

Numerical Simulation of the Response of Sandy Soils

Treated with Pre-Fabricated Vertical Drains

Antonios Vytiniotis

Diploma in Civil Engineering (2005)

National Technical University of Athens, Department of Civil Engineering

Submitted to the Department of Civil and Environmental Engineering in Partial Ful-

fillment of the Requirements for the Degree of

Master of Science in Civil and Environmental Engineering

at the

Massachusetts Institute of Technology

February 2009

© 2009 Massachusetts Institute of Technology. All rights reserved.

Signature of Author

Department of Civil and Environmental Engineering

January 25, 2009

Certified by

Andrew J. Whittle

Professor of Civil and Environmental Engineering

Thesis Supervisor

Accepted by

Daniele Veneziano

Chairman, Departmental Committee for Graduate Students

Numerical Simulation of the Response of Sandy Soils

Treated with Pre-Fabricated Vertical Drains

Antonios Vytiniotis

Submitted to the Department of Civil and Environmental Engineering on January 25, 2009, in

Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil and Envi-

ronmental Engineering

Abstract
This research is part of the ongoing effort of the Seismic Risk Mitigation for Port Systems Grand

Challenge. It addresses the problem of numerically simulating the response of sandy soils

treated with earthquake drains, for liquefaction risk mitigation. This thesis describes 1)the im-

plementation of finite 1-D elements to simulate the uncoupled mechanical and flow properties

of perforated vertical (PV) drains, 2) the investigation of scaling laws for laminar and turbulent

flow inside a PV-drain, 3) the validation of the numerical models using a centrifuge experiment

(SSK01) performed at UC-Davis (Kamai, et al., 2008).

The mechanical and flow behavior of the drains are assumed to be uncoupled. The mechanical

behavior is treated as a truss element, taking into account the axial stiffness and assuming zero

bending stiffness. The flow behavior is treated using the phenomenological Darcy-Weisbach

equation. The elements are implemented in the Opensees framework. Two implementations

are presented, one for laminar drains, and one for fully turbulent drains. Both of these imple-

mentations are used to estimate also the effect of drain storage capacity.

It has been illustrated that the flow in the drains in model scale and in prototype scale might be

qualitatively different. If the centrifuge model is scaled N times Reynolds number (Re) is N

times larger in prototype scale, so under common situations model scale flow can be laminar

even if at the prototype scale flow is fully turbulent. A methodology is presented to select

properties of model scale drains (where flow is laminar) to represent prototype drains (where

flow is turbulent).

Validation has been performed against SSK01 centrifuge test. Results show good agreement

with experimental data. Limitations of the constitutive soil model and the selected input para-

meters are discussed. Model scale results validate the consideration of the storage capacity ef-

fect, and thus use of the implemented drain elements. On the other hand the need for turbu-

lent flow (rather than laminar) drains does not affect significantly the results of the specific test

used.

Thesis Supervisor: Prof. Andrew J. Whittle

Title: Professor of Civil and Environmental Engineering

5

Contents

Abstract ... 3

1 Introduction .. 8

2 Finite Element model .. 13

2.1 Governing Equations .. 13

2.2 Verification through a one-dimensional analytical solution .. 15

2.2.1 Comparison of the full formulation and the u-p formulation 17

2.2.2 Validation of OPENSEES ... 19

2.3 Constitutive soil model ... 21

3 Modeling of PV earthquake drains ... 28

3.1 Prior Analyses ... 28

3.2 Prior numerical two-dimensional numerical analyses ... 34

3.3 Hydraulics of vertical drains ... 35

3.4 Finite Element Implementation of 1-D Drain Elements ... 37

3.4.1 Truss theory .. 37

3.4.2 Laminar Flow ... 38

3.4.3 Turbulent Flow .. 43

3.4.4 Storage Capacity ... 49

3.4.5 Representation of drain elements in 2-D plane strain FE analyses 50

4 Centrifuge Experiments .. 53

4.1 Introduction.. 53

4.2 Scaling principles for geotechnical earthquake problems ... 54

4.3 Scaling laws for PV-drains .. 57

4.4 Design of model scale PV-drains .. 58

4.5 Centrifuge models of PV drains .. 62

4.5.1 Model Preparation .. 63

4.5.2 Scale Factors ... 65

6

5 Numerical Analyses of PV Drain Performance .. 72

5.1 Finite element model ... 72

5.1.1 Model parameters .. 76

5.2 Base case analysis... 83

5.2.1 Predicted Excess Pore Pressures... 84

5.2.2 Accelerations ... 85

5.2.3 Displacements ... 86

5.3 Effect of different approximations in PV-drains simulations 105

5.3.1 Drain resistance .. 105

5.3.2 Drain stiffness ... 105

5.3.3 Drain storage capacity .. 106

5.3.4 Drain turbulence ... 106

6 Summary, Conclusions, and Recommendations .. 115

6.1 Simulating Vertical Drains .. 115

6.2 Similitude Issues ... 116

6.3 Validation ... 116

6.4 Future research .. 117

7 Bibliography .. 118

Appendix A .. 122

One-dimensional dynamic response of a fully saturated soil column 122

Appendix B .. 127

Matlab Code Solving Analytically the full formulation of the dynamic response of a soil

column (Figure 2-1) ... 127

Appendix C .. 130

Matlab Code Solving Analytically the u-p formulation of the dynamic response of a soil

column .. 130

Appendix D .. 133

Opensees tcl/tk Code to test the u-p approximation ... 133

Appendix E .. 135

Opensees tcl/tk code to test the constitutive model ... 135

7

Appendix F .. 137

Laminar Drain Source Code .. 137

1. Class Definition ... 137

2. Class Implementation ... 139

3. Tcl/tk command interpreter ... 149

Appendix G .. 153

Fully Turbulent Flow Drains Source Code ... 153

1. Class Implementation ... 153

2. Class Definition ... 155

3. Tcl/tk command interpreter ... 166

Appendix H .. 170

Validation of drain elements .. 170

i. One dimensional Problems .. 170

ii. Plane Strain Consolidation ... 170

Appendix I ... 173

Verification of Hird axisymmetric to plane strain drain equivalence theory 173

8

1 Introduction

The seismic performance of major port facilities is controlled, in large part, by the response of

waterfront structures and their interactions with soil and rock fills. Widespread failures of wa-

terfront structures in recent earthquakes, most notably at the port of Kobe during the 1995

Hyogoken-Nambu, Kobe earthquake (where 181 out of 187 berths were destroyed, Fig. 1.1)

have generated substantial international efforts to improve the analysis and design of water-

front structures. A working group of the International Navigation Association recently pub-

lished a set of seismic design guidelines for port structures (PIANC, 2002). This volume propos-

es performance based seismic design methods that classify structures according to their ac-

ceptable level of damage for an expected magnitude of seismic event. The most critical port

structures (S-class) must be repairable under even the largest expected seismic design events.

PIANC (2002) recommend non-linear dynamic analyses of soil structure interaction for all S-

class structures.

In practice, many failures of waterfront facilities are attributed to the poor performance of soil

fills, including large permanent displacements of quay walls and pile-supported wharf struc-

tures due to liquefaction of poorly compacted hydraulic backfills (Port of Oakland in the Loma

Prieta earthquake, 1989; and Kobe port, 1995). The spatial variability in the composition (e.g.,

fines content) and compaction state of these materials, makes reliable predictions of site spe-

cific ground response very difficult in practice. The modeling of dynamic soil-structure interac-

tions is further complicated by difficulties in accurately representing the constitutive behavior

of the soil (especially in the measurement of input parameters). There has been much previous

9

research in the development of: a) robust, dynamic FE analyses that can handle coupled flow

and deformation within the soil and realistic soil-structure interactions; b) constitutive formula-

tions (mainly based on plasticity theory; e.g., Elgamal et al., 2003) for modeling the behavior of

soil under cyclic loading; c) incorporation of spatial variability in stochastic FE analyses; and d)

applications of these methods in predictions for centrifuge models (notably in the NSF sup-

ported Velacs project; Arulanandan & Scott, 1993). To date, most dynamic analyses of water-

front structures have focused on reproducing first order field observations from case studies

(e.g., Iai et al., 1998).

Figure 1-1 Significant damage in the Kobe port facilities due to the 1995 Kobe earthquake

10

The reduction of seismic risk associated with potential failures of waterfront structures can be

accomplished through in-situ remediation schemes that involve strengthening structures and

improving the soil fills. There are several established methods for remediating against liquefac-

tion (PHRI, 1997) by either 1) strengthening the soil through compaction, in-situ cementation

(e.g., deep-mixed soilcrete columns); or 2) limiting the potential generation of pore pressures

within the fill by installing stone or gravel drains. Most of these ground improvement strategies

are quite disruptive to existing port operations, and their as-built effectiveness has not been

measured in any systematic manner.

Recently, Rathje et al. (2004) have proposed the use of Prefabricated Vertical (PV) drains for

mitigating the build-up of excess pore pressures within the soil fill. These drains comprise per-

forated, corrugated plastic pipes (typically 75mm – 200mm diameter) encased in a geo-

synthetic fabric (geo-textile), Figure 1.2. There is already extensive experience in the design of

geocomposite filtration and drainage materials and specialized equipment for field installation

(Fig. 1.3). The installation of PV drains causes limited compaction of the adjacent soil and mi-

nimal stiffening of the in-situ soil mass (in contrast to conventional gravel drains) and can be

achieved with much less disruption of existing port operations. However, the effectiveness of

PV drains as a method of limiting the magnitude of permanent ground deformations caused by

strong ground shaking has yet to be proven.

This research considers the effectiveness of PV drains for controlling ground movements and

preventing liquefaction under seismic loading conditions. The main focus is the development

of numerical methods for modeling both laminar and turbulent flow within PV drains embed-

11

ded within the soil mass. Special PV drain elements have been developed and implemented

within the open source, finite element code Opensees (McKenna & Fenves, 2001). The analys-

es are compared with results of physical model tests performed at the UC Davis national geo-

technical centrifuge facility (Kamai, et al., 2008):

Figure 1-2 Cross-section of casing and prefabricated drain (Pestana et al., 1997)

 Chapter 2 introduces the finite element formulation used to represent the coupled flow

and deformation within the soil mass and validates the u-p approximation used within the

OpenSees code. Chapter 3 describes the analysis of PV drains for controlling the development

of seismic-induced pore pressures within the soil mass. The chapter describes the formulation

and validation of new 1-D finite elements for representing laminar and turbulent flow regimes

in PV drains. Chapter 4 summarizes the design and instrumentation of a centrifuge model tests

12

performed at UC Davis, 2006 that is used in subsequent model validation. Chapter 5 describes

numerical analyses of the centrifuge model tests and includes parametric studies to evaluate

factors affecting the measured ground response. The summary, conclusions and recommenda-

tions of this study are in Chapter 6.

Figure 1-3 Installation of PV drains (Ellington Cross)

13

2 Finite Element model

2.1 Governing Equations

The governing equations for modeling coupled flow and deformation within a continuous, fully

saturated, soil mass were originally formulated by Biot (1956). This section provides a basic

summary following the presentation by Zienkiewicz et al. (1999). The three main equations de-

scribe the conservation of momentum, diffusion of pore fluid and conservation of fluid mass.

Momentum: ��� � � �� � �	
��
 �����
 �� � 0 (2.1)

where S is the divergence matrix, ∇ is the divergence operator, σ the (total) stress matrix, u the

soil displacement vector, w is the average superficial velocity of the percolating water (relative

to the soil skeleton), b the vector of body forces, ρ is the total mass density of the soil and ρf

the mass density of the pore fluid,

Diffusion: ��� � � � �	 �� � �	
��
 ������
 �� � 0 (2.2)

where R are the viscous drag forces, ρf is the fluid density, n is the porosity,

Mass: ���
 �� ��
 ��
 � � �	��	
 ��� � 0 (2.3)

where ε is the strain. α is the Biot pore pressure coefficient that controls the definition of the

effective stresses,σ’, within the soil mass:

 �� � �
 ���� (2.4)

Assuming that the soil and fluid particles are incompressible, α = 1 for most saturated soils in

accordance with the conventional Terzaghi definition of effective stress.

14

The skeletal bulk modulus, Q, is defined from the bulk stiffness parameters of the pore fluid and

solid particles (Kf and Ks, respectively):

 1� � � 	
 ! � � " (2.5)

Zienkiewicz et al. (1999) have shown that it is possible to simplify this system of equations by

neglecting the relative acceleration of the water with respect to the soil skeleton (in eqns. 2.1,

2.2). This leads to an approximate form of the governing equations referred to as the u-p for-

mulation that can be used in consolidation problems, and in coupled dynamic pore pressure

displacement analyses.

u-p momentum: ��� � � ��
 �� � 0 (2.6)

u-p mass and diffusion: ��#$��� � �	 ��
 �	�%
 �� &�
 ���
 ��� � 0 (2.7)

where k is the conventional hydraulic conductivity [L/T] used in seepage analyses.

An alternative simplification of the governing equations is to ignore only the convective terms

of the fluid acceleration; this results in the so-called u-p-U approximation:

u-p-U: ���
 ��'� � �(�'���(
 ��)�'��*(� '1 � �(��� � �	�*�
 �� � 0 (2.8)

u-p-U: '� � �(��'���(
 ���'��*(� #+,'�* � ��(� �	*
 �	� � 0 (2.9)

where U is the water displacement relative to the soil skeleton.

There are several commercially available codes available for the analyses of geotechnical earth-

quake problems. Table 2-1 compares four programs that have been considered for this re-

search; Flac, ABAQUS, and DYNAFLOW, and OPENSEES. All four programs use either u-p or u-p-

U formulations.

15

This research uses Opensees, “an object-oriented software framework for simulation applica-

tions in earthquake engineering using finite element methods”(Mazzoni et al., 2005), for its ca-

pabilities, modularity, and open source development.

Table 2-1 Comparison between available software for geotechnical earthquake engineering simulations

Software Advantages Disadvantages

ABAQUS

u-p

Finite Element

Implicit integration

Good pre- and post processing

Open architecture: User elements &

User models

No coupled pore pressure-displacement

elements for dynamics

DYNAFLOW

u-p-U

Finite Element

Implicit integration

Advanced soil models (Prevost) availa-

ble

Requires separate pre- post- processing

capability

Closed architecture

No user support

FLAC

u-p

Finite difference

Explicit integration

Open architecture - FISH functions

Advanced soil models (Papadimitriou)

Accuracy & error control?

Numerical efficiency

OPENSEES

u-p, u-p-U

Finite element

Implicit integration

Open source code

Advanced soil models available (Elgam-

al)

Requires separate pre- post-processor

(GID used here)

u-p-U formulation is only available for 3D

elements

2.2 Verification through a one-dimensional analytical solution

In order to verify Opensees the results of numerical analyses are compared with analytical solu-

tions for a reference problem (Zienkiewicz et al ,1999). Figure 2.1 shows the geometry of a

10m high column of saturated soil subjected to a sinusoidal vertical pressure. The soil exhibits

linear, elastic behavior and there is free drainage at the ground surface. The analytical steady

state solution for this problem is summarized in Appendix A. Figure 2.2 shows the analytical

solutions at four different angular frequencies

show the analytical soil deformations and pore pressures at one selected time (5 secs), while

Figures 2.2b and d show the maximum displacements and pore pressures for steady state co

ditions. The pore pressures conform to the boundary conditions, and at the lowest frequency

(0.1 rad/sec) the results converge towards the static (drained) solution. At higher frequencies

there are much smaller deformations in the soil, while the zone of maximum pore pressures

extends up towards the free surface.

Figure 2-1 Geometry of the verification problem

16

different angular frequencies ω = 0.1, 1, 10, 100rad/s.

show the analytical soil deformations and pore pressures at one selected time (5 secs), while

Figures 2.2b and d show the maximum displacements and pore pressures for steady state co

ures conform to the boundary conditions, and at the lowest frequency

(0.1 rad/sec) the results converge towards the static (drained) solution. At higher frequencies

there are much smaller deformations in the soil, while the zone of maximum pore pressures

extends up towards the free surface.

Geometry of the verification problem

 Figures 2.2a and 2.2c

show the analytical soil deformations and pore pressures at one selected time (5 secs), while

Figures 2.2b and d show the maximum displacements and pore pressures for steady state con-

ures conform to the boundary conditions, and at the lowest frequency

(0.1 rad/sec) the results converge towards the static (drained) solution. At higher frequencies

there are much smaller deformations in the soil, while the zone of maximum pore pressures

17

Figure 2-2 Comparison of maximum displacement, displacement at t=5s, maximum excess pore water pressure and pore

water pressure for various angular frequencies

2.2.1 Comparison of the full formulation and the u-p formulation

In this section we compare the analytical solutions for the reference problem using the com-

plete formulation (i.e., accounting for pore fluid acceleration terms and the convective terms,

eqns. A.31, A.48; Appendix A), with results obtained using the u-p approximation (Appendix A,

eqns. A.49 - A.54). A sample analysis has been performed for a loading frequency of ω =

10rad/s (typical for earthquake problems) and hydraulic conductivity values, k = 0.001, 0.1 and

0.2m/s (note k = 0.001 m/sec is typical for loose sand, the other values are much higher than

-2 0 2

x 10
-4

0

1

2

3

4

5

6

7

8

9

10

(a) Displacement
vs Depth

D
e

p
th

(m
)

Displacement
(m)

0 1 2

x 10
-4

0

1

2

3

4

5

6

7

8

9

10

(b) Max Displacement
vs Depth

Displacement
(m)

-2 0 2

0

1

2

3

4

5

6

7

8

9

10

(c) Pore Water Pressure
 Ratio vs Depth

Excess Pore Pressure
Ratio

0 1 2

0

1

2

3

4

5

6

7

8

9

10

(d) Max Pore Water Pressure
Ratio vs Depth

Excess Pore Pressure
Ratio

ωωωω=0.1 rad/s

ωωωω=1 rad/s

ωωωω=10 rad/s

ωωωω=100 rad/s

expected for real soils). The results from these analyses

0.001 m/sec (Fig. 2-3a), there is almost perfect agreement between the u

analytical solutions. However, differences in the deformations and pore pressures become a

parent for k = 0.1, 0.2 m/s
1
 where

erence problem involves p-wave propagation, and different behavior should be expected for 1

D shear waves. In a shear wave propagation problem smaller discrepancies between the two

formulations should be expected, since the coupling between shear deformation and volum

tric response introduces a smaller

fluid and the soil skeleton. Hence, the u

technical earthquake analyses.

1
 Typical range of sand permeability is 10

18

The results from these analyses are summarized in Figure 2

3a), there is almost perfect agreement between the u

However, differences in the deformations and pore pressures become a

where fluid velocity is very high. It is important to note that this re

wave propagation, and different behavior should be expected for 1

D shear waves. In a shear wave propagation problem smaller discrepancies between the two

ons should be expected, since the coupling between shear deformation and volum

tric response introduces a smaller driving force due to relative movement between the por

Hence, the u-p approximation appears fully justified for

technical earthquake analyses.

a) k = 0.001 m/sec

Typical range of sand permeability is 10

-2
 to 10

-5
 m/s

e summarized in Figure 2-3. For k =

3a), there is almost perfect agreement between the u-p and fully coupled

However, differences in the deformations and pore pressures become ap-

fluid velocity is very high. It is important to note that this ref-

wave propagation, and different behavior should be expected for 1-

D shear waves. In a shear wave propagation problem smaller discrepancies between the two

ons should be expected, since the coupling between shear deformation and volume-

movement between the pore

p approximation appears fully justified for typical geo-

Figure 2-3 Effect of u-p approximation for reference problem based on analytical solutions (Appendix A

2.2.2 Validation of OPENSEES

Figure 2-4 compares numerical simulations of the reference problem using the Opensees code

with the analytical solutions described above. The Opensees model uses four

19

b) k = 0.1 m/sec

c) k = 0.2m/sec

p approximation for reference problem based on analytical solutions (Appendix A

Validation of OPENSEES

compares numerical simulations of the reference problem using the Opensees code

with the analytical solutions described above. The Opensees model uses four

p approximation for reference problem based on analytical solutions (Appendix A)

compares numerical simulations of the reference problem using the Opensees code

with the analytical solutions described above. The Opensees model uses four-noded 'QuadUP'

elements
2
 to represent the 10m soil column. The solutions are presented for the

condition (i.e., involving the largest expected errors for the u

and k=0.2m/s. The time step selected was 1/20

sults show excellent agreement between Opensees and the analytical solutions for both defo

mations and pore pressures confirming the accuracy of the nume

sees.

