Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2009-039 August 26,2009

AvatarSAT: AN AUTO-TUNING BOOLEAN
SAT SOLVER

RISHABH SINGH, JOSEPH P. NEAR, VIJAY GANESH,
and MARTIN RINARD

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

AvatarSAT: An Auto-tuning Boolean SAT Solver

Rishabh Singh, Joseph P. Near, Vijay Ganesh, and Martinr®Rina

Massachusetts Institute of Technology
{rishabh, jnear, vganesh, ring@csail.mit.edu

Abstract. We present BATAR SAT, a SAT solver that uses machine-learning
classifiers to automatically tune the heuristics of an off-the-shelf SAT solve
on a per-instance basis. The classifiers use features of both the impaba-
flict clauses to select parameter settings for the solver’s tunable heuridtic

a randomly selected set of SAT problems chosen from the 2007 arg&i2AD
competitions, AATAR SAT is, on average, over two times faster thamM AT
based on the geometric mean speedup measure and 50% fasterrbtsedrgh-
metic mean speedup measure. MoreovesTAR SAT is hundreds to thousands
of times faster than MiISAT on many hard SAT instances and is never more
than twenty times slower than IMI SAT on any SAT instance.

1 Introduction

We present MATAR SAT, an auto-tuning SAT solver that uses machine-learniathm
ods to automatically tune an off-the-shelf SAT solver on mipstance basis. VATAR -
SAT is designed to classify each SAT instance based on itaslyn features so as to
find the corresponding optimal parameter setting for theibtes in the underlying
SAT solver (for example, dynamic variable selection [114 aestarts [5]).

AVATAR SAT is built on top of MNI SAT version 2.0, a state of the art SAT solver [5].
Based on its performance in recent SAT competitions [1INNBAT can reasonably
claim to be one of the fastest open-source SAT solvers.

We compared MATAR SAT and MNISAT on a randomly selected set of SAT prob-
lems chosen from the 2007 and 2008 SAT competitions [YATAR SAT is, on the
average, more than two times faster per problem tham BIAT based on the geomet-
ric mean speedup measure and 50% faster per problem baskd arithmetic mean
speedup measurk.

On many hard SAT instances/ATAR SAT is hundreds to thousands of times faster
than MiNI SAT, and is never more than twenty times slower than N AT on any SAT
instance.

Availibility: AVATAR SAT's source code, experimental data, and results areadlaiat
http://people.csail.nit.edu/vganesh/ avatarsat. htm .

! The geometric mean speedup is the geometric mean of the speedups ifuditfdual tests.
The arithmetic mean speedup is the ratio of the total time taken by AT divided by the
total time taken by MATAR SAT over all tests.

Solver |InstancegSolvedTime-outs Total Time|Geometri¢Arithmetic
(in seconds) Speedup Speedup
AVATARSAT 75 53 22 242,090.48 1.51X 2.23X
MINISAT 2.0 75 52 23 366,353.35 - -

Fig. 1. Number of problems solved and time taken bya®ar SAT and MNISAT.

Contributions:

e AVATAR SAT: AVATAR SAT is a modified version of MuISAT 2.0 that uses ma-
chine learning classifiers to choose parameter settindeédunable heuristics that
control several aspects ofIM SAT’s search algorithm.

e Course Correction During Search: A key novelty in A/ATAR SAT is the course
correction step. Modern SAT solvers accumulate conflicis#g and drop input
clauses during their search, which can change the struotuhe problem consid-
erably. The optimal parameter settings for this new probtealy be significantly
different from those of the original input problem.

AVATAR SAT therefore first selects a set of parameters fokIBAT to use dur-
ing the initial part of the search. When the number of new @alsccumulated
during this part of the search crosses a threshold, the e@orsection step exam-
ines the new clauses to select a new set of parametersiforSAT to use during
the remaining part of the search. In this wayaar SAT dynamically adapts the
parameter settings to the potentially changing charatiesiof the SAT problem.

e Use of Support-Vector Machines: AVATAR SAT uses multiclass support-vector
machines (SVM) [4], a supervised machine-learning teamitp learn a function
from the features of SAT instances to discretized paranset#ings.

e Experimental Results: We present experimental results comparing the perfor-
mance of AATARSAT and MNISAT on 75 randomly selected SAT instances
(both crafted and industrial) from the SAT 2007 and 2008 cetitipns [1].

