
Generation of Policy-Rich Websites From

Declarative Models

by

Felix Sheng-Ho Chang

B.Sc., University of British Columbia (1999)
M.Sc., University of British Columbia (2001)

MASSACHUSETS iNSiTFUTE

MAR 0 5 2009

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

Author..............
Department of Electrical Engineering and Computer Science

Jan 15, 2009

Certified by.
Daniel Jackson

Professor
Thesis Supervisor

A ccepted by
Professor Terry P. Orlando

Chairman, Department Committee on Graduate Students

ARCHIVES

........

Generation of Policy-Rich Websites From Declarative Models
by

Felix Sheng-Ho Chang

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 15, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Protecting sensitive data stored behind online websites is a major challenge, but
existing techniques are inadequate. Automated website builders typically offer
very limited options for specifying custom access policies. Manually adding access
policy checks to website code is tedious and error-prone, and it is currently not.
feasible to automatically verify that a website conforms to its required access policy.
Furthermore, policies change over time, and it can be costly to modify an existing
website to reflect the changes or to certify that the modified website still complies
with the desired policy.

This research presents a declarative modeling approach designed to address these
issues, where the data model and the access policy are specified using Alloy, and tile
Weballoy tool automatically generates a dynamic website that guarantees the access
policy by construction.

Thesis Supervisor: Daniel Jackson
Title: Professor

Acknowledgments

I thank my research advisor, Daniel Jackson, for his guidance and support. for
encouraging me to explore different ideas and perspectives, for always being there
to assist me when I needed help, and for introducing me to the world of first order
relational logic and Alloy. The research opportunities and the practical impact
of working with Alloy users and researchers around the world has been extremely
gratifying.

I thank my thesis reader and previous research advisor at MIT, Srini Devadas. for his
wise and always candid advice over the years, and for giving me the courage when I
decided to purse a new area of research.

I thank my thesis reader, Butler Lampson, for his insightful feedback throughout my
thesis research and for asking tough questions that both challenge and enlighten my
understanding.

I thank my M.Sc. advisor at UBC, Alan J. Hu., for opening my eyes to the wondrous
world of computer science research, and for giving me invaluable advice throughout
my undergraduate studies, graduate studies, and beyond.

I thank my friends and lab mates at MIT - Greg Dennis, Jonathan Edwards, Eunsuk
Kang, Carlos Pacheco, Derek Rayside, Robert Seater, Mana Taghdiri, Emina Torlak,
and others, for their help and support during my time at MIT.

I'm grateful for my wife, Celine, for her patience and strength, and for spending more
time with our children as I neared my graduation. I'm grateful for my son Edmund
and daughter Denise; their miracles transformed my perspectives and my life forever.
And I'm eternally grateful for my parents and my family for their love and support.

Contents

1 Introduction
1.1 Motivation
1.2
1.3

Two Key Insights
Summary of Contributions

2 Website Modeling
2.1 Data Model

2.1.1 Signatures
2.1.2 Fields
2.1.3 Metamodel
2.1.4 Facts

2.2 Semantic Model
2.2.1 Transactions
2.2.2 Queries

2.3 Access Policy
2.3.1 Pre-conditions
2.3.2 Post-conditions
2.3.3 Expansion triggers . . .
2.3.4 Capabilities
2.3.5 Processing a Transaction
2.3.6 Processing a Query . . .

2.4 Validation
2.5 Related NWork

2.5.1
2.5.2
2.5.3
2.5.4

Access Control Specificat
Policy Validation
Data Models
Object-Relational MIappii

ion Languages

ig (O/R-M) .

3 Back-End Synthesis and Mandatory Policy Enforcement
3.1 Overview
3.2 Database
3.3 Evaluator
3.4 Java Servlets
3.5 Session Cookies
3.6 RPC Message Types

15
. 15

21
21
21
22
22
23
23
23
24
25
25
26
27
28
29
30
31
31
31
32
32
32

37
37
38
39
41
41
42

.

.

3.6.1 login(String app, String email, String password) 43
3.6.2 logout (String app) 43

3.6.3 get(String app, String[] atoms, String[] fields) 44
3.6.4 suggest (String app, String sig, String field, String hint) . 45
3.6.5 submit (String app, String[[] transaction) 46

3.7 Front-End 48
3.8 Related Work 48

3.8.1 Model-Driven Architecture 48
3.8.2 NWebsite Builders 49
3.8.3 Code Generation from Alloy 49

4 Front-End Customization using Presentation Templates 51
4.1 Design Considerations 51
4.2 Weballoy Template Language 52

4.2.1 Overview 52
4.2.2 Views 54
4.2.3 Alternate Views 55
4.2.4 <F:FieldName> 56

4.2.5 <F:S:SigName> 56
4.2.6 Widgets 57
4.2.7 URL Anchor 58
4.2.8 Editing Modes and Action Buttons 58
4.2.9 Mode Filtering using CSS 59

4.3 Implementation of the Rendering Engine 60
4.3.1 Queries 60
4.3.2 W idgets 60
4.3.3 Transactions 61

4.4 Default Template Generation 62
4.4.1 View for Creating an Atom 62
4.4.2 View for Displaying Every Atom of a Signature 63
4.4.3 View for Displaying One Atom 63

4.5 Related Work 64
4.5.1 Template Languages 64
4.5.2 Ajax Libraries 65
4.5.3 Interface Languages/Builders 65

5 Case Studies 67
5.1 Alloy Community Website 67

5.1.1 Original Website 67
5.1.2 Weballoy Imhnplementation 68
5.1.3 Limitations 68

5.2 MIT FamilyNet 74
5.2.1 Original Website 74
5.2.2 Weballoy Inplementation 75
5.2.3 Limitations 76

5.3 "Continue" Conference Management
5.3.1 Original Website
5.3.2 Weballoy Implementation
5.3.3 Limitations

6 Conclusion
6.1 Discussion
6.2 Future Work

6.2.1 SQL
6.2.2 Optimization
6.2.3 Common Idioms
6.2.4 Expressiveness
6.2.5 WYSIWYG Customization .
6.2.6 Count erexample-driven Policy

85
85
87
87
87
87
88
88
88Refinement

10

List of Figures

2-1
2-2
2-3

Policy Validation Workflow
The Weballoy library module
Query and transaction processing

3-1 Architecture of Synthesized Website
3-2 Website Synthesis Workflow
3-3 Important signature elision rules (given expression E and signature
3-4 Important membership decomposition optimization rules.....

4-1 Viewing Mode versus Editing Mode

5-1 Alloy Community Website
5-2 Data model for the case study
5-3 Capability rules for the case study
5-4 Pre- and post-conditions for the case study
5-5 MIT FamilyNet
5-6 Conference Submission Managemenet
5-7 Data model and Consistency Constraints
5-8 Capabilities
5-9 Helper functions
5-10 Pre-conditions, post-conditions, and triggers

. 53

... . . 70
... . . . 71
.. . . . 72

. 73
... . . . 77

. 81
. 82

.. . . . 83
.. . . 84

. 84

12

List of Tables

3.1 RPC Methods 42

4.1 URL Anchor Patterns 58

14

Chapter 1

Introduction

1.1 Motivation

Protecting sensitive data stored behind online websites is a major challenge. As
users begin to demand more functionality from websites, many companies now allow
customers to access their account information and purchase history: government
agencies let citizens apply for permits, licenses, and tax claims; and wholesalers,
manufacturers, and retailers often grant limited access to each other's inventory and
other confidential information. Services such as Google Health[21] and Microsoft
HealthVault[45] allow patients to upload their medical data online and selectively
share it with specific third parties such as their doctors or hospitals. Given the
personal and confidential nature of patient information, it is crucial for the access
policies to be properly specified and strictly enforced. Unfortunately, existing
techniques are inadequate for protecting sensitive data online.

System and Application Access Control:

Modern operating systems, file systems, web servers, databases, and other
website middleware usually provide their own mechanism for access control.
When properly layered and configured, these mechanisms can provide basic
access control.

Unfortunately, these mechanisms are usually coarse-grain and rigid: each system
has a fixed idiom and cannot be easily customized. More importantly, each layer
has overlapping levels of granularity and with distinct access credentials that
often do not map well.

For example, granting a newspaper reporter the permission to upload a story
might involve allowing his website user account to create a new story, allowing
his associated database credential to insert an entry into today's list of stories,
and allowing his associated operating system account to create and modify
image files on the file server. Often multiple credentials in one layer (for
example, website accounts) are mapped to one or more credentials in a lower
layer (such as one user id for accessing files and a different user id for serving the
web pages). Credential mapping is nontrivial, and mistakes can lead to access

policy violations.

* Manual Coding:

Dynamic languages such as PHP, Perl, and Python are often used for building
small to medium sized websites. Java-based frameworks such as Enterprise Java
Beans, JavaServer Faces, Spring, Struts, and Hibernate offer limited automation
for many aspects of website development and make Java one of tile dominant
language for implementing large scale enterprise websites.

While many frameworks adopt patterns such as Model-View-Controller that
make it easier to centralize and control access to data, access policy rules still
have to be manually coded. Adding access policy checks to website code is
tedious and error-prone, and it is currently not feasible to mechanically verify
that a website conforms to its required access policy or to certify that the
modified website still complies with the desired policy.

* Automated WVebsite Builders:

Generic website builders such as Ruby on Rails[51] and Django[9] support
rapid website development by taking a high-level data model and automatically
generate a skeleton website that can be further customized. Domain-specific
systems such as Drupal[ll], PHP-Nuke, Siebel, and Glovia produce highly-
automated websites designed specifically for CMS (content management), CRM
(customer relationship management), ERP (enterprise resource planning), or
MRP (material requirements planning).

These builders achieve automation by making specific idiom assumptions. As
a result, they typically offer very limited options for specifying custom access
policies. If a website requirement differs significantly from the tool's built-
in assumptions, customizing tile generated website can be difficult and tile
resulting website fragile, since the customization may conflict with components
generated by the current or future version of the tool.

Furthermore, none of these tools provide a complete solution for long term policy
maintenance: semantic difference analysis can validate that a policy change has the
intended effect but cannot apply the new policy automatically, and it can be costly
to modify an existing website to reflect the changes

Due to the lack of proper tool support, there have been several high-profile
information leaks. In 2005, the online application and notification system used
by Harvard Business School and several other business schools was found to leak
the applicant's admission status from an unpublicized but obvious URL. Hundreds
of applicants accessed their own admission letters a full month before tile official
notification date, and as a punishment, Harvard Business School rescinded the
admission offers of 119 applicants [62]. Also in 2005, a web-based payroll processing
website was discovered to have no access restriction on its 25.000 customers' W-2
forms, allowing any customer to access tile full names, SSN. elmployer. and salary
data, of the other 25,000 customers [5]. Both incidents occurred because the access
policy wasn't mmuniformly applied, and it wasn't feasible to mlechanically verify that
every web page conforms to its required access policy.

1.2 Two Key Insights

The traditional approach to building multi-user information systems and enforcing
their access policies is to enumerate the list of application-level actions the
user may perform in the system then define the required permissions for each
action. For example, when implementing an online course management website,
actions such as AddCourse(Title, Teacher), AddStudent (Course, Student), and
RemoveStudent (Course, Student) would all have to be explicitly defined in at least
three places: the application logic that performs the action, the security layer that
enforces the access policy, and the user interface that initiates the action.

The first insight is that with a well chosen data model that matches the end user's
understanding of the system, most of these actions correspond to intuitive sequences
of tuple insertions and deletions from the database, so there is often no need to
actually define any action in the system. There are several important consequences:

" The design is much more concise as there is no need to list the possible actions
nor describe the required permission for each action. Similarly, the user interface
code is much simpler as it needs only to allow users to navigate the data and
insert or modify entries on screen rather than requiring a separate custom-made
interaction screen for each possible action. It is even possible to automatically
generate a suitable general user interface for the application from the data model
alone (Chapter 4).

* The access policy rules are closer to the data model. Instead of describing two
opaque actions such as AddStudent and RemoveStudent, the policy rules would
describe the underlying student list and the permission required to view it, add
to it, or delete from it.

That means the policy can be validated at a much finer granularity than
otherwise possible: validating that only teachers can invoke AddStudent does
not preclude the possibility that a non-teacher can add entries to the student list
via a sequence of other actions, but semantically richer rules could be verified
mechanically to show that a non-teacher can never add to the student list.

Chapter 2 describes one such style of website modeling that explicitly exposes
the data model and allows the access policy to be written in terms of the data
model instead of explicit actions.

* The resulting site gives more power and flexibility to its users. Instead of
having predefined actions that force the users to navigate or make changes
in a specific order, users can perform the changes in the order deemed more
natural to them for the task at hand. For example, instead of an explicit
AddCourse screen that asks for general course information and a second screen
for adding teaching assistants to the course, the course information and the
list of associated teaching assistants would all be attributes associated with a
"course" entity; after creating a new course, the user can then add or remove
from the attributes in any order.

The second insight is that a well chosen data model enables a separate of concerns
and can be used to decouple the three main components of a multi-user information
system such as a website: the database that stores the data, the security layer that
guards the data, and the user interface that accesses the data:

* If data update and retrieval requests are always given in terms of objects
in the data model rather than table names and row numbers, the database
implementation can be replaced easily without affecting the correct behavior of
the system.

* If access policies are defined based on reading. adding, and removing objects
and attributes in the data model, the policy can be enforced by examinining and
rejecting nmessages going to and from the database, and there is no need to add
access checks directly into various places in the main application code.

* With the database and the policy check cleanly separated, different front-end
user interfaces call be used without the risk of policy violations or the need to
modify the underlying system.

The simple underlying model based on tuple insertions and deletions allows automatic
generation of suitable implementations for all three components since each component
performs a precise task and has a well-defined dependence relationship with the other
components.

As a proof-of-concept, I propose a declarative modeling approach where the
website designer specifies the data model and the access policy using Alloy[l], and my
tool Weballoy automlatically generates a dynamic website that guarantees the access
policy by construction. This framework supports rapid and incremental development,
rigorous policy validation. autoimatic use case generation, and fully automatic website
synthesis.

This thesis is organized based on the same decoupled approach: Chapter 2
presents a declarative style of modeling a website without discussing or assuming any
implemlentation details; Chapter 3 shows how Weballoy automatically generates the
database and the server-side security layer from the model; and Chapter 4 describes
the automatic generation of a customizable user interface for the website.

1.3 Summary of Contributions

The work presented in this thesis makes the following contributions to website
specification, validation, and synthesis research:

* A new framework for access policy specification and all architecture for
mandatory enforcement.

* A novel specification language, embedded in Alloy, for concisely expressing the
data miodel and access pIolicy of a website (Chapter 2).

* A website synthesis tool Weballoy that embodies the approach described in this
thesis and guarantees the access policy by construction (Chapter 3).

* An Alloy-aware template engine and language for safe customization of the
generated website (Chapter 4).

Case studies completed to date include the automatic synthesis of a collaborative
online website for the Alloy research group, a social networking website modeled
after MIT FamilyNet[13], and a conference management website modeled after
Continue[40]. These are described in detail in Chapter 5.

20

Chapter 2

Website Modeling

This chapter briefly introduces the Alloy modeling language and describes how it can
be used to model the database contents, consistency constraints, and access policies
for a dynamic website. This text presents key features of Alloy by using an online
grades management website as a running example, and does not assume familiarity
with the language, though readers are encouraged to consult the Alloy Language
Reference [1].

2.1 Data Model

2.1.1 Signatures

The first step in modeling a dynamic website using Weballoy is to express the various
entities and their relationships as a data model in Alloy.

Given the data model. Weballoy automatically generates the corresponding
database schema and consistency constraints. The Alloy model does not explicitly
model the notion of time steps or state transitions; instead, successive database states
correspond to a sequence of satisfying instances for the Alloy data model.

Each signature in Alloy represents a set of objects known as atoms. In addition
to Alloy's standard signatures Int, Bool, and String, users can also import the
Weballoy library module (shown in Figure 2-2) which provides additional signatures
such as Date, DateTime. Email, and Password.

Example. An initial data model for an online grades management website might
start with the following:

abstract sig User { }
sig Teacher, Student extends User { }
sig Course { }
The User signature is designated as abstract, meaning there cannot be a User who
is neither a Teacher nor a Student.

2.1.2 Fields

Each relationship can be represented by a field in a signature. Each field is a binary
(or higher arity) relation from a signature to another set or relation. Furthermore,
each field can be constrained with 'multiplicity markers such as some (at least one),
lone (zero or one), or set (meaning the size of this field is unconstrained).

Example. To model the notion of people teaching and attending courses, the
previous Alloy model might be augmented as follows:

abstract sig User (
name: String,

}
sig Teacher extends User {

teaches: set Course

}
sig Student extends User {

assists, attends: set Course

}
sig Course {

name: String,
teachers: set Teacher,

assistants, students: set Student,
grades: students -> lone Int

}
Each field is a relation from its containing signature to the entities listed in the
field declaration: the teaches field is a binary relation from Teacher to Course,
and the grades field is a ternary relation Course->Student->Int where each
student in a course is associated with at most one integer.

2.1.3 Metamodel

Every Alloy model corresponds to an instance of the Alloy mretamodcl. where each
signature s in the original model corresponds to a meta atom denoted s$, and each
field f in the signature s corresponds to a 'meta atom denoted s$f.