Figure 2-4 Verification of the coupled pore pressure displacement solver in Opensees, snapshot at maximum displacement

on top (ω=10rad/s)

2
 These are 4-noded elements that use

freedom (DOFs) for the displacement of the soil skeleton and 1 DOF for pore pressure.

20

to represent the 10m soil column. The solutions are presented for the

condition (i.e., involving the largest expected errors for the u-p formulation)

. The time step selected was 1/20
th

 of the frequency of the applied pulse. The r

sults show excellent agreement between Opensees and the analytical solutions for both defo

mations and pore pressures confirming the accuracy of the numerical methods used by Ope

Verification of the coupled pore pressure displacement solver in Opensees, snapshot at maximum displacement

that use bilinear isoparametric formulation. Each element node has 2 degrees of

s) for the displacement of the soil skeleton and 1 DOF for pore pressure.

to represent the 10m soil column. The solutions are presented for the 'worst case'

p formulation) with ω=10rad/s

of the frequency of the applied pulse. The re-

sults show excellent agreement between Opensees and the analytical solutions for both defor-

rical methods used by Open-

Verification of the coupled pore pressure displacement solver in Opensees, snapshot at maximum displacement

bilinear isoparametric formulation. Each element node has 2 degrees of

21

2.3 Constitutive soil model

The accuracy of numerical predictions for the cyclic response of soils during seismic events is

controlled, in large part, by the capabilities of the constitutive models that are used to

represent the mechanical (i.e., stress-strain-strength) behavior of the pertinent soils. There are

two relatively advanced elasto-plastic soil models that are integrated within Opensees and di-

rectly available for this research:

1. Pressure Independent, Multi-Yield Surface model (PI-MYS; Mazzoni et al., 2005). The

volumetric stress strain reponse is linear-elastic. Plasticity occurs only in the deviatoric

stress-strain response and is insensitive to the confining effective stress. The model is

primarily applicable for low permeability soils that remain undrained during seismic

loading events.

2. Pressure Dependent, Multi-Yield Surface (PD-MYS02) that was developed by Yang et al.

(2002, 2003) and is a direct extension of earlier formulations presented by Prevost

(1985)
3
. Yang et al. (2002) have shown that the PD-MYS02 model can simulate shear-

induced volume contraction or dilation, cyclic mobility and the onset of liquefaction ob-

served in laboratory cyclic shear tests on sands. However, the model requires several

input parameters that vary with the initial void ratio and hence, a separate calibration is

required for each in situ density condition.

Mazzoni et al. (2005) present typical input parameters from prior calibrations of the PI-MYS and

PD-MYS02 models for two reference materials, Nevada fine sand and Yolo loam that are widely

3
 Available in Dynaflow.

22

used in physical model testing for geotechnical earthquake engineering (following Arulanandan

& Scott, 1993) as shown in Tables 2.2 and 2.3.

The capabilities of these models have been evaluated using a simple verification problem com-

prising a single (quad-up, coupled) plane strain element subject to cyclic shearing along the top

surface (the top nodes are constrained to have the same vertical and horizontal displacements)

with drainage on top, Figure 2-5. The model has dimensions 1m x 1m, the soil is initially in a K0-

normally consolidated condition with K0 =0.47 and is assigned a hydraulic conductivity, k =

3x10-5 m/s such that partial drainage can occur. The example problems consider cyclic loading

with τ = ±40kPa at a frequency, ω = 1 rad/s for a period of 15secs. This model represents typi-

cal 'simple shear' conditions for shearing due to a vertically propagating shear wave within a 1-

D soil column (and includes effects of soil inertia).

Figure 2-6 and Figure 2-7 compare results of simulations for a medium-loose Nevada sand at

initial vertical effective stress levels, σ’v0 = 50kPa and 20kPa, respectively, and a dense Nevada

sand at initial vertical effective stress level, σ’v0 = 50kPa. The stress path at σ'v0 = 50kPa (Figs. 2-

7a, 2-8a), shows little accumulation of shear-induced pore pressures through three cycles of

loading with cyclic strains in the range 1-2%. In contrast, at the lower confining pressure, σ'v0 =

20kPa the model simulates 'cyclic mobility' with large shear-induced pore pressures in each

shearing branch (Figs. 2-7b, 2-8b) corresponding to conditions where effective stress paths

cross the phase transformation line and much larger shear strains (~10%). Despite the differ-

ences in cyclic stress-strain response, the model predicts σ'h ≈ σ'v after just one load cycle.

Figure 2-6cFigure 2-7c show

(Dr = 80%, Table 2.3). In this case, the soil exhibits an elastic shaked

mulation of pore pressures or shear strains afte

er than those computed for the medium loose sand, and again

Figure 2-8 Figure 2-9 show the results for

ters for Yolo Loam using the PI

cycles and again σ'h ≈ σ'v after one load cycle

Figure 2-5 Geometry of the reference c

23

 a similar set of results for simple shearing of dense Nevada sand

(Dr = 80%, Table 2.3). In this case, the soil exhibits an elastic shakedown with no further acc

mulation of pore pressures or shear strains after two cycles of loading. Strains are much smal

er than those computed for the medium loose sand, and again σ'h ≈ σ'v after one load cycle

show the results for simple shearing of soft clay (Table

ters for Yolo Loam using the PI-MYS model). The soil exhibits almost perfectly elastic hysteresis

fter one load cycle.

reference cyclic shear test

a similar set of results for simple shearing of dense Nevada sand

own with no further accu-

. Strains are much small-

after one load cycle.

Table 2-2 Input parame-

perfectly elastic hysteresis

24

Table 2-2 Input parameters for Yolo Loam using the PI-MYS model

Parameter Physical Meaning Yolo Loam

ρ (ton/m
3
) Density 1.3

Gref (kPa) Elastic shear modulus 13000

Kref (kPa) Elastic bulk modulus 65000

c (kPa) Cohesion 18.0

γpeak Peak Shear Strain 0.1

Table 2-3 Input parameters for Nevada fine sand using the PD-MYS02 model

Parameter Physical Meaning Dense:

Dr = 80%

Medium-Loose:

Dr = 40%

ρ(ton/m
3
) Density 2.07 1.98

Gref (kPa) Elastic shear modulus 130000 90000

Kref (kPa) Elastic bulk modulus 260000 220000

φ Friction angle 36.5 32.0

γpeak Peak Shear Strain 0.1 0.1

pref (kPa) Reference Pressure 80 80

ψPT
Phase transformation angle 26.0 26.0

c1
Contraction coefficient 0.013 0.067

c3
Contraction coefficient 0.0 0.23

d1
Dilation coefficient 0.3 0.06

d3
Dilation coefficient 0.0 0.27

a) Medium-Loose Sand, σ'v,initial=50kPa

b) Medium-Loose Sand, σ'v,initial=20kPa

c) Dense Sand, σ'v,initial=50kPa

Figure 2-6 Stress paths for reference cyclic shear test using the PD-MYS02 soil model with parameters for Nevada sand

0 50
-40

-20

0

20

40

(σσσσ '
v
+σσσσ '

h
)/2) (kPa)

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

Stress Path (Soils convention)

-40 -20 0 20 40
-40

-20

0

20

40

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

ττττ
xy

 (kPa)

Stress Path (Soils Convention)

0 50
-40

-20

0

20

40

(σσσσ '
v
+σσσσ '

h
)/2) (kPa)

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

Stress Path (Soils convention)

-40 -20 0 20 40
-40

-20

0

20

40

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

ττττ
xy

 (kPa)

Stress Path (Soils Convention)

0 50
-40

-20

0

20

40

(σσσσ '
v
+σσσσ '

h
)/2) (kPa)

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

Stress Path (Soils convention)

-40 -20 0 20 40
-40

-20

0

20

40

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

)

ττττ
xy

 (kPa)

Stress Path (Soils Convention)

26

a) Medium-Loose Sand, σ'v,initial=50kPa

b) Medium-Loose Sand, σ'v,initial=20kPa

c) Dense Sand, σ'v,initial=50kPa

Figure 2-7 Stress paths and stress strain for reference cyclic shear test using the PD-MYS02 soil model with parameters for

Nevada sand

-0.02 -0.01 0 0.01 0.02
-40

-20

0

20

40

Strain

ττ ττ
x

y
 (

k
P

a
)

Stress Strain Curve

0 50
-40

-20

0

20

40

Mean effective Stress (kPa)

ττ ττ
x

y
 (

k
P

a
)

Stress Path (Soils Convention)

-0.1 0 0.1 0.2 0.3
-40

-20

0

20

40

Strain

ττ ττ
x

y
 (

k
P

a
)

Stress Strain Curve

0 20 40
-40

-20

0

20

40

Mean effective Stress (kPa)

ττ ττ
x

y
 (

k
P

a
)

Stress Path (Soils Convention)

-4 -2 0 2 4

x 10
-3

-40

-20

0

20

40

Strain

ττ ττ
x

y
 (

k
P

a
)

Stress Strain Curve

0 50
-40

-20

0

20

40

Mean effective Stress (kPa)

ττ ττ
x

y
 (

k
P

a
)

Stress Path (Soils Convention)

Figure 2-8 Stress paths for reference cyclic shear test of a Soft Clay for σ'v,initial=50kPa

Figure 2-9 Stress path and stress strain curve for a DSS test of a Soft Clay for σ'v,initial=50kPa

0 20 40 60
-10

0

10

(σσσσ '
v
+σσσσ '

h
)/2) (kPa)

(σσ σσ
' v

- σσ σσ
' h

)/
2

)
(k

P
a

) Stress Path (Soils convention)

-20 0 20
-10

0

10

ττττ
xy

 (kPa)

Stress Path (Soils Convention)

-2 -1 0 1 2

x 10
-3

-10

0

10

Strain

ττ ττ
x

y
 (

k
P

a
)

Stress Strain Curve

0 10 20 30 40
-10

0

10

Mean effective Stress (kPa)

Stress Path (Soils Convention)

3 Modeling of PV earthquake drains

3.1 Prior Analyses

Earthquake drains are presented schematically in

pore pressure gradient drives vertical flow inside the soil towards the free surface and radial or

horizontal flow towards the vertical drains.

sure and mitigation of liquefaction risk.

Figure 3-1 Schematic mechanisms of liquefaction mitigation using earthquake drains

Seed & Booker, (1977) were the first to analyze the role of vertical drains for mitigating liqu

faction risks. Their analyses assume radial dissi

while 1-D vertical strains are caused by changes in effective vertical stresses:

where k is the hydraulic conductivity, m

and ug the excess pore pressures generated by cyclic loading.

28

Modeling of PV earthquake drains

presented schematically in Figure 3-1. During a seismic event the excess

pressure gradient drives vertical flow inside the soil towards the free surface and radial or

horizontal flow towards the vertical drains. This allows for dissipation of the excess pore pre

sure and mitigation of liquefaction risk.

Schematic mechanisms of liquefaction mitigation using earthquake drains

were the first to analyze the role of vertical drains for mitigating liqu

faction risks. Their analyses assume radial dissipation of excess pore pressures within the soil,

D vertical strains are caused by changes in effective vertical stresses:

--. '#1. -�-.(� �/'-�-0 � -�1-0 (
where k is the hydraulic conductivity, mv the 1-D compressibility, u the excess pore pressures

the excess pore pressures generated by cyclic loading.

. During a seismic event the excess

pressure gradient drives vertical flow inside the soil towards the free surface and radial or

This allows for dissipation of the excess pore pres-

were the first to analyze the role of vertical drains for mitigating lique-

pation of excess pore pressures within the soil,

D vertical strains are caused by changes in effective vertical stresses:

(3.1)

pressibility, u the excess pore pressures

29

The drain itself acts as a perfect sink (with zero excess pore pressure) providing unlimited ver-

tical transmission of pore fluid, an assumption subsequently defined as a 'perfect drain' condi-

tion. The solution of equation 3.1 requires the specification of an empirical model to character-

ize the generation of excess pore pressures in cyclic loading. This is usually accomplished using

empirical data from undrained cyclic shear tests (either triaxial or simple shear tests), where

pore pressures are reported as a function of the number of uniform load cycles, N. DeAlba et

al. (1975) proposed that the excess pore pressure ratio, ru (= ug/σ'0) can be estimated as fol-

lows:

 .2 � 2sin+, 7889:
12; � �/'-�-0 � -�1-0 ((3.2)

where NL is defined as the number of cycles required to initiate liquefaction, and θ is an empiri-

cal constant. Figure 3-2 shows that θ = 0.7 provides a good approximation based on results

from undrained direct simple shear tests.

Figure 3-2 Pore pressure generation from undrained direct simple shear tests: data range and (DeAlba et al., 1975)

Using these empirical functions the generation of excess pore pressures can be estimated using

the approach suggested by Seed et al. (1975):

A=0.7

30

 -�<-0 � -�1-8 -8-0 = -�1-8 8>?0@ (3.3)

where td is the total duration of earthquake shaking and Neq is the equivalent number of uni-

form load cycles for a given design earthquake.

The value of mv can be determined by means of a cyclic loading triaxial compression test, as de-

scribed by Lee & Albaisa, 1974. Seed and Booker created design charts (Figure 3-3) which for a

given seismic event, and a given spacing ratio (ratio of drain diameter to drain to drain distance)

predict the expected excess pore pressure ratio. In order to design a drainage-based

earthquake mitigation technique, a target maximum excess pore pressure ratio is selected, and

the appropriate drain spacing ratio is evaluated. They, also found that the effect of vertical

drainage on the maximum pore pressure ratio within the sand has minimal effect on the

maximum pore pressure ratio and hence can be ignored in the analysis.

Experimental work has been performed by Onoue et al (1987) in order to verify Seed and Book-

er’s method. Gravel drains have been constructed in a sandy soil to a depth of 11m in field

scale, with various spacing ratios of 0.25, 0.333, and 0.417. The experimental results are printed

on top of the Seed and Booker design chart in Figure 3-4, and the read values from the class A

prediction are also shown. Onoue et al (1987) concluded that disregarding well resistance must

be considered in the analysis, since the values of ru from the Seed and Booker diagrams were

considerably smaller than the measured values.

31

 Figure 3-3 Design charts for groups of gravel drains against liquefaction (Seed & Booker, 1977). N is the number of cycles in

the design scenario, NL is the number of cycles to reach liquefaction without the drains, a/b is the spacing ratio, ru,max is the

maximum expected pore pressure ratio in the soil stratum, ks is the soil hydraulic conductivity, td is the duration of the de-

sign event, mv is the vertical soil compressibility, a is the drain radius, and γw is the water unit weight.

Figure 3-4 Effect of well resistance on excess pore pressures in the soil shown on top of the Seed and Booker design charts.

'Read values' refer to theoretical solutions from Seed & Booker (1977), measured data are provided from field scale experi-

ments Onoue et al (1987)

32

Onoue (1988) has used the same axi-symmetric diffusion equation, and empirical pore pre-

ssure generation model, as Seed and Booker, but he also included the effect of well resistance

in design charts. It is found that when the cycle ratio (number of cycles divided by the number

of cycles to reach liquefaction) N/NL≤1 then there is a significant impact of vertical flow in the

sand, while for N/NL>1 this effect can be disregarded. Figure 3-5 show design charts which take

into account the effect vertical flow while Figure 3-6 shows design chars which exclude vertical

flow.

Figure 3-5 Design charts for groups of gravel drains against liquefaction (Onoue, 1988). Neq is the number of cycles in the

design scenario, Nl is the number of cycles to reach liquefaction without the drains, rs is the spacing ratio, ru,max is the maxi-

mum expected pore pressure ratio in the soil stratum, ks is the soil hydraulic conductivity, kw is the drain material hydraulic

conductivity, H is the soil strata height, td is the duration of the design event, mv is the vertical soil compressibility, a is the

drain radius, and γw is the water unit weight.

33

Figure 3-6 Design charts for groups of gravel drains against liquefaction (Onoue, 1988), in the case where vertical direction

de-watering is disregarded. Neq is the number of cycles in the design scenario, Nl is the number of cycles to reach liquefaction

without the drains, rs is the spacing ratio, ru,max is the maximum expected pore pressure ratio in the soil stratum, ks is the soil

hydraulic conductivity, kw is the drain material hydraulic conductivity, H is the soil strata height, td is the duration of the de-

sign event, mv is the vertical soil compressibility, a is the drain radius, and γw is the water unit weight.

Pestana et al. 1997 have extended the analysis of Onoue to include the effects of storage ca-

pacity. In many cases, the phreatic level of water inside a drain is not at the top of the drain. So,

as the excess pore pressure develops, the water level will first rise up to the top of the drain

(water will be stored inside the drain), before overtopping occurs; Storage capacity is defined as

the amount of water that will be stored in the drain before outflow occurs.

Analyses of the effect of storage capacity have been performed, with perfect drains, drains with

finite permeability, drains with variable initial water level, and drains with presence of reservoir

(storage capacity) of varying size. From these analyses, a combined plot showing the effect of

storage capacity drain permeability is presented in Figure 3-7. From this plot, by comparing the

kd/ks for infinity and 1000, we can see that the perfect drain assumption is not valid in many

circumstances. Also, not introducing the effect of storage capacity can lead to unconservative

design.

Figure 3-7 Pore pressure ratio with storage and varying drain resistance, where k

permeability of the drain, rN is the cycle ratio N/N

is s/d=5 and the water level inside the drain is

3.2 Prior numerical two

Apart from one-dimensional work, a

vanced elasto-plastic bounding surface plasticity soil model (Andrianopoulos, 2006), have been

utilized for the simulation of soil improved with infinite permeability stone columns

triou, et al, 2007). They examined the feasibility of performing coupled pore pressure displac

ment analysis in a vertical shear wave propagation problem. Their results ar

pared to Seed and Booker but a short summary

pore pressure ratio vs time plots for four different analyses

decreasing ru,max with increasing spacing ratio.

34

Pore pressure ratio with storage and varying drain resistance, where ks is the permeability of the soil, k

is the cycle ratio N/NL, and Ru,max is the maximum excess pore pressure ratio.

side the drain is 1m below ground surface. (Pestana et al 1997)

Prior numerical two-dimensional numerical analyses

dimensional work, a two-dimensional finite difference code, FLAC, and an a

plastic bounding surface plasticity soil model (Andrianopoulos, 2006), have been

or the simulation of soil improved with infinite permeability stone columns

They examined the feasibility of performing coupled pore pressure displac

ment analysis in a vertical shear wave propagation problem. Their results ar

pared to Seed and Booker but a short summary is presented in Figure 3-8

pore pressure ratio vs time plots for four different analyses. Their analyses correctly predict a

th increasing spacing ratio.

is the permeability of the soil, kd is the

cess pore pressure ratio. The drain spacing

dimensional numerical analyses

dimensional finite difference code, FLAC, and an ad-

plastic bounding surface plasticity soil model (Andrianopoulos, 2006), have been

or the simulation of soil improved with infinite permeability stone columns (Papadimi-

They examined the feasibility of performing coupled pore pressure displace-

ment analysis in a vertical shear wave propagation problem. Their results are not directly com-

8 in the form of excess

Their analyses correctly predict a

35

Figure 3-8 Rate of excess pore pressure buildup from analyses for various improvement ratios a/b (drain radius/drain spac-

ing) and comparison with the analysis for fully undrained conditions (a/b=0)

3.3 Hydraulics of vertical drains

The prior analyses have considered vertical drains as either ideal conduits with unlimited fluid

transmissivity, or have represented well resistance by assuming continued validity of Darcy's

law with an equivalent hydraulic conductivity. This section considers the hydraulics of flow

within these vertical pipes.

The Darcy–Weisbach equation is a widely used phenomenological equation used in hydraulics.

It relates pressure loss due to friction to the average velocity of the fluid flow:

36

 ΔB � C � DE � �F22 (3.4)

Where λ is a dimensionless coefficient of laminar or turbulent flow, L is the length of the pipe, D

is the diameter of the pipe, ρ is the density of the water, V is the average velocity of the flow. λ

is equivalent to the Darcy friction factor (f) and can be estimated for both laminar and turbulent

flow from the Moody diagram (Figure 3-9).

In a typical drain the roughness ε can be as low as 0.0025mm, but could increase substantially

due the holes on the side of the drain and the accumulation of debris inside a PV-drain.

