
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-043 September 12, 2009

Finding aircraft collision-avoidance
strategies using policy search methods
Leslie Pack Kaelbling and Tomas Lozano-Perez

Finding aircraft collision-avoidance strategies using policy search

methods

Leslie Pack Kaelbling and Tomás Lozano-Pérez

September 11, 2009

The current aircraft collision-avoidance system was hand-crafted for a particular sensor config-
uration and set of assumptions about aircraft dynamics and the behavior of pilots. In this work,
we seek to develop collision avoidance strategies automatically, given models of the response of the
aircraft and pilots to alerts generated by the system.

Assuming very high-accuracy sensing of the relative position and velocities of both aircraft, as
will likely be available in the next-generation of TCAS, we can model the problem of acting to
avoid collision as a Markov decision process, where the uncertainty is in the delay and degree with
which the pilots will respond to advisories issued by the system.

There are several strategies for solving MDPs. Most typically, methods based on value iteration
apply Bellman’s equation in a form of dynamic programming to compute an estimate, at every state
in the space, of the future value of taking each of the actions; then, the action with the highest
estimated future value is executed. This method is directly applicable only to discrete state spaces.
The collision-avoidance problem takes place in a moderately high-dimensional continuous space.
The space is very large and cannot be effectively discretized for the full version of the problem.
There are versions of the value iteration algorithm that interpolate over a continuous space that
may be more effective in this situation.

In this report, we articulate two alternative strategies, which search more directly in the space
of control policies. These methods increase in complexity with the complexity of the space of
policies, but have a weaker dependence on the size of the state space. For each strategy, we
describe a very simple first implementation and some preliminary results that may be indicative of
the appropriateness of pursuing them in more depth.

1 Policy gradient method

In the policy gradient method [8, 2, 7], we articulate the agent’s policy in terms of a set of param-
eters, which are adjusted in order to minimize the cumulative cost of the agent’s behavior. Let
π(a | x; θ) be the probability of taking an action a in state x when the parameters of the policy
have the value θ. The policy can have any form as long as π(a | x; θ) is a differentiable function of
θ for all a and x.

Our goal will be to minimize the quantity

E =

∞∑
T=0

∑
s̃∈S̃T

Pr(s̃)ε(s̃) ,

1

where S̃T is the set of all possible experience sequences that terminate at time T . That is,

s̃ = 〈x0, u0, r0, . . . , xT , uT , rT 〉 ,

where xt, ut, and rt are the observation, action, and reward at step t of the sequence. The cost
incurred by a sequence s̃ is

ε(s̃) =

T∑
t=0

e(st) =

T∑
t=0

−γtrt ,

where γ is a discount factor and st is the length-t prefix of s.
Baird and Moore [2] showed that the gradient of the global error, E, with respect to a parameter

θk is
∂

∂θk
E =

∞∑
t=0

∑
s∈St

Pr(s)e(s)
t∑
j=1

∂

∂θk
lnπ(uj−1 | xj−1; θ) .

It is possible to perform stochastic gradient descent of this error by repeating several trials of
interaction with this process, using stochastic approximation to estimate the expectation over S
in the above equation. During each trial, the parameters are kept constant, and the approximate
gradients of the error at each time t,

e(s)

t∑
j=1

∂

∂θk
lnπ(uj−1 | xj−1; θ) ,

are accumulated.
In an incremental version of this algorithm, parameters are updated at every step t using the

following rules:

∆Tk =
∂

∂θk
lnπ(ut−1 | xt−1; θ)

∆θk = αγtrtTk

where 0 < α < 1 is a learning rate. The quantities Tk are traces, one for each parameter θk. They
are initialized to 0, and represent the accumulated contribution of parameter k to the action choices
made by the policy in this trajectory. Each reward is used to adjust the parameters in proportion
to their current trace values.