Given a meta atom m corresponding to a signature, m. fields denotes the set of
imeta atomis corresponding to the fields of that signature. and m.value denotes the
elements in that signature. Likewise, given a meta atomi m corresponding to a field,
m.value denotes tile tuples in that field.

Allowed behaviors of a model can be specified reflectively by reasoning over the
mietaimodel, similar to tile way languages such as Java provide a reflection miechanism
for a programi to refer to its own code and data structures. When specified in
particular formats recognized by NWeballoy as described in Section 2.3. the behavior
specification can serve dual purposes: it can be validated for cor correctness by the Alloy
Analyzer, and it can be converted into access policy checks that will be automnatically
enforced by the generated websites.

Example. The following predicate evaluates to true when cl and c2 have the same
values for every field.

pred equal [cl, c2: Course] {
cl.name = c2.name

cl.teachers = c2.teachers

cl.assistants = c2.assistants

cl.students = c2.students

cl.grades = c2.grades

}
This can be written more succinctly by quantifying over the fields of the Course
signature:
pred equal [cl, c2: Course] {

all f: Course$.fields I cl.(f.value) = c2.(f.value)

}
The expression Course$.fields denotes the set of meta atoms corresponding to
fields in the Course sig. For each meta atom in Course$.fields, the function
value returns the actual field that the meta atom corresponds to. Therefore, this
predicate says cl and c2 have the same values for every field.

2.1.4 Facts

Similar to the notion of consistency constraints in a relational database, an Alloy
model can contain facts which must be maintained at all times.

Example. The following fact enforces the constraint that the teachers and
teaches relations are exactly inverses of each other:

fact { teachers = - teaches }
This fact requires both fields to be updated together. If this is undesirable,
expansion triggers (explained later in Section 2.3.3) can be used to automatically
update one field when the other field is modified.

2.2 Semantic Model

2.2.1 Transactions

In keeping with Alloy's relational semantics, users request changes to the database by
adding atoms to a signature. destroying atoms, adding tuples to a field, and removing
tuples from a field.

Examnple. Continuing from the previous example, changing the name of course

cl from "Networking" to "Advanced Networking" requires the removal of tuple
(cl--+"Networking") from the name field followed by the addition of tuple

(cl--"Advanced Networking") to the name field.

Modification requests are grouped into transactions where each transaction would
either be performed in its entirety or be rejected as a whole. For simplicity, the
current semantics guarantee that tile transactions are serializable, though this may
be relaxed in future versions of the tool.

Each transaction is a pair of sets (AS, DS) where AS is the set of atoms and
tuples to be added, and DS is the set of atoms and tuples to be removed.

For each (m, :) pair in AS, either n? is a meta atom denoting a signature and :x
is a fresh atom to be added to that signature, or mn is a meta atom denoting a field
and is a new tuple to be added to that field.

Likewise, each (nm, :) pair in DS represents either a signature mi and an atom
to be deleted from that signature, or a field in and a tuple to be removed from that
field.

Example. Suppose teacher t logs in to the website and wishes to remove an old
course c and create a new course c2, he might submit the following transaction:

(Course$, c2).
(Course$name, c2- "Software Engineering"), AS
(Course$teachers, c2-tl')

}, {
(Course$. cl)

When the atom cl is destroyed, any tuple containing cl is also removed. The
user does not need to explicitly remove the tuple (cl "Advanced Networking")
previously added to the name field.

If a transaction attempts to create and destroy the same atom, or attempts to add and
remove the same tuple from the same field, the transaction is rejected as malformed.
Therefore, the order of tile requests inl the transaction doesn't matter.

2.2.2 Queries

Users retrieve tuples from tile database by issuing queries. Each query RS is a set of
pairs (:x, f) where each x: is an atom and each f is a meta atom corresponding to a
field of :r that the user wants to retrieve.

E:K ample. The following query retrieves the set of courses taught by t , followed
by the set of teachers teaching ci:

{
(ti, Teacher$teaches), (cl, Course$teachers)

}

Each query is handled atomiically: no transaction is applied during the processing of
a query, thus the query result always corresponds to a consistent database state.

2.3 Access Policy

This section describes a style of declarative policy specification where the policy
will be meaningful and checkable using the Alloy Analyzer and yet have a specific
operational semantics when used to drive the automatic website synthesis. When
specified according to the conventions described below, the access policy can be
mechanically validated by the Alloy Analyzer (Figure 2-1), as well as automatically
enforced by the generated website (Figure 3-2).

The key trick here is to use specially named predicates and finctions where the
type of argument associated with the predicate or function is used to associate it with
a particular signature or field.

The bodies of these predicates and functions can refer to a singleton set named me
containing the current logged-in user's atom (or the empty set if the user is accessing
the website without logging in).

Currently, Weballoy recognizes four types of special constructs: pre-conditions,
post-conditions, expansion triggers, and capabilities.

2.3.1 Pre-conditions

Pre-conditions are predicates that are evaluated before an atom is created or
destroyed, or before a tuple is inserted or removed. If the predicate evaluates to
false, the transaction is rejected.

Pre-conditions on creating an atom for a given signature s can be specified by
declaring a predicate s.preAdd in the model. Pre-conditions on adding a tuple to a
given field f can be specified by declaring a predicate f. preAdd.

Example. Continuing from the previous example, the following pre-condition on
the assistants field states that a user cannot add teaching assistants to a course
if the user is not teaching that course:

pred assistants.preAdd {
(one me) and (me in this.first.teachers)

}
This declares a predicate preAdd with a single parameter. The parameter is named
this by default, and it is declared to be a subset of the assistants field, so an
actual value of this parameter will be a pair consisting of a Course and a Student.
If a user tries to add sl to cl. assistants, the pre-condition preAdd[cl->sl]
must be satisfied. The helper function first (shown in Figure 2-2) returns
the first atom from the tuple. The function call this.first returns ci, and
this.first.teachers gives us the teachers of that course. If the user is not
logged in, me evaluates to the empty set which is always a subset of any other set.
Therefore, the one keyword is needed to ensure the user is logged in as one of the
teachers.

Likewise, pre-conditions on atom destruction and tuple removal can be specified by
declaring predicates s. preDel and f. preDel respectively.

Examiple. The following pre-condition states that a user cannot remove a teaching
assistant from a course if the user is not the teacher nor the teaching assistant
being removed:

pred assistants.preDel {
(one me) and (me in this.first.teachers+this.second)

}
If a user attempts to remove sl from cl.assistants, the pre-condition
preDel [cl--sl] must be satisfied. The expression this.second gives us the
student sl. Thus the request will be denied if tihe user is not sl nor one of the
teachers of cl.

2.3.2 Post-conditions

Post-conditions are predicates that must evaluate to true after atoms are created or
destroyed, or after tuples are inserted or deleted. In particular, post-conditions on
atorm creation are often used to specify the legal initial field values of an atom. If any
post-condition evaluates to false, changes made so far are rolled back. and the entire
transaction is rejected.

Post-conditions on creating an atom for signature s or adding a tuple to field f
can be specified by declaring a predicate s. postAdd or f. postAdd respectively. These
post-conditions are evaluated after all atoni creations and tuple insertions specified
in this transaction have occurred but before any atom destruction or tuple deletion.

Exarrmple. The following post-condition ensures that a newly created course has
exactly one teacher (equal to the creator of the course) and no assistants nor
students:

pred Course.postAdd (
this.teachers = me

one this.teachers

no this.assistants + this.students

}

Likewise, post-conditions on destroying an atom of signature s or removing a tuple
from field f can be specified by declaring a predicate s.postDel or f.postDel
respectively. These post-conditions are evaluated after the entire transaction has
been performed.

Exam, ,ple. The following post-condition on the teachers field ensures the last
teacher of a course cannot be renioved:

pred teachers.postDel { some this.first.teachers }

2.3.3 Expansion triggers

Expansion triggers enable changes in one field to automatically propagate to other
fields. Every tuple insertion and deletion can trigger a reaction which results in
more tuple insertions or deletions. To simplify the semantics, expansion triggers are
required to be monotonic: tuple insertions can trigger additional tuple insertions but
not tuple deletions, and tuple deletions can trigger additional tuple deletions but not
tuple insertions.

Given fields f and g, the user can declare a function "f. onAdd: g" to denote the
set of tuples that should be automatically added to g whenever f grows. Likewise,
"f. onDel: g" denotes the set of tuples that should be automatically removed from g
whenever f shrinks.

Example. Continuing from the previous example, the consistency constraint
"teachers = ~ teaches" shown earlier is inconvenient for users because it
rejects a transaction if the user does not make the corresponding changes to both
fields in the same transaction. To remedy this, the following expansion trigger
definitions can be added to automatically propagate changes in one field to the
other:

fun teachers.onAdd: teaches { this.second -> this.first }
fun teachers.onDel: teaches { this. second -> this. first }
fun teaches.onAdd: teachers { this.second -> this.first }
fun teaches.onDel: teachers { this.second -> this.first }

When teacher t1 is added to course cl's list of teachers, the tuple cl->tl is passed
to the teachers. onAdd function. In this case, it returns exactly one tuple: tl->cl
which is automatically added to the teaches field. This new tuple also triggered
the teaches.onAdd expansion trigger which determines that tihe original tuple
cl->tl should be added to the teachers field. Since cl->tl is already present,
no further action is triggered, and the expansion processing is complete.

Expansion triggers apply after pre-conditions have been evaluated. so these extra
tuple insertions and removals are exempt from the pre-condition checks but not tile
post-condition checks. If a trigger-induced tuple insertion or removal violated a post-
condition, the transaction will be rejected.

Expansion triggers can also propagate changes between a field and a signature, or
between two signatures. Given signature A, signature B, and field f:

"A. onAdd: f" denotes the set of tuples to add to f whenever A grows.
"A. onDel: f" denotes the set of tuples to remove from f whenever A shrinks.
"f. onDel: A" denotes the set of atoms to delete from A whenever f shrinks.
"A. onDel: B" denotes the set of atoms to delete fromni B whenever A shrinks.

The other two combinations "f .onAdd: A" and "A.onAdd: B" are not currently
supported, since tile Alloy language does not have constructors so there is no way for
an expansion trigger to refer to an atom that does not exist yet.

2.3.4 Capabilities

If many fields have the same access policy, it is tedious to define the required

permission for each field using a separate pre-condition rule. To remedy this, a
separate access policy mechanism based on capabillities is provided. Each capability
is a triple of type Action->univ->univ.

There are three Action atoms: R (for retrieval), A (for addition), and D (for
deletion), and there are five types of capabilities: atom creation, atom destruction,
tuple insertion, tupIle removal. and tuple retrieval.

(1) Creating a new atom in signature s requires the capability triple (A, A, s$).

(2) Destroying an existing atom xr requires the capability triple (D, D, :).

(3) Inserting the tuple (xl. ., r,) into field f in signature s requires the
capability triple (A, :rl, s$f).

(4) Removing the tuple (:rx. ... ,,) from field f in signature s requires the
capability triple (D, r., s$f).

(5) Reading the tuple (xj:. 2 ,.. ., :,,) from field f in signature s requires the
capability triple (R, 1, s$f). These R capabilities are ignored when processing
a transaction; instead, they determine whether a query is permitted or not as
described later in Section 2.3.6.

For convenience, the W\eballoy library module (shown in Figure 2-2) predefines
four useful functions: ADD = A->A, DELETE = D->D, W = A+D. and RW = R+W.

To exploit this mechanism. the model is augmented with a function niamed policy
that takes no arguments and returns a ternary value of type Action->univ->univ. If
no such function is defined in the model, then the capability checks are not performed.
and queries and transactions are approved by default unless rejected by a consistency
constraint or a pre- or post-condition.

Examrplc. Continuing from the previous example. suppose teachers of a course
should be able to modify every field of that course. Instead of writing 10 pre-
conditions (5 preAdd and 5 preDel predicates), this can be expressed more
succinctly by adding the following function to the model:

fun policy: Action -> univ -> univ {
W -> me.teaches -> Course$.fields

}
W is a convenient function provided by the Weballoy module (Figure 2-2) that
returns the union of A and D. The expression me.teaches evaluates to the set of
all courses being taught by the user making the request. and Course$.fields
denotes the imeta atoms corresponding to the fields of Course. So this says that
teachers of a course can mllodify every field if not prohibited by other pre- or
post-conditions or a consistency constraint.

Whenever a request is made, the generated website associates the singleton set named
me with the atom corresponding to the user making the request (or tile empty set
if the user is accessing the website without logging in), and evaluates tile policy
function to compute the set of capabilities currently possessed by the user. If the
user does not possess all required capabilities for this transaction, the transaction is
rejected.

Example. Suppose teacher ti wishes to remove sl from cl.assistants where
the current database is as follows:

Teacher = tl +t2 +t3. cl.assistants = s3. tl.teaches = cl + c2.
Student = sl + s2 + s3. c2.assistants = sl. t2.teaches = c3.
Course = ci+ c2+ c3. c3.assistants = s2. t3.teaches = cl.

The capabilities possessed by tl are determined by evaluating the policy function
with me = ti. The expression me.teaches evaluates to {cl, c2}. so tl currently
has 20 capability triples resulting from the cross product {A, D} {cl, c2}

{Course$name, Course$teachers, Course$assistants, Course$students,
Course$grades}. The required capability D -- cl - Course$assistants is one
of the 20 capabilities currently possessed by t , so the request is approved if it
does not violate another constraint such as a pre- or post-condition.

Compared with typical role-based access control systems, this approach is much more
flexible. Instead of granting permissions to roles that have to be explicitly created and
assigned by administrators, the policy function does not require an explicit notion
of roles and can assign state-dependent permissions to users at run time.

2.3.5 Processing a Transaction

The pre-conditions, post-conditions, expansion triggers, and capabilities are checked
in the following order:

* When a transaction is received, the website first checks the capability rules
to make sure the user has the required capability for every request in the
transaction.

* If tile user has the required capabilities, the system checks the pre-conditions for
atom creation and tuple insertion requests, applies the onAdd triggers perhaps
repeatedly (as shown in Figure 2-3), performs the creations and insertions, then
checks their post-conditions.

* If any pre-condition or post-condition is violated, the entire transaction is
rejected. Otherwise, the system checks the pre-conditions on atom destruction
and tuple removal requests. applies tile onDel triggers, performs the destruction
and removals, then checks their post-conditions.

* Finally, if any fact is violated, all changes are rolled back and the transaction
is rejected.

Given the set of insertions AS and the set of deletions DS as described in Section 2.2.1.,
tihe pseudocode for processing the incoming transaction is shown in Figure 2-3.

(Gray boxes denote required manual inputs)

Figure 2-1: Policy Validation Workflow

As mentioned previously, atom creations and tuples insertions happen before atom

destructions and tuple removals. This ensures expansion triggers are monotonic:

when adding tuples, the corresponding onAdd triggers are evaluated to expand the

set of tuples to be inserted until there are no more new tuples to insert. Later when

removing tuples, the corresponding onDel triggers are evaluated to expand the set of

tuples to be removed until there are no more tuples to remove.

This has two important consequences: first of all, it means the behavior of the

system is deterministic and does not depend on which enabled trigger is applied

first. Secondly, since the trigger functions are evaluated until a fixed point is

reached before performing the actual insertion or removal, trigger evaluations of

a particular transaction are all done on the same database pre-state and may be

partially parallelized.

2.3.6 Processing a Query

When a query is received, the website does not need to evaluate any of the pre-

conditions, post-conditions, or consistency constraints since queries cannot modify

the database. Instead, the website associates the singleton set named me with the

atom corresponding to the user making the query (or the empty set if the user is not

logged in) then evaluates the capability function policy to determine the capabilities

currently possessed by the user.

As previously mentioned in Section 2.3.4, reading the tuple (x 1 , x 2, ... , Xn) from

field f in signature s requires the capability triple (R, xl, s$f). If the user does not

possess all capabilities required by a query, the entire query is denied. Otherwise, the

tuples requested in the query are returned to the user.

The pseudocode for processing an incoming query is shown in Figure 2-3.

2.4 Validation

Given a data model and the associated access policy expressed in Alloy, the Alloy
Analyzer can be used to validate whether the model accurately represents the
website designer's intentions (Figure 2-1). The Alloy run command can be used
to automatically generate use cases from partial use case descriptions, whereas the
Alloy check command performs bounded model checking to verify whether the model
satisfies user-provided properties.

Example. Suppose the website designer wishes to subsume the
assistants.preAdd pre-condition (shown in Section 2.3.1) with the capability
rule shown in Section 2.3.4. The following check command can be used to
check whether the pre-condition for adding an assistant to a course is true if and
only if the current user possesses the corresponding capability triple for adding
assistants:

check {
all c:Course, s:Student I

preAdd[c->s] iff A->c->Course$assistants in policy
}

2.5 Related Work
2.5.1 Access Control Specification Languages

Domain-specific access control specification languages exist for a variety of
environments such as operating systems, network firewall configurations, relational
databases, and enterprise resource management. While these languages have been
successful. they are often very specialized and have limited tools support since tools
written for one language cannot be used with another.