Figure 3-9 Estimation of the Darcy friction factor for laminar and turbulent flow

37

3.4 Finite Element Implementation of 1-D Drain Elements

3.4.1 Truss theory

A truss finite element is being used to predict the mechanical part of the drain element. Simple

truss theory is very well established in a finite element context. The definitions for this element

are presented in Figure 3-10. We define the force vector in global coordinates:

 G � HG,GIGJGKL (3.5)

and the displacements vector:

 � � H�,�I�J�KL (3.6)

The stiffness matrix for this truss element is:

� MNN
NOcosI';(cos';(� sin ';(�cosI';(�cos';(� sin ';(cos';(� sin ';(sinI';(�cos';(� sin ';(�sinI';(�cosI';(�cos';(� sin ';(cosI';(cos';(� sin ';(�cos';(� sin ';(�sinI';(cos';(� sin ';(sinI';(RSS

ST � UVD (3.7)

With the above definitions the equilibrium is defined as:

 G � # � � (3.8a)

 HG,GIGJGKL �
UVD � MNN

NOcosI';(cos';(� sin ';(�cosI';(�cos';(� sin ';(cos';(� sin ';(sinI';(�cos';(� sin ';(�sinI';(�cosI';(�cos';(� sin ';(cosI';(cos';(� sin ';(�cos';(� sin ';(�sinI';(cos';(� sin ';(sinI';(RSS
ST � H�,�I�J�KL (3.8b)

Figure 3-10 Coordinates, displacements, and forces definitions for truss element

3.4.2 Laminar Flow

3.4.2.1 Flow equations

Laminar flow occurs when a fluid flows smoothly or in regular paths. In laminar flow, sometimes

called streamline flow, the velocity, pr

id remain constant. Laminar flow over a horizontal surface may be thought of as consisting of

thin layers, or laminae, all parallel to each other. Inside a pipe, the fluid in contact with the pipe

is stationary, but all the other layers slide over each other.

In laminar flow, it is possible to simplif

tween the pressure loss and the average velocity of water (or flow). For laminar flow:

where Re is the Reynolds number.

For a circular tube filled with water

38

Coordinates, displacements, and forces definitions for truss element

Laminar flow occurs when a fluid flows smoothly or in regular paths. In laminar flow, sometimes

called streamline flow, the velocity, pressure, and other flow properties at each point in the fl

id remain constant. Laminar flow over a horizontal surface may be thought of as consisting of

thin layers, or laminae, all parallel to each other. Inside a pipe, the fluid in contact with the pipe

s stationary, but all the other layers slide over each other.

In laminar flow, it is possible to simplify the Darcy-Weisbach equation by a

tween the pressure loss and the average velocity of water (or flow). For laminar flow:

λ � 64�Z

where Re is the Reynolds number.

filled with water:

Laminar flow occurs when a fluid flows smoothly or in regular paths. In laminar flow, sometimes

essure, and other flow properties at each point in the flu-

id remain constant. Laminar flow over a horizontal surface may be thought of as consisting of

thin layers, or laminae, all parallel to each other. Inside a pipe, the fluid in contact with the pipe

Weisbach equation by a a linear relation be-

tween the pressure loss and the average velocity of water (or flow). For laminar flow:

(3.9)

39

 Re � VD_ (3.10)

where ν is the kinematic viscosity of water.

Using the above equations:

 ΔB � 64 _FE � DE � �F22 ` (3.11a)

 ΔB � 64 � _ � DEI � �F2 ` (3.11b)

 ΔB � 32 � _ � D � �U � E2 � ` (3.11c)

 ΔB � 32 � b � DU � E2 � ` (3.11d)

 � � U � EI32 � b � D ΔB ` (3.12a)

 � � cde (3.12b)

where μ is the dynamic viscosity of water (or any fluid in general), i = Dp/L is the pressure gra-

dient. The coefficient Cl [L
6
F

-1
T

-1
] is defined by:

 cd � U � EI32 � b (3.13)

3.4.2.2 Finite Element approximation

Using this formulation we can define a one-dimensional element in a two dimensional space

relating water pressure to flow. We first define the vector of flow (equivalent to the vector of

external forces in the truss element):

 � � f�,�2g (3.14)

And the vector of pressures:

By using equation 3.13 we can define a transmissivity matrix:

 Then the equilibrium equation in this element is defined as:

Figure 3-11 Coordinates, pressure, and

 f

40

� � h�,�2i
we can define a transmissivity matrix:

� � MNN
NO� U � E232 � b � D U � E232 � b � DU � E232 � b � D � U � E232 � b � DRSS

ST

Then the equilibrium equation in this element is defined as:

, and flow definitions for one-dimensional pipe element

� � � � �

f�,�2g � MNN
NO� U � E232 � b � D U � E232 � b � DU � E232 � b � D � U � E232 � b � DRSS

ST � h�,�2i

(3.15)

(3.16)

(3.17a)

(3.17b)

41

Next, we assume uncoupled behavior between the mechanical behavior of the truss and the

flow taking place inside the pipe. We now define the generalized force vector in global coordi-

nates:

Gj �
MNN
NNO
G,GI�1GJGK�2RSS
SST (3.18)

and the generalized displacements vector:

�j �
MNN
NNO
�,�I�1�J�K�2RSS
SST (3.19)

By combining the previous forms we have the generalized equilibrium:

 Gj � # � �j (3.20a)

MNN
NNO
G,GI�1GJGK�2RSS
SST �

MNN
NNO
#11 #,I 0 �#,, �#,I 0#,I #II 0 �#,I �#II 00 0 #JJ 0 0 �#JJ�#,, �#,I 0 #,, #,I 0�#,I �#II 0 #,I #II 00 0 �#JJ 0 0 #JJ RS

SSS
T
 �
MNN
NNO
�,�I�1�J�K�2RSS
SST (3.20b)

 #11 � cos2';((3.20c)

 #12 � cos';(� sin ';((3.20d)

 #22 � sin2';((3.20e)

 #33 � � U � EI32 � b � D (3.20f)

Figure 3-12 Coordinates, pressure, flow

3.4.2.3 Opensees Implementation

The finite element is implemented in the Opensee

with quad_up elements, in order to predict drainage inside soil layers by means of drains(e.g.

PV-drains or stone columns). A new command is added in the interpreter that takes the arg

ments:

element Pipelin2 eleid node1 node2 Material Area C

eleid is the id of the element, a unite integer number assigned to this element,

node2 are the start and end nodes of the element,

fined assigning a specific constitutive material for the mechanical re

the drain that contributes to the mechanical behavior

acceleration of gravity (e.g. negative when pointing downwards).

plementation is presented in Appendix F.

42

flow, force, and displacement definitions for the uncoupled drain element

Opensees Implementation

The finite element is implemented in the Opensees Software framework, to be used together

with quad_up elements, in order to predict drainage inside soil layers by means of drains(e.g.

drains or stone columns). A new command is added in the interpreter that takes the arg

node1 node2 Material Area Cl γw

is the id of the element, a unite integer number assigned to this element,

are the start and end nodes of the element, Material is a an integer number already d

fined assigning a specific constitutive material for the mechanical response,

tes to the mechanical behavior, γw is the density of the water times the

acceleration of gravity (e.g. negative when pointing downwards). The source code of the i

plementation is presented in Appendix F.

the uncoupled drain element

s Software framework, to be used together

with quad_up elements, in order to predict drainage inside soil layers by means of drains(e.g.

drains or stone columns). A new command is added in the interpreter that takes the argu-

is the id of the element, a unite integer number assigned to this element, node1 and

is a an integer number already de-

sponse, Area is the area of

is the density of the water times the

The source code of the im-

43

3.4.3 Turbulent Flow

3.4.3.1 Flow equations

Turbulent flow is a flow regime characterized by chaotic property changes. For fully turbulent

flow according to the Moody Diagram (Figure 3-9) λ is a constant. From the Darcy-Weisbach

equation:

 ΔB � C � DE � �F22 (3.21a)

 ΔB � C � DE � �'�U(
2

2 `
(3.21b)

 ΔB � C � D � �2 � E � U2 � �2 ` (3.21c)

 Q � l2 � E � U2C � D � � � √ΔB (3.22a)

 Q � c0 � √i (3.22b)

the coefficient Ct [L
4.5

F
-0.5

T
-1

] is defined by:

 cn � l2 � E � UIC � � (3.23)

which can be written in a rate form:

 Q� � l2 � E � UIC � D � � � √ΔB � ` (3.24a)

 Q� � l2 � E � UIC � D � � � 12√ΔP � ΔB� (3.24b)

44

3.4.3.2 Finite Element Approximation

One can define a one-dimensional element in a two dimensional space relating water pressure

to flow, with the same conventions used in Figure 3-11. In the finite element approximation of

the turbulent flow regime for the drains we are using a consistent Jacobian formulation.

We first define the vector of rate of flow (equivalent to the vector of external forces in the truss

element):

 �� � p�1��I� q (3.25)

 Δ� � fΔ�,Δ�Ig (3.26)

And the vector of rates of pressures:

 �� � f�,��2� g (3.27)

 Δ� � fΔ�1Δ�2g (3.28)

During the n
th

 step of the integration:

 Q1'n(� �e<�'e)(� cn � ri's((3.29)

And at the n+1
th

 step:

 Q1'n
1(� �e<�'e)(� cn � ri'st,((3.30)

So:

 ΔQ'n(� �,')t,(� �,')((3.31)

45

We also define Δp1(n) and Δp2(n) as the increments of pore pressure in node 1 and 2 of the drain

element respectively. Also:

 Δp'n(� Δ�2'�(� Δ�,')((3.32)

 Using this we can write the consistent transmissivity matrix:

 �vw�� � MNN
NO� Δ�)Δ�')(Δ�)Δ�')(Δ�)Δ�')(� Δ�)Δ�')(RSS

ST
 (3.33)

 Then the equilibrium equation in this element is defined as:

 Δ� � �vw�� � Δ� (3.34a)

 fΔ�1Δ�2g � MNN
NO� Δ��Δ�'�(Δ��Δ�'�(Δ��Δ�'�(� Δ��Δ�'�(RSS

ST � fΔ�1Δ�2g (3.34b)

This formulation has a disadvantage. Δp(n) might be very low or zero, and this could cause nu-

merical errors, or no convergence. When Δp(n) is very small then we can instead use the conti-

nuum Jacobian. By using equation 6.35 we can define a continuous transmissivity matrix:

�vw�0 �
MNN
NNO�l

2 � E � UIC � D � � � 12√ΔP l2 � E � UIC � D � � � 12√ΔP
l2 � E � UIC � D � � � 12√ΔP �l2 � E � UIC � D � � � 12√ΔPRSS

SST (3.35)

 Then the equilibrium equation in this element is defined as:

46

 �� � �vw�0 � �� (3.36a)

p�,��2� q � MNN
NNO�l2 � E � U

2C � D � � � 12√ΔP l2 � E � U2C � D � � � 12√ΔP
l2 � E � U2C � D � � � 12√ΔP �l2 � E � U2C � D � � � 12√ΔPRSS

SST � f�,��2� g (3.36b)

As we can see a problem still rises in the continuum Jacobian matrix, when ΔP is very close to

zero, or else when i, the hydraulic gradient, is very small. Remembering that we only need the

continuous Jacobian when the Δp(n) is very close to zero then, we derive one more scheme to

be used numerically when both (a) i is very small (b) Δp(n) is very small. Under these circums-

tances we linearize the Q vs i equation, and we assume a linear region of size 2dc.

 Q � c0xyv � ΔBD (3.37)

Which can be written in a form similar to laminar flow:

 � � MNN
NO� c0xyv � D c0xyv � Dc0xyv � D � c0xyv � DRSS

ST
 (3.38)

Next, we assume uncoupled behavior between the mechanical behavior of the truss and the

flow taking place inside the pipe. We now define the generalized force rate vector in global

coordinates:

47

Gj � �
MNN
NNN
OG1�G2��,�G3�G4��I� RSS

SSS
T
 (3.39)

and the generalized displacement rate vector:

�z� �
MNN
NNO
�1��2��,��3��4��I� RSS
SST (3.40)

The generalized equilibrium has the form:

 Gj� � #{ � �j� (3.41a)

MNN
NNN
OG,�GI��1�GJ�GK��2� RSS
SSS
T
�
MNN
NNO
#11 #,I 0 �#,, �#,I 0#,I #II 0 �#,I �#II 00 0 #JJ 0 0 �#JJ�#,, �#,I 0 #,, #,I 0�#,I �#II 0 #,I #II 00 0 �#JJ 0 0 #JJ RS

SSS
T
�
MNN
NN
O�,��I��1��J��K��2� RS
SSS
T
 (3.41b)

 #11 � cos2';((3.41c)

 #12 � cos';(� sin ';((3.41d)

 #22 � sin2';((3.41e)

Δp(n)>dc: #33 � � Δ�)Δ�')((3.41f)

Δp(n)<dc and i>dc: #33 � �l2 � E � UIC � D � � � 12√ΔP (3.41g)

Δp(n)<dc and i<dc: #33 � � cnxy| � D (3.41h)

In Figure 3-13 a summary of the used approximations and regimes is shown.

Figure 3-13 Various regimes and definitions used to integrate the Darcy

3.4.3.3 Opensees Implementation

The finite element is implemented in the Opensees Software framework,

with quadUP elements, in order to predict drainage inside soil layers by means of drains of any

type. A new command is added in the interpreter that takes the arguments:

element Pipelin2 eleid node1 node2 Material Area C

eleid is the id of the element, a unite integer number assigned to this element,

node2 are the start and end nodes of the element,

fined assigning a specific constitutive material for the mechanical re

48

a summary of the used approximations and regimes is shown.

Various regimes and definitions used to integrate the Darcy-Weisbach equation for fully turbulent flow

Opensees Implementation

The finite element is implemented in the Opensees Software framework,

order to predict drainage inside soil layers by means of drains of any

type. A new command is added in the interpreter that takes the arguments:

element Pipelin2 eleid node1 node2 Material Area Ct γw

is the id of the element, a unite integer number assigned to this element,

are the start and end nodes of the element, Material is a an integer number already d

fined assigning a specific constitutive material for the mechanical response,

a summary of the used approximations and regimes is shown.

Weisbach equation for fully turbulent flow

The finite element is implemented in the Opensees Software framework, to be used together

order to predict drainage inside soil layers by means of drains of any

type. A new command is added in the interpreter that takes the arguments:

is the id of the element, a unite integer number assigned to this element, node1 and

is a an integer number already de-

sponse, Area is the area of

49

the drain that contributes to the mechanical behavior, γw is the density of the water times the

acceleration of gravity (e.g. negative when pointing downwards). The relevant source code is

presented in Appendix G.

3.4.4 Storage Capacity

In typical applications the water level inside the drain is not at the ground surface. Hence,

there is a storage effect within the drain as the water rises above the ambient groundwater wa-

ter table. Pestana et al. (1997) have shown that the drain storage capacity can reduce the ef-

fectiveness and applicability of PV drains for liquefaction risk mitigation.

Since, the proposed elements compute the flow inside the drain (with fluid supplied from the

surrounding soil) it is possible to integrate water coming out of drain and calculate the pore

pressure condition on the top of the drain based on the height of water inside the pipe. A vary-

ing water level inside the pipe means a variable boundary condition at the top of the pipe. Ac-

cording to Figure 3-14, the pore pressure condition at point A is updated at every time step ac-

cording to water level inside the drain H.

Figure 3-14 Schematic view of the storage capacity effect mechanisms

3.4.5 Representation of drain elements in 2

Although in principle the proposed drain elements can be readily implemented together with

coupled 3-D soil elements, the high computational cost of 3

beyond the scope of the current thesis. In the current work the drain elements are encoded

with 2-D quad-up elements for plane strain analyses. In the plane strain FE models, there is a

geometric modification from radial to planar flow into the drains.

Hird et al, (1992) have investigated the use of two

modeling the consolidation (of low permeability clays) with arrays of PV drains.

an equivalence that allows a true

in the plane strain model, using assumptions of equal strain. Their results enable selection of

equivalent drain spacing or equivalent soil permeability based in order to achieve the same a

50

Schematic view of the storage capacity effect mechanisms

Representation of drain elements in 2-D plane strain FE analyses

Although in principle the proposed drain elements can be readily implemented together with

D soil elements, the high computational cost of 3-D coupled, non

the scope of the current thesis. In the current work the drain elements are encoded

up elements for plane strain analyses. In the plane strain FE models, there is a

geometric modification from radial to planar flow into the drains.

al, (1992) have investigated the use of two-dimensional, plane strain approximations for

modeling the consolidation (of low permeability clays) with arrays of PV drains.

an equivalence that allows a true-radial consolidation problem around a

in the plane strain model, using assumptions of equal strain. Their results enable selection of

equivalent drain spacing or equivalent soil permeability based in order to achieve the same a

D plane strain FE analyses

Although in principle the proposed drain elements can be readily implemented together with

D coupled, non-linear analyses is

the scope of the current thesis. In the current work the drain elements are encoded

up elements for plane strain analyses. In the plane strain FE models, there is a

dimensional, plane strain approximations for

modeling the consolidation (of low permeability clays) with arrays of PV drains. They propose

 drain to be simulated

in the plane strain model, using assumptions of equal strain. Their results enable selection of

equivalent drain spacing or equivalent soil permeability based in order to achieve the same av-

erage degree of consolidation within the so

drains in high permeability sand deposits. Their methodology and equivalent hydraulic condu

tivity are summarized in Figure 3.11 for the case where the spacing between the dr

same in the 3-D (actual, real world

Hird et al. (1992) analyses match the average degree of consolidation in the two spaces, it

should be noted that the plane strain model will not represent accurately the excess por

sures at all points in the soil mass.

Figure 3.11 Axisymmetric to plane strain equivalence, in the case the distance between the drains is the same in the 3D and

in the plane strain model (after Hird et al, 1992)

Following Hird’s solution, the axisymmetric transmissivity of a laminar flow drain must be

scaled, in order to model the effect of the d

drain spacing for both 3-D (physical

drain coefficient is:

51

erage degree of consolidation within the soil layer. Their findings are also applicable for PV

drains in high permeability sand deposits. Their methodology and equivalent hydraulic condu

tivity are summarized in Figure 3.11 for the case where the spacing between the dr

ctual, real world) scenario and in the 2D plane strain model. Although the

Hird et al. (1992) analyses match the average degree of consolidation in the two spaces, it

should be noted that the plane strain model will not represent accurately the excess por

sures at all points in the soil mass. Verification analyses are presented in Appendix I

.11 Axisymmetric to plane strain equivalence, in the case the distance between the drains is the same in the 3D and

(after Hird et al, 1992)

owing Hird’s solution, the axisymmetric transmissivity of a laminar flow drain must be

scaled, in order to model the effect of the drain in a plane strain model. A

D (physical space) and in the 2-D model, then the equivalent laminar

il layer. Their findings are also applicable for PV

drains in high permeability sand deposits. Their methodology and equivalent hydraulic conduc-

tivity are summarized in Figure 3.11 for the case where the spacing between the drains is the

) scenario and in the 2D plane strain model. Although the

Hird et al. (1992) analyses match the average degree of consolidation in the two spaces, it

should be noted that the plane strain model will not represent accurately the excess pore pres-

yses are presented in Appendix I.

.11 Axisymmetric to plane strain equivalence, in the case the distance between the drains is the same in the 3D and

owing Hird’s solution, the axisymmetric transmissivity of a laminar flow drain must be

rain in a plane strain model. Assuming the same

D model, then the equivalent laminar

where R is the drain spacing in 3D.

Equation 3.42 was derived by solving analytically the consolidation problem of a plane strain

unit cell with a laminar flow drain. It

flow. In this case, consolidation with the fully turbulent flow is matched to equivalent laminar

drain properties (using equation 4.23

dent on each other, then the same scaling factor can be applied for fully turbulent flow cases:

where w is the width of the plane strain finite element grid

analyses)

52

where R is the drain spacing in 3D.

was derived by solving analytically the consolidation problem of a plane strain

unit cell with a laminar flow drain. It is more difficult to find the equivalence for fully

flow. In this case, consolidation with the fully turbulent flow is matched to equivalent laminar

using equation 4.23). Since the drain properties Cl and C

dent on each other, then the same scaling factor can be applied for fully turbulent flow cases:

where w is the width of the plane strain finite element grid (in general w=1m

(3.42)

was derived by solving analytically the consolidation problem of a plane strain

is more difficult to find the equivalence for fully-turbulent

flow. In this case, consolidation with the fully turbulent flow is matched to equivalent laminar

and Ct are linearly depen-

dent on each other, then the same scaling factor can be applied for fully turbulent flow cases:

(3.43)

w=1m for plane strain

53

4 Centrifuge Experiments

4.1 Introduction

Apart from measurements at well instrumented field sites (e.g., Lotung; Zeghal et al., 1995),

there are practically no direct measurements of soil performance during real earthquakes. As a

result, laboratory experiments play a vital role in the validation of numerical analyses. In prac-

tice there are only two classes of laboratory experiment that have been used to study problems

of soil-structure interaction i) centrifuge models, and ii) shaking table experiments.

