
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-039 August 26, 2009

AvatarSAT: AN AUTO-TUNING BOOLEAN
SAT SOLVER
RISHABH SINGH, JOSEPH P. NEAR, VIJAY GANESH,
and MARTIN RINARD

AvatarSAT: An Auto-tuning Boolean SAT Solver

Rishabh Singh, Joseph P. Near, Vijay Ganesh, and Martin Rinard

Massachusetts Institute of Technology
{rishabh, jnear, vganesh, rinard}@csail.mit.edu

Abstract. We present AVATAR SAT, a SAT solver that uses machine-learning
classifiers to automatically tune the heuristics of an off-the-shelf SAT solver
on a per-instance basis. The classifiers use features of both the input and con-
flict clauses to select parameter settings for the solver’s tunable heuristics. On
a randomly selected set of SAT problems chosen from the 2007 and 2008 SAT
competitions, AVATAR SAT is, on average, over two times faster than MINI SAT
based on the geometric mean speedup measure and 50% faster based on the arith-
metic mean speedup measure. Moreover, AVATAR SAT is hundreds to thousands
of times faster than MINI SAT on many hard SAT instances and is never more
than twenty times slower than MINI SAT on any SAT instance.

1 Introduction

We present AVATAR SAT, an auto-tuning SAT solver that uses machine-learning meth-
ods to automatically tune an off-the-shelf SAT solver on a per-instance basis. AVATAR -
SAT is designed to classify each SAT instance based on its syntactic features so as to
find the corresponding optimal parameter setting for the heuristics in the underlying
SAT solver (for example, dynamic variable selection [11] and restarts [5]).

AVATAR SAT is built on top of MINI SAT version 2.0, a state of the art SAT solver [5].
Based on its performance in recent SAT competitions [1], MINI SAT can reasonably
claim to be one of the fastest open-source SAT solvers.

We compared AVATAR SAT and MINI SAT on a randomly selected set of SAT prob-
lems chosen from the 2007 and 2008 SAT competitions [1]. AVATAR SAT is, on the
average, more than two times faster per problem than MINI SAT based on the geomet-
ric mean speedup measure and 50% faster per problem based on the arithmetic mean
speedup measure.1

On many hard SAT instances AVATAR SAT is hundreds to thousands of times faster
than MINI SAT, and is never more than twenty times slower than MINI SAT on any SAT
instance.

Availibility: AVATAR SAT’s source code, experimental data, and results are available at
http://people.csail.mit.edu/vganesh/avatarsat.html.

1 The geometric mean speedup is the geometric mean of the speedups for the individual tests.
The arithmetic mean speedup is the ratio of the total time taken by MINI SAT divided by the
total time taken by AVATAR SAT over all tests.

Solver InstancesSolvedTime-outs Total Time GeometricArithmetic
(in seconds) Speedup Speedup

AVATAR SAT 75 53 22 242,090.48 1.51X 2.23X
M INI SAT 2.0 75 52 23 366,353.35 - -

Fig. 1.Number of problems solved and time taken by AVATAR SAT and MINI SAT.

Contributions:

• AVATAR SAT: AVATAR SAT is a modified version of MINI SAT 2.0 that uses ma-
chine learning classifiers to choose parameter settings forthe tunable heuristics that
control several aspects of MINI SAT’s search algorithm.

• Course Correction During Search:A key novelty in AVATAR SAT is the course
correction step. Modern SAT solvers accumulate conflict clauses and drop input
clauses during their search, which can change the structureof the problem consid-
erably. The optimal parameter settings for this new problemmay be significantly
different from those of the original input problem.
AVATAR SAT therefore first selects a set of parameters for MINI SAT to use dur-
ing the initial part of the search. When the number of new clauses accumulated
during this part of the search crosses a threshold, the course correction step exam-
ines the new clauses to select a new set of parameters for MINI SAT to use during
the remaining part of the search. In this way AVATAR SAT dynamically adapts the
parameter settings to the potentially changing characteristics of the SAT problem.

• Use of Support-Vector Machines:AVATAR SAT uses multiclass support-vector
machines (SVM) [4], a supervised machine-learning technique, to learn a function
from the features of SAT instances to discretized parametersettings.

• Experimental Results: We present experimental results comparing the perfor-
mance of AVATAR SAT and MINI SAT on 75 randomly selected SAT instances
(both crafted and industrial) from the SAT 2007 and 2008 competitions [1].