Many general purpose access control systems are now based on the principle of
Role-based Access Control (RBAC) [14]. RBAC improves upon traditional Mandatory
Access Controls [56] by allowing administrators to create specific roles authorized for
different tasks. Each user can be assigned to zero or more roles. Instead of controlling
access to low-level objects, RBAC allows operations to be grouped into transactions
with specific meaning and access policy in a particular organization. Furthermore,
the roles may be dynamically reassigned without changing the policy itself.

Increasingly., RBAC-based languages such as XACML[58] are being proposed as a
uniform approach to specify the access policy for heterogeneous resources. Compared
with Alloy, XACML has more built-in primitives for conveniently describing certain
policies, but cannot express complex conditions involving universal or existential
quantifiers. For example, when modeling the "Continue[40]" conference management
system (Section 5.2), it is impossible to express the following constraint using
XACML: "conference chairs cannot move a conference into the discussion phase if
there exists at least one unreviewed paper."

2.5.2 Policy Validation

Many tools exist for validating the correctness of role-based access control policies.
Margrave[16] analyzes policies given in XACIML and can compare the semantic
difference between two policies. Becker et al.[3] translates authorization rules to
Transaction Logic and uses Datalog to verify properties of the policy. Haidar et al.[23]
models the role-based access policy of a conference management website by explicitly
listing all possible events and using Z[52] to specify when each event is allowed to
occur. Flores et al.[18] represents the legal sequences of web page visits as a Kripke[39]
structure and uses an LTL[49] model checker to validate semantic properties.

Unlike the Alloy Analyzer which performs a straightforward bounded encoding
of arbitrary assertions into SAT. these tools were designed specifically for analyzing
access policies and are often more efficient or can check unbounded properties. On the
other hand. the access policy languages used by these tools do not support automatic
code generation.

2.5.3 Data Models

Many textual and graphical notations such as Data Structure Diagrams and Entity-
Relationship Diagrams were invented to describe the data structure of a computer
system. More recently. UML[26] has been standardized by the Object Management
Group as a suite of general purpose notations for describing both the data model and
the behavior of a system, and OCL[29] complements UML's graphical notations by
allowing users to specify additional constraints in a precise and textual format.

UML has been widely adopted in the computer software industry and is supported
by a variety of commercial tools. However, UMIL is much more complicated than
Alloy. Despite various attempts to precisely define UMIL major UML tool-chains
often do not interoperate well due to differences in their interpretation of the standard.
Moreover. even though UML and OCL are very expressive, the complexity of the
notation may encourage users to write hunman language annotations instead of precise
UML markings, further reducing the effectiveness of automation offered by these tools.
In contrast, Alloy is much simpler. as it is based on a very straightforward first-order
logic; and Alloy semantics is precise. therefore allowing fully automatic test case
generation, property checking. and (for certain domains such as web site construction
described in this thesis) automatic code generation.

2.5.4 Object-Relational Mapping (O/R-M)

O/R-M addresses the impedance mismatch between an object-oriented programming
language and an SQL relational database that does not support rich data structures.
By associating primitive values in database tables with live objects in programs at
run time, the programmer does not need to access the (latabase contents explicitly;
instead, tIhe contents become part of the program's state space as changes to the
objects propagate to the database and vice versa.

O/R-M is widely implemented in many tools and frameworks. Hibernate[24] is
a Java framework allowing the mapping to be specified in either direction: Java
code can be used to derive a suitable database schema, and an existing database
schema can be used to generate skeleton Java code. Ruby on Rails[51] generates
skeleton Ruby code from a data model and allows database contents to be accessed
transparently if desired. Magritte[50] also supports object-relational mapping and
offers a mreta-model facility in Smalltalk for displaying, validating, and modifying tile
data objects.

Alloy atoms and signatures are similar to instances and classes in an object-
oriented languages, so the transparent schema generation and database access
described in Section 2.1 roughly corresponds to performing object-relational mapping
between the database and an Alloy instance. However, existing O/R-NI frameworks
do not support rich access policy beyond the primitive mechanisms implemented in
the underlying SQL database.

module Weballoy

sig Date = Int { }

sig DateTime = Int { }

sig Email = String { }

sig Password = String { }

sig LongString = String { }

lone sig me in univ { }

abstract sig Entity {
name: lone String,
owners: set Entity,
created: DateTime,
modified: DateTime,

}

abstract sig NamedEntity extends Entity { } {
some name

}

abstract sig LoginUser extends NamedEntity {
suspended: Bool,
email: disjoint Email,
password: Password

}

enum Action { R, A, D }
fun W: Action { A + D }

fun RW: Action { R + W }

fun ADD: Action->Action { A -> A }
fun DELETE: Action->Action { D -> D }

fun first [x: univ->univ] : univ { x.univ }
fun second [x: univ->univ] : univ { univ.x }

Figure 2-2: The Weballoy library module

Pseudocode for processing a query RS:

V (atom x, field m) E RS, reject if (R -> x -> m) policy
Otherwise, perform the query and give the answers back to the user.

Pseudocode for processing a transaction (AS, DS):

Step 1: Capability check

V (signature nm, atom x) E AS:
reject if t is not fresh or if (A -> A -> m) policy

V (signature m. atom x) E DS:
reject if t is not an existing atom or if (D -> D -> x) 4 policy

V (field m, tuple (xl,X2 ,..., x,)) E AS:
reject if x, is not fresh and (A -> x 1 -> in) policy

V (field im, tuple (xl. x2,..., ,,)) E DS:
reject if xl is not an existing atom, or if (D -> x 1 -> m) policy

Step 2: Validate the atom creation and tuple insertions

V (m, t) E AS IV predicate p named "rn.preAdd" reject if - p[t].

let Q = 0.
while (AS i Q) {

choose (f t) from AS - Q.
add (f, t) to Q.
V function p named "'f.onAdd: g" I add (g,p[t]) to AS.

}
Add atoms and tuples in AS to the database.
V (inm, t)EAS I V predicate p named "m.postAdd" I reject if a p[t].

Step 3: Validate the atom deletions and tuple removals

V (m, t) E DS IV predicate p named ",m.preDel" I reject if a p[t].

let Q = 0.
while (DS Q) {

choose (f, t) from DS - Q.
add (f, t) to Q.
V function p named "f.onDel: g" add (g.,p[t]) to DS.

}
Delete atoms and tuples in DS from the database.
V (nm, t)EDS I V predicate p named "ni.postDel" I reject if - p[t].

Step 4: Consistency check

If every fact defined in the model is still true, commit the changes;
otherwise roll back all changes and reject the request.

Figure 2-3: Query and transaction processing

36

Chapter 3

Back-End Synthesis and
Mandatory Policy Enforcement

3.1 Overview

The preceding chapter presented a declarative style of modeling where the data
model and the access policies of a website are specified and reasoned about using
Alloy. It showed how to describe the expected behavior of the corresponding website
but did not explain how to match a model with a particular website. One way to
ensure that the website obeys the access policy is to synthesize the entire website
automatically using a code generator. This chapter describes my implementation of
a code generator, Weballoy, that enforces the access policy by construction.

The architecture for websites generated by WVeballoy is shown in Figure 3-1.
JavaScript code running in the web browser displays a web page by issuing queries to
Java servlets running on the server. If the query is approved, the servlet will perform
the query and return the results back to the JavaScript code which displays it for the
user.

Likewise, when the user makes changes on the website, the JavaScript code
combines the set of additions and deletions indicated by the user into a transaction
and sends it to Java servlets running on the server. The transaction undergoes the
four stages of access policy check mentioned in Section 2.3.5 and shown in Figure 2-3.
If any stage rejects the transaction, the servlet returns an error message to the user,
otherwise the entire transaction is committed to the database.

The database schemata, Java servlets, HTML, and JavaScript code are all
automatically generated by Weballoy. The only required inputs are the Alloy data
model and Alloy access policy specification. The website synthesis workflow is shown
in Figure 3-2.

The front-end JavaScript and the back-end server code are decoupled and
communicate by sending Remote Procedure Call (RPC) messages via HTTP POST.
The five message types currently supported are described in Section 3.6. By choosing
industry standard formats and protocols, the front-end and back-end are safely
decoupled, providing two important benefits.

User keyboard/mouse actions HTML Display

JavaScript code running in web browser

Client-side

Server-side
Transaction Tuples Queries

Write Capability Checker Read Capability Checker

Transaction

Insertion Checker

SExpanded Transaction Database

Deletion Checker

SExpanded Transaction

Consistency Checker

Commit the changes

Figure 3-1: Architecture of Synthesized NWebsite

First, the same back-end that services web browser requests can also act as a web
service provider. This allows easier integration of the data store with other enterprise
business applications. and provides a single gatekeeper where the access policy can
be enforced for every application that accesses the data.

Second. the front-end web page display is cleanly separated and can be replaced
and customlized for each website a.s needed. Chapter 4 describes a technique for
automat ically generating interactive JavaScript code and a new Alloy-aware template
language for customizing the appearance, but existing industry template engines such
as XSLT,. JSF, PHPTemplate, or even manual coding could be used instead without
the possibility of unintended policy violations.

Next I'll describe the components shown in Figure 3-1: the database, the servlets
responsible for policy checks, the client-side JavaScript c(ode, and the messaging
protocols between JavaScript and the server.

3.2 Database

The current Weballoy imilenmentation does not sit on top of ain off-the-shelf SQL
relational database since it is nontrivial to translate Alloy expressions into
efficient SQL queries. Instead, a new relational tuple store was ilmilenlented that
natively supports queries containing Alloy relational operators.

Weballoy
Schema 4 Database Schema
Compiler

Weballoy

oy Access Policy Policy Webserver Servets
Compiler

(Gray boxes denote required manual inputs)

Figure 3-2: Website Synthesis Workflow

The database contents are stored as an indexed file on disk, where each signature

is associated with its current set of atoms and each field is associated with its current

set of tuples. Atoms and tuples are fetched on demand. When atoms are read in

to main memory, they are interned immediately. This allows atom equality to be

determined efficiently by direct pointer comparison.

Each tuple is represented by a pointer to an array of atoms. Since most tuples

are discarded from a query, it is wasteful to spend time interning them. For example,

when evaluating the relational join between a binary relation f and an atom x, tuples

in f that do not end in x are all discarded.

Instead, when two tuples are compared, hash values based on the atoms in the

tuples are computed and memorized. If the hash values are different, they are

necessarily different tuples and the inequality is confirmed immediately. If the hash

values are the same, they are compared atom-by-atom. If found to be equal, one

tuple object will be modified to point to the same array of atoms as the other tuple

object, so the next time these two tuples are compared, they will be deemed equal

immediately since they point to the same underlying array of atoms.

3.3 Evaluator

The evaluator is an integrated part of the custom tuple store responsible for converting

arbitrary Alloy expressions into primitive query operations supported by the tuple

store.

When optimizations are not enabled, the evaluator works by fetching the contents

of every signature and every field mentioned in an Alloy expression into main memory

then performing the corresponding relational operations on them. After conducting

the first few case studies, several important optimizations were added to the evaluator,

including signature elision and membership decomposition.

E . S = { a I a->b in E for some atom b of type S }
S . E = { b a->b in E for some atom a of type S }
E & S = { a in E a is an atom of type S }
E - S = { a in E a is an atom whose type is not S }
S <: E = { a->b in E a is an atom of type S}
E :> S = { a->b in E b is an atom of type S }

Figure 3-3: Important signature elision rules (given expression E aniid signature S)

Given expressions E1 and E2. signature S, and atoms X.rl, ,:r,,:
(1) xi in S if x: is an atom of type S
(2) E1 in E, if every tuple in El is also in E,
(3) (: 1 , -. , x£,) in EI+E, if (x~.. - -,::,,) in El or (:r. " ,,) in E;
(4) (ri, .. , X,,) in E1->E 2 if (x:1 .- "Xn) in El and (3n',,+1, X,) in E,

where El's arity is m and E2's arity is n - in.

Figure 3-4: Important membership decomposition optimization rules

Signature elision refers to a collection of rules (Figure 3-3) intended to avoid
retrieving the full contents of signatures. The intuition is that a formula often contains
references to signatures in the model but the truth value of the formula does not
depend on the entire signature.

For example, if s is a signature, then the expression (x & s) can be efficiently
evaluated by computing x then removing all atoms whose type is not s: empirically,
x's size is often a small number whereas signature s can be of arbitrary size as more
data are added to the database.

Mrnmbe'rship dccoInpositio'n (Figure 3-4) avoids explicit construction of large
relations corresponding to expressions in membership tests by converting unions
into disjunctions and products into conjunctions. For example. given sets X, Y,
and Z, the membership test (X->Y->Z in A->B->C) is simplified to (X in A and
Y in B and Z in C). and (X in A + B + C) is rewritten as (all x: X I x in A
or x in B or x in C). Once decomposed, membership tests between disjoint sets
can be silmpllified to false without evaluating the arguments.

Membership formulas of this form arise very naturally when performing the
capability check, where the left hand side is often small since it corresponds to a user
initiated transaction, but the right hand side is large since it contains cross products
of every entity in the database. Combined with the signature e'lision,, optimization
mentioned earlier, capability checks can often be performed without ever retrieving
the full content of any signature from the (database.

3.4 Java Servlets

The servlets running on the web server are responsible for processing incoming queries
and transactions. Since the tuple store natively supports Alloy expressions and
formulas, the servlets simply implement the pseudocode shown in Figure 2-3.

At run time. the servlets invoke the evaluator to evaluate the policy, onAdd,
and onDel functions, and the preAdd, preDel, postAdd, and postDel predicates
as needed. No additional optimizations are implemented in the servlets themselves;
instead, major bottlenecks are identified and improved in the evaluator. The same
evaluator is also used in the Alloy Analyzer allowing users to interactively evaluate
expressions in an instance, so the speed-up benefits all users of the evaluator and not
just the servlets.

There are five different RPC message types for handling incoming queries and
transactions. The wire format is plain text JSON (JavaScript Object Notation), and
the current implementation uses the Google Web Toolkit [22]'s GWT-RPC library
for making the remote procedure calls and receiving responses from call-backs. These
five methods are described in Section 3.6 using GWT-RPC notation, though clients
are free to issue requests using other compatible libraries.

3.5 Session Cookies

All GWT-RPC calls are done by making HTTP requests, so the client's HTTP cookie
is an implicit argument that is always passed via the "HTTP Cookie" header during
each RPC call. As is standard in most frameworks, the cookie is used to identify the
requests as belonging to a particular user, and this association is used during access
policy checks for determining whether to grant the request. To do this, the servlets
maintain a mapping from each valid cookie to the atom of the user who currently

possesses that cookie.

When a client issues a request without sending a cookie, or with a cookie that has
expired, the server generates a random but currently unused cookie and issues it to
the client via the "HTTP Set-Cookie" reply header. Web browsers typically honor
the Set-Cookie reply and will send this new cookie along in all subsequent messages
to the server. But refusal to accept the new cookie is not a policy violation risk:
at this point the cookie is not yet associated with any particular user so the client
still has the same permission as any anonymous visitor. In particular, policy checks

(as described in Section 2.3.5 and 2.3.6) for requests coming from this client will be
evaluated by associating the specially named value me with the empty set.

If the user logs in with a valid password, a fresh cookie associated with the user's
atom will be issued to the user via the "Set-Cookie" reply header. Subsequent access
by the user will be checked by associating me with his atom rather than an empty set,
until either the cookie expired due to inactivity or the cookie is invalidated explicitly
by calling logout ().

3.6 RPC Message Types

As mentioned earlier, the generated server code currently provides five callable RPC
methods. They are shown in Table 3.1.

Method Description
login Returns an authentication cookie
logout Invalidates an existing cookie

get Returns a set of tuples
suggest Returns a set of atoms who field values start with a given substring
submit Submits a transaction

Table 3.1: RPC Methods

To proimote decoupling of the front-end and back-end. these five methods are
described in detail using the exact Java syntax needed to invoke them via the GWT-
RPC library. Suitable alternative libraries can be used to access the back-end from
clients written in different programming languages.

The first argumlent app is commrnon to all five method calls and indicates which
website this request is intended for. When the servlet receives this method call. it
queries the Servlet container to locate a ServletContext object with that application
name and rejects if no such ServletContext can be found. This allows nmultiple
websites to be reside at the same IP address.

Alloy Int atoms, String atoms, and user-defined atoms are all encoded and passed
using Java String objects using the following encoding scheme:

* If the transmitted value begins with a digit or with a negation synmbol, it
represents an Alloy Int atonm.

For example, the Java String "-7' passed during an RPC call represents the
Alloy Int atomi -7.

* If the value begins and ends with double quotes. it represents an Alloy String
atom. In the Alloy model, String atoms are always surrounded by double
quotes. When displayed by the front-end client automatically generated by
Weballoy, the double quotes are removed.

For exanmple., the Java String ""Hello"" represents the Alloy String atom
"Hello".

* If the value begins with any other character., it. represents an atom corresponding
to a user-defined signature, and it must start with the name of the signature.
followed by a dollar symbol "$". followed by an integer. The integer is chosen
at atoim construction time to ensure the atom name does not conflict with an
existing atomn in that signature, but has no other significance.

For example, the Java String 'Employee$7"' represents an atomi in the Employee
signature.

3.6.1 login(String app, String email, String password)

Description:

When this call is received, the servlet queries the data store to find a LoginUser
atom whose email field matches the email argument. Since the email field is
declared to be disjoint in the Weballoy module (Figure 2-2), there is at most one
user with that email address.