Centrifuge models simulate gravitational stress fields within a soil mass at reduced geometrical

scale though centrifugal loading. The key components of successful centrifuge model tests for

dynamic soil-structure interaction problems are: i) careful application of scaling laws (e.g., Scho-

field & Steedman, 1988); ii) quality of base shaking actuator; and iii) design and calibration of

instrumentation for operation at high centrifugal accelerations. There has been a substantial

investment in geotechnical centrifuge facilities around the US (Figure 4.1), including an NSF-

funded national test facility at the University of California, Davis. In contrast, most of the large-

scale shaking table experiments have been performed in Japan (facilities include the Port and

Harbour Research Institute, PHRI, and Public Works Research Institute, PWRI).

The use of PV drains for mitigation of liquefaction has recently been investigated in centrifuge

model tests performed at UC Davis (Kamai et al., 2008). These data are compared with numeri-

cal simulations using Opensees (and the proposed drain elements) in Chapter 5 of this thesis.

This chapter considers the scaling laws for designing centrifuge model tests on geotechnical

earthquake problems, and specifically considers the scaling of flow in PV drains (Section 4.3).

Section 4.3 gives details of the centrifuge model reported by Kamai et al. (2008).

54

Figure 4-1 The UC-Davis geotechnical centrifuge

4.2 Scaling principles for geotechnical earthquake problems

In a centrifuge test, it is important to relate parameters measured in the scale model (M) to the

prototype (P) full scale situation. In the following we present the basic scaling laws with particu-

lar focus on the use of PV earthquake drains. The equilibrium equations (eqn. 2.1) for the

coupled pore-pressure displacement problem (neglecting convective terms) are:

Model: -�}-~}
 �}�} � �}!} � �	}�� } � 0 (4.1a)

Prototype: -��-~�
 ���� � ��!� � �	��� � � 0 (4.1b)

Where σ is the stress matrix, x is the length, ρ is the material total density, b is the body force

vector, α is the acceleration of the soil skeleton, and w is the velocity of water relative to the

soil skeleton.

55

In the model, the physical length scale is reduced by a factor N, corresponding to the gravita-

tional acceleration applied in the centrifuge:

 ~} � ~� /8 (4.2)

 !} � 8!� (4.3)

This is possible only if the timescale is also scaled according to:

 0} � 0� /8 (4.4)

The body forces and average acceleration of the pore fluid are also scaled by N:

 �} � 8�� (4.5)

 �� } � 8�� � (4.6)

However, in order to match the diffusion equation in the soil (eqn. 2.2), the hydraulic conduc-

tivity of the pore fluid must also be scaled:

 #} � #� /8 (4.7)

In order to achieve this scaling requirement in the centrifuge model, one can either use a soil

material with lower conductivity than the prototype; or use a pore fluid with lower viscosity but

the same density as water (e.g., silicon oil). The first approach is problematic as changing soil

type can also affect important mechanical properties, while changes in the pore fluid can also

create practical difficulties.

It is clear that scaling limitations are significant for modeling dynamic problems with diffusion

of pore fluid. These difficulties are further confounded when dealing with partially saturated

soils. Here it is impossible to scale consistently diffusion and inertial forces. Other similitude

56

problems arise when modeling dynamic coupled pore pressures and displacement problems.

For example, the undrained shear strength of clays typically increases by 5% to 15% for every

log cycle of strain rate (Lacasse et al., 1970; Randolph et al., 2005). The effects of particle size

are not well understood. However, through modeling of models, the effects of particle scale

are eliminated in problems of soil-structure interaction by ensuring minimum ratios of charac-

teristic structural width to particle size:

Footings �y�� � 35 (4.8a)

Piles �y50 � 45 w. 60 (4.8b)

where B is the width or diameter of the model foundation.

However, the development of shear banding seems to be significantly affected by the grain

size, as shown from model tests on a trap door and on a cavity collapse problem (Stone & Muir,

1992). It is also important to account of non-uniformities in the centrifuge acceleration field on

the vertical stress in soil samples (Schofield, 1980). By generating shear stresses on vertical

planes, variable acceleration produces a 'silo/arching effect' that can affect significantly the ver-

tical stress in depth. The non uniformity of the gravitational field significantly influences the

measured vertical displacements, since every horizontal soil section wants to move to an equi-

potential level, thus curving towards the center of rotation.

57

4.3 Scaling laws for PV-drains

The flow coming out a drain in the prototype is related to the flow coming out of the model

drain in the following way:

 Q� � �F��� � �F} � 8J�} � 8 � �F}�} � 8I � �} � 8I (4.9)

So for laminar flow:

 Q � C� � �BL
(4.10a)

 C�� � �BL� � C�� � �BL� 8I
(4.10b)

 C�� � �BN � L� � C�� � �BL� 8I
(4.10c)

 C�� � C�� � 8J (4.10d)

And for turbulent flow:

 Q � C� � lΔBD (4.11a)

 C�� � lΔBD� � C�� � lΔBD} 8I

(4.11b)

 C�� � l ΔB8 � D} � C�� � lΔBD} 8I

(4.11c)

 C�� � C�� � 8I.� (4.11d)

It can be seen that the parameter relating the pore pressure gradient to the flow of water has

to be N
3
 times larger in the prototype scale when dealing with laminar flow drains and N

2.5

58

times larger for turbulent flow. From the above analysis a problem can arise due to difference

in the Reynolds number at prototype and model scales:

 Re� � V�D�v `
4.12a

 Re� � Q�U� D�v `

4.12b

 Re� � NIQ�8IU} 8D�v `

4.12c

 Re� � �} D�A�v N `
4.12d

 Re� � Re�N 4.12e

So a flow that is laminar in the model scale might be turbulent in the prototype scale. This is

important because the experiments do not preserve Re at model scale.

Alternatively if a different pore fluid is used in the centrifuge model (to scale the diffusion

process), then the scaling ratio for Reynolds number is further increased:

 Re� � Re�NI (4.13)

4.4 Design of model scale PV-drains

When designing a scale model with drains one should design the transmissivity of the scale

drains so that it matches the extra resistance caused by the turbulence in the real-scale drains,

since it is very common that the model scale flow is mostly laminar and the prototype scale

flow is mostly turbulent. A methodology is proposed at this point that would allow selection of

pipes for scale modeling purposes.

59

In prototype scale we need to find a laminar flow parameter Cl that gives the smallest error

compared with the flow coming out of a drain with parameter Ct, for a specific range of i (pore

pressure gradient). We define a function that is the square of the difference of the laminar flow

calculations to the turbulent flow calculations.

 f � $Q�� �Q��%I (4.14)

 f � $C��√i � C��i%I (4.15)

 f � C��Ii
 C��IiI � 2C��C��iJI (4.16)

Next we define the integral of function f:

 F � � f����
� di (4.17)

 F � � 'C��Ii
 C��IiI � 2C��C��iJI(����
� di (4.18)

 F � C��Ii���I2
 C��Ii���J3 � 45C��C��i����I (4.19)

In order for the flow calculation for turbulent flow to match the calculation for the laminar flow

we need to minimize F.

 ∂F∂C�� � 23C�� i���J � 45C��i����I (4.20)

 23 C�� i���J � 45C��i����I � 0 (4.21)

 ∂IF∂C��I � 23 i���J � 0 �w. e��� � 0 �e0�w�0 �w�� w� <Z�Z.!�e0 (4.22)

 C�� � 6C��5xe��� (4.23)

60

 C�� � 6C��5xe��� � 8J
(4.24a)

If we replace the expressions for Cl and Ct we have:

 C�� � 65xe��� � 8Jl2 � E� � U�
IC � � `

(4.24b)

 U} � E}I32 � b � 65xe��� � 8Jl2 � E� � U�
IC � � `

(4.24c)

 E} � ¡ 76.8 µxe��� � 8Jl E��2 � C � �¥
,K
 (4.25)

Equation 4.25 defines the design diameter for the model drains, given the parameters of the

prototype drains. This relation has been produced under the assumption that the flow is lami-

nar in the model scale and turbulent in the model scale. This allows for the model scale laminar

flow to be as similar as it can be to the prototype scale turbulent flow by minimizing the

squares of the distances between the flow calculated by the two theories. This relation can be

inverted, in order to examine what is the prototype drain that the model drain is representing.

 E� � ¦e��� � 8§ � C � �2949.12bI E}©ª,�

(4.26)

Also, a reasonable range for PV drains that would not make us loose accuracy in the range of

small gradient, but sufficient to capture large gradients would be:

 e��� � ΔB�� � «¬ «¬
(4.27)

61

A reasonable value, considering the fact that in a normal setup very few excess pore pressures

will develop along the line of the drain, in accordance with the FE simulations performed in this

project, would be:

 ΔB�� � «¬ � 1/100 `
(4.28a)

 e��� � «¬100 (4.28b)

So the aforementioned relationships simplify as:

 E} � ¡ 768 µx«¬ � 8Jl E��2 � C � �¥
,K

(4.29)

 E� � ¦«¬ � 8§ � C � �294912bI E}©ª,�

(4.30)

Also, one needs to notice that a fluid of different viscosity might be used to match diffusion be-

tween the scale model and the prototype, according to the following equation:

 b� � b}8
(4.31)

So we re-write the equations in the following form:

 E} � ¡ 76.8 µ�xe��� � 8Jl E��2 � C � �¥
,K `

(4.32a)

 E} � ¡ 76.8 µ�xe��� � 8Il E��2 � C � �¥
,K

(4.32b)

 E� � ¦e��� � 8§ � C � �2949.12b}I E}©ª,� `

(4.33a)

62

 E� � ¦e��� � 8K � C � �2949.12b�I E}©ª,�

(4.33b)

So, under the assumption that:

 ΔB�� � «¬ � 1/100 `
(4.34)

We have:

 E} � ¡ 768 µ�x«¬ � 8Jl E��2 � C � �¥
,K

(4.35a)

 E} � ¡ 768 µ�x«¬ � 8Il E��2 � C � �¥
,K

(4.35b)

 E� � ¦«¬ � 8§ � C � �294912b}I E}©ª,�

(4.36a)

 E� � ¦«¬ � 8K � C � �294912b�I E}©ª,�

(4.36b)

4.5 Centrifuge models of PV drains

In order to evaluate the effectiveness of PV drains for liquefaction remediation (Earthquake

drains) a centrifuge test was performed at the centrifuge facility at UC Davis, at March 2007

(SSK01) (Kamai, et al., 2008). The test compares the response of two similar facing slopes with a

central channel. Beneath the left side slope, is a 5m thick (in prototype scale) layer of loose

sand containing an array of PV-drains, while beneath the right side slope is the loose sand is un-

treated. The two sides were symmetrically sloped at 3° towards a 200 mm wide central channel

and were both comprised of three distinct layers (Figure 4-2): (1) a bottom layer of dense Ne-

vada Sand, overlain by (2) a liquefiable layer of loose Nevad

layer of compacted Yolo Loam. The Yolo Loam was used to impede the vertical dissipation of

pore water pressure out of (DeAlba, Chan, & Seed, 1975)

monic shaking events were applied to the model at a centrifugal a

15g. All events were applied transverse to the

Figure 4-2 Conceptual diagram of the PV drains centrifuge model

The test had two important goals. The first was to provide

can be effective in reducing liquefaction resistance.

surements of performance for validation of numerical analyses.

4.5.1 Model Preparation

The first stage in model preparation involved installation of the PV drains. These comprised

7mm ID nylon tubes with 1.5mm holes drilled every 5mm. The tubes were wrapped twice with

a Precision Woven Polypropylene Mesh, to keep sand grains from clogging or entering the tube

63

vada Sand, overlain by (2) a liquefiable layer of loose Nevada Sand, which was overlain by (3) a

layer of compacted Yolo Loam. The Yolo Loam was used to impede the vertical dissipation of

(DeAlba, Chan, & Seed, 1975) the liquefiable layer.

haking events were applied to the model at a centrifugal acceleration of approximately

All events were applied transverse to the central channel in the (longitudinal) direction

the PV drains centrifuge model

two important goals. The first was to provide a proof-of-concept, that,

can be effective in reducing liquefaction resistance. The second was to provide reliable me

or validation of numerical analyses.

The first stage in model preparation involved installation of the PV drains. These comprised

7mm ID nylon tubes with 1.5mm holes drilled every 5mm. The tubes were wrapped twice with

Polypropylene Mesh, to keep sand grains from clogging or entering the tube

a Sand, which was overlain by (3) a

layer of compacted Yolo Loam. The Yolo Loam was used to impede the vertical dissipation of

the liquefiable layer. A series of har-

cceleration of approximately

(longitudinal) direction.

concept, that, PV drains

The second was to provide reliable mea-

The first stage in model preparation involved installation of the PV drains. These comprised

7mm ID nylon tubes with 1.5mm holes drilled every 5mm. The tubes were wrapped twice with

Polypropylene Mesh, to keep sand grains from clogging or entering the tube

64

during liquefaction. The drains were placed in a triangular grid using wires for temporary sup-

port (see Fig. 4-8).

A large box pluviator was used to deposit the basal layer of dense (Dr = 84%) Nevada sand,

while a barrel pluviator was used to construct the rest of the model of the loose sand layer (Dr =

40%). Subsequent measurements of relative density (based on volumes and weights) suggest

that the loose sand may actually have been deposited at a slightly lower relative density (Dr =

30%)
4
.

The crust material was constructed using natural Yolo Loam, which was sun dried and sieved (to

pass a #10 sieve). Then water was added to reach the optimum water content of this soil

(15%). The crust was placed in three layers.

Figure 4-3 shows the soil preparation procedures caused small movements of the PV drains

from their initial positions.

Finally, the model was flooded with CO2 and placed under a vacuum of approximately 90kPa to

remove air within the soil. Then water was slowly dripped into saturation troughs, slowly satu-

rating the model from bottom to top. Saturation was targeted so that the entire liquefiable

layer would be saturated.

During construction of the scale model three types of sensors were installed. Pore pressure

transducers to monitor excess pore pressure (Figure 4-5), displacement transducers (Figure 4-6)

to measure horizontal and vertical displacements, and accelerometers (Figure 4-4) to measure

4
 A 10% difference in relative density corresponds to only a 2mm difference in height of the model layer.

65

amplification or de-amplification of the input motion in various locations. Kamai et al. (2008)

give full details of the instrumentation used in the test. It should be noted that some of the

embedded pore pressure transducers and accelerometers underwent large net settlements due

to liquefaction induced in the test as shown in Figures 4-4a and 4-5a.

4.5.2 Scale Factors

The factors used to convert the data to prototype scale are indicated in Table 4-1.

Table 4-1 Scale Factors

Quantity Prototype/Model Dimension

Time 15/1

Displacement, Length 15/1

Acceleration, Gravity 1/15

Pressure, Stress 1/1

Permeability 15/1

Based on the detailed evaluation of scaling for PV drains, it is interesting to evaluate the design

of model drains used in SSK01. In this section we use the aforementioned scaling laws for the

centrifuge experiment in order to examine similitude issues between the model and prototype

drains. We know for our case that:

 «¬ � 98108/�J (4.37)

 8 � 15 (4.38)

 &y � 0.0025��7�� � 3.57 � 10+K
(4.39)

66

 C � 0.0085 '!��.w~e�!0Z �w. �.w0w0 �Z �v!�Z((4.40)

(from Moody’s diagram for ε/d=2.4*10
-5

)

 E} � 0.007� (4.41)

 b � 0.001B! � � (4.42)

 � � 1000#</�J (4.43)

Which gives, using eqn. 4.26:

 E� � ¡25 � 98.1 8�J � 15§ � 0.0085 � 1000 #<�J73728 � 0.001I 0.007­¥
,�

(4.44)

 E� � 0.1132� (4.45)

This results shows that the prototype drain should have a diameter, D
P
 = 113mm. This is

slightly larger than expected from direct length scaling (i.e., D
p
 = 15(D

m
) = 105mm). This means

that under this range of i's the assumption of full turbulence in the drains makes them less

permeable. For all practical purposes, under the above assumptions, the drain behavior should

scale well for both laminar and turbulent flow.

It should be noted that the drains used in this experiment have a very smooth surface while ac-

tual PV drains will have much rougher surfaces due to bacterial growth (biofouling) and materi-

al deposition. Also, the maximum gradient used here might not be always that small depending

on the permeability of the drains, the drain spacing, and the permeability of the soil.

67

.

Figure 4-3 Location of the drains before and after pluviation

Figure 4-4 Accelerometer locations: cross section (as built and after test)

68

Figure 4-5 Accelerometer locations: plan view (as built and after shaking)

Figure 4-6 Pore pressure transducers: cross section (before and after shaking)

69

Figure 4-7 Pore pressure transducers: plan view (before and after shaking)

Figure 4-8 Displacement transducers: cross section

70

Figure 4-9 Displacement transducers: plan view

Figure 4-10 Initial and final deformed shape: cross section

71

Figure 4-11 Model pictures – from top left corner, clockwise: (1) drains placed before pluviation (2) surface markers on un-

treated side (3) sand boil – cross section through crust (4)&(5) the untreated side after the test – cracking and sand boils.

72

5 Numerical Analyses of PV Drain Performance

This chapter describes 2-D plane strain analyses of PV drain performance through finite ele-

ment modeling of the reference centrifuge model test SSK01 (Kamai et al., 2008) described in

section 4.5. The finite element model incorporates the proposed drain elements for laminar

and turbulent flow (Chapter 3).

5.1 Finite element model

Figures 5-1 and 5-2 illustrate the main features of the Opensees finite element model used to

simulate centrifuge test SSK01:

1. Coupled flow and deformation in the high permeability sand layers are represented by Qu-

adUP elements which include 4-nodes for bilinear interpolation or displacements and 4

nodes for bilinear interpolation of pore pressures. The current analyses use a regular grid of

uniform-sized elements. The effective stress-strain-strength properties of the Nevada sand

is characterized by the pressure dependent multi-yield surface model (PD-MYS02; Yang et

al., 2002), with separate sets of input parameters for the dense and loose sand layers.

2. The capping layer of low permeability, compacted Yolo loam is represented by 8-noded

Quad elements (quadratic displacement interpolation using total stresses), and its un-

drained mechanical properties are represented by the pressure independent multi-yield

surface model (PI-MYS; section 2.3). The QuadUP and Quad domains are connected with

equalDOF objects (Figure 5-1), a connection that ties the displacement DOF in a node of

Quad element to a DOF in an adjacent node of a QuadUP element.

73

3. The centrifuge model is built within a laminar box (i.e., a shear box made from an assembly

of hollow steel plates separated by bearings which minimize friction). This design ensures

equal horizontal displacements at the lateral boundaries of the centrifuge model. These pe-

riodic boundary conditions are represented in the finite element model by constraining

nodes at the left and right boundaries to with equal displacement degrees of freedom,

while the mass of the plates is added to these boundary nodes (Fig. 5-3). The sand layers

are continuous across the model (Fig. 5-1) and hence, remain in contact with the box walls

throughout shaking. In contrast, the Yolo loam forms a partial cap and is absent in the cen-

tral channel. During shaking events, the loam can separate from the walls of the laminar

box. This behavior is modeled by introducing zero-thickness, no-tension elements between

the Yolo loam and the walls of the box (Fig. 5-3).

4. The array of PV drains is installed on the left-side of the centrifuge model and is

represented in the finite element model by a series of uniformly-spaced line elements (Fig.

5-2). Perfect drains are represented by imposing boundary conditions of zero excess pore

pressure, while finite transmissivity drains are represented using the proposed drain ele-

ments (Section 3.3) for conditions of laminar or turbulent flow. The water table is located

at the top of the sand layer in the centrifuge model, while the PV drains discharge at the

ground surface (i.e, above the Yolo loam). Hence, there is a significant storage effect (Sto-

rage Volume/Drain Section Area=1m) which is also represented by the drain elements. The

finite element approximation of planar flow (vs radial flow in the centrifuge model) is

represented using an equivalent hydraulic conductivity (after Hird et al., 1992) to match the

average degree of consolidation within the surrounding soil mass.

5. Seismic loading is represented by applying a uniform basal excitation (acceleration)

all nodes. The load history used in

sented in Table 5-1. The first 2 cycles are used to test the model

ment. The last three cycles (a

that is going to be used for validation.

Figure 5-1 Different domains employed in the FE an

74

represented by applying a uniform basal excitation (acceleration)

. The load history used in SSK01 mode comprises of five cycles of shaking as pr

. The first 2 cycles are used to test the model and the monitoring equi

ment. The last three cycles (amax=0.07, 0.11, 0.3 g) constitute the part of the experiment

that is going to be used for validation.