1.1 Feature-based policy and gradient

We have experimented with a feature-based policy representation. Let Φ be a function that takes
an input x into a vector of k real-valued features. Then we will represent our policy as follows:

π(u|x; θ) =
1

z(x)
Q(u, x; θ) ,

where
Q(u, x; θ) = eθu·Φ(x)/T ,

2

θu is a vector of k parameters for the discrete action u, and T is a temperature parameter. The
normalizer is

z(x) =
∑
u

Q(u, x; θ) .

This is a Boltzmann action-selection mechanism. The closer T is to 0, the more likely we are to
select the u for which Q(x, u; θ) is maximized.

In order to implement the algorithm updates, we need an analytic form of the gradient of log
of the policy with respect to the parameters. For this form of policy, we have parameters θu,k, one
for each action u and feature k.

We must consider two cases.
Case 1: A parameter for this action:

∂π(u | x; θ)

∂θu,k
=
1

T
Φk(x)(1− π(u | x; θ))

Case 2: A parameter for another action (u′ 6= u):

∂π(u | x; θ)

∂θu′,k
= −

1

T
Φk(x)π(u′ | x; θ)

1.2 Features for two-dimensional problem

The point of closest approach between the two aircraft is an important quantity: we computed
both τ, the time until closest approach, and d, the signed distance to the closest approach, where
the sign indicates whether the point is above or below the aircraft we are controlling.

For our experiments we have used the following features.

• φ1(s) = d ∗ c1

• φ2(s) = c2/d

• φ3(s) = τ ∗ c3

• φ4(s) = c4/τ

• φ5(s) =

{
1 if an alert has been generated already
−1 otherwise

• φ6(s) = 1

Adding reciprocals of the relevant features allows the policy to be sensitive to the values when they
are near zero, if that is appropriate. We need to know if an alert has already been generated, in
order to avoid generating extraneous alerts. The constant 1 features allows the log-linear model to
have a constant term.

Gradient methods only work well when the gradient is not too small; if the feature values are
too large, the gradient of the policy with respect to the weights becomes flat and the policy cannot
move. Thus, we selected constants c1, . . . , c4, automatically, to scale the feature values to be within
the interval (−1, 1) as much as possible.

3

2 Experiments

We have carried out some initial experiments in a simple two-dimensional version of this problem,
in which the intruder is on a fixed course and an alert must be selected only for one of the aircraft.
To test the approach, we focused on a section of the state space where collisions are very likely.

• The range of initial vertical distances (h) is [−100, 100] feet

• The range of initial horizontal distances (r) is [2000, 5000] feet

• The range of initial vertical velocities is [−40, 40] feet per second

The other parameters in the simulation are as follows:

• Acceleration due to alert: 8ft/s/s

• Near mid-air collision (NMAC) zone: 500ft horizontally and ±100ft vertically

• Horizontal closure rate: −500ft/s

• Verical rate limit: 41.67ft/s

• Near Mid Air Encounter (NMAC) zone (in which the policy is in effect): 10000ft horizontally
and ±500ft vertically

• Cost of NMAC: 1.0

• Cost of alert: 0.01

• Per-second standard deviation in intruder’s vertical velocity: 1.0ft/s/s

We used 3 actions: do nothing, climb > 1500, descend > 1500. The climb and descend actions
accelerate until a vertical rate of 1500ft/s up or down is reached.

We found that random initialization of the policy parameters led to a poor exploration of the
space, with the search often converging to a local minimum. To counteract this, we performed
policy gradient optimization starting from 1000 “spanning” values of the policy parameters, each
of which starts with a vector of parameters for each action that has a single non-zero entry, either
positive or negative. This focuses each action at the start on only one of the features. We then
chose the resulting policy with the best performance. We found that this reliably led us to find
policies with good scores.