As mentioned earlier, the server maintains a mapping between each valid cookie
and its associated atom. If the above query returns exactly one atom, its
suspended field is false, and its password field matches the input, then the
server will associate that atom with a fresh cookie. On the other hand. if any of
the previous condition fails, this request is rejected.

To avoid sending unencrypted passwords through the network, this method
should be invoked using the HTTPS protocol rather than HTTP.

Effect:

The binary relation String->LoginUser maintained by the server will be
overridden with a new tuple (cookie, user) if a LoginUser atom exists and satisfies
the previously mentioned conditions. Otherwise this call has no effect.

Return values:

If the request is successful, the LoginUser atom will be returned to the caller,
along with all its field values that are not prohibited by the access policy (as if
the caller issued a get () RPC call with that atom). A fresh cookie returned via
the "HTTP Set-Cookie" reply header is used for subsequent authentication with
the server, and the LoginUser atom is returned solely for informational purposes.
If the request is denied, an error message is returned instead.

3.6.2 logout (string app)

Description:

Each cookie has a server-configurable inactivity timer: if no requests are made

using a given cookie for over a certain period of time, the cookie expires

automatically. However., clients can explicitly request that a cookie be invalidated

immediately by calling the logout () method. The app argument is the same as

the other RPC calls, and there are no other arguments.

Effect:

If the cookie passed in during this call is currently associated with a valid

LoginUser, the association is remioved. If the cookie is not found or has already

expired, this call has no effect.

Return values:

None.

3.6.3 get(string app, String[atoms, String[] fields)

Description:

The atoms and fields argumnents represent the RS set described in Section 2.2.2
and nmust have exactly the same numiber of elements. Each atom/field pair
(atoms [i], fields [i]) is a query for that atom's field value in the database.

For examnple, the query shown in Section 2.2.2 (which asks for the courses
taught by teacher Teacher$1 and the teachers teaching the course Course$1)
corresponds to the following RPC call:

get(app, {"Teacher$1", "Course$1"}, {"Teacher$teaches", "Course$teacher"});

Since the get () method is called to display every dynamic value on a web page,
its interface permits queries of multiple atoms and fields to be combine into a
single HTTP imessage in order to anmortize the overhead associated with tile call.
For example, when displaying the list of all teachers. their namies can be queried
in a single call.

Effect:

None.

Return values:

If at least one atonim/field pair violates the access policy, an error message is
returned. Otherwise, the corresponding tuples are retrieved then returned to the
caller as a imap from fields to tuple contents.

Example:

Consider the LoginUser signature provided in the Weballoy module (Figure 2-
2). If there are at least two users LoginUser$1 and LoginUser$2. their email
addresses can be queried using the following RPC call:

get (app,

{"LoginUser$1", "LoginUser$2"},

{"LoginUser$email", "LoginUser$email"}

Suppose the request is approved., and their email addresses are 'a@mit. edu" and
'b@mit. edu" respectively, the call will return the following imap:

{"LoginUser$email" ->

{
"LoginUser$1" -> "a@mit.edu",
"LoginUser$2" -> "b@mit.edu"

}}

3.6.4 suggest(String app, String sig, String field, String hint)

Description:

Modern websites using advanced JavaScript techniques often offer text boxes
that automatically suggest likely values based on partial input before the user
has finished entering the full value. These "suggestion boxes" use client-side
JavaScript code that is triggered on key-press events, and queries the server
for all possible values whose string content starts with the current text in the
suggestion box.

While this functionality can be implemented with a database query retrieving all
values and then filtering out the few matches on tile client side, this would be very
inefficient and consume unnecessary network bandwidth. Instead, these websites
generally have a dedicated server script that takes the partial input ("hint") and
searches the database using a custom SQL query containing that hint. This
utilizes the indexing already performed by the database and reduces the amount
of processing needed by the server code or by the client-side JavaScript.

To support this feature. Weballoy provides a suggest () method that takes two
meta atoms representing a signature and a field in that signature, respectively,
and the hint.

Effect:
None.

Return values:
Upon receiving the request suggest (app, s, f, h), the servlet queries the
database for the set of atoms in signature s whose value in field f contains
at least one tuple whose first atom begins with the String h. The access policy
checks are performed, and the result is filtered to remove any atom whose f value
is unreadable by the user. Since the client code is likely going to display the
actual values after the call, this method returns the filtered result along with
their values in field f (as if the caller issued a get() RPC call with those atoms)
in order to reduce one round-trip.

This method does not return an error message for access violations; even if the
caller is not authorized to see any atom, this simply returns an empty map.

Example:

Consider the LoginUser signature provided in the Weballoy module (Figure 2-
2). If there are three users LoginUser$1, LoginUser$2, and LoginUser$3 whose
names are "Alice", "Alex", and "Bob" respectively, then a suggestion box for
selecting a user from the database might issue the following RPC call once the
partial text "A" is entered:

suggest(app, "LoginUser", "Entity$name", "A");

In this case there are two candidate atoms. Assuming the caller is allowed to see
both atoms and their values. this call will return the following map:

{"Entity$name" -> { "LoginUser$1"->"Alice", "LoginUser$2 "->"Alex" }}

3.6.5 submit (String app, String[[] transaction)

Description:

The transaction argument represents the AS and DS sets described in
Section 2.2.1 and contains an array of tuples (where each tuple is presented by
an array of String).

Each tuple must match one of the following four patterns:

* ("A", "A", meta sig .s, atom X) creates a new atom x in the signature
corresponding to the meta atom s.

* ("D", "D", "D"atom x) destroys an existing atoim :.

* ("A", atolm :r, mIeta field f. atom x:, atom X2, a, inm ::, .) inserts tile

tuple (:, r1, 1.: , X:3, : .) into the field corresponding to the lmeta atom f.

* ("D", atom :r. ineta field f, atom : . atomn 2, atom :j3. - - -) deletes the

tuple (x, x. x,, :, - - -) from the field corresponding to the meta atom f.

Since the String signature has no fields, the tuple insertion/deletion pattern
is never legal on a String atomi: therefore, the four patterns above can be
distinguished lexically just by examining the first two elements of the array. and
the incoming transaction can be partitioned into the AS and DS sets without

perfornming a database query.

Another optimization involves the allocation of fresh atoms. As stated earlier,
each atom creation request must specify a fresh atonm; if that atom already exists
in the database, the request will be rejected as malformed. That would mean the
client-code must first issue a query to find atoms that are unused, then construct
the transaction using them; the client would have to repeat this process if its
chosen atom got allocated by another client before this client could issue its
request.

To avoid this extra round-trip query, for every atom Ir in an incoming ("A", "A",
nmeta sig s, atom x), the servIet allocates a fresh atom y, then replaces every
occurrence of x: with y in the incoming transaction. This allows the client to

specify a an arbitrary atomi to be created, as long as the chosen atoll does not
match one of the existing atolms referred to in this transaction.

Effect:

The incoming list of tuples is first partitioned into the two sets AS and DS, the
atomi creation requests are renamed as mentioned above, then the transaction is
processed according to the pseudocode shown in Figure 2-3.

Return values:

If the request is approved, this call returns an emlpty String. Otherwise, lan error
message is returned which may describe which consistency constraint is violated
or which insertion or deletion request is denied.

Example:

Consider the following Employee signature:

sig Employee {

name: String,
boss: lone Employee

}
Suppose the current database content is as follows:

Employee = { Employee$1 }
Employee$1.name = { "Alex" }
Employee$1.boss = { }

The following RPC call creates two new employees named Bob and Carl, with
Alex as Bob's boss, and Bob as Carl's boss:

submit(app, {
("A", "A", Employee$, x),

("A", "A", Employee$, y),

("A", x, Employee$name, "Bob"),

("A", y, Employee$name, "Carl"),

("A", x, Employee$boss, Employee$1)

("A", y, Employee$boss, x)

}
Upon receiving this call, the servlet determines that there are two atom creation
requests in this transaction, so the servlet generates two new unique atoms.
Assuming the two new atoms are Employee$7 and Employee$8, the servlet then
systematically replaces all x with Employee$7, and all y with Employee$8. The
new transaction is as follows:

submit(app, {
("A", "A", Employee$, Employee$7),

("A", "A", Employee$, Employee$8),

("A", Employee$7, Employee$name, "Bob"),

("A", Employee$8, Employee$name, "Carl"),

("A", Employee$7, Employee$boss, Employee$l)

("A", Employee$8, Employee$boss, Employee$7)

}
In particular, even though Employee$8 did not exist beforehand, this transaction
is able to create Employee$8 and add it as a field value of another new atom
(Employee$7) within a single transaction without requiring a separate round-
trip communication.

3.7 Front-End

As mentioned previously, the generated server code can serve both web page requests
and web service requests. The choice of front-end is independent since tile server
performs the access control and responds to predefined RPC messages.

By default. Weballoy automatically generates a dynamic JavaScript front-end
based oil the Google Wteb Toolkit [22] for displaying the contents of a website using
the multiplicity Imarkings and the type of each field to determnine tihe widget used for
displaying that field. Fields declared with the lone or one lmultiplicity markers are
displayed using individual text boxes by default, whereas fields declared with some
or set are displayed using a dynamic table. Users can click on a text box to edit its
contents or click between cells in a table to dynamically insert or remove entries.

The auto-generated front-end and an Alloy-aware telmplate language for
custolizing its appearance are described in detail in Chapter 4.

3.8 Related Work
3.8.1 Model-Driven Architecture

Model-Driven Architecture (MDA)[46] has been proposed as a cost-effective Imethod
of developing certain classes of software. Tile idea is to first produce the initial
design in a high level niodeling notation or language, then write or derive code froum
the model.

There are many well-known benefits for using MDA. First, it reduces the cost of
evolving a software systenl. It is typically cheaper to lmodify an abstract imodel than
the code. Second, the effort of writing a concise and precise mlodel can often reveal
bugs and inconsistencies in tile design before inplementation. Autonlation tools exist
that attempt to verify high level properties on tile miodels directly. Third, greater
automlation reduces the number of places where hIuman errors could occur. This in
turn reduces the cost of testing.

In practice. there are two lmain challenges to using MIDA. First. the mlodel often
lacks a sufficient level of detail and precision. Existing specification languages are
either too low-level and tedious to use, or too high-level and imprecise for fully
automlatic code generation. Second, the generated code tends to be unreadable and
unmlodifiab)le by humans. When the code is customized. and the abstract imodel
changes, the user has to regenerate the code and then reapply the customlization.

Many MDA tools currently offer only limited automllation, such as generating
skeleton code froim UMIL models or transforming higher level Platforlm Indepldent
Models (PIM) into Platform Specific Models (PSM). However. some MDA tools exist
that. offer lilited code synthesis.

HUGO[37] translates general UML State Machines into ,Java by representing each
state as a separate object and using a greedy algorithml to dynamlically select tile
appropriate state tranlsitions. Unfortunatelv, the UIL mnodel usually still nueds to
be annotated with ,Java code which will be automlatically inserted into the guards.

entry actions, or exit actions in the generated code.

Fons et al.[19] proposes an extension to object-oriented development for systematic
design and construction of web applications. However, their approach provides little
automation and does not ensure the access policies are enforced.

3.8.2 Website Builders

Website frameworks such as Ruby on Rails[51] and Django[9] support rapid website
development by taking a high-level data model and automatically generating a
skeleton website.

Ruby on Rails[51] is a Ruby framework based on the model-view-controller pattern
and uses the Active Record implementation to provide transparent object-relation
mapping between the Ruby code and an underlying database. By a process known
as "scaffolding", Ruby on Rails can generate minimal view and controller code
automatically from the model. Further customization requires direct modification
of the generated Ruby code.

Django[9] is a Python framework also based on the model-view-controller pattern.
Unlike Ruby on Rails, Django is much more modular and offers more flexibility at
the cost of offering less automation for website designers. Whereas Rails. by design,
makes many fundamental assumptions, Django emphasizes loose coupling and has
alternative implementations for many core components.

Compared with Weballoy, these two frameworks are better suited for interacting
with external systems. since the website designer can use Ruby or Python to access
operating system calls or to execute external programs. On the other hand, for data-
centric policy-rich websites where the emphasis is on accessing and modifying rich
data in a secure way, the Weballoy approach is a better match. Both Ruby on Rails
and Django support only simple access policies by default; custom access policies must
be specified by writing additional Ruby or Python code which cannot be mechanically
verified and may be subverted by other code on tile website.

3.8.3 Code Generation from Alloy

In the context of Alloy, several projects aim to translate Alloy models directly into

executable code. Ferreira et al.[15] translates finite state machine descriptions in

Alloy into embedded executable code but does not handle arbitrary Alloy inputs.

Alchemy[41] and Alloy" [20] both synthesize executable code by augmenting the Alloy

syntax with state mutation features or assumptions. That means the input language
is less general than standard Alloy and requires all state transition operations to be

encoded explicitly.

In contrast, Weballoy does not assume a specific execution paradigm since its input

models describe legal states rather than legal sequences of states. Weballoy allows

the use of general Alloy expressions for describing the current state and assumes any
state transition is possible if it does not violate the policy.

This separation of concerns enables concise data model and policy specification for
the back-end while allowing the wel)site to be safely accessed by arbitrary untrusted
client programs such as web browsers or web service portals. Instead of explicitly
encoding, in Alloy, the different operations that website visitors may perform. website
designers can describe them using existing web form generators[59]. presentation
templates, or other automated CRUD[36] generators without the danger of policy
violation or the need to modify the Alloy model.

Chapter 4

Front-End Customization using
Presentation Templates

The preceding chapters of this thesis focused on access policy modeling and automatic
enforcement by the server; the user interface was intentionally decoupled. By
providing a simple but sufficient RPC interface, the same back-end can service both
web browser and web service requests. With a suitable RPC library, existing web
page template tools such as XSLT[61], JSF[31], and PHPTemplate[48] can be used
to construct the log in, log out, data entry, and data query web pages needed by the
generated website.

However, to facilitate fully-automatic website synthesis, Weballoy can generate
a default user interface, based on the Alloy data model, for navigating the website
and modifying its contents. The user interface can be further customized to provide
the exact look-and-feel required for a particular website. A simple template system
developed for Weballoy allows website designers to embed Alloy expressions in
arbitrary HTML and provides a large selection of built-in widgets such as drop-down
menus, suggestion text boxes, and rich text editors.

4.1 Design Considerations
There were two design goals for the generated front-end:

Goal 1: Since the default user interface is not always ideal, the generated front-end
must be customizable.

Goal 2: The customized front-end must be able to cope with changes in the
underlying data model. Website requirements evolve over time, and it would be
unacceptable if every change to the data model results in a freshly generated front-
end without any of the prior customizations done by the website designer.

To address these concerns, I designed a simple but versatile Weballoy template
language as a proof of concept where Alloy expressions may be embedded in arbitrary
HTML code. The implementation thus consists of two components: (1) a heuristics-
based template generator takes the data model given in Alloy and automatically
generates a default template that provides the standard create, read, update, and
delete operations for the website, and (2) a template rendering engine that reads the
template file and displays the website contents at run-time.

The first goal is to allow arbitrary custonmization. By having a simple and readable
template file as an intermediary between the data model and the user interface,
the website can be customized by editing this template file if the default interface
suggested by the heuristics is unsatisfactory.

The second goal is to allow the data model and the customization to evolve in
parallel. As explained later in Section 4.2. Alloy expressions in the template file must
obey certain type and scoping restrictions. As a result, the template can be statically
analyzed to find all references to each signature and each field, thereby allowing several
possible strategies for preserving customizations after the data model changes:

* Automatic Refactoring: If the Alloy data model is edited in a syntax-
directed text editor. such as the Alloy4 Eclipse Plug-in, each signature or field
renaming in the model can be automatically applied to the template file as well.

* Partial Template Regeneration: When the model is modified, the default
template generator can be used to generate two fresh default template files: one
based on the original model and one based on the modified model. These two
templates can be textually compared to produce a file patch. This patch can
then be automatically or semi-automatically applied to the actual template file
that the website designer has already customized.

* Ignore Deleted Signatures and Fields: References to a nonexistent
signature or field in the template always return the empty set. Sometimes this
may be exactly the desired behavior. Otherwise, these "dangling references"
can be statically determined just by parsing the template file and then flagged
for manual inspection and editing by the website designer.

The Weballoy tool currently implements the last strategy. though the other two
strategies may be implemented in future versions of the tool.

4.2 Weballoy Template Language
4.2.1 Overview

The semantics is based on defining a set of views and then displaying one view at
a time. Each view is a block containing custom HTML. JavaScript, or plain text
fragments which will be displayed as-is when that view is displayed.

In addition. each view can be associated with a signature and be used for
displaying atoms from that signature. Given a view and a particular atom, special
elements defined in the view will be substituted at run time with the current field
values of that atom. Restricting the scope of each view to a single signature enables
optimizations that can reduce the number of RPC calls required for displaying a given
web page.

Finally, the display is always in one of two modes: viewing or editing (see Figure 4-
1). In viewing mode, a user caan navigate the website by starting with a given view
or a given atom, then clicking on a field value that takes the user to a different atom
or view.