2 The Architecture of AVATAR SAT

AVATAR SAT is a modified version of MiI SAT that relies on two machine-learning
classifiers to automatically tune its heuristic search. difchitecture of XAATAR SAT is
summarized in Figure 2. Thareprocessing classifigs invoked on the input SAT in-
stance to generate initial parameter settings for the sslkeuristics, while theourse
correction classifieiis invoked on both the original set of input clauses and thelicd
clauses generated during the search in an attempt to adapethistic search to the
changing problem instance. Both classifiers are built utfiegwell-known LIBSVM
library [3]. The solver itself works as follows:

e Initial Classification: AVATAR SAT computes features of the input SAT instance.
The preprocessing classifier uses these features to setedfiarameters for Wi -
SAT’s heuristics.

Input SAT Formuta AVATAR SAT [NUumbefAVATAR SAT[MINISAT 2.0
(AvatarSATY Speedup Oveof Testg Avg. Time | Avg. Time
Machine-Learning [MINISAT 2.0 (Seconds)| (Seconds)
Clossiner Clauses 1000-50000% 2 3.41] 43,200.00
Dynanlcaly 100-1000x 3 57.50| 28,850.61
\ Parameters 10-100x 3 109.15 4,588.56
[Modified MiniSAT Koo 1.5-10x 12 1,106.8 3,707.90
_ T y 1/10-1/1.5x 9 11,636.95 2,941.76
1/20-1/10x 1 4,332.67 260.18
SAT / UNSAT
Fig. 2. AVATAR SAT Architecture Fig. 3. Number of SAT instances in whichvATAR -

SAT exhibits speedups over IMI SAT; AVATAR SAT
never slows down belovt/20x of MINISAT. The
timeout was 12 hours.

e Heuristic Search: AVATAR SAT invokes the modified M1 SAT with the selected
parameter settings.

e Course Correction: When the conflict clauses accumulated during the solver’s
search reach a pre-determined fraction of the input cla(8@%), A/ATAR SAT
invokes the course correction classifier on the input andlicorlauses to select
new search parameters for the remainder of the search.

Machine Learning Technique Used:AVvATAR SAT uses the multi-classupport vec-
tor machine(SVM) [4] supervised machine-learning technique. Sugedlimachine-
learning techniques attempt to learn an unknown functiGetan araining setcon-
sisting of input vectors and the corresponding outputs. $W& technique trains a
classifier that maps features of SAT instances to one of & fagt of classes, where
each class corresponds to a different parameter configoraince the generation of
training data requires discretization of parameter valaesulti-class SVM is a natural
choice for classification.

The SAT instance features used in training are designed dcacterize the cor-
responding SAT problem instance as closely as possibley @ihe also designed to
be of reasonable length and to be efficient to compute. Oturieaector consists of
58 different log-normalized features of the input SAT imsta (e.g., clause/var ratio,
var/clause ratio, number of variables, clauses etc. Intiatdio novel features such
asclause-weightegositive and negative literal occurrences for distingimgtshuffled
SAT instances, we also use some of the features in [12]).

MiniSAT Heuristics Chosen for Automatic Tuning: The SAT solver parameters that
are dynamically tuned in YaTAR SAT are thevariable decayparameter of the VSIDS
heuristic [11], andestart increment$5]. Of the ten tunable parameters inlMSAT,
we selected these two because they have been empiricaliyvelolsto have the most
significant influence on solver performance [2].

AvatarSAT vs. MiniSAT 2.0 Problems Solved Over Time
100000

‘ [MiniSAT 2.0
" . - 40000 AvatarSAT
10000 | e 35000
- " 30000
= g -
5 1000 | =y v 25000
§ 100 T - £ 20000-
< - Lo LIS 15000}
|
' _mm 10000 -
10 gt =
- " 5000 | e
1 L L 0 i .
1 10 100 1000 10000 100000 0 10 20 30 40 50 60
MiniSAT 2.0 Number of Problems Solved

Fig. 4.Log-scale scatterplot of running times Fig.5. Number of problems solved by

(in seconds) of MATAR SAT vs. MINISAT. AVATAR SAT and MNISAT over time. In

Each point represents at least one test casepur experiments, YATAR SAT solves more

the timeout was set at 12 hours. problems than NMNISAT for any given
amount of time.

3 Results

We discuss the experimental setup, guidelines used to cotidiexperiments, training
setup of the machine-learning classifiers, and resultseoftimparison of RATAR SAT
with MINISAT.