The best policy parameters from one of our runs were:

d 1/d τ 1/τ alerted 1

do nothing −0.024 0.234 0.301 3.313 1.333 3.364

climb 0.147 13.171 −0.150 −1.346 −0.720 −0.229

descend −0.123 −13.405 0.848 −1.966 −0.612 −0.134

We can visualize the policy by looking at the actions chosen in various cross-sections of the state
space (Figure 1). The x axis in the diagrams is horizontal distance, the y axis is vertical distance.
Blue represents the do nothing action, green is climb and red is descend.

4

(a) Cross-section with dh1 = dh2 = 0 (b) Cross-section with dh1 = 0, dh2 = 16

(c) Cross-section with dh1 = 0, dh2 = −16

Figure 1: Policy gradient policy: dark blue = do nothing; green = descend; red = climb.

5

(a) Cross-section with dh1 = dh2 = 0 (b) Cross-section with dh1 = 0, dh2 = 16

(c) Cross-section with dh1 = 0, dh2 = −16

Figure 2: Value iteration policy: dark blue = do nothing; green = descend; red = climb.

We solved a discretized version of this problem (with no noise) with approximately 300,000
states using value iteration (VI); we used this as a baseline for comparing the effectiveness of the
policies found via policy gradient. It was discretized into four-dimensional cells with the following
boundaries:

• Horizontal distance: [−1000,−875,−750,−625,−500,−475,−450,−425,−400,−375,−350,

−325,−300,−275,−250,−225,−200,−175,−150,−125,−100,−75,−50,−40,−30,−20,−10,

0, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475,

500, 625, 750, 875, 1000]

• Vertical distance: [0, 125, 250, 375, 500, 625, 750, 875, 1000, 1125, 1250, 1375, 1500, 1625, 1750,

1875, 2000, 2125, 2250, 2500, 2625, 2750, 3000, 3250, 3500, 3750, 4000, 4250, 4500, 4750, 5000,

5500, 6000, 6500, 7000, 7750, 8500, 9250, 10000]

• Intruder vertical velocity: [−40,−20,−8,−4, 4, 8, 20, 40]

• Own vertical velocity: [−40,−20,−8,−4, 4, 8, 20, 40]

In addition, we stored in the state whether or not we had already alerted on this trajectory. We
can visualize the policy by looking at the actions chosen in various cross-sections of the state space
(Figure 2).

6

We found that in 10,000 random draws of initial state, the VI policy had an average discounted
reward (cost) of 0.002 (for the case with no noise in intruder velocity). This policy was also robust
to noise in intruder velocity, producing a nearly identical discounted reward. The policy discovered
by policy gradient had an average discounted reward of 0.007 (for the case with no noise in intruder
velocity). In the case with noise on the intruder velocity, the discounted reward is 0.012. Recall
that the cost of one action is 0.01 the cost of a collision is 1.0. Given such a simple and compact
policy representation (18 numbers for PG, 900, 000 Q values for VI), however, these results are
promising.

Ultimately, we need to scale up to three-dimension representations of positions and velocities
and to select actions for both aircraft; we anticipate that a relatively small policy space will still
suffice in such cases, but that the state and action space will become much too large for value-based
approaches.

3 Policy Search by Dynamic Programming

An alternative strategy, which is particularly appropriate for finite-horizon problems, is to search
for a policy, but to do it in stages, working from horizon 0 (only a single action left to go) back
to whatever horizon is desired. The learning problem at each stage is reduced to a supervised
multi-class classification problem, which can be addressed by any existing classifier that is suited
to the domain.

This method, called non-stationary approximate policy iteration (NAPI) [4] and policy search
by dynamic programming (PSDP) [1], has been independently developed by several researchers,
following a line of building reinforcement learning on classification:[6, 3]. We have explored a
variation of the method that is sensitive to the fact that the aircraft collision-avoidance problem is
not finite-horizon, in the strict sense that episodes last for a fixed length of time. The algorithm
described below is appropriate for episodic tasks, in which each episode is guaranteed to terminate
and where, in addition, there is some reliable indication of the expected number of steps until
termination. In this collision-avoidance domain, we can use the expected time to contact as an
index into a non-stationary policy. This is related to the idea of space-indexed PSDP[5].