Figure 4-1: Viewing Mode versus Editing Mode

At any point in time, the user can click the "edit" button to enter the editing
mode, where every dynamic value currently shown on the screen gets turned into text
boxes or other dynamic widgets. The user can alter text box contents, add or delete
rows from dynamic tables, click the "cancel" button to undo all changes made so
far on this page, or click the "save" button that submits the changes to the website.
The transaction, if approved, will result in a page refresh; if it violates a consistency
constraint or the access policy, an error message will be displayed instead.

53

4.2.2 Views

Each template file is a well-formed XML file with a root element containing one or

mnore elements of type "view". For example, consider this data model of a simple
bulletin board:

sig Message {
author: String,

subject: String,

text: LongString,

replies: set Reply

}
sig Reply {

author: String,

text: String

}

The following example is a possible template for this model with two views. one
labeled showMessage and the other labeled showReply:

<html>

<view sig="Message" label="showMessage" public="yes">

Author: <F:author/>

Subject: <F:subject/>

Text: <F:text/>

Replies: <F:replies/>

</view>

<view sig="Reply" label="showReply" public="yes">

Author: <F:author/>

Text: <F:text/>

</view>

</html>

Tile sig="Message" attribute indicates the field references inside the first view refer

to fields in the Message signature. The label attribute is used to uniquely identify a

view since multiple views may be defined for displaying atonms of the same signature.

When a view is selected for display, each regular HTNML element and plain text
fragment is rendered as-is. JavaScript code and CSS style sheets are permitted as
long as they don't directly interfere with the rendering process. so the appearance of
the generated website is fully customizable.

However, each view can also be associated with a particular Alloy signature and
contain references to fields of that signature. For example, the showMessage view
shown above is associated with the Message signature, and the element <F: author/>
will be rendered as a text label (or an editable text box when the user is editing the

contents) containing the author value of a Message atom.

4.2.3 Alternate Views

When an Alloy field ranges over a signature other than one of the basic types such
as Int, Bool, String, or Date, each atom in its tuples will be displayed as a clickable
hyperlink to that atom by default. However, it is often preferable to define a custom
display format. For example, the template shown in the previous section may render
a given message like this:

Author: John Smith

Subject: Car for Sale
Text: 2005 Ford in good condition for sale
Replies: Reply$1, Reply$3, Reply$4, Reply$5

Notice that each reply is rendered by giving the label of that atom rather than
displayed in-line as is customary for bulletin boards. Section 4.4 describes a heuristic
for choosing a better default display for atoms, but website designers can choose to
define an alternate view for rendering tuples from a field.

<html>

<view sig="Message" label="showMessage" public="yes">
Author : <F: author/>

Subject: <F:subject/>

Text : <F:text/>

<F: replies view="inlineReply"/>

</view>

<view sig="Reply" label="inlineReply">

<F:author/> wrote "<F:text/>"
</view>

</html>

When displaying a message, each Reply atom in its replies field will be displayed
using the view labeled inlineReply. There is no hierarchical relationship between
views, and each view can use any other view as long as there is no infinite recursion.
In this case, since the inlineReply view is only intended for use by another view,
the web designer can designate this view as non-public. That means users cannot
explicitly request, from his or her web browser, that an arbitrary Reply atom should
be displayed using that view. Given the same example, the modified template now
produces the following output:

Author: John Smith
Subject: Car for Sale

Text: 2005 Ford in good condition for sale
Adam wrote "What is your asking price?"
John wrote "I'm currently asking for $12000"
Adam wrote "When was the last maintenance done?"
John wrote "About two months ago"

4.2.4 <F: FieldName>

By default, each field is displayed using a built-in widget designed for that field's type.
For example, a String value is shown as a text label and can be edited by presenting a.
text box. Likewise, an Int value is shown as a text label but is edited by a validating
text box which rejects the input if it is not an integer. However. these choices can be
overridden if necessary. Given an Alloy field x, the element <F: x/> displaying x can
be customnized in tile following ways:

* <F:x one="yes"/> mieans the text box must not be empty; if the user leaves
the field blank, an error message will be shown. This attribute is implied if field
x is already declared as one in the data model.

* <F:x lone="yes"/> imeans the text box can be empty. If tIle data model
actually requires this field to be nonempty, users will not be notified of the
error until they attempt to conmmit the changes to the database.

* <F:x set="yes"/> means this field will be displayed by a dynamic table of
boxes. Initially the table will be populated by the actual tuples in the field.
During editing, users can delete an entry by clearing its corresponding text
box or by clicking the "delete" icon in front of that row in the table. Clicking
between two rows or at the top or bottom border of the table will insert a new
empty text box at that location.

* <F:x some="yes"/> is the same as <F:x set="yes"/> except the user will be
shown an error message if this field does not contain at least one entry.

* <F:x ro="yes"/> means this field is read-only in this particular view and
cannot be edited. This attribute is automatically implied if the field is an
Alloy dcfincd field whose value is automatically derived from other fields.

* <F:x view="v"/> means this field should use the built-in widget named "v" (if
v is String or Int), or a user-defined view labeled ;'v".

* <F:x view="v" sort="+name,-salary"/> is the same as above, except the
tuples will be sorted before being presented. In this case. the range of the
relation (which must be binary) is first sorted in ascending order by their names.
Entries with the samie name will be ordered in descending order by their salary.
If both fields are equal, they will be presented in their current order as stored in
the database. As a proof-of-concept, this sorting syntax is very basic and does
not support higher arity relations or user-defined comparator. A future version
of tile Wleb)alloy template language may support more advanced features.

These attributes may be combined. For example, field x canl be displayed as a set, and
be read-only at the same time by using the element <F:x set="yes" ro="yes"/>.

4.2.5 <F: S: SigName>

Similarly, the element <F: S: signame view="viewname"/> displays each atomi of the
signature named "signame" using the view labeled "viewname

4.2.6 Widgets

The current implementation provides the following widget types. The template can
insist that a value be displayed using a particular widget by using the view=". . ."
attribute described earlier.

* String: When displayed, this uses an in-line SPAN element with CSS style
a4textbox; furthermore, when the box is empty, the element will be tagged
with an additional CSS style a4textboxEmpty allowing designers to provide a
special appearance for empty values. When this widget is being edited, it uses
a single-line INPUT element with the same CSS style.

* LongString: When displayed, this widget behaves in the same way as String.
When edited, it uses a multi-line TEXTAREA element with CSS style a4textbox.

* RichString: When displayed, it behaves in the same way as String. When
edited, it uses the rich text editor provided by the Google Web Toolkit, which
supports arbitrary colors, font styles, and font sizes.

* Int: When displayed, this widget converts each tuple into an integer and displays
it; if the value in the database is nonempty but not a valid integer, it is currently
displayed as 0. When edited, it uses a single-line text box which rejects the input
if it is not a well-formed integer. Tile box can be left empty if either lone="yes"
or set="yes" is specified.

* Date: When displayed, this widget regards each value as a number representing
the number of seconds since January 1 of 1970. The JavaScript code running in
the user's browser converts this number into a year/month/day representation
using the user's time zone and locale preferences. When edited, it uses a single-
line text box which rejects the input if it is not well-formed. If tile user specified
hours, minutes, and seconds information in the text box, they are ignored when
this value is saved.

* DateTime: This behaves just like the Date widget, except it will display and
accept tile hours, minutes, and seconds information.

* Bool: When displayed, this widget uses an in-line SPAN element with the
CSS style a4bool. If the value from the database contains both True and
False atoms, and possibly other atoms, the widget will display "Both". If tile
value contains at most one Bool atom, it is shown as either "Yes" or "No"
correspondingly. Otherwise, it is shown as "'--" by default, meaning the field
does not contain any Bool atom. When edited, it uses a check box by default if
the field's multiplicity is declared to be "one". Otherwise, it uses a combo box
showing up to four choices: "-- "Yes", "No", and "Both" (thle empty choice
is shown if the field is lone or set, and the "Both" choice is shown if the field
is some or set).

These widgets are defined with explicit CSS style names to make it easier for

customization., If a widget needs to be displayed in two different ways in
the same website, it can be done by wrapping the <F:x/> element inside a
 element, then the CSS style sheet can differentiate
between the elements nested in a SPAN element with one style name versus those
nested in an element with a different style name.

4.2.7 URL Anchor

Since the template can contain multiple views, the renderer uses thle fragment URL [4]

to decide at run tilme which view and which atom to display. The portion of the URL
before the "#" symbol determines the web server's IP address and the application
identifier (described in Section ??). The portion after the '"#" synmbol determines
the view and an atornm.

For example, the URL http://alloy.mit.edu/community#showUsers instructs

the application on alloy.mit. edu with the identifier "community" to display the

view labeled 'showUsers".

Likewise, the URL http://alloy.mit, .edu/community#showUser. User$8 will

display the atom User$8 using the view labeled "showUser". The table below lists
the different formats currently supported:

Pattern Effect

Display the default view (the view with no or empty label)
#view Display the view labeled "view" in viewing mode
#view+ Display the view labeled "view" in editing mode

#view. atom Show the atom ":atom" in viewing mode using the view "view"
#view.atom+ Show the atom "atom" in editing mode using the view --view"

#view+sig+ Create a new atoni for signature 'sig" using the view "view"

Table 4.1: URL Anchor Patterns

4.2.8 Editing Modes and Action Buttons

As mentioned earlier, at any given point in time, each page is always in viewing miode
or editing mode (see Figure 4-1). To enable users to edit the contents on a page,
suitable hyperlinks can be placed into a, view where the target of the link matches
one of the patterns (Table 4.1) for entering viewing mode or editing mode. \Vebsite
designers can customize the appearance of these hyperlinks using CSS.

Alternatively, NNWeballoy template language also supports b)uttons that perform
different functions based on its "'magic" attribute. For example. the button
<input type="button" magic="edit"/> takes the user fromi the viewing mode into
the editing imode, and the button <input type= "button" magic=" save"/> attempts
to save the changes on that page and go back to the viewing mode.

The types of action buttons currently supported are as follows.

* <input type="button" magic="edit"/>

This causes the current page to enter the editing mode.

* <input type="button" magic="save"/>

This saves the changes made on this page so far.

* <input type="button" magic="cancel"/>

This cancels the changes made on this page since entering the editing mode,
then returns the user back to the viewing mode.

* <input type="button" magic="back"/>

This is equivalent to pressing the "back" button on most browsers and will take
the user to the previous page.

* <input type="button" magic="delete"/>

This prompts the user for confirmation before asking the server to delete the
atom currently being displayed.

* <input type="button" magic="go" view="anchor"/>

This prompts the user to save the changes made on this page so far, if any,
then navigates the browser to display the given anchor (where tile anchor must
match one of the patterns in table 4.1). In addition, each occurrence of the
"*" character in the "anchor" attribute will be replaced by the current atom
being displayed. For example, if the current atom is User$3, pressing the
action button <input type="button" magic="go" view="showUser. *"> will
navigate to the URL showUser.User$3 thereby displaying the atom User$3
using the view labeled showUser.

4.2.9 Mode Filtering using CSS

By default. when displaying a web page, the very same layout is used for both
the viewing mode and editing mode; entering tlhe editing mode involves simply
dynamically replacing each Alloy value displayed on screen with a suitable text box
or other widget. Alternatively, the two modes can be displayed very differently by
defining two distinct views, one for editing and one for viewing.

However, sometimes the two views are very similar and it would be ideal to
share the same view without needless duplication. To enable this, the template
renderer places the entire web page inside a element
when in editing mode, and inside when in viewing
mode. Therefore, elements can be made invisible or be shown differently by using
CSS to differentiate between the two modes.

4.3 Implementation of the Rendering Engine

The current implementation for rendering the template at run tine to produce each

web page is a single Google Web Toolkit [22] module.

A GWT module usually corresponds to a fragment URL [4] whose dynamic
behavior depends on the anchor identifier after the "#" symbol in the URL. For
example, the URL http://www.google. com/showHelp#language might instruct
GWT code at that website to display help messages regarding different language
settings, whereas a different URL http://www.google. com/showHelp#calendar
might display tips about the calendar settings instead.

In the case of the Weballoy template rendering engine,. the anchor identifier is
used to determine which view and which atom to show (table 4.1). When the user

first visits an Weballoy-generated web page. the entire JavaScript file generated by
GWT is loaded into tile wel) browser. The code determines thile chosen view then
renders it by structural recursion: each HTML and plain text fragment is rendered
as-is, each Weballoy specific element is displayed with respect to the current atom
being displayed, and subviews are rendered by invoking the renderer recursively.

4.3.1 Queries

Alloy expressions in the template file are resolved by issuing one or more get()
requests to the server. The structured nature of the template language, given the fact

that each view can only refer to fields of exactly one atom, makes it often possible to
combine multiple get () requests and reduce tile number of round-trip commullnication

with the server.

For example, to display every field of atom x, first it is necessary to get all its

field values. Fields do not depend on one another, so they can be combined into one

request. Suppose one of its fields contains two atoms al and a2, and that field is to be
rendered using a view labeled v. Since rendering v on al cannot possibly depend on
any value retrieved for rendering v on a2, the renderer can generate a single request
for both al and a2's field values.

4.3.2 Widgets

Each widget stores its originating atomi and field as well as its initial and current
value. For example, suppose the renderer is displaying the atolm Paper$1, and its
author field contains three String values Alex, Bob, and Carl. At run time, three
JavaScript objects xl, x2. and x3 will be created, each remembering it came from
Paper$1. author.

When in viewing imode, each object is displayed using a text label or other suitable

static widgets. For example, xl displays a text label containing the text Alex.

When entering the editing imode, these objects hide the static widgets currently

being shown and instead display editable text boxes or other dynamic widgets. For

example, xl will display the text Alex using a single-line text box.

If a field has the multiplicity of some or set, it can have multiple values at the
same time. Each value is displayed as a separate text box, and the user can click on
the space between them to insert blank text boxes. This is done by cloning one of the
existing widgets then setting its contents to blank. For this purpose, even if a field
is currently empty, one text box is still generated to represent that field then made
invisible.

4.3.3 Transactions
When the user clicks the "save" button, each widget is queried for its original value
and the current value. The differences are transmitted to the server as a transaction.

For example, continuing from the example in the last section, suppose the user
deletes the first text box xi, changes the second text box x2 to contain the value
William instead of Bob, and adds a new text box x4 containing the value David.
The partial database state known to the user now is that Paper$1. author has at
least three Strings: William, Carl, and David. In the pre-state before editing began,
Paper$1. author contains Alex, Bob, and Carl, so the JavaScript code will request
the deletion of Alex and Bob, and the insertion of William and David.

There is a race condition here where the user's pre-state may no longer be the
latest database state. Since web page visits are not transactions, and web page visits
by users are often transient and intermittent, it is usually undesirable to lock the data
while a user edits it. That means between the time a page is displayed for editing and
the time the user submits the changes. the underlying data may have been modified
by another user.

In the last example, suppose yet another user added Moriarty to the list of authors
after this user loaded the screen but before this user clicks the "'save" button. This
user assumes that, after the save, the list of authors consists of only William, Carl,
and David. But instead, his transaction will not remove Moriarty (since Moriarty is
not in the pre-state that he saw). and the final database state actually contains four
names: William, Carl, David, and Moriarty.

This challenge is common among all web frameworks, and there are a variety of
standard approaches for addressing this. One approach is to store a serial number for
each page: modifying a page increments its counter by one, and when a user attempts
to save a page whose counter has advanced beyond the user's expectation then the
user will be notified and be given a chance to either overwrite the intermediate
change or to start over. Another approach is for the latest save to always overwrite
any intermediate changes. Another possibility for some types of application is to
intelligently merge the changes and only issue a warning if there is an irreconcilable
merge conflict.

The current Weballoy implementation of the client front-end will merge the
changes between multiple concurrent edits since each user's web browser transmits
only time edits made by the user on that page: this decision was made in order to
simplify the implementation effort for this proof-of-concept template language. Future
versions can easily adopt the per-page change counter or other standard solutions for
addressing this race condition.

4.4 Default Template Generation

The preceding sections describe the NVeballoy template language and the renderer for
displaying the template. Its support for arbitrary HTML, its ability to refer to Alloy
fields, and its systematic use of CSS styles makes the front-end very customizable.
However, it can be a daunting task to create such a template file from scratch. This
section describes a very simple but effective approach of taking the data model given
in Alloy and generating a initial template file for creating, reading. updating. and
deleting atoms and tuples for that model (often referred to as CRUD[36] interface
construction).

4.4.1 View for Creating an Atom

For each user-defined signature, the generator produces several views. The first view
is a view for creating atoms of that signature. To avoid name collisions, the generator
prepends the character 2"' to the signature name to form the label for this view,
since signature names are not allowed to start with a digit. Then it generates a table
of rows where each row contains one of the signature's fields followed by a suitable
widget for editing that value. For examiple. consider the following signature:

sig Employee {
name: String,
homeAddress: String,

salary: Int

}

The template generator will generate this view:

<view sig="Employee" label="2Employee" public="yes">
Add Employee

<table>

<tr> <td> Name: </td> <td> <F:name/> </td> </tr>
<tr> <td> Home Address: </td> <td> <F:homeAddress/> </td> </tr>
<tr> <td> Salary: </td> <td> <F:salary/> </td> </tr>

</table>

<input type="button" magic="save" value="Create the Employee"/>
<input type="button" magic="back" value="Cancel"/>

</view>

Field names and signature names are automatically capitalized in the view; for
example, the heading for field name is "Name", and the heading for field homeAddress
is "Home Address".