Different domains employed in the FE analysis

represented by applying a uniform basal excitation (acceleration) across

of five cycles of shaking as pre-

and the monitoring equip-

=0.07, 0.11, 0.3 g) constitute the part of the experiment

Figure 5-2 FE Model Setup

Table 5-1 Shaking sequence

75

Figure 5-3 Boundary conditions of the FE model

5.1.1 Model parameters

5.1.1.1 Soil parameters

Although there are some uncertainties in the as

rent analyses assume that the dense and loose Nevada sand are prepared uniformly with rel

tive density, Dr = 80% and 40%, resp

used to represent these layers using PD

published calibrations for Nevada sand by Mazzoni et al. (2005

ficient of lateral earth pressures is K

76

Boundary conditions of the FE model

Although there are some uncertainties in the as-built density of the centrifuge model, the cu

rent analyses assume that the dense and loose Nevada sand are prepared uniformly with rel

= 80% and 40%, respectively. Table 5-2 summarizes the model input parameters

used to represent these layers using PD-MYS02 model. These parameters are based on prior

published calibrations for Nevada sand by Mazzoni et al. (2005). The assumed value

ficient of lateral earth pressures is K0=0.48.

built density of the centrifuge model, the cur-

rent analyses assume that the dense and loose Nevada sand are prepared uniformly with rela-

summarizes the model input parameters

MYS02 model. These parameters are based on prior

The assumed value of the coef-

77

Table 5-2 Input parameters for Nevada sand using PD-MYS02 model

Parameter Dense sand (Dr = 80%) Loose sand (Dr =40%)

ρ (ton/m
3
) 2.07 1.98

Gref (kPa) 130000 90000

Kref (kPa) 260000 220000

Φ 36.5 32.0

γpeak 0.1 0.1

pref (kPa) 80 80

ψPT 26.0 26.0

c1 0.013 0.067

c3 0.0 0.23

d1 0.3 0.06

d3 0.0 0.27

Mazzoni et al. (2005) have also recommended input parameters for the compacted Yolo Loam

(Table 5.2) using the PI-MYS model in Opensees. There no little basis for changing these para-

meters. However, it should be noted that the compacted Yolo loam is partially saturated and

appears to undergo volume change during the centrifuge experiment. The initial total unit

weight was initially measured as γt = 13kN/m
3
. However, samples taken after the test found γt =

18kN/m
3
and the height of the Yolo loam shrinks from 1m to approximately 0.8m. This is partly

due to compaction during the consolidation phase and the shaking event. The current finite

element analyses assume γt = 13kN/m
3
 and 1m of Yolo loam thickness.

The shear strength of the Yolo loam (c, Table 5-3) is important in the finite element model as it

controls the shear resistance along the loam-sand interface (there are no special slide line ele-

ments used in the model). The interface shear resistance can be estimated from measure-

78

ments of relative accelerations above and below the Yolo loam-Nevada sand interface. Figure

5.4 shows the relative acceleration measured during the first phase of shaking in test SSK01.

This represents the difference between the absolute acceleration measurements of accelero-

meters U56 (right above the interface) and U38 (right below the interface).

Using simple mechanics, the maximum shear stress at the interface τmax ≈ σvamax, where σv is

the overburden pressure. Based on the results in Figure 5-4, amax ≈ 0.5m/sec
2
. If σv ≈ 13kPa,

then τmax ≈ 6.5kPa. This is quite similar in magnitude to the drained shear resistance on the

sand (τ = σ'vtanφ'), and can also be represented by assuming that cohesion in the Yolo loam, c =

6.0 kPa.

Figure 5-4 Relative acceleration below and above the Loose Sand - Yolo Loam interface for the SSK01-10 phase of shaking

79

Table 5-3 Yolo Loam model properties for PI-MYS model

Parameter Input

ρ (ton/m
3
) 1.3

Gref (kPa) 13000

Kref (kPa) 65000

C (kPa) 6.0*

γpeak 0.1

* c = 18kPa was originally recommended by Mazzoni et al. (2005)

 The hydraulic conductivity of the Nevada sand was measured at model scale:

 #� � 2 � 10+��/� (5.1)

So at the prototype scale the hydraulic conductivity must be scaled by N = 15 in order to match

diffusion times:

 #® � 3 � 10+K�/� (5.2)

On the left side of the models where PV drains are installed, the hydraulic conductivity is scaled

in order to match the average degree of consolidation in the plane strain FE model and 3D

physical models (after Hird et al., 1992):

 #®d� � 2 � 3 � 10+K3'ln'15.5(� 34(�/�
(5.3a)

 #®d� � 1.0046 � 10+K�/� (5.3b)

Hence there is a factor of 3 decrease in the hydraulic conductivity within the sand on the left-

hand side of the model.

5.1.1.2 Laminar box parameters

The approximate weight of the FSB3 laminar box used for tests SSK01 is approximately the

same as an earlier design (FSB2) whose properties are listed in Table 5.3. These masses are un-

80

iformly distributed along the lateral boundaries. This is evenly assigned to the side nodes of the

centrifuge model as: (.0132Mgr +.0475Mgr +.0475Mgr +0.09Mgr)/19=0.0104Mgr/side node.

Table 5-4 Design details of container FSB2 for the large centrifuge

5.1.1.3 Parameters for PV-drains

The input parameters needed for the PV drains are the transmissivity for laminar flow and fully

turbulent flow, the axial stiffness, and the storage capacity. The inner diameter of the drain at

model scale, D
m

 = 7mm (and the outer diameter is 9mm). So the effective area that influences

the mechanical truss behavior is:

 U} � °4 '9I � 7I(��I ` (5.4a)

 U} � 25.1328��I ` (5.4b)

 U� � U}8I ` (5.5a)

 U� � 0.005655�I (5.5b)

81

The storage capacity corresponds to the volume of the drain that needs to fill up is a cylinder

with diameter the inner diameter of the drain. Thus the cross section of the drain needed to

estimate the effect of storage capacity is:

 U} � °4 7I��I ` (5.6a)

 U} � 38.4845��I ` (5.6b)

 U� � U}8I ` (5.7a)

 U� � 0.0087�I (5.7b)

The material for the drains is nylon with an elastic modulus of:

 V � 3000000#B! (5.8)

Now we need to estimate the transmissivity parameters. We estimate Cl initially for the model

scale (μ=10
-3

Pa·s, for water at 20°C):

 cd � U � EI32 � b `
(5.9a)

 cd± � 38.48 � 10+§�I � 0.007I�I
32 � 10+J 8�I � `

(5.9b)

 cd± � 5.892 � 10�5 �§#8 � � (5.9c)

 cdB � c�}8J (5.10a)

 cd± � 0.1989 �§#8 � �
(5.10b)

This is the transmissivity parameter we should use if we were solving the true 3D radial drai-

nage problem in the prototype scale. In reality we solve a plane strain problem, so we need to

scale the transmissivity according to Hird et al (1992):

82

 cd�� � 2°�c���
(5.11a)

 cd�� � 23.14 � 1.57�2 0.1989 �§#8 � �
(5.11b)

 cd�� � 0.1614 ��#8 � �
(5.11c)

which is the parameter we are using.

For the fully turbulent drains we introduce a similar type of analysis. We estimate initially Ct for

the model scale:

 cn � l2 � E � UIC � �

(5.12a)

 cn± � ²2 � 0.007� � '38.48 � 10+§�I(I0.017 � 1±<.�J

(5.12b)

 cn± � 3.492 � 10�5 �K.�#8�.�� (5.12c)

 cnB � c0}8I.� (5.13a)

 cn± � 0.0304 �K.�#8�.�� (5.13b)

We now scale the transmissivity according to Hird et al (1992):

 cn�� � 2°�c0��√�
(5.14a)

 cn�� � 23.14 � 1.57�2 3.043 � 10�5 �K.�#8�.�� √1�
(5.14b)

 cn�� � 0.0247 �K#8�.�� (5.14c)

which is the parameter we are using in our analysis.

83

A summary of results is presented in Table 5-5.

Table 5-5 Drain properties in prototype scale

Mechanical Deformation c.w�� �Zv0ew� 0.005655�I V 3000000#B!

Storage Capacity c.w�� �Zv0ew� 0.0087�I ±!~e��� �0w.Zy �Ze<�0 1�

Drain properties cd�� 0.1614��#8

cn�� 0.0247 �4#80.5�

5.2 Base case analysis

This section presents detailed results from a base case finite element analysis of centrifuge

model test, SSK01, and compares results with experimental measurements reported by Kamai

et al. (2008). The base case analysis assumes laminar flow in the PV drains and includes the sto-

rage effect in each row of drains.

Figure 5-5 shows typical results for flow in one row of drains (#2, see Figure 5-2) during the first

cyclic loading event (10 cycles of loading with amax = 0.69m/s
2
 with period T=0.5s, over a 13s

period). The drain elements enable calculation of the flow rate (Figure 5-5a) and fluid volume

discharged in each row of drains (Figure 5-5b). The actual flow rates in the drain (Figure 5-5a)

exceed the limit for laminar flow at prototype scale but are well within the laminar range at

model scale. The discharge volume increases approximately linearly during the shaking event

(Figure 5-5b). Figure 5-5c compares the displacement computed directly at the top of the drain

with an indirect estimate based on fluid volume discharged by the drain. The indirect calcula-

tion generates higher settlements and reflects other sources of ground movements including

84

cyclic shear-induced volume changes in the sand and fluid inflow from the untreated side of the

centrifuge model.

5.2.1 Predicted Excess Pore Pressures

In Figure 5-6 to Figure 5-8 compare the predicted and measured pore pressures at six points

within the loose Nevada sand in three harmonic shaking events of increased intensity; amax =

0.69, 1.07 and 2.94 m/sec
2
). The points A, B, C are located within the PV drain array; while D, E

and F are at similar locations in the untreated side of the model. It is readily apparent from the

measured data that the PV drains are effective in reducing excess pore pressures generated

within the sand (compare time series for A vs D at the top, B vs E in the middle or C vs F to-

wards the base of the sand).

The numerical analyses provide very good predictions of the measured excess pore pressures in

the middle and lower parts of the untreated sand (points E and F) during shaking at all three

levels of shaking. The analyses underestimate the pore pressures at the top of the untreated

sand (point D) where liquefaction
5
 is measured at all three levels of shaking. These results sug-

gest limitations of the constitutive model (and/or the selected input parameters
6
) for reproduc-

ing the onset of liquefaction in the loose Nevada sand. The numerical analyses also predict

much more rapid dissipation of excess pore pressures after cessation of shaking (observed most

clearly at E and F, Figs. 5-7, 5-8). This latter effect is related to the consolidation coefficient in

5
 The data at D show u ≈ 20kPa. This is approximately equal to the overburden pressure, implying that σ'v ≈ 0 for

all three events. It should also be noted that the pressure transducer at D also sank significantly during these

events (see Fig. 4.5a).
6
 One possible problem are deviations between the actual sand density in the centrifuge model and the relative

density assumed for the PD-MYS02 model parameters.

85

the sand and can reflect an overestimate of the hydraulic conductivity and/or the stiffness

properties of the soil skeleton (linked to input parameters for the loose Nevada sand in the PD-

MYS02 model).

On the 'treated' side of the model, direct comparison of the computed and measured pore

pressures (points A, B and C) should be interpreted with caution. The parameters assumed in

the plane strain finite element model aim to match the average degree of consolidation in the

sand surrounding the drains, but do not reproduce accurately the spatial variation of excess

pore pressures. The finite element model appears to describe quite well the pore pressure

generated at locations B and C at the end of shaking (for all three events), but the analyses

seem to lag the measured development during the cyclic loading.

The analysis predicts minimal pore pressure development at point A (top of sand) compared

with the measured data. This suggests limitations of the selected input parameters of the soil

model, or misleading measurements due to sinking of the pore pressure transducers close to

the soil surface.

5.2.2 Accelerations

Figures 5-9, 5-10, and 5-11 shows a comparable set of analyses and measurements for the hori-

zontal acceleration at points A-F in the three SSK01 shaking events. On the untreated side, the

numerical analysis grossly overestimates the accelerations in the upper part of the sand layer.

For the moderate loading event (amax = 1.07m/s
2
, Fig. 5-10) the data show de-amplification at

point D while for higher intensity loading (amax = 2.94m/s
2
, Fig. 5-11) de-amplification occurs at

both D and E (progression of a liquefaction front from the top to the middle of the sand layer).

86

These results reflect constitutive model limitations in simulating the onset of liquefaction in the

model.

For the treated side of the model, the analyses are generally in reasonable agreement with the

measured acceleration data at C and B, but a significant underestimate of peak accelerations

measured at the top of the sand (point A), especially at higher levels of shaking.

5.2.3 Displacements

Figures 5-12, 5-13, and 5-14 summarize the computed and measured horizontal deformations

at a series of 6 points along the surface of the Yolo loam cap, for the same three shaking events.

The numerical analyses generally underestimates the lateral movements on the untreated side

of the model (points D, E, F) but is in good agreement with the smaller movements measured

above the PV drains. Unfortunately there are no continuous deformation-time data within the

soil mass. Figures 5-16, 5-17, and 5-18 show the numerical simulations of lateral deformations

along two vertical sections (A - treated and B - untreated) during each of the shaking events.

For the untreated side, these figures show that lateral spreading within the loose sand is par-

tially constrained by the overlying Yolo loam cap. This is contrary to the centrifuge data (Fig. 4-

7) where there is a clear displacement discontinuity at the loam-sand interface. This discrepan-

cy again reflects the limitations of the numerical analyses in replicating the observed liquefac-

tion event. There is much smaller lateral spreading on the treated side of the model, confirming

the efficacy of the PV drains in mitigating effects of liquefaction.

Figures 5-18, 5-19 and 5-20 show computed and measured vertical deformations at 6 points

along the surface of the Yolo Loam. The finite element analyses consistently underestimate the

87

surface settlements on the treated side (points A, B and C) at all three levels of shaking. The

comparisons on the untreated side vary widely from large underprediction at D (after low in-

tensity shaking, Fig. 5-18) to significant overprediction at D after more intense shaking (Fig. 5-

20). This behavior is difficult to explain from comparisons at discrete spatial points but become

more apparent when considering the whole field of soil deformations (end of test), Figure 5-21.

Here it can be seen that the numerical predictions relate to a large rotational mechanism within

the untreated side of the model. This behavior appears to exaggerate the measured vertical

surface displacements (D, E, F; Fig. 5-20) and may be attributed, in part, to variations in the gra-

vitational field across the model. In a typical centrifuge test, the effect of the non-uniformity of

the gravitational field tends to create heave on the sides and settlement on the center of the

model. Due to this effect, simulated settlement at points D and E (close to the sides of the

model) is more than the measured one, and at point F (in between the sides and the middle of

the model) the simulated settlements compare much better to the measured ones.

Figure 5-5 Flow and volume of water coming out of drain No2, and comparison of directly and indirectly predicted displacements on the top of the drain during the first shak-

ing event (amax=0.687m/s
2
)

0 2 4 6 8 10 12 14
-2

0

2

4
x 10

-3

Time (s)

F
lo

w
 R

a
te

 (
m

3
/s

)

a. Flow coming out of drain No2 vs Time

0 2 4 6 8 10 12 14
0

2

4

6
x 10

-3

Time (s)

V
o

lu
m

e
 (

m
3
)

b. Volume of water coming out of drain No2 vs Time

0 2 4 6 8 10 12 14
-2

0

2

4
x 10

-3

Time (s)

D
is

p
la

c
e

m
e

n
t

(m
)

c. Vertical displacement on top of drain No2

Indirect

Direct

Laminar limit (model scale)

Solution

Laminar limit (prototype scale)

89

Figure 5-6 Comparison of measured and simulated pore pressures for the first phase of shaking (amax=0.687m/s
2
)

0

10

20

Treated side Untreated side

30

40

50

60

P
o

re
 P

re
s

s
u

re
,
p

 (
k

P
a

)

0 5 10 15 20 25 30

50

60

70

80

Time, t (s)
0 5 10 15 20 25 30

Time, t (s)

Experiment

Simulation

A

B

C

D

E

F

90

Figure 5-7 Comparison of measured and simulated pore pressures for the second phase of shaking (amax=1.071m/s
2
)

0

10

20

Treated side Untreated side

30

40

50

60

P
o

re
 P

re
s

s
u

re
,
p

 (
k

P
a

)

0 5 10 15 20 25 30

50

60

70

80

Time, t (s)
0 5 10 15 20 25 30

Time, t (s) Experiment

Simulation

A

B

C

D

E

F

91

Figure 5-8 Comparison of measured and simulated pore pressures for the third phase of shaking (amax=2.943m/s
2
)

0

10

20

Treated side Untreated side

30

40

50

60

P
o

re
 P

re
s

s
u

re
,
p

 (
k

P
a

)

0 5 10 15 20 25 30
50

60

70

80

90

Time, t (s)
0 5 10 15 20 25 30

Time, t (s) Experiment

Simulation

A

B

C

D

E

F

92

Figure 5-9 Comparison of measured and simulated horizontal accelerations for the first phase of shaking (amax=0.687m/s
2
)

-2

-1

0

1

2
Treated side Untreated side

-2

-1

0

1

2

H
o

ri
z
o

n
ta

l
A

c
c

e
le

ra
ti

o
n

,
αα αα

 (
m

/s
2
)

0 2 4 6 8 10 12

-1

0

1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

A

B

C

D

E

F

93

Figure 5-10 Comparison of measured and simulated horizontal accelerations for the second phase of shaking (amax=1.071m/s
2
)

-2

0

2

Treated side Untreated side

-2

0

2

H
o

ri
z
o

n
ta

l
A

c
c

e
le

ra
ti

o
n

,
αα αα

 (
m

/s
2
)

0 2 4 6 8 10 12
-2

0

2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

A

B

C

D

E

F

94

Figure 5-11 Comparison of measured and simulated horizontal accelerations for the third phase of shaking (amax=2.943m/s
2
)

-5

0

5

10

Treated side Untreated side

-5

0

5

H
o

ri
z
o

n
ta

l
A

c
c

e
le

ra
ti

o
n

,
αα αα

 (
m

/s
2
)

0 2 4 6 8 10 12

-5

0

5

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

A

B

C

D

E

F

95

Figure 5-12 Comparison of measured and simulated horizontal displacements for the first phase of shaking (amax=0.687m/s
2
)

-0.2

-0.1

0

0.1

0.2
Treated side Untreated side

-0.2

-0.1

0

0.1

0.2

H
o

ri
z
o

n
ta

l,
 u

 (
m

)

0 2 4 6 8 10 12

-0.1

0

0.1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

96

Figure 5-13 Comparison of measured and simulated horizontal displacements for the second phase of shaking (amax=1.071m/s
2
)

-0.1

0

0.1

0.2

0.3

Treated side Untreated side

-0.1

0

0.1

0.2

0.3

H
o

ri
z
o

n
ta

l
D

is
p

la
c

e
m

e
n

t,
 u

x
 (

m
)

0 2 4 6 8 10 12
-0.1

0

0.1

0.2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

97

Figure 5-14 Comparison of measured and simulated horizontal displacements for the third phase of shaking (amax=2.943m/s
2
)

-0.1

0

0.1

0.2

0.3

Treated side Untreated side

-0.1

0

0.1

0.2

0.3

H
o

ri
z
o

n
ta

l
D

is
p

la
c

e
m

e
n

t,
 u

x
 (

m
)

0 2 4 6 8 10 12
-0.1

0

0.1

0.2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

Figure 5-15 Horizontal displacements profiles during the first phase of shaking (amax=0.687m/s
2
)

0 5 10 15
-1

0

1

 Time (s)X
-A

c
c

e
le

ra
ti

o
n

 (
m

/s
2
)

Applied X-Acceleration on the bottom Sections

-0.1 0 0.1
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section A

-0.1 0 0.1
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section B

99

Figure 5-16 Horizontal displacements profiles during the second phase of shaking (amax=1.071m/s
2
)

120 125 130 135
-2

0

2

 Time (s)X
-A

c
c

e
le

ra
ti

o
n

 (
m

/s
2
)

Applied X-Acceleration on the bottom Sections

-0.2 0 0.2
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section A

-0.2 0 0.2
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section B

100

Figure 5-17 Horizontal displacements profiles during the third phase of shaking (amax=2.943m/s
2
)

235 240 245 250 255
-5

0

5

 Time (s)X
-A

c
c

e
le

ra
ti

o
n

 (
m

/s
2
)

Applied X-Acceleration on the bottom Sections

-0.5 0 0.5
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section A

-0.5 0 0.5
0

1

2

3

4

5

6

X-Displacement (m)

z
-c

o
o

rd
in

a
te

 (
m

)

Section B

Figure 5-18 Comparison of measured and simulated settlements for the first phase of shaking (amax=0.687m/s
2
)

0

0.02

0.04

Treated side Untreated side

0

0.02

0.04

0.06

0.08

V
e

rt
ic

a
l
S

e
tt

le
m

e
n

t,
 u

y
 (

m
)

0 2 4 6 8 10 12

0

0.05

0.1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

102

Figure 5-19 Comparison of measured and simulated settlements for the second phase of shaking (amax=1.071m/s
2
)

0

0.02

0.04

0.06

Treated side Untreated side

0

0.05

0.1

V
e

rt
ic

a
l
S

e
tt

le
m

e
n

t,
 u

y
 (

m
)

0 2 4 6 8 10 12

0

0.05

0.1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

103

Figure 5-20 Comparison of measured and simulated settlements for the third phase of shaking (amax=2.943m/s
2
)

0

0.05

0.1

0.15

Treated side Untreated side

0

0.05

0.1

0.15

0.2

0.25

V
e

rt
ic

a
l
S

e
tt

le
m

e
n

t,
 u

y
 (

m
)

0 2 4 6 8 10 12

-0.05

0

0.05

0.1

0.15

0.2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Experiment

Simulation

C

B

A

F

E

D

Figure 5-21 Final predicted deformed shape

5.3 Effect of different approximations in PV-drains simulations

5.3.1 Drain resistance

Figure 5-22 compares the pore pressures at two points in the middle of the loose Nevada sand

layer (A - treated, B - untreated) for the base case analysis (laminar PV drains) with computa-

tions assuming perfect drains. The results at A are practically identical for all three loading

events. This result reflects the high transmissivity of the PV drains used in the centrifuge mod-

el.

