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Abstract— Classifying other agents’ intentions is a very com-
plex task but it can be very essential in assisting (autonomous
or human) agents in navigating safely in dynamic and possibly
hostile environments. This paper introduces a classification
approach based on support vector machines and Bayesian
filtering (SVM-BF). It then applies it to a road intersection
problem to assist a vehicle in detecting the intention of an ap-
proaching suspicious vehicle. The SVM-BF approach achieved
very promising results.

I. INTRODUCTION

Whether driving on highways or navigating in the middle
of a battlefield, intelligent vehicles will be required to
quickly and robustly compute their motion plans in very
uncertain worlds. The sources of uncertainty is typically
classified as 1) internal i.e., related to the imperfection in the
model of the vehicle, and 2) external i.e., due to incomplete
information of the environment the agent lives in. Both types
of uncertainty are due to imperfection either in sensing or
in predictability [1]. This paper focuses on the problem of
external uncertainty in predictability, more specifically on
the uncertainty in the intent of the other agents living in our
agent’s world.

Classifying all other agents as hostile would be overly
conservative. A smart agent should be able to gather informa-
tion from the environment to build models approximating the
intentions of the other agents. This information could consist
of images captured by onboard cameras, velocity information
of surrounding objects obtained from radar measurements,
or messages intercepted or shared on some communication
channels. Thus, the agent should be able to classify the other
agents into different categories, and compute its motion plan
around them accordingly.

One motivation of this work is the challenges that were
faced by Talos, the MIT autonomous Land Rover LR3 in the
2007 DARPA Grand Challenge (DGC). Talos was one of the
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six cars that were able to make it to the finish line, out of
35 contestants [2]. The race had a 96 km course located in
an urban area, to be completed in less than 6 hours, with
the presence of other traffic vehicles and obeying all traffic
regulations found on urban roads. One of the main challenges
of the DGC race was negotiating the traffic situation at
intersections [3]. Talos and several other cars were involved
in collisions or near-collisions at intersections. There have
been several explanations to this phenomenon, but the one
that motivated this work is the inability of the autonomous
vehicles to anticipate other vehicles’ intents [3]. Figure 1
shows the accident between the vehicles of MIT and Cornell
during the 2007 DGC race. It is believed to be the first
well documented accident between two full-size autonomous
vehicles [4].

Another motivation of this work is related to the high
number of car accidents happening each year at road inter-
sections. An estimated 43% of crashes in the United States
occur at intersection or are intersection-related [5]. Most
of them happen at intersections with stop signs or traffic
signals. A main cause of these accidents is the inability of
the drivers to accurately perceive the degree of the danger in
such situations. These facts suggest that a threat assessment
system onboard cars could be very effective in reducing the
number of intersection accidents. Such a system would warn
or advise the driver, partially control the vehicle, or fully take
control of the vehicle depending on the level of the danger
it assesses. An integral part of a threat assessment module
is a classification algorithm that assigns a category or type
for each car driver involved in the intersection. Despite the
fact that drivers are not usually hostile, the ability to classify
them as “dangerous” when they are not in full control of their
cars (e.g., being under the influence of alcohol) is essential
in a better performance at predicting accidents. The threat
assessment module would then act assuming a worse-case
scenario against these dangerous drivers to guarantee the
safety of its driver.

Inferring driver intentions has been the subject of several
recent studies. Ref. [6] introduced a mind-tracking approach



Fig. 1. Picture of the collision between MIT’s autonomous Land Rover
LR3 ‘Talos’ and Team Cornell’s autonomous Chevrolet Tahoe ‘Skynet’ in
the Darpa Grand Challenge 2007. It is known as the first well-documented
collision between two full-size autonomous vehicles [4].

that extracts the similarity of the driver data to several
virtual drivers created probabilistically using a cognitive
model. Other work focused on predicting drivers’ intention
to changing lanes in common driving environments. Ref. [7]
used graphical models and HMMs to create and train models
of different driver maneuvers using experimental driving
data. Ref. [8] introduced a technique to infer driver intentions
to changing lanes based on support vector machines (SVMs),
a supervised learning technique that is also used in this
paper . It was applied on behavioral and environmental data
collected from an instrumented vehicle. All of the above
approaches tries to model the behavior or intentions of the
host driver to support it in performing several driving tasks.

In this paper we describe a method to classify the other
agents’ intention using a combination of support vector
machines and a Bayesian filtering (SVM-BF) method. The
goal is to help our agent make better informed decisions.
First, we give an overview of SVMs and a description of
the chosen sequential Bayesian inference method. Then we
introduce the road intersection problem, and explain how we
approach it using the SVM-BF method. Finally, simulation
results are presented and analyzed.