Two buttons are also provided for saving this new atomi (thereby creating it) and
for canceling this request (by taking the user back to the page that leads them here).

4.4.2 View for Displaying Every Atom of a Signature

For each user-defined signature, the generator also produces a view for displaying
every atom from that signature. This view lists the names of every field in this
signature then invokes another view for display every atom. To avoid name collisions,
the labels for the two views are formed by prepending "0" and "1" to the signature
name, respectively. For example, given the Employee signature shown earlier, the
generator produces two views for listing this signature similar to the following:

<view label="0Employee" public="yes">

Employees

<table>

<tr>

<th>Name</th>

<th>Home Address</th>

<th>Salary</th>

</tr>

<F:S:Employee view="1Employee"/>
</table>

<input type="button" magic="go" view="2Employee+Employee+"
value="Add Employee" />

</view>

<view sig="Employee" label="lEmployee">
<tr>

<td> <F:name/> </td>
<td> <F:homeAddress/> </td>
<td> <F:salary/> </td>

</tr>
</view>

The signature and field names are converted as before; furthermore, the name of the
signature is automatically pluralized as the caption for the table. After creating a
TABLE element and producing the list of field names as its first row, each atom from
the Employee signature is displayed using the view labeled "1Employee". Also, since
the generator knows the view for creating an Employee is labeled "2Employee", a
button is created for the URL "2Employee+Employee+" (meaning to show an atom
creation dialog for signature Employee using the view labeled 2Employee).

4.4.3 View for Displaying One Atom

By default, for every user-defined signature, the generator produces a view (whose
label is the same as the signature name) for viewing an individual atom from that
signature. This view consists of a table where every row contains the label of a
field followed by the field content itself. For example, the generated default view for
displaying an individual atom from the Employee signature shown earlier is similar
to the following:

<view sig="Employee" label="Employee" public="yes">

Employee

<table>

<tr>

<td> Name: </td>

<td> <F:name/> </td>

</tr>

<tr>

<td> Home Address: </td>

<td> <F:homeAddress/> </td>

</tr>
<tr>

<td> Salary: </td>
<td> <F:salary/> </td>

</tr>

</table>
<input type="button" magic="delete" value="Delete This User"/>

</view>

This completes the description of the default template generator. It simply iterates
over every user-defined signature and produce three public views and one private
view for each signature. Web designers can reorder or hide certain fields, rename the
labels, alter the presentation style sheets, or make more elaborate customizations as
needed.

4.5 Related Work

4.5.1 Template Languages

The growing popularity of the model-view-controller pattern for website construction
has resulted in the development of many different template languages and engines.

Proper use of templates provides a separation of concerns and allows the same data
to be presented in different formats for different users or for different web browsers.

Enterprise applications based on Java EE [27] benefit from template frameworks
such as JavaServer Faces [31] which is heavily object-oriented and interoperates well
with both JavaServer Pages [32] code and JavaBeans. Domain specific systems
often come with suitable template languages as well; the Drupal [11] open source
content nmanagement system comes with a PHP-based template engine named
PHPTemnplate[48] which is also usable outside of Drupal. More generally, applications
with XML input or output can convert the XML data into hunan-readable text or
HTML by writing the transfornmation rule in the XSLT [61] language, or by writing
XQuery[60] code to extract data from XML for presentation.

The mnain difference with Weballoy telmplate language is that these systems are
much more powerful in that any line in the template can refer to any part of the
input data; JavaServer Faces and PHPTemplate even allow arbitrary code in the

template. While they offer the user more capabilities for generating the presentation.
the unstructured access to data makes it impossible to statically analyze then optimize
the template to minimize the number of database accesses, or to perform mechanical
refactoring on the template files.

4.5.2 Ajax Libraries

The current implementation of the Weballoy template renderer uses an increasingly
common technique known as Ajax (Asynchronous JavaScript and XIML) for querying
and submitting data to a web server in the background without requiring the
disruptive and time consuming reloading of the current web page.

Initially a niche technique rare among mainstream websites, it was popularized
partly by the success of Google Gmail which presents an online email client with
responsiveness and user interface similar to a local email application, unlike other
contemporary email services such as Microsoft Hotmail and Yahoo! Mail.

Ajax libraries such as jQuery [30], Google Web Toolkit [22], and Flapjax [17]
can be used to manually build a dynamic interface for accessing remote data. For
read-only access to specific data formats such as relational data presented in JSON
(JavaScript Object Notation). frameworks such as Exhibit [12] can partly automate
the construction of a dynamic viewing interface.

Some of these tools support automated interface construction. But unlike
Weballoy, they are not integrated or driven by a formal modeling language which
limits the amount of safe automation or static analysis that can be performed.

4.5.3 Interface Languages/Builders

Many languages and builders exist for describing and generating user interfaces. In
the context of website construction, systems such as Django[9] and phpMyAdmin[47]
offer standard administrative interfaces for reading and modifying data stored behind
the website. However, their built-in user interfaces are not very customizable,
unlike the Weballoy template language. Further customization of Django requires
Python programming and suffers the same limitation as the other template languages
mentioned earlier in this section.

DabbleDB[6] allows users to customize the display of data on-the-fly using the very
same graphical user interface presented on screen. For the scenarios envisioned by
the DabbleDB developers, the system allows non-programmers to conveniently modify
the interface without editing any theme files or writing any line of code. However,
it does not permit arbitrary customization. Furthermore., it does not support rich
structural data models which further limits the types of presentation possible.

XForms[59] has been proposed as a standard for defining interactive web forms for
data entry on a website. Its data model is based on XML and is designed from the start
to support the model-view-controller pattern. Similar to Weballoy template language,
it offers a more structured and formal approach to data access and data submission.
However. its strict adherence to a data miodel based in XM\IL both enhances and

limits its capability at the same time: the rich document validation capability of
XML allows much more powerful client-side input validation and reduces the amount
of required round-trip comnunication to the server, but the rigid XML form display

and submission semantics limit its general applicability.

Chapter 5

Case Studies

5.1 Alloy Community Website

5.1.1 Original Website

My research group maintains a website for users of the Alloy language and tools.
I was involved in a redesign of that website in early 2008. One of our main objectives
was to allow users to upload Alloy-related publications to the website and to foster
collaborations among researchers.

To minimize our administrative efforts and to empower the users, we wanted to
allow users to upload and modify contents on the website directly. But at the same
time, we had to ensure users could not modify each other's contents. The access
policy rules got more tricky when we introduced the notion of research groups where
users could form and join research groups, and contents could be tagged with the
groups they belong to.

The open source content management system Drupal [11] was chosen because
several students in our research group had experience with it. The initial prototype
was built in a week by one graduate student and two high school students who were
visiting our research group at the time. Another graduate student spent one more
week customizing it in response to user feedback.

However, when we wanted to introduce the notion of group tagging. we realized
that our notion of group permission and ownership was very different from Drupal's.
and we were unable to find any third-part Drupal add-on modules that supplied the
behavior we wanted.

For example, we wanted users to be able to tag their papers with the research group
they belonged to. One module we found allowed a user to tag papers with any group,
even groups they did not belong to. Another module did not allow group owners to
generate their own labels and required the website administrators to manually create
a new label for each group.

To finish the website, we enlisted the help of a. professional Drupal developer
who spent 40 work hours selecting appropriate third-party Drupal add-on modules,
installing and configuring them to satisfy our requirements as much as possible. then

manually mIodifyi ng Drupal's underlying PHP code until it fulfilled our requirements
exactly.

The resulting website has been a great success for our users, but it is unsatisfactory
for two reasons. First of all, its access policy is very rigid and will require further
direct PHP modifications if we want to change the access policy beyond the standard
paradigim. Secondly, it imposes long term maintenance costs: if we wish to upgrade
to the next version of Drupal, we have to manually apply the PHP code changes
again. The changes may be nontrivial if the Drupal API changes or if new Drupal
coniponents interact with our code modifications in unexpected ways.

5.1.2 Weballoy Implementation

For comparison, we miodeled the core functionality and access policy of the website
using \Weballoy: thie data model consists of 32 lines (6 signatures and 21 fields in
Figure 5-2) and the access policy consists of 22 lines (11 capability clauses and 10
conditions in Figure 5-3 and 5-4).

Most of tihe definitions are straightforward; however, the group membership
management is nontrivial. In this website, group owners can designate whether a
group is open or not. Users can directly join an open group, but nembership in a
closed group requires confirnlation by an owner of that group. Users wishing to join a
closed group can add themselves to the group's tentative membership list. Super users

and the group's owners can deny the requests by removing users fromn the tentative

meniber list, or approve the requests by moving users from the tentative memiber list
into the regular member list. The insertion and deletion from the three lists (owners,
regulars, and tentatives) are described by six pre-conditions shown in Figure 5-4. For
example, the pre-condition for insertion into the regular member list is as follows:

pred regulars.preAdd {

let g=this.first, u=this.second I

((g.closed=False && me=u) II me in g.owners I I me.super=True) }
}

This predicate is evaluated for each tuple being inserted into a. group's regular nmenmber
list. Each tuple is a pair of Group and User atomis, so tile let statement is used to
extract the group g and user u from the pair. This predicate returns false and thus
rejects the insertion if it does not imatch at least one of three cases: (1) a user is
allowed to insert himself if the group is not a closed group, (2) a user is allowed to
insert anybody if lihe is an owner of the group. and (3) super users on this website
are allowed to insert anybody., assumining it does not violate the capability rules or a
consistency constraint.

5.1.3 Limitations

The autoimatically generated website currentlyv cannot send notification emails
since the current Weballoy syntax does not contain primitives for describing email
transmission or1 retrieval. To improve responsiveness, conunercial website fraimeworks

usually do not send emails during the processing of individual web page requests;
instead, outgoing emails are added to a queue to be sent at a later time by a dedicated
server program. In principle, Weballoy can be extended using the same approach: a
special relation can be defined to represent the queue, and user requests can generate
outgoing emails by inserting into this relation.

Since the widget for handling file uploads is not yet implemented, the model does
not allow users to upload files either. The generated website is otherwise complete
and nearly identical in appearance after customization.

Name: Help Needed

Owners: Bt5 at

Created: 2009/01/02 17 42:42

Modifed: 20090102 17:43 07

Text H: w do I inst.l the AIIoY nA~ay r

Dlete This Topic

Before Customization

How o i nstali he ovAnazer

Posted:
SCI

2 10242 2

Author: Jst Maie have Java 1.5 installed
Bran then downad altol4 jar

After Customization

Figure 5-1: Alloy Community Website

70

sig User extends LoginUser {
bio : lone LongString,
super : Bool,
getMail : Bool,
admins = (@owners.this) :> Group,
groups = regulars.this

}

sig Group extends NamedEntity {
description : lone LongString,
closed : Bool,
regulars, tentatives : set User

closed=False => no tentatives

disj[owners, regulars, tentatives]

}

sig Paper extends NamedEntity {

date : Date,

venue : lone LongString,

descr : lone LongString,

authors : some String,

tags : set Group

}

sig Forum extends NamedEntity {
descr : lone LongString,

weight : Int,
read0nly : Bool,

topics : set Topic
}

sig Topic extends NamedEntity {

text : LongString,

pinned
readOnly
replies

// Group is open, so users must be either owners or regulars

// The same user cannot have two different membership types

: Bool,

: Bool,

: set Msg

sig Msg extends Entity {
text : LongString

I

fact "Every user must have a distinct name." { all disj a, b: User I a.name != b.name }

fact "Every group must have a distinct name." { modall disj a, b: Group I aname tud= b.name }

Figure 5-2: Data ulodel for the case study

// This defines the set of capabilities possessed by the user "me"
fun policy : Action->univ->univ

{
//every user can read his/her own fields
R -> me -> field$

//super users can read everything.

//Others cannot read the "email', "getAlail", and "tentative group membership" fields.
+ R -> univ -> (me.super!=True => (field$ - LoginUser$email - User$getMail - Group$tentatives) else field$)

/if you own a group, or if you're a tentative g'roup member of a group.

//you can see its tentative group membership field
+ R -> (owners.me + tentatives.me) -> Group$tentatives

//every, user can modify his/her email, password, and all User fields except the '-super user" flag
+ W -> me -> (Entity$name + LoginUser$email + LoginUser$password + User$.fields - User$super)

// paper owner can modify everything; topic or message owner can modify the name and text of the topic or message
+ W -> (owners.me) -> (Paper$.fields + Entity$name + Topic$text + Msg$text)

// group o wner can modify everything, including the owner field
+ W -> (me.admins) -> (Group$.fields + Entity$owners)

//super users can modify everything; others can add themselves to group membership or tentative membership list
+ W -> univ -> (me.super=False => (Group$regulars + Group$tentatives) else me.super=True => field$ else none)

// everybody can post new forum message or forum replies
+ A -> univ -> (Forum$topics + Topic$replies)

//super users can create anything; non-super users cannot create new User or Forum
+ ADD -> (me.super=False => (Group$ + Paper$ + Topic$ + Msg$) else none)
+ ADD -> (me.super=True => (Group$ + Paper$ + Forum$ + Topic$ + Msg$) else none)

//super users can delete anything.
//non-super users can delete self, any g'roup he/she manages, and any paper he/she owns.
+' DELETE -> (me.super!=True => (Paper&(owners.me) + Group&(owners.me)) else univ)

}

Figure 5-3: Capability rules for the case study

// only super users can create a pinned topic, or create a read-only topic, or post in a read-only forum
pred Topic.postAdd { me.super = True II (this.pinned + this.readOnly + topics.this.readOnly) = False }

// only super users can post follow-up messages to a 'read-only' topic

pred Msg.postAdd { me.super = True II replies.this.readOnly = False }

// Ybu cannot create a new paper tagged with a group you don't belong to

pred Paper.postAdd { this.tags in (this.owners.groups + this.owners.admins) }

// You cannot change your paper's tag to a group you don't belong to

pred tags.postAdd { this.second in (this.first.owners.groups + this.first.owners.admins) }

// Only super users and a group's owners can change the owner list of a group
// Furthermore, anyone can remove him or herself from a group's owner list.

pred owners.preAdd { let g=this.first I
pred owners.preDel { let g=this.first, u=this.second I

g in Group => (me in g.owners II me.super=True) }
g in Group => (me=u II me in g.owners II me.super=True) }

/Super users and group owners can modify a group's regular member list.
/ Furthermore, anyone can join an open group or leave a group.

pred regulars.preAdd { let g=this.first, u=this.second I ((g.closed=False && me=u) II me in g.owners
pred regulars.preDel { let g=this.first, u=this.second I (me=u I me in g.owners

/ Super users and group owners can modify a group's tentative member list.
/Furthermore, anyone can add or remove him or herself from a group's tentative member list.

pred tentatives.preAdd { let g=this.first, u=this.second I (me=u II me in g.owners
pred tentatives.preDel { let g=this.first, u=this.second I (me=u II me in g.owners

II me.super=True) }
II me.super=True) }

I me.super=True) }
I me.super=True) }

Figure 5-4: Pre- and post-conditions for the case study

5.2 MIT FamilyNet

5.2.1 Original Website

MIT FamilvNet[13] is an online community for families of MIT students. fa.culty,
and staff. The vision for a famnily-focused networking tool came about in 2006 when
the MIT Graduate Student Council housing conmmunity affairs committee and other
groups realized that there was a pressing need for a centralized meeting place to
address the non-academic needs of MIT families. Some examples of those needs are:

* New parents needing support from each other and in forming play groups for
their children.

* International spouses and partners wanting to experience more of American
culture with others.

* Newcomers to MIT wanting to know where to find goods and services.

A small task group was formed in October 2007 to come up with tile requirements
for MIT FamilyNet. A very thorough requirements gathering phase was conducted.
resulting in a requirement document roughly 100 pages in length.

Given tlhe limited budget, various open source content management systems were
evaluated, and Drupal[11] was chosen for its relative flexibility, solid reputation.
and robust developer community. For the first-pass prototype, installing and
configuring various Drupal modules met roughly 60W(of the requirements, with
another 10% achieved by manual editing of the underlying PHP source code.

A representative cross-section of test users where invited to try out the prototype
and suggest improvements. In implementing each of those changes, tile FamnilyNet
website developer first tries to configure and install pre-written Drupal modules to
meet the requirements. On many occasions, however, minor custom coding was
required.

The complexity of the project was becoming apparent. The major challenges
identified were as follows:

* Though the learning curve for Drupal was low from a user's standpoint, it
was considerably steeper for the volunteer developer chosen to implement MIT
FamilyNet.

* Many Drupal modules were poorly documented, sometimes with less than one
page of documentation, making it difficult to gauge the actual functionality of
a module without installing it first. Several add-on modules were imisadvertized
a.nd did not fulfill the promises of their documentation, perhaps due to the
difficulty of keeping tile documentation current in a constantly evolving open
source project.

* The quality of add-on modules varied considerably. Some of thie chosen modules
were only weakly supported by their current imaantainers.