Experimental Setup: All experiments for comparing VATAR SAT with MINISAT,
and training of the machine-learning classifiers were cotetlion a cluster of 75 Linux
machines each with 1.8GHz Intel Xeon processor, 4AMB Cadhe,2aGB RAM. To
train the preprocessing classifier, we randomly split th& 3807 and 2008 competi-
tion benchmarks [1] into disjoint training and test set& thaining set contained 177
instances, while the test set contained 75. To train theseocorrection classifier, we
dumped 391 internal conflict clause instances generatédgiiive execution of MNI -
SAT on the instances used to train the preprocessing cksdifie test set was not
involved in training either classifier; no distinctions Ween industrial and crafted or
satisfiable and unsatisfiable examples were made.

Experimental Guidelines Used:We followed the guidelines presented by Zarpas [15]
for SAT solver benchmarking experiments. In particulag timeouts for testing the
solvers were set relatively high at 12 hours (43,200 seqohds timeouts are used in
SAT competitions for logistical reasons. However, in rggplacations solvers may be
given much higher timeouts. Furthermore, higher timeoatp Hifferentiate one solver
from another on harder examples. In our speedup computat®excluded those test
cases for which both MitSAT and A/ATAR SAT timed out.

Training The Classifiers: The first step in the training process is collection of raw-
data: We ran differertonfigurationof MINISAT on the SAT instances in our training
set. Each configuration is a pair of parameter setfifysthe variable decay and restart

2 VAR-DECAY ¢ {0.50, 0.75, 0.85, 0.91, 0.93, 0.95, 0.97, 0.99, 0}999
RESTART-INCe {1, 1.25, 1.5

increment parameters of IMISAT. For each instance in the training set)NVGAT
was invoked with 27 different configurations (9 differentues for variable decay, and
3 for restart-increment) and a timeout of 900 seconds peigimation. For each train-
ing instance, and for each IMISAT configuration, the corresponding runtimes were
recorded. The raw data for each training instance was cenhjito a training exam-
ple comprising the features of the instance and the pararmeidiguration for which
MINISAT finished fastest. The preprocessing classifier wasedairsing the training
examples compiled from the 177 training instances discliabeve, while the course
correction classifier was trained using the examples caugilom the 391 conflict
clause training instances. Both classifiers were trainetyube Radial Basis Function
(RBF) Kernel [3].

3.1 Comparison of A/ATAR SAT with M INI SAT

Figure 4 is a scatterplot (in log-scale) of the times takemMayTAR SAT (Y-axis) and
MINISAT (X-axis) over all the 75 SAT instances in the test suiteerE is one point
for each solved SAT instance. For each point, the ratio oKtais to the Y-axis is the
speedup of MATAR SAT over MINI SAT for the corresponding SAT instancevAfAR -
SAT is faster for points below the diagonal;IMSAT is faster for points above the
diagonal.

These data show thatvATAR SAT is faster than WMNISAT for 34 of the 75 in-
stances, with NNI SAT faster on 24 others. For the remaining examples boRTAR -
SAT and MNISAT time out without solving the instanceVATAR SAT is hundreds to
thousands of times faster thaniMSAT 2.0 on 10 hard SAT instances out of a total
of 75 instances (note that some of the corresponding paintisel lower right corner
overlap). On at least 5 of these examplesNMS AT times out at 43,200 seconds, while
AVATAR SAT finishes relatively quickly in a few seconds with the eatranswer. A
summary of the distribution of differences in solving tinsegiven in Figure 3.

We attribute the fact that MiI SAT is sometimes faster tharvATAR SAT to clas-
sification errors on the part of the machine learning classifiNote, however, that
these classification errors never caus@™R SAT to execute more than twenty times
slower than MNISAT, with the vast majority of the misclassifications reisgtin
much smaller performance differences between the two sol¥dne end result is that
AVATAR SAT is on average more than two times faster per problem than SAT
based on the geometric mean speedup measure, and 50% &sstdrdm the arithmetic
speedup measure.

Figure 5 shows the number of examples solved (X-axis) as@ifumof the cumu-
lative solution time (Y-axis). At every point in time VATAR SAT has solved at least as
many problems as MiI SAT. Note that, as shown in Figure 1y&AR SAT solves 53
SAT instances out of a total of 75, compared to 52 bywNBAT. Moreover, AATAR -
SAT solves these instances much faster.

We also performed experiments with only the initial classifion step (i.e., the
course correction step was disabled so that the solver hsdditially selected param-
eters for the entire search). The course correction steffauasl to be important for
obtaining good performance on some of the harder instaftoesually makes little to
no difference for examples that solve quickly. This reflebtssubstantial difference in

problem characteristics that can arise between the otigablem and the set of de-
rived conflict clauses that the solver accumulates as gt to solve a hard instance.

Note that even though the classifiers were trained with data £xecutions with
small timeouts, they generalize well to tests with muchdatgneouts.