II. CLASSIFICATION

The world our agent interacts with consists of “dangerous”
and “harmless” agents. An agent refers to autonomous sys-
tems (e.g., robots) or humans. While the dangerous agent’s
goal is to cause damage to our vehicle or put it in a
risky situation, the harmless agent follows a trajectory that
minimizes some “peaceful” goal (e.g., time or distance). Next
is a brief overview of support vector machines and Bayesian
filtering, which will be used in the classification approach.

A. Support Vector Machines

Support vector machines (SVMs) is a relatively new
supervised machine learning technique based on the margin-
maximization principle [9]. It was originally introduced by
Vapnik and Cortes [10], [11], and has been since succesfully
applied to several applications including text categorization,
bioinformatics and database marketing [12]. The following

TABLE I. TYPICAL KERNEL FUNCTIONS [14]

Polynomial K(xi, xj) = (〈xi, xj〉) + 1)d

Gaussian Radial Basis K(xi, xj) = exp

(
− ‖xi−xj‖2

2σ2

)
Multi-Layer Perceptron K(xi, xj) = tanh(ρ〈xi, xj〉 + %)

briefly introduces SVMs, but [10], [13], [14] provide more
detailed descriptions.

Given a set of binary label training data {xi, yi}, where
i = 1, . . . , N, yi ∈ {−1, 1},xi ∈ <d, N is the number
of training vectors, and d is the size of the input vector, a
separating hyperplane between the two classes of data can
be written as

w · x + b = 0 (1)

where b is known as the bias, and w as the weights.
The training data are typically not linearly separable. So

they are mapped into a higher dimensional Hilbert space
called feature space such that

xi · xj → φ(xi) · φ(xj) (2)

The function φ(xi) ·φ(xj) = K(xi,xj) is called the kernel
function. It is the inner product between the mapped pairs of
points in the feature space. Note that the functional form of
the mapping φ(x) needs not to be known since it is implicitly
defined in the kernel function. Data which are non-separable
in the input space can become separable in the feature space
with the right choice of kernel function. Some typical kernel
functions are shown in Table II-A.

To classify a new test vector z into one class (y = 1)
or the other (y = −1), the following decision function is
evaluated

D(z) = sgn

[
N∑

i=1

αiyiK(xi,z) + b

]
(3)

where α is the argmax of the following optimization problem

max W (α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi,xj) (4)

subject to the constraints

N∑
i=1

αiyi = 0 (5)

αi ≥ 0 (6)

To account for the noise found in most real life datasets,
a soft margin support vector machine is usually created. It
adds robustness to the classification by reducing the effect of
outliers and noise. Typically slack variables are added into
the constraints to relax the hard margin constraints.



B. Motivation for using SVMs

Classifying human drivers is a very complex task because
of the various nuances and peculiarities of human behaviors
[8]. Researchers have shown that the state of a vehicle driver
lies in some high dimensional feature space [15]. Classifying
autonomous vehicle behaviors could be even more complex
mainly because of the difficulty of gathering training data
representing the different class of systems that our agent
might encounter. SVMs were shown to be a robust and
efficient approach for binary classification, and scale well
with high dimensional feature spaces [11]. In this paper,
the world our agent interacts with consists of “harmless”
and “dangerous” agents. An agent refers to autonomous
systems (e.g., robots) or human beings. While the dangerous
agents’ goal is to cause damage to our vehicle or put it
in a risky situation, the harmless agents follow trajectories
that minimize some “peaceful” goal (e.g., time or distance).
Thus SVMs are used to make the binary classification
of harmless vs. dangerous agents. In general, SVMs have
several theoretical and practical advantages. We highlight
few of them: 1) training SVMs involves an optimization
problem of a convex function, thus the optimal solution is a
global one (i.e., no local optima), 2) the upper bound on the
generalization error does not depend on the dimensionality
of the space, and 3) there are fewer free parameters to tune
in SVMs compared to other methods (e.g., neural networks).

C. Bayesian Filtering

Sequential Bayesian inference deals with the Bayesian
estimation of a time-varying dynamic system [16]. Let θk

denote the state of interest at time k. Then the sequential
Bayesian inference estimates the a posteriori probability
density function p(θk|y1:N ) by fusing a sequence of sensor
measurements y1:N together.This type of inference makes
use of observations either one at a time, or in small groups,
and then discards them before the following measurements
are considered. They can be used in real-time applications
because the whole data set need not to be stored or loaded
in memory, so they can be very useful for large amount of
data.