* Drupal modules utilized event hooks to provide an aspect-oriented architecture
and encourage component reuse. However, sometimes modules interacted
adversely with each other in unexpected ways, requiring the developer to
manually debug and trace the underlying PHP code.

* Most significantly, the base system and the installed modules had predefined
permissions that could be enabled and disabled for different user roles but
could not be further customized without custom coding. The MIT committee
responsible for creating the requirements document carefully produced rules
that promoted open community gathering but protected the privacy of the
users. Many of these requirements were impossible to implement without
custom coding.

As a result of these difficulties, by the time FamilyNet concluded the final user testing,
the deployed Drupal version was already one major release and three minor releases
behind. When asked to summarize the experience of building the website using
Drupal, the project's technical lead remarked:

'"The Drupal community pride themselves on providing plug-and-play modules
that can be configured in a variety of ways. In the FamilyNet project, Drupal
typically covered 70% to 90% of a particular requirement, and when the project
team decided that the gap must be bridged, customization was usually the only
solution. For many non-core requirements, we ended up being constrained by
the Drupal modules that could meet the needs most of the way. This brings to
mind the way some companies have enterprise software (such as SAP) define the
business process rather than the other way around."

One example of a seemingly intuitive requirement involved the group-specific forum
for each user group. Users on this website could form user groups, and only group
members could post messages on the group forum. However, in order to encourage
group membership and participation, it was decided that non group members should
be able to view the forum messages. The former requirement of a discussion forum
associated with a group was taken care of by a popular Drupal module, but the latter
requirement required custom coding.

5.2.2 Weballoy Implementation

For comparison, the data model and access policies were modeled using Weballoy. The
data model is large since the user profile contains many fields such as "neighborhood",
"residence", "imainLanguage", '"secondLanguage", and "childcareInterests".

As in the previous case study, each user group on this website could also be
designated as either restricted (requiring a group owner's explicit approval) or open.
This was modeled using three fields (owners, regulars, and tentatives) and six
pre-conditions for inserting and deleting from these fields, just like the model written
for the Alloy Community NWebsite. Similarly, the Forum., Topic, and Msg signatures
and fields were reused as-is.

The interesting case of the group forum was actually very straightforward to

specify. The group module chosen for the Drupal project insisted that group-
associated contents must, be either readable and writable by group members only,
or readable and writable by everyone. In the Weballoy model, it was easy to specify
the two permissions separately.

5.2.3 Limitations

As mentioned in the previous case study, file uploads and email transmissions are yet

implemented in NWeballoy; therefore, the file sharing and email notification features of

FamilvNet are missing from tile automatically generated website. Since users cannot

upload images, user icons are not supported either. The website is otherwise complete.

Namre:Ytime Playgroup

Owners: Alex

Created: 2009/0102 135 32

Modified: 2100910O2 135:32

Desciption: A pirflyaroup for geptivr together du ing ti day.

Closed:

Cal Is Pubtic

Regtdulars: Bob

TeNtatives: Cari

Events:

Before Customization

After Customization

Figure 5-5: MIT FamilyNet

5.3 "Continue" Conference Management

5.3.1 Original Website

Continue[40] is a free conference management system developed by a team of
researchers at Brown University. It allows conference chairs to invite reviewers,
authors to submit and track paper submissions. and the program commnittee to accept
or reject papers. The tool supports the entire conference workflow from forming of
the program committee all the way up to the acceptance and rejection of each paper.
The default behavior is as follows:

* Before submission is open to the general public, conference chair can invite

people to join the program commnittee.

* During the submission phase, authors can upload one or more papers.

* During the bidding phase, chairs and reviewers submit bids for papers they're
interested in.

* During the assignment phase, chairs assign papers to reviewers based on their
bids.

* During the reviewing phase, reviewers submit reviews for papers they are
assigned to.

* During the discussion phase, the program committee read the reviews and decide
which paper to accept.

* During the notification phase, authors are informed of the decisions and can
read anonymiized reviews.

However, there are many corner cases left unspecified above. For example, if a
committee member submitted a paper to his own conference, can lihe find out who
reviewed his paper? The rule above describing the discussion phase seems to suggest
every committee imember can see the full text and authorship information of every
review, whereas the notification rule clearly intends to keel)p the identities of reviewers
fronm authors. Due to the fact that its access policy is tricky and very state-dependendent.
its developers decided to write an Alloy imodel to analyze it.

These conflicts of interest arise very naturally whenever a user can belong to
multiple conceptual roles in the sarme model, such as in the case of a conference
management website. If a strictly role-based access policy language is used for
describing the policy, the same user may get assigned conflicting capabilities where
the final decision to grant a request or not depends on technicalities such as the
ordering of the rules.

5.3.2 Weballoy Implementation

In attempting to mnodel the access policy of Continue using Weballoy. the following
assumpItions were made about conflict resolution:

* A reviewer cannot submit a bid (except "Conflict") for his own paper.

* A chair cannot see the bids nor make the reviewer assignment for his own paper.

* At no time can a author see the bids, assignments, and reviewer names of his
own paper, even if lie's a committee member.

The data model (Figure 5-7) consists of 4 enumerations and 6 user-defined
signatures (User, Conf, Paper., Bid, Review, and Comment). Since each Bid is simply
an owner (inherited from the Entity signature) and the bid type, it could have been
modeled as a ternary field in the Paper signature; however, since the entire field
values of a particular atom are either visible to a user or not, it would not be possible
to selectively hide certain tuples while showing others. Making each bid a full atom
provides that flexibility.

Some of the "'Continue" rules are naturally modeled as consistency
constraints (Figure 5-7). For example, the rule stating that only assigned reviewers
can submit reviews can be expressed by saying the owners of Review atoms must
be a subset of the set of assigned reviewers for that paper. Likewise, since bids,
reviews, and comments are represented by atoms of signatures rather than as tuples,
the requirement that a reviewer cannot submit two separate reviews for the same
paper can be expressed by saying the number of distinct Review atoms is equal to
the number of distinct owners of Review atoms.

Most of the rules, however, are concerned with the act of tuple insertion and
deletions. While they can be modeled using pre-conditions or post-conditions, each
field would require two predicates: one for insertion and one for deletion. Fortunately,
these rules can be described much more concisely using the capability approach
(shown in Figure 5-8) and by appropriate use of helper functions such as "at" and
"my" (defined in Figure 5-9). For example, the following capability expression (if
not disallowed by a pre-condition, post-condition, or consistency constraint) allows a
reviewer, who has created a review, to read and write tIhe contents of that review:

RW -> pcOf.at[Reviewing] .papers.reviews.my -> (Review$.fields)

The helper function "'at" is applied to the result of "pcOf" and selects the conferences
that are currently in the reviewing phase. Relational navigation extracts the reviews
associated with papers in those conferences, then filters them for reviews created by
the current user. The "RW" function evaluates to "R+A+D" thereby granting the rights
for reading, addition, and removal in the same rule.

Two post conditions are defined (Figure 5-10) to ensure a newly created conference
or paper does not start with illegal values.

Since each Bid atom is defined to belong to exactly one Paper by a consistency
constraint, removing a bid from a paper's bids list must always be accompanied by
the destruction of that Bid atom in the same transaction. This is an unnecessary
complications for the front-end. To avoid this, four triggers are defined (Figure 5-
10) to trigger the automatic destruction of a Bid, Review, Comment, or Paper atom
wherever it is removed from its associated parent Paper or Conf atom. (There is no
need to add triggers for the reverse situation where a Bid atom is destroyed without

first removing it from a papers bids field, since the semantics defined for Weballov
states that any tuple containing a destroyed atom is automatic(ally removed.)

5.3.3 Limitations

Besides missing the file upload feature. the automatically generated website also lacks
an interesting feature of Continue: the ability to generate a one-time URL that grants
the visitor temporary permission to perform certain tasks.

As a convenience, users invited to contribute comments to a paper do not have to
login to the website; instead, Continue can generate a URL that embeds the necessary
credentials for adding comments. Once the user visited tIhe URL and submitted a
comment, the one-time URL is invalidated and cannot be used again.

To emulate this feature using Weballoy, a new anchor (Table 4.1) can be introduced
that encodes a session cookie in the URL. It is straightforward to provide additional
syntax for modifying the binary relation String->LoginUser (Section 3.5) implicitly
maintained by the server. so that users visiting the given URL will be automatically
associated with a particular LoginUser atom. However. the current session retention

policy of Weballoy allows a cookie to be repeatedly used. The policy will need to
distinguish between cookies that persist until logout and cookies that should be
invalidated after one use.

Before Customization

After Customization

Figure 5-6: Conference Submission Managemenet

enum Phase { Init, PreSubmit, Submit, Bidding, Assigning, Reviewing, Discuss, Notify, Publish }

enum BidType { LoveTo, CanReview, NoPreference, DontWantTo, Conflicted }

enum Score { ScoreA, ScoreB, ScoreC, ScoreD }

enum Expertise { X, Y, Z }

sig User extends LoginUser {
info : LongString,
chairOf = Conf & (@owners.this),
reviewerOf = reviewers.this,
submitted = Paper & (@owners.this),
submittedTo = papers . (@owners.this)

sig Conf extends Entity {
info : LongString,
phase : Phase,
reviewers : set User,
papers : set Paper

disj[owners, reviewers]

}

sig Paper extends Entity {
info : LongString,
bids

assignments

comments

reviews

decision

: set Bid,
: set User,

: set Comment,

set Review,
: lone Bool

// the inherited "owners" field represents the conference chairs
// can be modified at any time by the conference chair(s)
// can be advanced at any time by the conference chair(s)
// can be added/deleted during PreSubmission
// can be added/modified during Submission and Notify

// The same person cannot be chair and reviewer for the same conference

// the inherited "owners" field represents the paper author
// this represents the paper itself (until file uploads are implemented)
// the "owners" field of a Big atom stores the bidder

// the "owners" field of a Comment atom stores the comment author
// the "owners" field of a Review atom stores the review author
// this field is empty when a decision has not been made

one papers.this

disj[owners, assignments]

disj [owners+assignments, comments.@owners]
#bids = #(bids.@owners)

#comments = #(comments.@owners)
#reviews = #(reviews.@owners)
assignments in (papers.this).(@owners+reviewers)
Conflicted !in @owners.assignments.bid
reviews.@owners in assignments

// Every paper is in exactly one conference
// Author cannot be a reviewer for the paper
// Author or reviewer cannot submit comments
// Same person can't submit two bids
// Same person can't submit two comments
// Same person can't submit two reviews
// Only PC members can be assigned to review
// Cannot assign someone whose bid is Conflicted
// Only assigned reviewers can submit reviews

sig Bid extends Entity {
bid: BidType

one bids.this // Every bid is associated with exactly one paper

sig Comment extends Entity {
comment: LongString

one comments.this

sig Review extends Entity {
score : Score,
expertise : Expertise,
review : LongString,
privateReview : lone LongString
subreviewers : set String

one reviews.this

// Every comment is associated with exactly one paper

// This text will be readable by paper author during notification
// This text is intended only for committee members
// This stores the names of people who contributed to this review

// Every review is associated with exactly one paper

Figure 5-7: Data model and Consistency Constraints

fun policy : Action->univ->univ
{
// Everyone can create a conference, paper, bid, comment, or review object
ADD -> (Conf$ + Paper$ + Bid$ + Comment$ + Review$)

// Everyone can see every conference and even its list of Paper atoms.
// However, the fields of a paper (owner, reviewers, decision...) are controlled separately.
// So, in terms of Conf$papers, this rule merely allows everyone to know the number of submissions.
+ R -> Conf -> field$

// Chairs can modify the basic information and phase of a conference.
// "pred phase.preAdd" shown later will enforce that the phase is advanced step by step
+ W -> me.chairOf -> (Conf$info + Conf$phase)

// Chairs can add/delete chairs during the Init phase, and add/delete reviews during PreSubmit phase
+ W -> me.chair0f.at[Init] -> Entity$owners
+ W -> me.chair0f.at[PreSubmit] -> Conf$reviewers

// Everyone can submit papers during the Submit phase
+ A -> Conf.at[Submit] -> Conf$papers

/---

// Users can modify his own information
+ RW -> me -> (User$info + LoginUser$email + LoginUser$password)

// Everyone can see chairs' and reviewers' basic information
+ R -> (Conf.owners + Conf.reviewers) -> User$info

// PC members can see authors' basic information and emails
+ R -> pc0f.papers.owners -> (User$info + LoginUser$email)

// PC members can enumerate the list of Bid/Review/Comment atoms (except for his own papers)
// The actual bid/review/comment details are controlled by their own fields.
// So this rule on its own merely allows PC members to know the number of bids/reviews/comments.
+ R -> (pcOf.papers - my[Paperl) -> field$

// --- //

// Author can read his own name; author can modify paper itself during the Submit and Notify phases

+ R -> my[Paperl -> (Paper$info + Entity$owners)
+ W -> my[Paperl.at[Submit+Notify] -> Paper$info

// PC member can submit bids during the Bidding phase
+ A -> pcOf.at[Bidding] .papers -> (Paper$bids)
+ RW -> pc0f.at[Biddingl.papers.bids.my -> (Bid$.fields)

// Chair can see the bid details (except of his own paper)
+ R -> (me.chair0f.papers - my[Paper]).bids -> field$

// Chair can assign papers to reviewers (other than his owner papers) during the Assigning phase
+ W -> (me.chairOf.at[Assigning] .papers - my[Paper]) -> Paper$assignments

// PC member can submit reviews and comments during the Reviewing phase
+ A -> pc0f.at[Reviewing].papers -> (Paper$reviews + Paper$comments)
+ RW -> pc0f.at[Reviewing].papers.reviews.my -> (Review$.fields)
+ RW -> pcOf.at[Reviewing].papers.comments.my -> (Comment$.fields)

// PC member can read all reviews and comments (except his own paper)
+ R -> (pcOf.papers - my[Paper]).reviews -> field$
+ R -> (pcOf.papers - my[Paperl).comments -> field$

// Chair can accept/reject paper (other than his own) during the Discuss phase
+ W -> (me.chair0f.at[Discussl.papers - my[Paper]) -> Paper$decision

// Author can read the decision, review score, and review text during Notify and Publish phases

+ R -> my[Paper] .at[Notify+Publishl -> (Paper$decision + Paper$reviews)

+ R -> my[Paper].at[Notify+Publish].reviews -> (Review$score + Review$review)

}
Figure 5-8: Capabilities

// Returns the conferences that the current user is a chair or reviewer of.

fun pcOf: set Conf { me.chairOf + me.reviewerOf }

// Returns the subset of "someConfs" whose phase is one of the phase listed in itsPhase

fun at[someConfs: Conf, itsPhase: Phase]: set Conf { {c: someConfs I c.phase in itsPhase} }

// Returns the subset of "somePapers" whose phase is one of the phase listed in itsPhase

fun at[somePapers: Paper, itsPhase: Phase]: set Paper { {p: somePapers I (papers.p).phase

// Returns the subset of "entities" whose owner is the current user

fun my[entities: Entity] : set entities { {e: entities I me in e.owners} }

Figure 5-9: Helper functions

in itsPhase} }

// Ensures the phase strictly advances, and ensures minimum necessary conditions for phase advancement

pred phase.preAdd {
let conf=this.univ, new=univ.this, old=conf.phase, papers=conf.papers, reviewers=conf.reviewers {

old = new.prev

old = Bidding => (all p: papers I some p.bids) && (reviewers in papers.bids.owners)
old = Assigning => all p: papers

old = Reviewing => all p: papers

old = Discuss => all p: papers

I some p.assignments

I some p.reviews

I some p.decision

// Ensures a conference is created in the Init phase with no papers and no reviewers

pred Conf.postAdd { this.phase=Init && no this.papers && no this.reviewers }

// Ensures a paper is created with no bids/assignments/comments/reviews/decision

pred Paper.postAdd { no (this.bids + this.assignments + this.comments + this.reviews + this.decision) }

// This simplifies the user interface by deleting a Paper automatically when it's removed from a conference
fun papers.onDel: Paper { univ.this }

// This simplifies the user interface by deleting a Bid automatically when it's removed from a Paper
fun bids.onDel: Bid { univ.this }

// This simplifies the user interface by deleting a Review automatically when it's removed from a Paper
fun reviews.onDel: Review { univ.this }

// This simplifies the user interface by deleting a Comment automatically when it's removed from a Paper
fun comments.onDel: Comment { univ.this }

Figure 5-10: Pre-conditions, post-conditions. and triggers

Chapter 6

Conclusion

6.1 Discussion

When this research project first began in 2007. there were already many mature
competing approaches to access policy specification, validation, website construction,
code synthesis, and user interface construction. Those tools offered an impressive
array of features and capabilities for addressing one or two specific aspects, but
combining them to form a policy-rich website required extensive manual efforts by
website designers, and the guarantees offered by one tool could be invalidated by the
use of another.

Initially I considered extending an existing state-of-the-art system as a starting

point. Such a system would already have extensive tool support and a large user
community, reducing the amount of implementation required to get started. However,
this idea was rejected because I needed to be able to quickly experiment with
drastically different approaches and an existing mature implementation would be
difficult to modify and extend. Furthermore, most existing systems had a preset
operating paradigm tailored for a specific aspect of the problem and would not be
suitable for describing and constructing an entire website.

