T B0 field

strength with t1 ranging in increments of 133us. The sequence is simulated with very short

rectangular 900 and 1800 pulses, and T1 and T2 relaxation is implemented throughout the

sequence. Acquisition is at 5000Hz bandwidth and 2000 ADC points are collected.

****** The System ***********************

spectrometer(MHz) 128
channels H1
nuclei H1 H1 H1 H1 H1
csisotropic 3.7433 2.0375 2.1200 2.3378 2.3520 ppm
j_coupling 1 2 7.331
j_coupling 1 3 4.651
j_coupling 2 3 -14.849
j_coupling 2 5 8.406
jcoupling 3 5 6.875
j_coupling 2 4 6.413
j_coupling 3 4 8.478
j_coupling 4 5 -15.915
******* Pulse Sequence ******************************

CHN1
timing(usec) 0.5 3500 0.5 7000 0.5 3500 31000 8500 (133)128D1 0.5 (133)-128D1 8500
(266)2000D2
power(kHz) 500 0 1000 0 1000 0 0 0 0 1000 0 0 0
phase(deg) 0 0 0 0 0 0 0 0 0 0 0 0 0
freq_offs(kHz) 0 0 0 0 0 0 0 0 0 0 0 0 0
******* Variables ***********************************

ppm_ref_offs_1 = 0
variable T1SQ 1 1 = 1230
variable T2SQ 1 1 = 200
variable T1SQ 1 2 = 1230
variable T2SQ 1 2 = 200
variable TlSQ 1 4 = 1230
variable T2SQ 1 4 = 200
variable TlSQ 1 5 = 1230
variable T2SQ 1 5 = 200
variable TlSQ 1 6 = 1230
variable T2SQ 1 6 = 200

( ............ )



******* Options *************************************
rho0 Flz
observables Flp
line broaden(Hz) 0 0 0 0
FFT dimensions
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