The algorithm proceeds as follows:

1. Generate n trajectories through the space until they reach a terminal state (in this case,
NMAC or the aircraft are ‘behind’ one another, or sufficiently vertically separated).

2. Collect all of the terminal states of the trajectories into a data set D0, all of the penultimate
states into data set D1, etc.

3. For each state s in D1, and each action a in the set of possible actions, simulate the outcome
several times and compute an expected reward. Pair each s with the a that resulted in the
highest expected reward. This set of s, a pairs constitutes a training set that can be fed into a
multi-class classification algorithm, resulting in a classifier Π1, which maps states at horizon
1 into optimal actions.

4. For horizons i from 2 through n:

(a) For each state s in Di and each action a in the set of possible actions, generate a
simulated trajectory that starts by taking action a and then continues following policy

7

Πi−1 at the resulting state, policy Πi−2 at the next state, etc. until the end of the
trajectory, and summing the resulting rewards. This an estimate of the value of taking
action a in state s at horizon i.

(b) Pair each s with the a that maximizes the expected value, to a training set. Feed the
resulting training set into a classification algorithm, obtaining Πi.

5. Return Π1, . . . , ΠN, which constitute a non-stationary finite-horizon policy.

3.1 Pilot Implementation

To test the feasibility of PSDP in the collision-avoidance domain, we constructed a very simple
implementation in Python. Using a dynamics simulation with only a small amount of noise, we
found, unsurprisingly, that in many situations, there was more than one action with the same,
optimal value. Arbitrarily selecting an action to put into the training set for the supervised learning
causes the space to be highly fragmented, and makes it very difficult for a standard supervised-
learning algorithm to get traction on the problem.

To alleviate this problem, we implemented our own classifier which took as input a set of pairs of
input xi values and sets of possible labels {y1i , . . . , y

n
i }. The classifier was given the freedom to map

each xi to some yji in the set of allowable labels, and to choose the yji to simplify the complexity
of the overall classifier, with the aim of improving generalization performance. The classifier we
implemented was divisive, adaptively partitioning the continuous input space into regions of X
space in which there was a single y value that was in the label sets of each x in the region. The
pilot version of this algorithm was not noise-tolerant, but it could be extended to handle noise using
methods from decision-tree learning.

Because our training data from each stage had very little overlap in feature space or in raw
space, we consolidated the non-stationary policy into a single stationary policy by taking the union
all of the training data used for constructing the individual supervised classifiers and used it to
train a final policy. It is this final policy that we run to generate the final predictions.

We tried two different feature sets. The first was 〈φ1, φ3, φ5〉, that is, the distance and time
to closest approach. This worked moderately well, but we discovered that, in fact, the optimal
policy is not expressible in this feature space: there are points in state space that have different
optimal actions, but map to the same point in feature space. This feature space is not rich enough
to express the consequences of the aircraft’s current vertical velocities, and makes decisions largely
on relative position. This is usually appropriate, but not in cases of extreme initial vertical veloc-
ities. Thus, we also experimented with the PSDP method in the raw state space, with features
r, h, dh1, dh2, alerted , encoding relative range, height, velocities of both planes, and whether an
alert had already been generated for this trajectory.

3.2 Results

Using raw features, and 1000 training trajectories, 500 of which resulted in NMAC and 500 of which
did not, and testing on our standard testing distribution, the learned policy had an average cost
of 0.0074, making approximately 5 collisions per 1000 trials. Two slices of the policy are shown in
figure 3. Each block is labeled according to the actions that are optimal: in some blocks there is
more than one optimal action.

8

(a) Cross-section with dh1 = dh2 = 0 (b) Cross-section with dh1 = 0, dh2 = 16

Figure 3: PSDP policy with raw features, trained on 1000 trajectories: dark blue = no data;
medium blue = no alert; cyan = descend; green = no alert or descend; yellow = climb; orange =
climb or no alert; red = climb or descend; brown = do any action.