Instead, I attempted to model different aspects of a website using Alloy because

it was a very simple general purpose modeling language I was very familiar with, and
because it had recently been used successfully [55] by others in my research group to

model information flow in cryptographic systems. I have often found it enlightening
to model a problem in Alloy before attempting implementation; in this case, it was a

bonus that the very same models used for enhancing my understanding became part

of the proposed solution.

Since Alloy does not natively support state mutation or provide any built-in

mechanisms for describing user actions or intentions, I had to decide on a way to

model those aspects. It was tempting to simply add specialized syntax or features

for each, creating a new language similar to Alloy but with hardwired special

semantics. However, that would require customized versions of the Alloy tool chain

and reduce the general applicability of the system. So instead I took the view that

the deficiencies should be addressed by generalizing the missing features then adding
them as fundamental enhancements to the Alloy language.

As a result, the existing Alloy parser, type checker. analysis engine, evaluator,
instance visualizer, and interactive development environment were all used directly
for this research. For Weballoy users, this means thie Alloy Analyzer can be
used as-is for visualizing the data model, generating use cases. and validating the
consistency constraints and access policy rules. For Alloy users, this research resulted
in enhancements such as the new String signature, enumeration, and imetamiodel
capabilities. The new relational data store and its optimized evaluator are being
incorporated into the standard Alloy Analyzer, and the Weballoy auto-generated
user interface may be adapted to serve as an interactive instance editor-- somlething
currently mlissingl in the Alloy Analyzer.

Using the same expressive, declarative language surprisingly solved many

problems. iModels of websites are more concise because the metamodel corresponding
to the data model provides the building blocks for specifying access policies.
Furthermore, the use of a single unifying language enables a critical separation of
concerns allowing each aspect to be addressed individually but still effortless to
combine them to form a complete description of an entire website.

The presentation template was the exception: the presentation layer was naturally
decoupled, so it was very straightforward to separate out the template from the rest
of the Alloy model. Since website developers were already familiar with HTML, CSS,
and client-side ,JavaScript, I decided to design the template language as a minimal
extension of HTML: only three new elements were needed (<view/>, <f:field/>.
and <f :s:sig/>).

In the end, the Weballoy tool chain is a proof-of-concept for a unified declarative
a)proach to website modeling and construction. The ideas presented in this thesis
augment rather than compete with state-of-the-art systems in each aspect addressed
by this work. There are many opportunities for synergy with existing tools:

* Since the Alloy Analyvzer can output the metamodel as an XML file, website
designers can also validate the data model by writing XSD definitions then using
existing XML validation tools.

* The senmantically rich transaction format can be parsed by PHP or Java code
then checked by another policy checker instead of or in conjunction with the
checker generated by Weballoy.

* Suitable XMIL-RPC libraries can enable existing template engines to read data
from NWeballoy-generated data stores and allow the vast number of existing
artistic templates to be reused. Standard optinmizations such as request

pipelining (asynchronously issuing the next query without waiting for the last
reply) and request buffering (combining independent queries into a single query)
could easily be included to minimize the latency of querying and displaying each
value oil a wel) page.

In conclusionl, Inalny access policy languages support rich declarative specifications,
and domin-specific tools exist for efficient code generation. This research shows

it is possible to combine them and automatically synthesize a dynamic website

with rich access policies from a concise declarative model. The generated system
provides an end-to-end guarantee with the code running in the web browsers, the
messaging protocols, the access control system, and the code accessing the database
all mechanically generated from a checkable high-level model. The technique relies on
dual interpretations of the same model. By attaching special semantics to functions
with certain names rather than modeling each operation directly, the model is static
from Alloy's perspective, but Weballoy can interpret the model as a description of

dynamic website behavior. While more research is needed to support the diverse
range of commercial websites, I believe this declarative approach provides significant
advantages over other techniques for specification, validation, and construction of
certain classes of online information systems.

6.2 Future Work

6.2.1 SQL

Using an off-the-shelf SQL relational database in place of the custom tuple store
would have many advantages such as greater scalability, data replication, and parallel
processing. Furthermore, the generated website could then interface with existing
enterprise business applications by communicating via a shared database.

Generating efficient SQL queries is nontrivial and would require adapting SQL
query optimization techniques in the context of Alloy expressions.

6.2.2 Optimization

Within the current implementation, there are many places where further
optimization is possible. For example, many consistency constraints take the form
(all x: X I .. .) where X is a signature and the body of the formula depends on
only x's field values without depending on other X atoms. That means when an

atom is created or modified, it cannot cause field values of other atoms to become
inconsistent. A conservative data flow analysis may be able to determine whether
this constraint should be checked for every atom every time or whether it suffices to
consider only atoms whose field values just changed.

Another optimization opportunity involves pre- and post-conditions. For example,
given the following post-condition postAdd { this.x in y } and multiple tuples tl

through t~,, instead of evaluating each "!ti. x in y" separately, it may be more efficient
(when semantically equivalent) to union tl through t into a single set t and then
evaluate just one formula "'t .x in y".

6.2.3 Common Idioms

The Weballoy library module contains the LoginUser signature for handling the

standard user log-in features. The Weballoy compiler recognizes this special signature

and automatically provides cookie-based session management with log-in and log-out
buttons.

Other counnon xwebsite features such as calendars. contact lists, and forum
postings should be added to the Weballoy library module with suitable default access

policy rules pre-defined for convenience.

6.2.4 Expressiveness

The pre- and post-conditions, expansion triggers, and capability rules are simple yet
expressive enough for many websites. However, certain advanced features such as
history-based access control rules and transparent access logging are cumbersome or
impossible to express. For example, a rule that grants or denies a request based on
the number of previous unsuccessful attempts is currently not expressible in Weballoy
since a rejected request, by definition. does not modify the visible database state and
the Alloy model currently has no way to refer to external data source such as the access
log. Further research is needed to augment the existing access control primitives while
retaining the current clean relational semantics.

6.2.5 WYSIWYG Customization

Even though the WVeballoy template language is expressive and supports the use of
arbitrary HTML. utilizing it currently requires editing an XML file. Use of a graphical
XML editor or a suitable plug-in to a graphical HTML editor can reduce the required
effort, but it is still overkill for simple customizations such as changing the color or
foint size on a page.

Ajax-based systemns such as Exhibit [12] and DabbleDB[6] allow users to customize
some aspect of the presentation by clicking buttons and selecting alternatives from
a menu. Incorporating such a feature into Weballoy's user interface and ensuring
the customizations persist would significantly reduce the need for manual template
editing.

6.2.6 Counterexample-driven Policy Refinement

The generated back-end can record all occurrences of policy violation as well as
successful attempts. This log can be analyzed afterwards to validate whether the

policy rules written in Alloy correctly reflect the website designer's intentions.

If a request is needlessly denied, the log clearly shows which rule causes the
rejection and therefore needs revision. However. it is often unclear how to modify
the policy rules if an undesirable request is granted by mistake.

Heuristics nmay be developed for automatically suggesting a suitable refinement, to
the policy based on the concrete violation. To verify that the refinement preserves the
behavior for unaffected use cases, the server log can be replayed against the old and
new policies, or semantic differencing algorithms such as those used by Margrave[16]
miight be used.

Bibliography

[1] The Alloy Analyzer. littp://alloy.mit.edu/.

[2] Anneke Kleppe, Jos Warmer, and Wim Bast. AMDA Explained, The Model Driven
Architecture: Practice and Promise. Addison- Wesley, 2003.

[3] Moritz Y. Becker and Sebastian Nanz. A Logic for State-Modifying Authorization
Policies. In In: European Symposium on Research, in Computer Security, 2007.

[4] T. Berners-Lee, L. Masinter. and M. McCahill. RFC 1738: Uniform Resource
Locators (URL)., 1994.

[5] Hiawatha Bray. "Payroll Website Still Not Secured". The Boston Globe, March
1, 2005.

[6] Dabble DB. http://www.dabbledb.com/.

[7] Daniel Jackson. Automating First-Order Relational Logic. In Proceedings of
the 8th ACM SIGSOFT international symposium on Foundations of softwa're
engineering. ACM Press, 2000.

[8] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A Micromodularity
Mechanism. In Proceedings of the ACM SIGSOFT Conference on the
Foundations of Software Engineering / European Software Engineering
Conference (FSE / ESEC '01), 2001.

[9] Django: the Web Framework for Perfectionists With Deadlines.
http://www.dj angoproject .com/.

[10] Daniel J. Dougherty. Kathi Fisler, and Shriranm Krishnanurthi. Specifying
and Reasoning About Dynamic Access-Control Policies. In Lecture Notes in

Computer Science, pages 632-646. Springer, 2006.

[11] Drupal: an Open Source Content Management Platform.

http://www.drupal.org/.

[12] Exhibit. http://simile.mit.edu/exhibit,/.

[13] MIT FamilyNet. http://famnilynet.imit.edu/.

[14] David Ferraiolo and D. Richard Kuhn. Role-Based Access Controls. 15th,
Natio'nal Comnput(r Security Confere nce , pages 554 563. 1992.

[15] Ronaldo Rodrigues Ferreira. Automatic Code Generation and Solution Estimate
for Object-Oriented Embedded Software. In OOPSLA 08: P roc eedings of
the 23th ACM SIGPLAN con fere 'nce on Object-ori nnted progranmminn,. systems,
lan, guag s, anwd applications. ACM Press, 2008.

[16] Kathi Fisler, Shrirain Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and Change-Impact Analysis of Access-Control Policies.
In ICSE '05: Proceedings of the 27th international con ferenc on Softwar e
engineering, pa,ges 196-205, New York, NY, USA, 2005. ACM.

[17] Flapjax. lhttp://www.flapjax-lang.org/.

[18] Sonia Flores, Salvador Lucas. and Alicia Villanueva. Formal Verification of
Websites. Electron. Notes Theor. Comput. Sci.. 200(3):103-118, 2008.

[19] Joan Fons, Vicente Pelechano. and Oscar Pastor. Extending an 00 Method to
Develop Web Applications. In 12th Internatiornal World Wide 1WCb Co- iferic',n, cc,
Budapest, Hungary, 2003.

[20] Theophilos Giainnakopoulos, Daniel J. Dougherty. Kathi Fisler. and Shriram
Krishnainurthi. Welding Alloy Specifications to Adequate Implementations.
In ICSE '09: Proceedings of the 31th International Coinference on Software
Engineering, New York. NY, USA, 2009. ACM Press.

[21] Google Health. https://www.google.com/healthl/.

[22] Google Web Toolkit. http://code.google.com/webtoolkit/.

[23] Ali Nasrat Haidar and Ali E. Abdallaih. Towards a Formal Framework for
Developing Secure Web Services. Automated Specification. and tf 'ification of
I b Systnems,. 2006. WWV '06. 2nd b International llWo rkshop on. pages 61 70,.
Nov. 2006.

[24] Hibernate: an open source java persistence framework.
http)://www. hibernate.org/.

[25] Graham Hughes, Tevfik Bultan, and Muath Alkhalaf. Client and Server
Verification for Web Services Using Interface Grammars. In TAI --WEB '08
Prceedi'ngs of the 2008 Workshop on Testing. Analysis. and Verification of IWeb
Secirices and Applications, pages 40-46, New York, NY. USA, 2008. ACM.

[26] James Runmbaugh, Ivar Jacobson, and Grady Booch. The Unified Modelli'rng
Lanfuag(Rfc crnc MliaJanual. Addison-Wesley, 1999.

[27] Java Platform Enterprise Edition (Java EE). http://java.sun.com/javaee/.

[28] Jonathan Edwards. Daniel Jackson, and Emina Torlak. A Type System for
Object Models. In Foundations of Software Engineering, Newport, CA. 2004.

[29] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1999.

[30] jQuery. http://www.jquery.comn/.

[31] JavaServer Faces. http://java.sun.com/j2ee/javaserverfaces/.

[32] JavaServer Pages. http://java.sun.com/products/jsp/.

[33] Eunsuk Kang and Daniel Jackson. Formal Modeling and Analysis of a Flash
Filesystem in Alloy. In Egon Brger, Michael Butler, Jonathan P. Bowen, and
Paul Boca, editors, ABZ. volume 5238 of Lecture Notes in Computer Science,
pages 294-308. Springer, 2008.

[34] Martin Karusseit and Tiziana Margaria. A Web-Based Runtime-Reconfigurable
Role Management Service. Automated Specification and Verification of Web
Systems, 2006. WWV '06. 2,nd International Workshop on. pages 53-60, Nov.
2006.

[35] Martin Karusseit, Tiziana Margaria, and Holger Willebrandt. Policy Expression
and Checking in XACML, WS-Policies, and the jABC. In TAV- WEB '08:
Proceedings of the 2008 Workshop on Testing, Analysis, and 1Verification of Web
Services and Applications, pages 20-26, New York, NY, USA, 2008. ACM.

[36] Haim Kilov. From Semantic to Object-Oriented Data Modeling. In First
International Conference on System Integration, pages 385-393, 1990.

[37] Alexander Knapp and Stephan Merz. Model Checking and Code Generation for
UML State Machines and Collaborations. In FM- TOOLS 2002: 5th Workshop
on Tools for System Design and Verification, 2002.

[38] Kodkod: Solving Formulas with Partial Instances.
http://sdg.csail.mit.edu/projects/kododkod.html.

[39] S Kripke. Semantical Analysis of Modal Logic. Z. Math. Log. Grund. Math. 9,
1963.

[40] Shriram Krishnamurthi. The CONTINUE Server (or, How I Administered PADL
2002 and 2003). In PADL '03: Proceedings of the 5th International Sympositlum
on Practical Aspects of Declarative Langutages, pages 2-16. London, UK, 2003.
Springer-Verlag.

[41] Shriram Krishnamurthi, Daniel Dougherty, Kathi Fisler, and Daniel Yoo.
Alchemy: Transmuting Base Alloy Specifications into Implementations. In ICSE

'08: P'roceedings of the 30th i,ntcrnational conference on Software engineering,
New York, NY, USA, 2008. ACM Press.

[42] Shriram Krishnanmurthi Robert Bruce Findler. Paul Graunke, and Matthias
Felleisen. Modeling Web Interactions and Errors. In In In t ractiv1 Computatioln:
Th(New Paradilgm. Springer Verlag, 2006.

[43] Daniel R. Licata and Shriram Krishnamurthi. Verifying Interactive NWeb
Programs. In ASE '04: Proceedinfs of the 19th IEEE intrnational conference on
Atttomnaltcd softwarc en'ine rinrg, pages 164-173. Washington. DC, USA, 2004.
IEEE Computer Society.

[44] D. Marinov and S. Khurshid. TestEra: a Novel Framework for Autonlated
Testing of Java Programs. In ASE '2001: 16th IEEE International Conrference
on Autonmated Software Engineering, pages 22-31, 2001.

[45] Microsoft Health Vault. http://www.healthvault.coin/.

[46] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group (OMG), 2003.

[47] phpMyAdmninl http://www.phpmyadmin.net/.

[48] PHPTempalte Theme Engine. http://drupal.org/iphptemplate.

[49] A. Pnueli. The Temporal Logic of Programs. In Proceedi ngs of the 18th IEEE
Sy'mp. Foundations of Comp'uter Science, 1977.

[50] Lukas Renggli. Magritte: Meta-Described Web Application Development.
Master's thesis, University of Bern, 2006.

[51] Ruby on Rails. http://www.rubyonrails.org/.

[52] J. -M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

[53] Roger Stone. A Lightweight Web GUI Specification and Realisation System and
Its Impact on Accessibility. Automated Specificatlion an d e rification of HlWeb
Slystems, 2006. WWV '06. 2nd Internatlional 1"orkshop on. pages 37-44, Nov.
2006.

[54] Emina Torlak, Felix Sheng-Ho Chang. and Daniel Jackson. Finding Minimal
Unsatisfiable Cores of Declarative Specifications. In Jorge Cullar. T. S. E.
Maibaum, and Kaisa Sere. editors, FIM, volume 5014 of Lccture ivotes i'n
Co'mpyutc'r Sciencc, pages 326-341. Springer. 2008.

[55] Emina Torlak, iMarten van Dijk, Blaise Gassend, Daniel Jackson. and Srinivas
Devadas. Knowledge Flow Analysis for Security Protocols. Technical Report
MNIIT-CSAIL-TR-2005-066, Massachusetts Institute of Technology Computer
Science and Artificial Intelligence Laboratory. 2005.

[56] Trusted Computer System Evaluation Criteria (DoD Standard 5200.28-STD).
Unrited Statcs Dpartmrent of Dcfitnse. 1985.

[57] Michael Carl Tschantz and Shriram Krishnamurthi. Towards Reasonability
Properties for Access-Control Policy Languages. In SA CMAT "06: Proceedings
of the eleventh ACM Isymposium on Access control models and technologics, pages
160-169, New York, NY, USA, 2006. ACM.

[58] OASIS eXtensible Access Control Markup Language (XACML) Version 2.0.
2005. http://docs.oasis-open.org/xacml/2.0/.

[59] XForms 1.1. http://www.w3.org/TR/xforms11/.

[60] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

[61] XSL Transformation (XSLT) Version 2.0. http://www.w3.org/TR/xslt20/.

[62] Tomni Zeller. "Not Yet in Business School, and Already Flunking Ethics". The
New Yoi: Times, March 14, 2005.