2 The Architecture of AVATAR SAT

AVATAR SAT is a modified version of MINI SAT that relies on two machine-learning
classifiers to automatically tune its heuristic search. Thearchitecture of AVATAR SAT is
summarized in Figure 2. Thepreprocessing classifieris invoked on the input SAT in-
stance to generate initial parameter settings for the solver’s heuristics, while thecourse
correction classifieris invoked on both the original set of input clauses and the conflict
clauses generated during the search in an attempt to adapt the heuristic search to the
changing problem instance. Both classifiers are built usingthe well-known LIBSVM
library [3]. The solver itself works as follows:

• Initial Classification: AVATAR SAT computes features of the input SAT instance.
The preprocessing classifier uses these features to select initial parameters for MINI -
SAT’s heuristics.

Fig. 2. AVATAR SAT Architecture

AVATAR SAT NumberAVATAR SAT M INI SAT 2.0
Speedup Overof Tests Avg. Time Avg. Time
M INI SAT 2.0 (Seconds) (Seconds)

1000–50000x 2 3.41 43,200.00
100–1000x 3 57.50 28,850.61
10–100x 3 109.15 4,588.56
1.5–10x 12 1,106.8 3,707.90
1/10–1/1.5x 9 11,636.95 2,941.76
1/20–1/10x 1 4,332.67 260.18

Fig. 3. Number of SAT instances in which AVATAR -
SAT exhibits speedups over MINI SAT; AVATAR SAT
never slows down below1/20x of M INI SAT. The
timeout was 12 hours.

• Heuristic Search: AVATAR SAT invokes the modified MINI SAT with the selected
parameter settings.

• Course Correction: When the conflict clauses accumulated during the solver’s
search reach a pre-determined fraction of the input clauses(80%), AVATAR SAT
invokes the course correction classifier on the input and conflict clauses to select
new search parameters for the remainder of the search.

Machine Learning Technique Used:AVATAR SAT uses the multi-classsupport vec-
tor machine(SVM) [4] supervised machine-learning technique. Supervised machine-
learning techniques attempt to learn an unknown function based on atraining setcon-
sisting of input vectors and the corresponding outputs. TheSVM technique trains a
classifier that maps features of SAT instances to one of a finite set of classes, where
each class corresponds to a different parameter configuration. Since the generation of
training data requires discretization of parameter values, a multi-class SVM is a natural
choice for classification.

The SAT instance features used in training are designed to characterize the cor-
responding SAT problem instance as closely as possible. They are also designed to
be of reasonable length and to be efficient to compute. Our feature vector consists of
58 different log-normalized features of the input SAT instance (e.g., clause/var ratio,
var/clause ratio, number of variables, clauses etc. In addition to novel features such
asclause-weightedpositive and negative literal occurrences for distinguishing shuffled
SAT instances, we also use some of the features in [12]).

MiniSAT Heuristics Chosen for Automatic Tuning: The SAT solver parameters that
are dynamically tuned in AVATAR SAT are thevariable decayparameter of the VSIDS
heuristic [11], andrestart increments[5]. Of the ten tunable parameters in MINI SAT,
we selected these two because they have been empirically observed to have the most
significant influence on solver performance [2].

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

A
va

ta
rS

A
T

MiniSAT 2.0

AvatarSAT vs. MiniSAT 2.0

Fig. 4.Log-scale scatterplot of running times
(in seconds) of AVATAR SAT vs. MINI SAT.
Each point represents at least one test case;
the timeout was set at 12 hours.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60

T
im

e

Number of Problems Solved

Problems Solved Over Time

MiniSAT 2.0
AvatarSAT

Fig. 5. Number of problems solved by
AVATAR SAT and MINI SAT over time. In
our experiments, AVATAR SAT solves more
problems than MINI SAT for any given
amount of time.

3 Results

We discuss the experimental setup, guidelines used to conduct the experiments, training
setup of the machine-learning classifiers, and results of the comparison of AVATAR SAT
with M INI SAT.