5.3.2 Drain stiffness

In this section we compare an analysis with laminar drains including the drain stiffness to one

ignoring the drain stiffness. Figure 5-23 compares the pore pressures for the base case analysis

with computations assuming that the drains are infinitely compressible; it is shown that for the

second phase of shaking the predicted pore pressures are higher when the drain stifness effect

is included, whereas at the third phase they are lower. This is attributed to two competing

effects: the drains do not allow the soil to settle, reducing the excess pore pressure, whereas

they impede the soil from undergoing large shear deformations, after the dilation angle,

incresing the excess pore pressure. These effects do not reflect clearly on the predicted

accelerations (Figure 5-24), but are better illustrated in the predicted horizontal displacements

shown in Figure 5-25. It should be noted that in order to model realistically the effect of the

axial drain stiffness the drain should be connected to the soil grid with frictional elements,

something that has not been considered in these analyses.

106

5.3.3 Drain storage capacity

In this section we compare simulations with drains, with and without storage capacity. A com-

parison using laminar drains is presented in Figure 5-26 to Figure 5-28, where the pore pres-

sures, the horizontal accelerations, and the horizontal displacements are plotted. When an

analysis does not consider the effect of storage capacity, the water pressures in the drains at

the clay-sand interface are assumed to stay constant. In an analysis considering the storage ef-

fect, the pore pressure conditions at the interface changes, as the water level inside the drain

increases up the top of the clay layer. Taking into account the effect of storage capacity, in-

creases the simulated excess pore pressures, thus the predicted permanent displacements on

top of the treated side.

5.3.4 Drain turbulence

A comparison of the predicted pore pressures, under the assumption that the flow in the drains

is fully turbulent vs. the assumption that the flow in the drains is laminar, is plotted in Figure

5-29. Due to the significant transmissivity of the drains and the large permeability of the soil

used in the centrifuge model, we cannot see discrepancies between the results using laminar

drains and fully turbulent drains.

Figure 5-22 Comparison of predicted pore pressures using the perfect drains vs. laminar drains assumption (base case: laminar drains)

20

40

60

Treated side Untreated side

20

40

60

P
o

re
 P

re
s

s
u

re
,
p

(k
P

a
)

0 2 4 6 8 10 12

20

30

40

50

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Perfect Drains

Laminar Drains

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

Figure 5-23 Comparison of predicted pore pressures including and ignoring the effect of drain stiffness (base case: incl. drain stiffness)

20

40

60

Treated side Untreated side

20

40

60

P
o

re
 P

re
s

s
u

re
,
p

(k
P

a
)

0 2 4 6 8 10 12

20

30

40

50

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Incl. Drain Stiffness

Ign. Drain Stifness

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

109

Figure 5-24 Comparison of predicted horizontal accelerations including and ignoring the effect of drain stiffness (base case: incl. drain stiffness)

-10

-5

0

5
Treated side Untreated side

-6

-4

-2

0

2

4

H
o

ri
z
o

n
ta

l
A

c
c

e
le

ra
ti

o
n

,
u

x
 (

m
/s

2
)

0 2 4 6 8 10 12

-2

0

2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Incl. Drain Stiffness

Ign. Drain Stiffness

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

110

Figure 5-25 Comparison of predicted horizontal displacements including and ignoring the effect of drain stiffness (base case: incl. drain stiffness)

-0.1

0

0.1

0.2

0.3
Treated side Untreated side

-0.1

0

0.1

0.2

0.3

H
o

ri
z
o

n
ta

l
D

is
p

la
c

e
m

e
n

t,
 u

x
 (

m
)

0 2 4 6 8 10 12
-0.1

0

0.1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Incl. Drain Stiffness

Ign. Drain Stiffness

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

Figure 5-26 Comparison of predicted pore pressures illustrating the effect of drain storage (base case: incl. drain storage)

20

40

60

Treated side Untreated side

20

40

60

P
o

re
 P

re
s

s
u

re
,
p

(k
P

a
)

0 2 4 6 8 10 12

20

30

40

50

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Ignor. Drain Storage

Incl. Drain Storage

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

112

Figure 5-27 Comparison of predicted horizontal accelerations illustrating the effect of drain storage (base case: incl. drain storage)

-5

0

5

Treated side Untreated side

-6

-4

-2

0

2

4

H
o

ri
z
o

n
ta

l
A

c
c

e
le

ra
ti

o
n

,
a

x
 (

m
/s

2
)

0 2 4 6 8 10 12

-2

0

2

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Ign. Drain Storage

Incl. Drain Storage

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

113

Figure 5-28 Comparison of predicted horizontal displacements illustrating the effect of drain storage (base case: incl. drain storage)

-0.1

0

0.1

0.2

0.3
Treated side Untreated side

-0.1

0

0.1

0.2

0.3

H
o

ri
z
o

n
ta

l
D

is
p

la
c

e
m

e
n

t,
 u

x
 (

m
)

0 2 4 6 8 10 12
-0.1

0

0.1

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Ignor. Drain Storage

Incl. Drain Storage

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

Figure 5-29 Comparison of predicted pore pressures using laminar vs. fully turbulent drains (base case: laminar drains)

20

40

60

Treated side Untreated side

20

40

60

P
o

re
 P

re
s

s
u

re
,
p

(k
P

a
)

0 2 4 6 8 10 12

20

30

40

50

Time, t (s)
0 2 4 6 8 10 12

Time, t (s)

Laminar Drains

Fully Turbulent Drains

Third Phase (a
max

=2.943m/s
2
)

Second Phase (a
max

=1.071m/s
2
)

First Phase (a
max

=0.687m/s
2
)

6 Summary, Conclusions, and Recommendations

This thesis focuses on three different issues: (a) it establishes a method to estimate the re-

sponse of soil with vertical drains, (b) it discusses similitude issues for centrifuge modeling, and

(c) it performs validation analyses of the implemented numerical methods.

6.1 Simulating Vertical Drains

This thesis used an uncoupled theory of mechanical deformation and flow inside a drain in or-

der to investigate the effect of earthquake drains during cyclic loading of sandy deposits. The

mechanical part of the drain’s response is idealized as a truss
7
. The pore pressure flow part of

the drain’s response is assumed to be either fully turbulent or laminar.

Classes written in C++ have been implemented in the OpenSees FEM framework in order to si-

mulate the drains. Both formulations have been shown to work effectively, and give reasonable

results, within acceptable convergence levels and speed. For the fully turbulent drains, a consis-

tent Jacobian integration scheme is used due to its superior performance compared to the con-

tinuous Jacobian.

The effect of storage capacity has also been successfully modeled. Care should be taken by re-

searchers to achieve strict convergence when they use this feature, since small spurious per-

turbations in the predicted flow inside the drain could significantly affect the storage effect.

7
 Hence the drain carries axial load applied to through nodal connections by the adjacent soil.

116

6.2 Similitude Issues

This thesis investigated similitude issues having to do with the design of the model scale drains.

It is shown that if both in the model scale and in the prototype scale the flow is laminar then

the transmissivity parameter Cl is N
3
 times larger in the prototype scale. It is also shown that if

both flow are turbulent, then the transmissivity parameter Ct is N
2.5

 times larger in the proto-

type scale.

 Also, it is shown that the Reynolds number in prototype scale and in model scale in the drains

is different. It is actually possible that model scale flow is laminar whereas prototype scale flow

is turbulent. For this situation, a methodology is proposed for experimental design, in order to

choose a model-scale diameter for the drains (where flow is laminar) that best fits the proto-

type response (where fully turbulent flow is expected), the prototype diameter D
P
 should cor-

respond to model diameter D
M

 of:

 E} � ¡ 76.8 µ�xe��� � 8Jl E��2 � C � �¥
,K

(6.1)

6.3 Validation

The implementation of the PV drains has been validated against centrifuge experiments per-

formed at UC-Davis by Kamai et al. (2008). Results showed great accordance with the experi-

ment. Discrepancies between the simulated and experimental results are attributed mostly to

uncertainties of the soil permeability and relative density. The validation illustrates that the sto-

rage effect is significant for the numerical analysis of the cyclic response of soils treated with

117

PV-drains. Also, with the design parameters used in the centrifuge model, it is found that the

drains behave almost as perfect drains. A different set of tests is needed to evaluate the differ-

ences between perfect drain, laminar drain, or fully turbulent drain assumption.

6.4 Future research

The following issues need to be addressed in future research:

• Further investigate the need to model flow in the drains as fully turbulent, by examining

real-life scenarios rather than model scale setups.

• Improve the constitutive soil model predictions. Most important is the ability to be able

to simulate the response of layers of the same sand at different stress levels, with dif-

ferent void ratios using the same set of parameters.

• Implement the mechanical deformation of the drain using beam theory rather than

truss theory. This would allow use of the drain elements for simulation of the response

of layers improved with stone columns.

• Apart from acquiring expertise in the simulation of a geotechnical earthquake engineer-

ing problem consisting of shear wave propagation in soil layers with pre-installed PV

drains, it is very important issue to create design charts for engineers. These should give

recommendations for engineers for various levels of shaking (1), number of cycles (2),

frequency of loading (3), stress level (4), and soil type (5), in order to:

o evaluate the applicability of the improvement method by means of estimating

the maximum pore pressure ratio (umax/σv0)

o estimate the spacing and the types of the drains

o estimate the size of the zone that needs improvement

118

7 Bibliography
Andrianopoulos, K. I. (2006). Numerical Modeling of Static & Dynamic Behavior of Elastoplastic

Soils. Athens: Geotechnical Division NTUA (in Greek).

Arulanandan, K., & Subico, J. J. (1992). Post liquefaction settlement of sands. Proceedings of the

Wroth Memorial Symposium. England: Oxford University.

Biot, M. (1956). Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I.

Low-Frequency range. The Journal of the Acoustical Society of America , 28 (2), 168-178.

Conlee, C., Gallagher, P., Kamai, R., Boulanger, R., & Rix, G. (2008). Evaluation of the

Effectiveness of Colloidal Silica for Liquefaction Remediation: Centrifuge Data Report for CTC01.

Center for Geotechnical Modeling, University of California at Davis.

Corral, G. Cyclic Undrained Behavior of Loose Sand Treated by Colloidal Silica. MIT. Unpublished.

Dafalias, Y. F., & Manzani, M. T. (2004). Simple Plasticity Sand Model Accounting for Fabric

Change Effects. Journal of Engineering Mechanics , 622-634.

Dafalias, Y. (1994). Overview of constitutive models used in VELACS. Verification of Numerical

Procedures for the Analysis of Soil Liquefaction Problems. Rotterdam: A.A. Balkema Publishers.

DeAlba, P., Chan, C. K., & Seed, H. B. (1975). Determination of Soil Characteristics by Large Scale

Laboratoty Tests. Eathquake Engineering Research Center.

Elgamal, A., Yang, Z., & Parra, E. (2002). Computational Modeling of Cyclic Mobility and Post-

Liquefaction Site Response. Soil Dynamics and Earthquake Engineering , 22, 259-271.

Gallagher, P. M., & Mitchell, J. (2002). Influence of Colloidal Silica Grout on Liquefaction

Potential and Cyclic Undrained Behavior of Loose Sand. Soil Dynamics and Earthquake

Engineering , 22, 1017-1026.

Gallagher, P. M., Pamuk, A., & Abdoun, T. (2007). Stabilization of Liquefiable Soils Using

Colloidal Silica Grout. Journal of Materials in Civil Engineering , 19 (1), 33-40.

Hird, C, C., Pyrah, I. C., & Russell, D. (1992). Finite Element Modelling of Vertical Drains beneath

Embankments on Soft Ground. Geotechnique , 42 (3), 499-511.

Hughes, T., & Pister, K. (1978). Consistent linearization in mechanics of solids and structures.

Computers and Structures , 8, 391-397.

119

Jeremic, B. (2008). Lecture Notes on Computational Geomechanics: Inelastic Finite Elements for

Pressure Sensitive Materials. Department of Civil and Environmental Engineering, University of

California, Davis.

Kamai, R., Howell, R., Conlee, C., Boulanger, R., Marinucci, A., Rathje, E., et al. (2008).

Evaluation of the Effectiveness of Prefabricated Vertical Drains for Liquefaction Remediation -

Centrifuge Data Report for RNK01. Department of Civil & Environmental Engineering, College of

Engineering, University of California at Davis.

Kamai, R., Kano, S., Conlee, C., Marinucci, A., Boulanger, R., Rathje, E., et al. (2008). Evaluation

of the Effectiveness of Prefabricated Vertical Drains for Liquefaction Remediation: Centrifuge

Data Report for SSK01. Center for Goetechnical Modeling, University of California at Davis.

Kammerer, A. M., Pestana, J. M., & Seed, R. (2002). Undrained response of monterey 0/30 sand

under multidirectional cyclic simple shear loading conditions. University of California, Berkeley.

Kodaka, T., Oka, F., Ohno, Y., Takyu, T., & Yamasaki, N. (2003). Modeling of Cyclic Deformation

and Strength Characteristics of Colloidal Silica Treated Sand. Geomechanics 2003 (pp. 205-216).

ASCE.

Kolymbas, D. (2000). Introduction to Hypoplasticity. Taylor & Francis.

Lambe, T. W. (1973). Predictions in soil engineering. Geotechnique , 23 (2), 149-202.

Lee, K., & Albaisa, A. (1974). Earthquake Induced Settlements in Saturated Sands. Journal of the

Geotechnical Engineering Division , 100 (GT4), 387-406.

Li, X. S., & Dafalias, Y. F. (2002). Constitutive Modeling of Inherently Anisotropic Sand Behavior.

Journal of Geotechnical and Geoenvironmental Engineering , 128 (10), 868-880.

Liao, H., Huang, C., & Chao, B. (2003). Liquefaction Resistance of a Colloidal Silica Grouted Sand.

Grouting 2003, (pp. 1305-1313).

Mazzoni, S., McKenna, F., & Fenves, G. L. (2005). Opensees Command Language Manual.

Nunez, I. L. (1988). Driving and tesion loading of piles in sand on a centrifuge. Centrifuge 1988,

(pp. 353-362). Balkema, Rotterdam.

Oka, F., Yashima, A., Tateishi, A., Taguchi, Y., & Yamashita, S. (1999). A cyclic elasto-plastic

model constitutive model for sand considering a plastic-strain dependence of the shear

modulus. Geotechnique , 49 (5), 661-680.

120

Onoue, A. (1988). Diagrams considering Well Resistance for Designing Spacing Ratio of Gravel

Drains. Soils and Foundations , 28 (3), 160-168.

Onoue, A., Mori, N., & Takano, J. (1987). In-situ experiment and analysis on well resistance of

gravel drains. Soils and Foundations , 27 (2), 42-60.

Papadimitriou, A. G., & Bouckovalas, G. D. (2001). Plasticity Model for Sand under Small and

Large Cyclic Strains: a Multi-axial Formulation. Soil Dynamics and Earthquake Engineering , 22

(3), 191-204.

Papadimitriou, A. G., Bouckovalas, G. D., & Dafalias, Y. F. (2001). Plasticity Model for Sand under

Small and Large Cyclic Strains. Journal of Geotechnical and Geoenvironmental Engineering , 127

(11), 973-983.

Papadimitriou, A., Moutsopoulou, M.-E., Bouckovalas, G., & Brennan, A. (2007). Numerical

Investigation of Liquefaction Mitigation using Gravel Drains. 4th International Conference on

Earthquake Geotechnical Engineering. Thessaloniki - GREECE 2007: 4ICEGE.

Pestana, J. M., & Whittle, A. J. (2002). Evaluation of a constitutive model for clays and sands:

Part I - sand behaviour. Iinternational Journal for Numerical and Analytical Methods in

Geomechanics , 26, 1097-1121.

Pestana, J. M., & Whittle, A. J. (2002). Evaluation of a constitutive model for clays and sands:

Part II - clay behaviour. Iinternational Journal for Numerical and Analytical Methods in

Geomechanics , 26, 1123-1146.

Pestana, J. M., & Whittle, A. J. (1999). Formulation of a unified constitutive model for clays and

sands. Iinternational Journal for Numerical and Analytical Methods in Geomechanics , 23, 1215-

1243.

Pestana, J. M., Hunt, C. E., Goughnour, R. R., & Kammerer, A. M. (1997). Effect of Storage

Capacity on Vertical Drain Performance in Liquefiable Sand Deposits.

Prevost, J. (1985). A Simple Plasticity Theory for Frictional Cohesionless Soils. Soil Dynamics and

Earthquake Engineering , 4 (1), 9-17.

Randolph, M. F., Cassidy, M. J., Gourvenec, S. M., & Erbrich, C. (2005). Challenges of offshore

geotechnical engineering. Proceedings of the 16th International Conference on Soil Mechanics

and Geotechnical Engineering, (pp. 123-176). Osaka, Japan.

Remaud, D. (1999). Pieux sous charges latérales: Etude expérimentale de l'effet de groupe.

Thése de Doctorat de l'Université de Nantes (in French).

121

Schofield, A. (1980). Cambridge geotechnical centrifuge operations. Géotechnique , 25 (4), 227-

268.

Seed, H. B., & Booker, J. R. (1977). Stabilization of Potentially Liquefiable Sand Deposits using

Gravel Drains. Journal of the Geotechnical Engineering Division , 103 (GT7), 757-768.

Simo, J., & Hughes, T. (1998). Computational Inelasticity. New York: Springer-Verlang.

Spencer, L., Rix, G., & Gallagher, P. (2007). Dynamic Properties of Colloidal Silica Gel and Sand

Mixtures. Fourth International Conference on Earthquake Geotechnical Engineering.

Stone, K., & Muir, W. (1992). Effects of dilatancy and particle size observed in model tests on

sand. Soils and Foundations , 32 (4), 43-47.

Ternet, O. (1999). Reconstitution et caractérization des massifs de sable: application aux essais

en centrifugeuse et en chambre de calibration. Thése de doctorat . Université de Caen (in

French).

Towhata, I. (2007). Developments of Soil Improvement Technologies for Mitigation of

Liquefaction Risk. 4th Internationl Conference on Earthquake Geotechnical Engineering (pp.

355-383). Thessaloniki: Springer.

Whittle, A., & Kavvadas, M. (1994). Formulation of MIT-E3 Constitutive Model for

Overconsolidated Clays. Journal of Geotechnical Engineering , 120 (1), 173-198.

Yang, Z., Elgamal, A., & Parra, E. (2003). Computational Model for Cyclic Mobility and

Associated Shear Deformation. Journal of Geotechnical and Geoenvironmental Engineering ,

129 (12), 1119-1127.

Zienkiewicz, O., Chan, A., Pastor, M., Schrefler, B., & Shiomi, T. (1999). Computational

Geomechanics. Chichester: John Wiley & Sons Ltd.

122

Appendix A

One-dimensional dynamic response of a fully saturated soil column

The reference problem chosen is finding the steady state dynamic response of a fully saturated

soil column in which free drainage and a sinusoidal pressure are applied at the top (Zienkiewicz

et al, 1999). The material is linear elastic and the pore water is considered to be incompressible.