4 Related Work

There has been recent work in combining machine-learniegrpcessors with SAT
solvers for the purposes of predicting parameter values§@nplortfolio selection. In
portfolio selection, a classifier predicts the best solvemfa fixed set for a particular
SAT instance [12, 14, 6, 13]. Previous work in predictinggmaeter values has used lin-
ear regression classifiers to learn a function from featamelgparameter configurations
to solver running time [8]. Other work has focused on petritigtion tuning of param-
eters [7, 9], in which a fixed set of parameters is chosen favenglistribution based
on average running time.

All of these techniques use some kind of a classifier as ameepsor. By contrast,
AVATAR SAT calls a machine-learning classifier as a preprocessdranother classi-
fier internally to correct the course of the solver's seafdditionally, the strategy of
learning a function from features and parameter configumat runtime does not scale
as well as our approach of learning a function from featuoegarameter configura-
tion. The former strategy requires invoking the classifieceper possible parameter
configuration—a number of invocations possibly exponeitighe number of param-
eters. Our strategy, by contrast, requires invoking thesifi@r only once, regardless of
the number of parameters.

The use of machine learning techniques to dynamically adpgssearch strategy
of a SAT solver has been examined [10], but existing appresele neither as general
nor as effective as ours. These approaches have not beed testhe kind of varied
problem sets represented by those collected for the SAT etitigms, and even so
achieve only modest performance improvements. They algoore branching rules
specific to the contemporary SAT solvers of several years-agtes that have since
become obsolete. Our technique, in contrast, allows thedusf any parameterizable
feature of a SAT solver, and so will remain relevant even asseimprove.

References

1. SAT competition websiteht t p: / / www. sat conpeti tion. org/.

2. G. Audemard and L. Simon. Experimenting with small changes in cotufiieen clause
learning algorithms. IrProceedings of the 14th international conference on Principles
and Practice of Constraint Programming (CR)ages 630-634, Berlin, Heidelberg, 2008.
Springer-Verlag.

3. C. Chang and C. Lin. LIBSVM: a library for support vector mackin2001. Software
available aht t p: / / www. csi e. ntu. edu. tw/ ~cjlin/libsvm

4. C. Cortes and V. Vapnik. Support-Vector Networkiglachine Learning 20(3):273-297,
1995.

10.

11.

12.

13.

14.

15.

N. Een and N. 8rensson. An extensible sat-solver. Rroceedings of the Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing (pages 502-518.
Springer, 2003.

. S. Haim and T. Walsh. Online estimation of sat solving runtime. Ptaceedings of

the Eleventh International Conference on Theory and Applications offi@htlgy Testing
(SAT) pages 133-138. Springer, 2008.

. F. Hutter, D. Bali, H. H. Hoos, and A. J. Hu. Boosting Verification by Automatic Tuning

of Decision Procedures. IRroceedings of Formal Methods in Computer Aided Design
(FMCAD'07), pages 27-34, Washington, DC, USA, 2007. IEEE Computer Society.

. F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Perfonceprediction and au-

tomated tuning of randomized and parametric algorithm$rateedings of the Twelfth In-
ternational Conference on Principles and Practice of Constraint Prograng (CP) pages
213-228, 2006.

. F. Hutter, H. H. Hoos, and T. &kzle. Automatic algorithm configuration based on local

search. IrProceedings of the 22nd AAAI Conference on Artificial Intelligepeges 1152—
1157. AAAI Press, 2007.

M. G. Lagoudakis and M. L. Littman. Learning to select branchitegrin the dpll procedure
for satisfiability. InIn LICS/SAT pages 344-359, 2001.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Mal&haff: Engineering

an efficient sat solver. IRroceedings of the 38th conference on Design automation (DAC)
pages 530-535, 2001.

E. Nudelman, A. Devkar, Y. Shoham, K. Leyton-brown, and blo$i Satzilla: An algorithm
portfolio for sat. InProceedings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAPages 13-14, 2004.

S. A. Seshia. Adaptive eager Boolean encoding for arithmetiomeasin verification. Tech.
Rep. CMU-CS-05-134, School of Computer Science, Carnegie Melioversity, 2005.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla07:eTtesign and analysis of
an algorithm portfolio for SAT. IrProceedings of the Thirteenth International Conference
on Principles and Practice of Constraint Programming (Cpages 712—727, 2007.

E. Zarpas. Benchmarking sat solvers for bounded modekicigecin Proceedings of the
Eighth International Conference on Theory and Applications of Satisfiab#itging (SAT,)
pages 340-354, 2005.