Increasing to 10000 training trajectories, 5000 of which resulted in NMAC and 5000 of which
did not, and testing on our standard testing distribution, the learned policy had an average cost
of 0.0028, making approximately 1 collisions per 1000 trials. Two slices of the policy are shown in
figure 4. This is a considerable improvement over the previous results.

Using features 1 and 3, and 1000 training trajectories, 500 of which resulted in NMAC and
500 of which did not, and testing on our standard testing distribution, the learned policy had an
average cost of 0.0027, making approximately 1 collision per 1000 trials. Two slices of the policy
are shown in figure 5. Each block is labeled according to the actions that are optimal: in some
blocks there is more than one optimal action. This policy is much more fine-grained, because the
blocks in the classifier are in a two-dimensional, rather than a four-dimensional space, and even
with just 1000 trajectories, the space is well covered.

Obvious improvements to the algorithm are:

• Use importance sampling to appropriately weight training data (currently we use rejection
sampling to get half collisions and half non-collisions, but the trajectories are not appropri-
ately weighted).

• Use importance sampling in roll-outs to estimate action values.

• Use a classifier that handles noisy data and weighted training examples.

4 Conclusions

We believe that policy search by dynamic programming may be an effective technique on this
problem, due to the fact that the problem is episodic, has a continuous state space, and has a
discrete action space. It warrants further investigation, with a different classifier and possibly with
state-indexed execution.

9

(a) Cross-section with dh1 = dh2 = 0 (b) Cross-section with dh1 = 0, dh2 = 16

Figure 4: PSDP policy with raw features, trained on 10,000 trajectories: dark blue = no data;
medium blue = no alert; cyan = descend; green = no alert or descend; yellow = climb; orange =
climb or no alert; red = climb or descend; brown = do any action.

(a) Cross-section with dh1 = dh2 = 0 (b) Cross-section with dh1 = 0, dh2 = 16

Figure 5: PSDP policy with features based on point of closest approach: dark blue = no data;
medium blue = no alert; cyan = descend; green = no alert or descend; yellow = climb; orange =
climb or no alert; red = climb or descend; brown = do any action.

10

Policy gradient methods are so highly sensitive to initial conditions and the scales of the features
that they are very difficult to make work even in simple situations. It seems relatively unlikely that
they will perform effectively in larger problems.

Acknowledgments

This report is the result of research sponsored by the TCAS Program Office at the Federal Aviation
Administration. The authors wish to acknowledge the support of the TCAS Program Manager,
Neal Suchy, and to thank collaborator Mykel Kochenderfer of Lincoln Laboratories for framing the
problem and inspiring us to work on it.

References

[1] J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, and Jeff Schneider. Policy search by dynamic
programming. In Advances in Neural Information Processing, 2003.

[2] Leemon C. Baird and Andrew W. Moore. Gradient descent for general reinforcement learning.
In Advances in Neural Information Processing Systems 11. The MIT Press, 1999.

[3] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, 2002.

[4] Sham Machandranath Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.

[5] J. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, and Charles DuHadway. Space-indexed
dynamic programming: Learning to follow trajectories. In Proceedings of the International
Conference on Machine Learning, 2008.

[6] Michail Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging mod-
ern classifiers. In Proceedings of the Twentieth International Conference on Machine Learning,
2003.

[7] N. Meuleau, L. Peshkin, K.E. Kim, and L.P. Kaelbling. Learning finite-state controllers for par-
tially observable environments. In Fifteenth Conference on Uncertainty in Artificial Intelligence,
1999.

[8] Ronald J. Williams. A class of gradient-estimating algorithms for reinforcement learning in
neural networks. In Proceedings of the IEEE First International Conference on Neural Networks,
San Diego, California, 1987.

11