In this paper we consider the calculation of the probability
density function (pdf) p(θk|y1:N ) for k = N which is known
as (sequential) Bayesian filtering [9]. Renaming θN as θ,
the pdf is written as p(θ|y1:N ). θ is an unknown parameter
representing the probability that an agent is “harmless”. We
choose the prior of θ to be a beta distribution, which is a
function of some hyperparameters a and b [9].

beta(θ|a, b) =
Γ(a + b)

Γ(a) + Γ(b)
θa−1(1− θ)b−1 (7)

where Γ(x) is the gamma function [9]. The posterior distri-
bution of θ, p(θ|y1:N ), is computed by multiplying the beta
prior (See (7)) by the binomial likelihood function given by

bin(m|N, θ) =
(

N

m

)
θm(1− θ)N−m (8)

Fig. 2. Illustration of one step of sequential Bayesian inference. The prior
is given by a beta distribution with parameters a = 2 and b = 2. The
likelihood function is characterized by N = m = 1, which corresponds to
a single observation. The posterior is thus given by a beta distribution with
parameters a = 3 and b = 2 [9].

and then normalizing the resulting function to obtain

p(θ|y1:N ) =
Γ(m + a + l + b)

Γ(m + a) + Γ(l + b)
θm+a−1(1− θ)l+b−1

(9)

Note that m is the number of observations saying that the
agent is harmless, and the number of observations saying that
the agent is dangerous is l = N −m. Note also that choice
of the beta distribution provides a simple way to represent
the effective number of observations for each class of agents
through its hyperparameters a and b. In other words, a and
b can be interpreted as the initial “confidence” weights for
each class, respectively.

The goal is to compute the expected value of the θ
parameter which is equivalent to predicting the outcome of
the next output of the trial. Therefore we must evaluate the
posterior distribution of yN+1 given the observed data set
y1:N

p(yN+1 = harmless|y1:N ) (10)

=
∫ 1

0

p(yN+1 = harmless|θ)p(θ|y1:N )dθ (11)

=
∫ 1

0

θp(θ|y1:N )dθ = E(θ|y1:N ) (12)

=
m + a

m + a + l + b
(13)

Figure 2 illustrates one step of sequential Bayesian inference,
with a = b = 2, and N = m = 1.

III. APPLICATION OF SVM-BF ON THE ROAD
INTERSECTION PROBLEM

A. The Road Intersection Problem

The road intersection problem serves as an illustration
of an application where the SVM-BF method could be
useful. The problem consists of the following scenario (See
Figure 3): our vehicle (denoted as host vehicle) arrives
at a four way intersection with four way stop signs. The
host vehicle detects another vehicle (denoted as suspicious
vehicle) that is almost 190 meters away and coming from
its right side. The host vehicle could proceed, but it decides
to be cautious. So it assesses the behavior of the suspicious
vehicle before moving by using the SVM-BF approach. The
host vehicle would typically decide within some time limit
to proceed, wait, or possibly follow an escape maneuver if
the suspicious vehicle is classified as a dangerous one. The



Fig. 3. The Road Intersection Scenario. The red diamond is the host
vehicle. The black square is the suspicious vehicle. The arrows show the
heading of the vehicles.

Fig. 4. The SVM-BF Architecture.

suspicious vehicle is modeled as a simple car dynamical
system (i.e., simple unicycle) with velocity and angular rate
as control inputs [17].

B. Implementation of SVM-BF

The SVM-BF architecture is shown in Figure 4. At
the beginning of each time period ∆T , the SVM module
receives some measurements from the vehicle sensors, it
extracts the relevant features (see Section III-C) and outputs
a classification (dangerous or harmless). This classification
is fed into a Bayesian filter (see Section III-D) which com-
putes the probability that the next SVM output is harmless,
which is equivalent to computing the expected value of the
θ parameter introduced in Section II-A. Recall θ is the
probability of the suspicious vehicle being a harmless agent.
This value is then sent into a threshold detector module that
outputs the final classification of the SVM-BF system. The
threshold used in this problem is 0.8 i.e., SVM-BF declares
a suspicious vehicle as dangerous if the expected value of
θ is smaller than 0.8. SVM-BF outputs these classifications
continuously for each ∆T , but we are mainly interested in
the value of the classification when the suspicious vehicle
is close to the host vehicle, more specifically when their
relative distance is smaller than 20 meters. Note that in the
implementation, ∆T = 1s. In real-world applications, ∆T
could be much smaller, but the operation of the SVM-BF
system would be the same.