Experimental Setup: All experiments for comparing AVATAR SAT with MINI SAT,
and training of the machine-learning classifiers were conducted on a cluster of 75 Linux
machines each with 1.8GHz Intel Xeon processor, 4MB Cache, and 2 GB RAM. To
train the preprocessing classifier, we randomly split the SAT 2007 and 2008 competi-
tion benchmarks [1] into disjoint training and test sets; the training set contained 177
instances, while the test set contained 75. To train the course correction classifier, we
dumped 391 internal conflict clause instances generated during the execution of MINI -
SAT on the instances used to train the preprocessing classifier. The test set was not
involved in training either classifier; no distinctions between industrial and crafted or
satisfiable and unsatisfiable examples were made.

Experimental Guidelines Used:We followed the guidelines presented by Zarpas [15]
for SAT solver benchmarking experiments. In particular, the timeouts for testing the
solvers were set relatively high at 12 hours (43,200 seconds). Low timeouts are used in
SAT competitions for logistical reasons. However, in real applications solvers may be
given much higher timeouts. Furthermore, higher timeouts help differentiate one solver
from another on harder examples. In our speedup computation, we excluded those test
cases for which both MINI SAT and AVATAR SAT timed out.

Training The Classifiers: The first step in the training process is collection of raw-
data: We ran differentconfigurationsof M INI SAT on the SAT instances in our training
set. Each configuration is a pair of parameter settings2 for the variable decay and restart

2 VAR-DECAY ∈ {0.50, 0.75, 0.85, 0.91, 0.93, 0.95, 0.97, 0.99, 0.999}
RESTART-INC∈ {1, 1.25, 1.5}

increment parameters of MINI SAT. For each instance in the training set, MINI SAT
was invoked with 27 different configurations (9 different values for variable decay, and
3 for restart-increment) and a timeout of 900 seconds per configuration. For each train-
ing instance, and for each MINI SAT configuration, the corresponding runtimes were
recorded. The raw data for each training instance was compiled into a training exam-
ple comprising the features of the instance and the parameter configuration for which
M INI SAT finished fastest. The preprocessing classifier was trained using the training
examples compiled from the 177 training instances discussed above, while the course
correction classifier was trained using the examples compiled from the 391 conflict
clause training instances. Both classifiers were trained using the Radial Basis Function
(RBF) Kernel [3].

3.1 Comparison of AVATAR SAT with M INI SAT

Figure 4 is a scatterplot (in log-scale) of the times taken byAVATAR SAT (Y-axis) and
M INI SAT (X-axis) over all the 75 SAT instances in the test suite. There is one point
for each solved SAT instance. For each point, the ratio of theX-axis to the Y-axis is the
speedup of AVATAR SAT over MINI SAT for the corresponding SAT instance. AVATAR -
SAT is faster for points below the diagonal; MINI SAT is faster for points above the
diagonal.

These data show that AVATAR SAT is faster than MINI SAT for 34 of the 75 in-
stances, with MINI SAT faster on 24 others. For the remaining examples both AVATAR -
SAT and MINI SAT time out without solving the instance. AVATAR SAT is hundreds to
thousands of times faster than MINI SAT 2.0 on 10 hard SAT instances out of a total
of 75 instances (note that some of the corresponding points in the lower right corner
overlap). On at least 5 of these examples MINI SAT times out at 43,200 seconds, while
AVATAR SAT finishes relatively quickly in a few seconds with the correct answer. A
summary of the distribution of differences in solving time is given in Figure 3.

We attribute the fact that MINI SAT is sometimes faster than AVATAR SAT to clas-
sification errors on the part of the machine learning classifiers. Note, however, that
these classification errors never cause AVATAR SAT to execute more than twenty times
slower than MINI SAT, with the vast majority of the misclassifications resulting in
much smaller performance differences between the two solvers. The end result is that
AVATAR SAT is on average more than two times faster per problem than MINI SAT
based on the geometric mean speedup measure, and 50% faster based on the arithmetic
speedup measure.

Figure 5 shows the number of examples solved (X-axis) as a function of the cumu-
lative solution time (Y-axis). At every point in time, AVATAR SAT has solved at least as
many problems as MINI SAT. Note that, as shown in Figure 1, AVATAR SAT solves 53
SAT instances out of a total of 75, compared to 52 by MINI SAT. Moreover, AVATAR -
SAT solves these instances much faster.

We also performed experiments with only the initial classification step (i.e., the
course correction step was disabled so that the solver used the initially selected param-
eters for the entire search). The course correction step wasfound to be important for
obtaining good performance on some of the harder instances.It usually makes little to
no difference for examples that solve quickly. This reflectsthe substantial difference in

problem characteristics that can arise between the original problem and the set of de-
rived conflict clauses that the solver accumulates as it attempts to solve a hard instance.