 � � � ³ � � (A.1)

 & � -�-´ (A.2)

 �� � E � & (A.3)

 y�y´ � ���
 ���� (A.4)

 �y�y´ � �	��
 �	� ��
 �	<# �� (A.5)

 &�
 y�y´ � ���� 	 (A.6)

where σ is the vertical stress, σ’ is the effective stress, ε is the vertical strain, u is the vertical

displacement, D is the one-dimensional compression modulus, ρ is the density of the total

composite, ρf is the density of the fluid phase, w is the pore water displacement relative to the

soil skeleton, Kf is the compressibility of the fluid phase, p is the pore water pressure and n is

the porosity. From these equations we can get a system of ordinary differential equations of u

and w:

 7E
 	� :yI�y´I
 	� y�Iy´I � ���
 �	�� (A.7)

 ¦yI�y´I
 y�Iy´I ª 	� � �	��
 �	� ��
 �	<# �� (A.8)

123

Next we apply separation of variables to sole the above system. In the case of a sinusoidal exci-

tation:

 G � G�Zµ¶n (A.9)

the solution of the σ, u, w variables is of the form of

 ·Zµ¶n (A.10)

where X is a space function. Using the above we have:

 � � �̧Zµ¶n (A.11)

 � � �¹Zµ¶n (A.12)

 7E
 	� :yI�̧y´I
 	� y�¹ Iy´I � �ºI��̧ � ºI�	�¹
(A.13)

 ¦yI�̧y´I
 y�¹Iy´Iª 	� � �ºI�	�̧ � ºI �	� �¹
 eº �	<# �¹
(A.14)

Note that the results will be complex numbers. We define:

 » � 	�E
 	� (A.15)

 ¼ � �	� (A.16)

 F|I � E
 	��
(A.17)

 ´½ � D́ (A.18)

 � � 2°º (A.19)

 �{ � 2DF| (A.20)

 Π, � 7 2¼°: #< ��{I (A.21)

124

 ΠI � °I ¦�{�ªI (A.22)

The previous equations take the following form:

 yI�̧y´I
 » yI�¹y´I � �ΠI�̧ � ¼ΠI�¹
(A.23)

 » yI�̧y´I
 » yI�¹y´I � �¼ΠI�̧ � ¼� ΠI�¹
 eΠ, �¹
(A.24)

The above equations can be written in a canonical form:

 yI�̧y´I � ¼ΠI � ΠI1 � » �̧
 ¼� ΠI � eΠ, � ¼ΠI 1 � » �¹

(A.25)

 yI�¹y´I � �¼ΠI �
'¼ � 1(ΠI»1 � »» �̧
 �¼�
 eΠ, � »'

¼� ΠI � eΠ, � ¼ΠI (1 � » » �¹

(A.26)

And we define:

 U � ¼ΠI � ΠI1 � »
(A.27)

 � � ¼� ΠI � eΠ, � ¼ΠI 1 � »

(A.28)

 Γ � �¼ΠI � '¼ΠI � ΠI(»1 � »»

(A.29)

Δ � �¼�
 eΠ, � »'
¼� ΠI � eΠ, � ¼ΠI (1 � » »

(A.30)

The solution of the system of PDE’s is:

 � � cµ�ZµÀÁÂ½ (A.31)

 � � cµ'CµI � U(ZµÀÁÂ½ (A.32)

125

Where λi’s are the solutions of the characteristic equation:

 CK � 'Α � Δ(CI
 Α � Δ � Β � Γ � 0 (A.33)

Next, we apply the boundary conditions. At the surface:

 ½́ � 0, �̧ � Ģ, �½ � 0 ` (A.34)

 y�̧y´½ � ĢDE (A.35)

 y�¹y´½ � � ĢDE (A.36)

And at the bottom,

 ´½ � 1, �̧ � 0, y�½y´½ � 0 ` (A.37)

 �̧ � 0 (A.38)

 �¹ � 0 (A.39)

The boundary conditions give us the following system of equations that should be solved:

 cµCµ � ĢDE� (A.40)

 cµ$CµI � U%Cµ � ĢDE (A.41)

 cµCµ � 0 (A.42)

 cµ$CµI � U%Cµ � 0 (A.43)

Finally, we need to estimate p, the pore pressure vs depth:

 �y�y´ � �	��
 �	� ��
 �	<# �� (A.44)

 y�y´ � ÆºI�	�̧
 ºI �	� �¹ � eº �	<# �¹Ç Zµ¶n (A.45)

 y� � ÆºI�	�̧
 ºI �	� �¹ � eº �	<# �¹Ç Zµ¶ny´½D (A.46)

126

 � � � ÆºI�	�̧
 ºI �	� �¹ � eº�	<# �¹Ç Zµ¶ny ½́DÂ½
� (A.47)

 � � 7ºI cµ ΒCµ ZµÀÁÂ½+,
 '�	� ºI � �	< e º#(cµCµ 'CµI � Α('ZµÀÁÂ½ � 1(: D (A.48)

In order to find a solution to u-p approximation of this problem, we omit the relative accelera-

tion of the pore fluid to the soil skeleton:

 yI�̧y´I
 » yI�¹y´I � �ΠI�̧
(A.49)

 » yI�̧y´I
 » yI�¹y´I � �¼ΠI�̧
 eΠ, �¹
(A.50)

The solution is the same as above, except for the fact than A, B, Γ, and Δ are defined:

 U � ¼ΠI � ΠI1 � »
(A.51)

 � � � eΠ, 1 � »

(A.52)

 Γ � �¼ΠI � '¼ΠI � ΠI(»1 � »»

(A.53)

Δ � eΠ, � »'�
eΠ, (1 � » »

(A.54)

127

Appendix B

Matlab Code Solving Analytically the full formulation of the dynamic re-

sponse of a soil column (Figure 2-1)
function [u max_u p max_p w H L]=coupl_1d(t)
% This function solves analytically the 1d coupled (pore
% pressure-displacement) dynamic response problem of a soil column.
% t is the time of interest
% It uses the real part of exp(i*omega*t) so the excitation is a cosine

K_f=2200000; % Volumetric compressibility of the fluid
n=0.333; % Porosity
E=30000; % Elastic modulus of the soil skeleton
v=0.3; % Poisson’s ratio
rho_f=1.; % Fluid density
rho=2.; % Average density of multi-phase medium
L=10; % Height of soil column
omega=10.; % Natural Frequency of the Applied Load
q=1; % Amplitude of the Applied Load
g=10; % Acceleration of gravity
kappa=0.2; % Permeability (Hydraulic Conductivity)

rho_dry=rho-n*rho_f
e=n/(1-n)

D_oned=E*(1-v)/((1+v)*(1-2*v))
k=(K_f/n)/(D_oned+K_f/n)
V_c2=(D_oned+K_f/n)/rho;
beta=rho_f/rho
sqrt(V_c2)

T=2*pi/omega
T_star=2*L/sqrt(V_c2);

Pi_1=(2/beta/pi)*kappa*T/g/(T_star^2)
Pi_2=pi^2*(T_star/T)^2

% Now we solve the system of differential equations:
% Look at the theory
% The equivalent equations are:
% d2u/dz2=A*u+B*w
% d2w/dz2=C*u+D*w
% The general solution is:
% u=Ci*b*e^(lambda_i*z) (Einstein summation convention)

A=(beta*Pi_2-Pi_2)/(1-k);
B=(beta/n*Pi_2-i/Pi_1-beta*Pi_2)/(1-k);
C=-beta*Pi_2-k/(1-k)*(beta*Pi_2-Pi_2);
C=C/k;
D=-beta/n*Pi_2+i/Pi_1-k/(1-k)*(beta/n*Pi_2-i/Pi_1-beta*Pi_2);
D=D/k;

% Now we create the characteristic polynomial

128

% The solution of the characteristic polynomial are the lambda's
P_char=[1 0 -(A+D) 0 (A*D-B*C)];
lambda=roots(P_char);

if (A*D-B*C)==0
 'Beware A*D-B*C=0'
end

if (A-D)^2+4*B*C==0
 'Beware (A-D)^2+4*B*C=0'
end

% We solve the system L_m*X=R
% The solution of this system is the C_i's
L_m=[exp(lambda(1)) exp(lambda(2)) exp(lambda(3)) exp(lambda(4));...
 (lambda(1)^2-A)*exp(lambda(1)) (lambda(2)^2-A)*exp(lambda(2)) (lamb-

da(3)^2-A)*exp(lambda(3)) (lambda(4)^2-A)*exp(lambda(4));...
 lambda(1) lambda(2) lambda(3) lambda(4);...
 (lambda(1)^2-A)*lambda(1) (lambda(2)^2-A)*lambda(2) (lambda(3)^2-

A)*lambda(3) (lambda(4)^2-A)*lambda(4)];

R=[0 ; 0; q*L/D_oned/B; -q*L/D_oned];
X=L_m\R;

% t=1 % The absolute time

n_inc=1000;
L_inc=L/n_inc;
z=0;
i_n=0;
H=0;

% We calculate the displacements
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;
 u(i_n)=0;
 for i_it=1:4
 u(i_n)=u(i_n)+X(i_it)*B*exp(lambda(i_it)*z);
 end
 temp_u=u(i_n);
 u(i_n)=abs(u(i_n));
 max_u(i_n)=u(i_n);
 u(i_n)=u(i_n)*real(exp(i*(omega*t-phase(temp_u))));
 H(i_n)=z*L;
end

% We calculate the fluid displacement
z=0;
i_n=0;
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;
 w(i_n)=0;
 for i_it=1:4

129

 w(i_n)=w(i_n)+X(i_it)*(lambda(i_it)^2-A)*exp(lambda(i_it)*z);
 end
 temp_w=w(i_n);
 w(i_n)=abs(w(i_n));
 w(i_n)=w(i_n)*real(exp(i*(omega*t-phase(temp_w))));
end

% We calculate the pore pressure
z=0;
i_n=0;
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;
 p(i_n)=0;
 for i_it=1:4

p(i_n)=p(i_n)+omega^2*rho_f*X(i_it)*B/lambda(i_it)*(exp(lambda(i_it)*z)-

1)+...
 (rho_f*omega^2/n-rho_f*g*i*omega/kappa)*X(i_it)*(lambda(i_it)^2-

A)/lambda(i_it)*...
 (exp(lambda(i_it)*z)-1);
 end
 p(i_n)=p(i_n)*L;
 temp_p=p(i_n);
 p(i_n)=abs(p(i_n));
 max_p(i_n)=p(i_n);
 p(i_n)=p(i_n)*real(exp(i*(omega*t-phase(temp_p))));
end

130

Appendix C

Matlab Code Solving Analytically the u-p formulation of the dynamic re-

sponse of a soil column
function [u max_u p max_p w H L]=coupl_1d_up(t)
% This function solves analytically the 1d coupled (pore
% pressure-displacement) dynamic response problem of a soil column.
% This function follows the u-p formulation ignoring the acceleration terms
% for the pore fluid.
% t is the time of interest
% It uses the real part of exp(i*omega*t) so the excitation is a cosine

K_f=2200000; % Volumetric compressibility of the fluid
n=0.333; % Porosity
E=30000; % Elastic modulus of the soil skeleton
v=0.3; % Poisson’s ratio
rho_f=1; % Fluid density
rho=2.; % Average density of multi-phase medium
L=10; % Height of soil column
omega=10.; % Natural Frequency of the Applied Load
q=1; % Amplitude of the Applied Load
g=10; % Acceleration of gravity
kappa=0.2; % Permeability (hydraulic conductivity)

rho_dry=rho-n*rho_f
e=n/(1-n)

D_oned=E*(1-v)/((1+v)*(1-2*v))
k=(K_f/n)/(D_oned+K_f/n)
V_c2=(D_oned+K_f/n)/rho
beta=rho_f/rho
sqrt(V_c2)

T=2*pi/omega
T_star=2*L/sqrt(V_c2);

Pi_1=(2/beta/pi)*kappa*T/g/(T_star^2)
Pi_2=pi^2*(T_star/T)^2

% Now we solve the system of differential equations:
% Look at the theory
% The equivalent equations are:
% d2u/dz2=A*u+B*w
% d2w/dz2=C*u+D*w
% The general solution is:
% u=Ci*b*e^(lambda_i*z) (Einstein summation convention)

A=(beta*Pi_2-Pi_2)/(1-k);
B=(-i/Pi_1)/(1-k);
C=-beta*Pi_2-k/(1-k)*(beta*Pi_2-Pi_2);
C=C/k;
D=i/Pi_1-k/(1-k)*(-i/Pi_1);
D=D/k;

131

% Now we create the characteristic polynomial
% The solution of the characteristic polynomial are the lambda's
P_char=[1 0 -(A+D) 0 (A*D-B*C)];
lambda=roots(P_char);

if (A*D-B*C)==0
 'Beware A*D-B*C=0'
end

if (A-D)^2+4*B*C==0
 'Beware (A-D)^2+4*B*C=0'
end

% We solve the system L_m*X=R
% The solution of this system is the C_i's
L_m=[exp(lambda(1)) exp(lambda(2)) exp(lambda(3)) exp(lambda(4));...
 (lambda(1)^2-A)*exp(lambda(1)) (lambda(2)^2-A)*exp(lambda(2)) (lamb-

da(3)^2-A)*exp(lambda(3)) (lambda(4)^2-A)*exp(lambda(4));...
 lambda(1) lambda(2) lambda(3) lambda(4);...
 (lambda(1)^2-A)*lambda(1) (lambda(2)^2-A)*lambda(2) (lambda(3)^2-

A)*lambda(3) (lambda(4)^2-A)*lambda(4)];

R=[0 ; 0; q*L/D_oned/B; -q*L/D_oned];
X=L_m\R;

% t=1 % The absolute time

n_inc=1000;
L_inc=L/n_inc;
z=0;
i_n=0;
H=0;

% We calculate the displacements
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;
 u(i_n)=0;
 for i_it=1:4
 u(i_n)=u(i_n)+X(i_it)*B*exp(lambda(i_it)*z);
 end
 temp_u=u(i_n);
 u(i_n)=abs(u(i_n));
 max_u(i_n)=u(i_n);
 u(i_n)=u(i_n)*real(exp(i*(omega*t-phase(temp_u))));
 H(i_n)=z*L;
end

% We calculate the fluid displacement
z=0;
i_n=0;
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;

132

 w(i_n)=0;
 for i_it=1:4
 w(i_n)=w(i_n)+X(i_it)*(lambda(i_it)^2-A)*exp(lambda(i_it)*z);
 end
 temp_w=w(i_n);
 w(i_n)=abs(w(i_n));
 w(i_n)=w(i_n)*real(exp(i*(omega*t-phase(temp_w))));
end

% We calculate the pore pressure
z=0;
i_n=0;
while z<=1
 i_n=i_n+1;
 z=z+L_inc/L;
 p(i_n)=0;
 for i_it=1:4

p(i_n)=p(i_n)+omega^2*rho_f*X(i_it)*B/lambda(i_it)*(exp(lambda(i_it)*z)-

1)+...
 (-rho_f*g*i*omega/kappa)*X(i_it)*(lambda(i_it)^2-

A)/lambda(i_it)*...
 (exp(lambda(i_it)*z)-1);
 end
 p(i_n)=p(i_n)*L;
 temp_p=p(i_n);
 p(i_n)=abs(p(i_n));
 max_p(i_n)=p(i_n);
 p(i_n)=p(i_n)*real(exp(i*(omega*t-phase(temp_p))));
end

133

Appendix D

Opensees tcl/tk Code to test the u-p approximation
This analysis solve the dynamic response of a soil column

upon the application of a constant load on top

The problem is saturated

wipe

model BasicBuilder -ndm 2 -ndf 3

Below we define variables for the analysis

set E 30000

set nu 0.3

set numXele 1; # number of elements in x (H) direction

set numYele 40; # number of elements in y (V) direction

set xSize .5; # Element size in x direction

set ySize .25; # Element size in z direction

set numXnode [expr $numXele+1]

set numYnode [expr $numYele+1]

set smass 2.;

set peak_shear_strain 10000.

set c 100.

set G [expr $E/(2*(1+$nu))]

set B [expr $E/(3*(1-2*$nu))]

set i 1

set j 1

set pi 3.141593

Define material

nDMaterial PressureIndependMultiYield 1 2 $smass $G $B $c $peak_shear_strain\

0. 100. 0. 1

Define nodes

for {set i 1} {$i <= $numXnode} {incr i 1} {

for {set j 1} {$j <= $numYnode} {incr j 1} {

set xdim [expr ($i-1)*$xSize]

set ydim [expr ($j-1)*$ySize]

set nodeNum [expr $i + ($j-1)*$numXnode]

node $nodeNum $xdim $ydim

}

}

define elements

set k 0.2

set k [expr $k/10/1.] ;#actual value used in computation

set gravX 0.0

set gravY 0.0

set press 0.0

set bulk_f 2.2e6

set n_por 0.333

set bulk [expr $bulk_f/$n_por]

for {set i 1} {$i <= $numXele} {incr i 1} {

for {set j 1} {$j <= $numYele} {incr j 1} {

set eleNum [expr $i + ($j-1)*$numXele]

set n1 [expr $i + ($j-1)*$numXnode]

set n2 [expr $i + ($j-1)*$numXnode + 1]

set n4 [expr $i + $j*$numXnode + 1]

set n3 [expr $i + $j*$numXnode]

element quadUP $eleNum $n1 $n2 \

$n4 $n3 1.0 1 $bulk 1. $k $k $gravX $gravY $press

}

}

134

#vees

Fix Base:

for {set i 1} {$i <= $numXnode} {incr i 1} {

fix $i 1 1 0

}

Fix X Direction: (To all but the top nodes)

for {set i [expr $numXnode+1]} {$i <= [expr $numXnode*($numYnode-1)]} {incr i 1} {

fix $i 1 0 0

}

Drainage on top: (And x-Fixity)

for {set i 1} {$i <= $numXnode} {incr i 1} {

fix [expr $i + ($numYnode-1)*$numXnode] 1 0 1;

}

set omega 10.

Calculate the period from the timeseries

set T [expr 2*$pi/$omega]

set Timeseries "Sine 0.0 50. $T -shift [expr $pi/2]"

pattern Plain 1 $Timeseries {

for {set i 1} {$i <= $numXnode} {incr i 1} {

load [expr $i + ($numYnode-1)*$numXnode] 0. -.25 0.;

}

}

#build

recorder Node -file output_disp.txt -time \

-node 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39\

41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 -dof 1 2 disp

recorder Node -file porepress.txt -time \

-node 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39\

41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 -dof 3 vel

recorder Node -file output_react.txt -time -node 1 2 -dof 1 2 reaction

#recorder Element -file output_stress.txt material 1 stiffness

set gamma 0.5

test NormDispIncr 1.0e-5 10 0;

algorithm Newton

integrator Newmark $gamma [expr pow($gamma+0.5, 2)/4] \

0.00 0.0 0.002 0.0

analysis Transient

set startT [clock seconds]

analyze 500 0.01

set endT [clock seconds]

puts "Execution time: [expr $endT-$startT] seconds."

135

Appendix E

Opensees tcl/tk code to test the constitutive model
model BasicBuilder -ndm 2 -ndf 3

node 1 0.000 0.000

node 2 1.000 0.000

node 3 0.000 1.000

node 4 1.000 1.000

Depending on the material one should comment/uncomment the respective material

Dense

nDMaterial PressureDependMultiYield02 1 2 2.1 130000 260000 36.5 0.1 101. .5 26.

0.013 0.0 0.3 0.0

Loose

nDMaterial PressureDependMultiYield02 1 2 1.7 60000 160000 31. 0.1 101. .5 31. 0.087

0.18 0. 0.0

Medium-Loose

nDMaterial PressureDependMultiYield02 1 2 1.8 90000 220000 32. 0.1 101. .5 26. 0.067

0.23 0.27 0.77

Soft Clay

nDMaterial PressureIndependMultiYield 1 2 2.1 13000 65000 18. 0.1

Define Elements

set gravX 0.0

set gravY 0.

set press 0.

set bulk_f 2.2e9

set n_por 0.333

set bulk [expr $bulk_f/$n_por]

element quadUP 1 3 1 2 4 1.0 1 $bulk 1. [expr 0.00003/9.81/1.] [expr 0.00003/9.81/1.]