C. SVM Parameters

1) Kernel Selection: The choice of a suitable Kernel
function in the decision function (3) is essential in obtain-
ing satisfactory results with SVMs. We tested the training
data against several types of kernel functions: a) linear, b)
quadratic, c) cubic, d) and gaussian radial basis. The best
results were observed with both the cubic polynomial and
gaussian radial basis kernel functions. The simulation results
shown in Section IV are produced using an SVM classifier
that uses a gaussian radial basis kernel function.

2) Feature Selection: Choosing an effective set of features
is a very challenging design decision. Features that vary
randomly or do not show significant predictability should
be avoided as they degrade the performance of SVMs [8].
After experimenting with several combinations of features,
the best results were obtained when combining the following
three features:
• the relative distance ∆x between the the host and

suspicious vehicles;
• the heading φ of the suspicious vehicle relative to the

host vehicle;
• the speed v of the suspicious vehicle.
3) Soft Margin: To deal with the noisy measurements, a

soft margin vector support machine was used. The parameter
representing the penalty to error was set to 1. Please refer to
[14] for more details about soft margins.

4) Training the SVM: To train the SVM, a series of trajec-
tories of actual drivers approaching an intersection should be
gathered and classified as harmless or dangerous according
to some specific rules. For example, a dangerous driver is
one whose trajectory ends up colliding with the host vehicle
or gets within some specific distance of it. Other factors
can be also included in the classification. Relevant features
extracted from the trajectories along with their classifications
will then be used in the training of the SVM classifier. But
for our simulation purposes, we generated 270 combinations
of features that cover uniformly different regions of interest,
and classified them as dangerous or harmless following some
specific rules. To make the classifier robust to noise, 5 of the
270 combinations are intentionally misclassified i.e., do not
follow the rules of classification. The goal was to make use
of SVM’s robustness to faulty data that is typically found in
real-world training.

The main rules followed in the training process are the
following:
• If ∆x is large (i.e., suspicious vehicle at least 50

meters far away from host vehicle) and v ≤ 1.25vmax

(i.e., not very fast) then classify as harmless. Otherwise
(i.e., same conditions but v > 1.25vmax) classify as
dangerous.

• If ∆x is not large (i.e., suspicious vehicle in the vicinity
of host vehicle), φ is small (i.e., suspicious vehicle
pointing towards host vehicle within an angle of 10
degrees) and v ≥ vmin (i.e., not very slow) then
classify as dangerous. Otherwise (i.e., same conditions
but v < vmin) classify as harmless.

• If ∆x is not large (i.e., suspicious vehicle in the vicinity
of host vehicle), φ is not small (i.e., suspicious vehicle
not pointing towards host car) but v > 0.8vmax then
classify as dangerous. Otherwise (i.e., same conditions
but v ≤ 0.8vmax) classify as harmless.

Note that vmax = 70km/h and vmin = 5km/h.

D. BF Parameters

There are four parameters to choose in Equation (13) of the
Bayesian filter (BF): m, N , a and b. In our implementation,



Fig. 5. Plot of a discount function for the BF update.

the BF receives one classification from the SVM at a time,
so N = 1. Then m = 1 if the current observation y =
harmless otherwise l = 1. a and b represent the initial
number of observations (or classifications) of y = harmless
and y = dangerous respectively. We set them to a = b = 1
at t = 0 in our implementation, meaning that we assume
a uniform distribution for θ, the parameter representing the
probability that the suspicious vehicle is harmless. Then a
and b are updated at t = t+∆t to a = a+m and b = b+ l,
and so on. Recall l = N −m. So the posterior distribution
over θ acts as the prior every time the BF receives a new
input from the SVM.

E. Discounted BF

To speedup the convergence of the Bayesian filter, a
scaling factor can be added to the updating steps of a and b
as follows: a = γ(∆x)×a+m and b = γ(∆x)× b+ l. The
discount factor γ gives more weight to newer SVM outputs
by discounting the old posterior of θ (i.e., the new prior).
Newer SVM outputs correspond to smaller ∆x meaning the
suspicious vehicle getting closer to the intersection, which
is the desired behavior. For the Bayesian filter to converge,
the discount factor should be chosen such that it converges
to 1 as the number of iterations goes to infinity [18]. One
example of discount function that has been designed for the
intersection problem is

γ(∆x) = A + B exp(C∆x) (14)

where A = 0.75, B = 0.25 and C = −0.025 (See
(Figure 5)).