Note that even though the classifiers were trained with data from executions with
small timeouts, they generalize well to tests with much larger timeouts.

4 Related Work

There has been recent work in combining machine-learning preprocessors with SAT
solvers for the purposes of predicting parameter values andfor portfolio selection. In
portfolio selection, a classifier predicts the best solver from a fixed set for a particular
SAT instance [12, 14, 6, 13]. Previous work in predicting parameter values has used lin-
ear regression classifiers to learn a function from featuresand parameter configurations
to solver running time [8]. Other work has focused on per-distribution tuning of param-
eters [7, 9], in which a fixed set of parameters is chosen for a given distribution based
on average running time.

All of these techniques use some kind of a classifier as a pre-processor. By contrast,
AVATAR SAT calls a machine-learning classifier as a preprocessor, and another classi-
fier internally to correct the course of the solver’s search.Additionally, the strategy of
learning a function from features and parameter configuration to runtime does not scale
as well as our approach of learning a function from features to parameter configura-
tion. The former strategy requires invoking the classifier once per possible parameter
configuration—a number of invocations possibly exponentialin the number of param-
eters. Our strategy, by contrast, requires invoking the classifier only once, regardless of
the number of parameters.

The use of machine learning techniques to dynamically adjust the search strategy
of a SAT solver has been examined [10], but existing approaches are neither as general
nor as effective as ours. These approaches have not been tested on the kind of varied
problem sets represented by those collected for the SAT competitions, and even so
achieve only modest performance improvements. They also rely on branching rules
specific to the contemporary SAT solvers of several years ago—rules that have since
become obsolete. Our technique, in contrast, allows the tuning of anyparameterizable
feature of a SAT solver, and so will remain relevant even as solvers improve.

References

1. SAT competition website.http://www.satcompetition.org/.
2. G. Audemard and L. Simon. Experimenting with small changes in conflict-driven clause

learning algorithms. InProceedings of the 14th international conference on Principles
and Practice of Constraint Programming (CP), pages 630–634, Berlin, Heidelberg, 2008.
Springer-Verlag.

3. C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software
available athttp://www.csie.ntu.edu.tw/∼cjlin/libsvm.

4. C. Cortes and V. Vapnik. Support-Vector Networks.Machine Learning, 20(3):273–297,
1995.

5. N. Éen and N. S̈orensson. An extensible sat-solver. InProceedings of the Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT), pages 502–518.
Springer, 2003.

6. S. Haim and T. Walsh. Online estimation of sat solving runtime. InProceedings of
the Eleventh International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 133–138. Springer, 2008.

7. F. Hutter, D. Babíc, H. H. Hoos, and A. J. Hu. Boosting Verification by Automatic Tuning
of Decision Procedures. InProceedings of Formal Methods in Computer Aided Design
(FMCAD’07), pages 27–34, Washington, DC, USA, 2007. IEEE Computer Society.

8. F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Performance prediction and au-
tomated tuning of randomized and parametric algorithms. InProceedings of the Twelfth In-
ternational Conference on Principles and Practice of Constraint Programming (CP), pages
213–228, 2006.

9. F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. InProceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 1152–
1157. AAAI Press, 2007.

10. M. G. Lagoudakis and M. L. Littman. Learning to select branching rules in the dpll procedure
for satisfiability. InIn LICS/SAT, pages 344–359, 2001.

11. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.Chaff: Engineering
an efficient sat solver. InProceedings of the 38th conference on Design automation (DAC),
pages 530–535, 2001.

12. E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-brown, and H. Hoos. Satzilla: An algorithm
portfolio for sat. InProceedings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT), pages 13–14, 2004.

13. S. A. Seshia. Adaptive eager Boolean encoding for arithmetic reasoning in verification. Tech.
Rep. CMU-CS-05-134, School of Computer Science, Carnegie MellonUniversity, 2005.

14. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla07: The design and analysis of
an algorithm portfolio for SAT. InProceedings of the Thirteenth International Conference
on Principles and Practice of Constraint Programming (CP), pages 712–727, 2007.

15. E. Zarpas. Benchmarking sat solvers for bounded model checking. In Proceedings of the
Eighth International Conference on Theory and Applications of SatisfiabilityTesting (SAT),
pages 340–354, 2005.