IV. SIMULATION RESULTS

We simulated 60 suspicious vehicles with different veloc-
ity and angular rate profiles. 30 of them were dangerous
vehicles, i.e., they were designed to either end up colliding
with the host vehicle, or/and cross the intersection without
stopping at the stop sign. The undiscounted BF parameters
(see Section III-D) were used in the simulations shown in
this section. The SVM-BF approach detected 39 dangerous
drivers (including all the actual 30 dangerous drivers) and
21 harmless drivers. In other words, it resulted in 30 true
positives, 9 false positives and 0 false negatives. We will
show the cases of 3 suspicious vehicles that were detected
correctly by SVM-BF. One of them is a harmless vehicle,
and the other two were dangerous vehicles.

Note that in the graphs below, a dangerous classification
has value 0 and a harmless one has value 1. The time interval

ends when the suspicious vehicle stops at the intersection,
crosses the intersection, or hits the host vehicle. Also the
snapshots of the suspicious vehicle are taken at 1s intervals.

1) Harmless Example 1: The first “harmless” example
(Figure 6) illustrates the scenario of a harmless driver that
is driving at a relatively high speed when far from the inter-
section. Getting closer to the intersection, the driver changes
lanes and starts decelerating until he/she arrives smoothly at
the intersection. It is a typical scenario for a driver planing to
take a left turn at the intersection. Figure 6(a) and Figure 6(b)
show the path of the suspicious vehicle and its control inputs,
respectively, as a function of time. Figure 6(c) illustrates the
functioning of the SVM-BF approach. pharmless starts at
0.5. It then decreases even though the vehicle is relatively
far from the intersection because it is moving at a speed
that is larger than 1.25vmax. But afterwards, the SVM-BF
brings pharmless up since the speed of the suspicious vehicle
decreases significantly entering the safe region of speeds.
Notice also that between t = 6s and t = 8s, the driver
makes a change of lanes. pharmless ends above the threshold
level. So the final classification of the SVM-BF is that the
suspicious vehicle is harmless, which is the correct one. This
example also stresses that pointing towards the host vehicle
did not affect pharmless since it happened relatively far from
the intersection i.e., entailing no threat to the host vehicle.

2) Dangerous Example 1: The first “dangerous” example
(Figure 7) illustrates the scenario where a dangerous driver
approaches the intersection with a very high speed in such a
way that he/she could not stop at the intersection even after
applying a very hard break. This is a typical situation of
a driver that missed the stop sign or is not in full control
of its car (e.g., being under the influence of alcohol or due
to a malfunctioning in the car). Figure 7(a) and Figure 7(b)
show the path of the suspicious vehicle and its control inputs,
respectively, as a function of time. Figure 7(c) illustrates
the functioning of the SVM-BF approach. The pharmless

starts at 0.5. Then it continuously decreases since the driver
velocity is constantly higher than accepted values that the
SVM-BF were trained for. The simulation stops when the
vehicle crosses the intersection. So the SVM-BF classified
correctly the suspicious agent as dangerous. The pharmless

showed that SVM-BF output was gaining more confidence
of its classification the more observations it was receiving.

3) Dangerous Example 2: The second “dangerous” exam-
ple (Figure 8) illustrates the scenario of a collision between
the suspicious vehicle and the host vehicle. This scenario
could be a situation where a driver decides to make a left
turn at the intersection but loses control over the vehicle
(e.g., due to a slippery road) when it gets to the intersection.
Figure 8(a) and Figure 8(b) show the path of the suspicious
vehicle and its control inputs, respectively, as a function of
time. Figure 8(c) illustrates the functioning of the SVM-
BF approach. The pharmless starts at 0.5. First it decreases
for a short time since the driver was going faster than
1.25vmax, but then it increases after the driver slowed down
significantly. However, at t = 5s, the driver abruptly changes
its heading to point towards the host vehicle. This resulted



(a) The intersection scenario showing the suspicious vehicle trajectory.

(b) Velocity and angular rate control inputs of the suspicious
vehicle.

(c) pharmless, detection threshold and SVM-BF classification as
a function of time.

Fig. 6. Harmless Example

in pharmless decreasing constantly reflecting the danger that
this behavior was inducing. An accident finally happens,
which also meant that SVM-BF successfully classified the
suspicious driver’s intention.

(a) The intersection scenario showing the suspicious vehicle trajectory.

(b) Velocity and angular rate control inputs of the suspicious
vehicle.

(c) pharmless, detection threshold and SVM-BF classification as a
function of time.

Fig. 7. Dangerous Example 1

V. DISCUSSION

We evaluate the performance of the SVM-BF system based
on the following metrics: 1) precision and 2) coverage [19]:

Precision =
valid classifications of dangerous drivers

total number of dangerous drivers detected

=
true positives

(true positives + false positives)

=
30

(30 + 9)
≈ 77%

Coverage =
valid classifications of dangerous drivers
total number of actual dangerous drivers

=
true positives

( true positives + false negatives)

=
30

(30 + 0)
= 100%



(a) The intersection scenario showing the suspicious vehicle trajectory.

(b) Velocity and angular rate control inputs of the suspicious
vehicle.

(c) pharmless, detection threshold and SVM-BF classification as a
function of time.

Fig. 8. Dangerous Example 2

We achieve 100% coverage which is critical for the safety
of the host vehicle. The 77% precision shows that the
SVM-BF approach is too conservative. Some presumably
harmless drivers are tagged as dangerous. This level of
conservatism depends on three factors: 1) the threshold level
of the threshold detector module, 2) the SVM training and
validation, and 3) the speed of convergence of the Bayesian
filter:

1) The threshold level is set to 0.8. Decreasing it would
make the system less conservative, but would incur
the risk of causing false negative detections. The SVM
training follows some set of rules that could be made
more detailed to capture a larger and more accurate set

Fig. 9. pharmless, discounted pharmless and detection threshold as a function
of time. The discounted pharmless reaches the threshold more than twice
faster than pharmless for the example described in Section IV-.1.

of drivers’ profiles.
2) The validation also follows simple rules: the suspicious

vehicle is flagged as dangerous if it ends up colliding
with the host vehicle or/and does not stop at the intersec-
tion. These two rules partially explain the existence of a
non-negligible number of false positives. For example, a
suspicious vehicle that approaches the intersection with
a very high speed and then decelerates very sharply
succeeding at stopping at the intersection will typically
be classified as dangerous by the SVM-BF system.
However, it will be flagged as harmless according to the
validation rules. Adding more details to the validation
rules should make it more reflective of the actual danger
of the suspicious vehicles.

3) Another explanation for the conservatism of the SVM-
BF is the slow speed of convergence of the BF filter.
To improve the response of the filter, more weight
can be put on more recent outputs of the SVM as
described in Section III-E. To verify the potential of
this modification, the simulations were run again with
several discount factor functions. The one that achieved
the best overall performance is shown in Equation
(14). The results of the SVM-BF simulations changed
significantly: the number of false positives decreased
from 9 to 3, but the number of false negatives increased
from 0 to 2. In other words, the discounted SVM-BF
approximately achieved a precision of 90% and a cover-
age of 93%. So the conservatism level of SVM-BF was
successfully decreased at the expense of the introduction
of some risk of failing to detect a dangerous driver.
Figure 9 shows the improvement in the convergence of
the discounted SVM-BF in the example introduced in
Section IV-.1.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an approach to classify agents’
intentions using a combination of support vector machines
(SVM) and bayesian filtering (BF). The SVM-BF approach



was applied to the road intersection problem that tries to
classify the intention of a suspicious vehicle approaching a
host car at a four-way intersection. SVM-BF was tested in
60 different scenarios, where in half of them the suspicious
vehicle was designed to be a dangerous one. SVM-BF
achieved a coverage of 100% and a precision of 77%.
Three examples (one with a harmless vehicle and two with
dangerous vehicles) were presented to illustrate the SVM-BF
approach. A modified version of the SVM-BF that is based
on a discounted BF improved the precision to 90% at the
expense of decreasing the coverage to 93%. In addition to
the threshold level, the discount function in the discounted
SVM-BF gives the designer another degree of freedom to
optimize the tradeoff between convenience (represented by
the precision) and safety (represented by the coverage).

Future work will include comparing the performance of
SVM-BF to an approach that consists of feeding a classifier
with a history of features instead of point-based set of
features. Relevance Vector Machines (RVMs) could handle
such a representation. But they are known to have additional
computational complexity. We are also interested in training
and validating the SVM-BF on real-world traffic datasets,
and designing discounting functions that work well on these
datasets. Finally, we are looking to assess the value of ad-
ditional features in the SVM, more specifically investigating
the addition of the longitudinal and lateral accelerations of
the suspicious vehicle.
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