$gravX $gravY

fix 1 1 1 0

fix 2 1 1 0

fix 3 0 0 1

fix 4 0 0 1

equalDOF 3 4 1 2

Depending on the excitation one should change the Timeseriesini factor

set Timeseriesini "Constant -factor 50."

pattern UniformExcitation 1 1 -accel $Timeseries;

pattern Plain 1 $Timeseriesini {

load 4 0. -.5 0

load 3 0. -.5 0

}

Set material to elastic for gravity loading

updateMaterialStage -material 1 -stage 0

GRAVITY APPLICATION (elastic behavior)

set gamma 1.5

create the SOE, ConstraintHandler, Integrator, Algorithm and Numberer

integrator Newmark $gamma [expr pow($gamma+0.5, 2)/4] \

0.00 0.0 0.002 0.0

test NormDispIncr 1.0e-5 5 1;

constraints Transformation

algorithm Newton

numberer RCM

system ProfileSPD

analysis Transient

136

analyze 3 5.e5

puts "End of Elastic Phase of Gravity Application"

Set material to elasto-plastic for the rest of the loading

updateMaterialStage -material 1 -stage 1

analyze 5 5.e5

puts "End of Gravity Application. Starting Dynamic Excitation..."

rezero time

wipeAnalysis

setTime 0.0

set omega 1.

set pi 3.141593

Calculate the period from the timeseries

set T [expr 2*$pi/$omega]

set Timeseries "Sine 0.0 50. $T -shift 0.0 -factor 20."

pattern Plain 2 $Timeseries {

load 4 1. 0. 0

load 3 1. 0. 0

}

set gamma 0.6

test NormDispIncr 1.0e-4 200 1;

integrator Newmark $gamma [expr pow($gamma+0.5, 2)/4] 0.00 0.0 0.002 0.0

constraints Transformation

algorithm KrylovNewton

numberer RCM

system ProfileSPD

create the analysis object

analysis Transient

Recorders

recorder Node -file output_disp.txt -time -dof 1 2 disp

recorder Node -file output_pore.txt -time -dof 3 vel

recorder Element -file stress_1.txt -time -eleRange 1 1 material 1 stress

recorder Element -file stress_2.txt -time -eleRange 1 1 material 2 stress

recorder Element -file stress_3.txt -time -eleRange 1 1 material 3 stress

recorder Element -file stress_4.txt -time -eleRange 1 1 material 4 stress

recorder Element -file strain_1.txt -time -eleRange 1 1 material 1 strain

recorder Element -file strain_2.txt -time -eleRange 1 1 material 2 strain

recorder Element -file strain_3.txt -time -eleRange 1 1 material 3 strain

recorder Element -file strain_4.txt -time -eleRange 1 1 material 4 strain

perform analysis

set startT [clock seconds]

analyze 1500 0.01

set endT [clock seconds]

puts "Execution time: [expr $endT-$startT] seconds."

137

Appendix F

Laminar Drain Source Code

1. Class Definition
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1.00 $

// $Date: 2008/07/18 18:05:53 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/pipe/Pipe.h,v $

// Written: Antonios Vytiniotis

// Created: 07/08

// Revision: A

//

// Description: This file contains the definition for the Pipelin2. A

Pipelin2 object

// provides the abstraction of the small deformation bar element plus

predicts the

// uncoupled pore pressure change according to Darcy Weisbach equation for

laminar flow.

// Each pipe object is associated with a material object dealing with the

axial compressibility

// of the drain. This Pipelin2 element will work in 2d problems in a 3DOF

domain.

//

// What: "@(#) Pipelin2.h, revA"

#ifndef Pipelin2_h

#define Pipelin2_h

#include <Element.h>

#include <Matrix.h>

138

class Node;

class Channel;

class UniaxialMaterial;

class Pipelin2:public Element {

public:

 //constructors

 Pipelin2 (int tag, int Nd1, int Nd2, UniaxialMaterial &theMaterial,

double A, double C_3, double Grav=0.0);

 Pipelin2();

 //destructor

 ~Pipelin2();

 //public methods to obtain information about dof & connectivity

 int getNumExternalNodes(void) const;

 const ID &getExternalNodes(void);

 int getNumDOF(void);

 Node **getNodePtrs(void);

 //public methods to set the state of the element

 void setDomain(Domain *theDomain);

 int commitState(void);

 int revertToLastCommit(void);

 int revertToStart(void);

 int update(void);

 //public methods to obtain stiffness, mass, damping, and residual

information

 const Matrix &getTangentStiff(void);

 const Matrix &getInitialStiff(void);

 const Matrix &getDamp(void);

 const Matrix &getMass(void);

 void zeroLoad(void);

 int addLoad(ElementalLoad *theLoad, double loadFactor);

 int addInertiaLoadToUnbalance(const Vector &accel);

 const Vector &getResistingForce(void);

 const Vector &getResistingForceIncInertia(void);

 //public methods for output

 int sendSelf(int commitTag, Channel &theChannel);

 int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker

&theBroker);

 int displaySelf(Renderer &theViewer, int displayMode, float fact);

 void Print(OPS_Stream &s, int flag=0);

 Response *setResponse(const char **argv, int argc, OPS_Stream &s);

 int getResponse(int responseID, Information &eleInformation);

//protected:

private:

 //private member function - only availabe to objects of the class

 double computeCurrentStrain(void) const;

 //private attributes - a copy for each object of the class

 UniaxialMaterial *theMaterial; //pointer to a material

 ID externalNodes; // contains the id's of end nodes

139

 Matrix trans; //hold the transformation matrix

// Vector *theLoad; // pointer to the load vector P

 double L; //length of Pipe based on undeformed configuration

 double C_3;

 double A;

 double d_y_class;

 int eletag;

 double Gamma; //weight per unit volume

 Node *end1Ptr, *end2Ptr; //two pointer to the trusses nodes

 Node *theNodes[2]; //two pointer to the trusses nodes

in a matrix form (AV)

 //private class attribute

 static Matrix trussK;

 static Matrix trussD;

 static Matrix trussM;

 static Vector trussR;

};

#endif

2. Class Implementation
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1.00 $

// $Date: 2008/07/18 18:05:53 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/Pipe/Pipelin2.cpp,v $

// Written: Antonios Vytiniotis

// Created: 07/08

// Revision: A

//

// Description: This file contains the implementation for the Pipelin2 class.

//

140

#include "Pipelin2.h"

#include <Information.h>

#include <Parameter.h>

#include <Domain.h>

#include <Node.h>

#include <Channel.h>

#include <FEM_ObjectBroker.h>

#include <UniaxialMaterial.h>

#include <Renderer.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <ElementResponse.h>

#include <Matrix.h>

#include <Vector.h>

#include <ElasticMaterial.h>

// initial the class wide variables

Matrix Pipelin2::trussK(6,6);

Matrix Pipelin2::trussM(6,6);

Matrix Pipelin2::trussD(6,6);

Vector Pipelin2::trussR(6);

Pipelin2::Pipelin2(int tag,

 int Nd1, int Nd2,

 UniaxialMaterial &theMat,

 double a, double c3, double g)

 :Element(tag,ELE_TAG_Pipelin2),

 theMaterial(0),

 externalNodes(2),

 trans(1,4),L(0.0), A(a), C_3(c3), Gamma(g),

end1Ptr(0), end2Ptr(0), eletag(tag),

 d_y_class(0.0)

{

 //create a copy of the material object

 theMaterial=theMat.getCopy();

 //fill in the ID containing external node info with node id's

 externalNodes(0)=Nd1;

 externalNodes(1)=Nd2;

 for (int i=0; i<2; i++)

 theNodes[i] = 0;

 trussR.Zero();

}

//constructor which should be invoked by an FE_ObjectBroker only

Pipelin2::Pipelin2()

 :Element(0,ELE_TAG_Pipelin2),

 theMaterial(0),

 externalNodes(2),

141

 trans(1,4), L(0.0), A(0.0), C_3(0.0), Gamma(0.0),

end1Ptr(0), end2Ptr(0),

 d_y_class(0.0)

 {

 for (int i=0; i<2; i++)

 theNodes[i] = 0;

 }

 Pipelin2::~Pipelin2()

 {

 if (theMaterial !=0)

 delete theMaterial;

 }

 int Pipelin2::getNumExternalNodes(void) const

 {

 return 2;

 }

 const ID &

 Pipelin2::getExternalNodes(void)

 {

 return externalNodes;

 }

 int

 Pipelin2::getNumDOF(void){

 return 6;

 }

 Node **

 Pipelin2::getNodePtrs(void)

 {

 return theNodes;

 }

 void

 Pipelin2::setDomain(Domain *theDomain)

 {

 //first ensure nodes exist in Domain and set the node

pointers

 int Nd1 =externalNodes(0);

 int Nd2 =externalNodes(1);

 end1Ptr =theDomain->getNode(Nd1);

 end2Ptr =theDomain->getNode(Nd2);

 theNodes[0] = theDomain->getNode(Nd1);

 theNodes[1] = theDomain->getNode(Nd2);

 if (theNodes[0]==0)

 return;

 if (theNodes[1]==0)

 return;

 // call the DomainComponent class method

 this->DomainComponent::setDomain(theDomain);

142

 //ensure connected nodes have corrent number of dof's

 int dofNd1=theNodes[0]->getNumberDOF();

 int dofNd2=theNodes[1]->getNumberDOF();

 if ((dofNd1 !=3) || (dofNd2 !=3))

 return; //don't go any further otherwise segmentation

fault

 //now determine the length & transformation matrix

 const Vector &end1Crd=theNodes[0]->getCrds();

 const Vector &end2Crd=theNodes[1]->getCrds();

 double dx= end2Crd(0)-end1Crd(0);

 double dy= end2Crd(1)-end1Crd(1);

 d_y_class=dy;

 L=sqrt(dx*dx+dy*dy);

 if (L==0.0)

 return;

 double cs=dx/L;

 double sn=dy/L;

 trans(0,0)=-cs;

 trans(0,1)=-sn;

 trans(0,2)= cs;

 trans(0,3)= sn;

// // determine the nodal mass for lumped mass approach

// M=M*A*L/2; //M was set to rho by the constructor

 }

 int

 Pipelin2::commitState()

 {

 return theMaterial->commitState();

 }

 int

 Pipelin2::revertToLastCommit()

 {

 return theMaterial->revertToLastCommit();

 }

 int

 Pipelin2::revertToStart()

 {

 return theMaterial->revertToStart();

 }

 int

 Pipelin2::update()

 {

 //determine the current strain given trial displacements at

nodes

 double strain=this->computeCurrentStrain();

143

 //set the strain in the materials

 theMaterial->setTrialStrain(strain);

 return 0;

 }

 const Matrix &

 Pipelin2::getTangentStiff(void)

 {

 if (L==0) {//if length ==zero - we zero and return

 trussK.Zero();

 return trussK;

 }

 //get the current E from the material for the strain that

was set

 // at the material when the update() method was invoked

 double E = theMaterial->getTangent();

 //form the tangent stiffness matrix

 Matrix K_temp(4,4);

 K_temp =trans^trans; //This is a temporary matrix

containing the truss stiffness parameters

 K_temp *=A*E/L;

// trussK.Zero();

 // Truss stiffness components:

 trussK(0,0)=K_temp(0,0);

 trussK(1,0)=K_temp(1,0);

 trussK(0,1)=K_temp(0,1);

 trussK(1,1)=K_temp(1,1);

 trussK(3,3)=K_temp(2,2);

 trussK(4,3)=K_temp(3,2);

 trussK(3,4)=K_temp(2,3);

 trussK(4,4)=K_temp(3,3);

 trussK(2,2)=0.;

 trussK(5,5)=0.;

 trussK(5,2)=0.;

 trussK(2,5)=0.;

 return trussK;

 }

 const Matrix &

 Pipelin2::getInitialStiff(void)

 {

 if (L==0) {

 trussK.Zero();

 return trussK;

 }

 //get the current strain from the material

 double strain = theMaterial->getStrain();

 //get the current stress from the material

 double stress = theMaterial->getStress();

144

 //compute the tangent

 double E=stress/strain;

 //form the tangent stiffness matrix

 Matrix K_temp(4,4);

 K_temp =trans^trans; //This is a temporary matrix

containing the truss stiffness parameters

 K_temp *=A*E/L;

// trussK.Zero();

 // Truss stiffness components:

 trussK(0,0)=K_temp(0,0);

 trussK(1,0)=K_temp(1,0);

 trussK(0,1)=K_temp(0,1);

 trussK(1,1)=K_temp(1,1);

 trussK(3,3)=K_temp(2,2);

 trussK(4,3)=K_temp(3,2);

 trussK(3,4)=K_temp(2,3);

 trussK(4,4)=K_temp(3,3);

 trussK(2,2)=0.;

 trussK(5,5)=0.;

 trussK(5,2)=0.;

 trussK(2,5)=0.;

// opserr << "Componenents of the matrix K11" << trussK(3,3)

<<endln;

 return trussK;

 }

 const Matrix &

 Pipelin2::getDamp(void)

 {

 //No damping associated with this type of element

 trussD.Zero();

 trussD(2,2)=-C_3/L;

 trussD(5,5)=-C_3/L;

 trussD(5,2)=C_3/L;

 trussD(2,5)=C_3/L;

 double deleteme=C_3/L;

 double deleteme2=C_3/L;

 return trussD;

 }

 const Matrix &

 Pipelin2::getMass(void)

 {

 if (L==0){

 trussM.Zero();

 return trussM;

 }

// At this point we have zero lumped mass

 trussM.Zero();

 return trussM;

 }

145

 void

 Pipelin2::zeroLoad(void)

 {

 //does nothing - no element load associated with this

object

 }

 int

 Pipelin2::addLoad(ElementalLoad *theLoad, double

loadFactor)

 {

 opserr <<"MyTruss::addLoad - load type unknown for truss with

tag: " << this->getTag() << endln;

 return -1;

 }

 int

 Pipelin2::addInertiaLoadToUnbalance(const Vector &accel)

 {

 return 0;

 }

 const Vector &

 Pipelin2::getResistingForce()

 {

 if (L==0) {//if length ==zero - zero and return

 trussR.Zero();

 return trussR;

 }

 // R=Ku-Pext

 //force =F*transformation

 double force = A* theMaterial->getStress();

 trussR(0)= trans(0,0)*force;

 trussR(1)= trans(0,1)*force;

 trussR(3)= trans(0,2)*force;

 trussR(4)= trans(0,3)*force;

 const Vector &vel1 = theNodes[0]->getTrialVel();

 const Vector &vel2 = theNodes[1]->getTrialVel();

// This is the linear element with total disp (no need for state

params)

// Domain::update(double a, double b);

// double dt=;

//

 trussR(2)=trussD(2,2)*vel1(2)+trussD(2,5)*vel2(2)+trussD(2,2)*d_y_class

*Gamma;

// trussR(5)=trussD(5,2)*vel1(2)+trussD(5,5)*vel2(2)-

trussD(5,5)*d_y_class*Gamma;

 trussR(2)=-C_3/L*vel1(2)+C_3/L*vel2(2)-

C_3/L*d_y_class*Gamma;

 trussR(5)=C_3/L*vel1(2)-

C_3/L*vel2(2)+C_3/L*d_y_class*Gamma;

 return trussR;

 }

146

 const Vector &

 Pipelin2::getResistingForceIncInertia()

 {

 this->getResistingForce();

 //No inertia is included in the in this element formulation

 return trussR;

 }

 int

 Pipelin2::sendSelf (int commitTag, Channel &theChannel)

 {

 int dataTag=this->getDbTag();

 // Pipelin2 packs it's data into a Vector and sends this to

theChannel

 //along with it's dbTag and the commitTag passed in the

arguments

 Vector data(6);

 data(0)= this->getTag();

 data(1)=A;

 data(4)=C_3;

 data(5)=Gamma;

 data(2)=theMaterial->getClassTag();

 int matDbTag=theMaterial->getDbTag();

 if (matDbTag==0) {

 matDbTag =theChannel.getDbTag();

 if (matDbTag !=0)

 theMaterial->setDbTag(matDbTag);

 }

 data(3)=matDbTag;

 theChannel.sendVector (dataTag, commitTag, data);

 theChannel.sendID(dataTag, commitTag, externalNodes);

 theMaterial->sendSelf(commitTag, theChannel);

 return 0;

 }

 int

 Pipelin2::recvSelf(int commitTag, Channel &theChannel,

FEM_ObjectBroker &theBroker)

 {

 int dataTag= this->getDbTag();

 Vector data(6);

 theChannel.recvVector(dataTag, commitTag, data);

 this->setTag((int)data(0));

 A=data(1);

 C_3=data(4);

 Gamma=data(5);

 theChannel.recvID(dataTag, commitTag, externalNodes);

147

 int matClass=data(2);

 int matDb = data(3);

 theMaterial= theBroker.getNewUniaxialMaterial(matClass);

 theMaterial->setDbTag(matDb);

 theMaterial->recvSelf(commitTag, theChannel, theBroker);

 return 0;

 }

 int

 Pipelin2::displaySelf(Renderer &theViewer, int displayMode,

float fact)

 {

 const Vector &end1Crd= end1Ptr->getCrds();

 const Vector &end2Crd= end2Ptr->getCrds();

 const Vector &end1Disp=end1Ptr->getDisp();

 const Vector &end2Disp=end2Ptr->getDisp();

 Vector v1(3);

 Vector v2(3);

 for (int i=0; i<2;i++) {

 v1(i)=end1Crd(i)+end1Disp(i)*fact;

 v2(i)=end2Crd(i)+end2Disp(i)*fact;

 }

 if (displayMode==3) {

 //use the strain as the drawing measure

 double strain = theMaterial->getStrain();

 return theViewer.drawLine(v1, v2, strain, strain);

 }

 else if (displayMode==2){

 //otherwise use the material stress

 double stress =A*theMaterial->getStress();

 return theViewer.drawLine(v1,v2,stress, stress);

 }

 else{

 //use the axial force

 double force = A*theMaterial->getStress();

 return theViewer.drawLine(v1,v2,force,force);

 }

 }

 void

 Pipelin2::Print(OPS_Stream &s, int flag)

 {

 //compute the strain and axial force in the member

 double strain, force;

 if (L==0.0) {

 strain=0;

 force=0.0;

 }

 else{

 strain = theMaterial->getStrain();

 force=A*theMaterial->getStress();

 }

 trussR(0)= trans(0,0)*force;

 trussR(1)= trans(0,1)*force;

148

 trussR(3)= trans(0,2)*force;

 trussR(4)= trans(0,3)*force;

 const Vector &vel1 = theNodes[0]->getVel();

 const Vector &vel2 = theNodes[1]->getVel();

 trussR(2)=-C_3/L*vel1(2)+C_3/L*vel2(2)-

C_3/L*d_y_class*Gamma;

 trussR(5)=C_3/L*vel1(2)-

C_3/L*vel2(2)+C_3/L*d_y_class*Gamma;

 if (flag==0) {//print everythin

 s<< "Element: " <<this->getTag();

 s<< " type: My Truss iNode: "<< externalNodes(0);

 s<< " jNode: "<<externalNodes(1);

 s<< " Area: "<< A;

 if (Gamma!=0) s << "Gamma: "<<Gamma;

 s<< " \n\t strain: " <<strain;

 s<< " axial load: " <<force;

 s<< " \n\t unbalanced load: " <<trussR;

 s<< " \t Material: " << *theMaterial;

 s<< endln;

 } else if (flag==1) {//just print ele id, strain and force

 s<< this->getTag() << " " <<strain << " " << force

<<endln;

 }

 }

 Response *

 Pipelin2::setResponse(const char **argv, int argc ,

OPS_Stream &s)

 {

 // we compare arg(0) for known response types for the Truss

 //axial force

 if(strcmp(argv[0], "axialForce")==0)

 return new ElementResponse(this, 1, 0.0);

 //a material quantity

 else if (strcmp(argv[0], "material")==0)

 return theMaterial->setResponse(&argv[1], argc-1, s);

 else

 return 0;

 }

 int

 Pipelin2::getResponse(int responseID, Information

&eleInformation)

 {

 switch (responseID){

 case -1:

 return -1;

 case 1:

149

 return eleInformation.setDouble (A*theMaterial-

>getStress());

 default:

 return 0;

 }

 }

 double

 Pipelin2::computeCurrentStrain(void) const

 {

 //determine the strain

 const Vector &disp1=end1Ptr->getTrialDisp();

 const Vector &disp2=end2Ptr->getTrialDisp();

 double dLength=0.0;

 for (int i=0;i<2;i++)

 dLength -= (disp2(i)-disp1(i))*trans(0,i);

 double strain =dLength/L;

 return strain;

 }

3. Tcl/tk command interpreter
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1. $

// $Date: 2008/07/20 19:20:46 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/pipe/TclPipelin2Command.cpp,v

$

// File: ~/element/TclPipelin2Command.C

//

// Written: avytin

// Created: 09/08

// Revision: A

150

//

// Description: This file contains the implementation of the

TclModelBuilder_Pipelin2()

// command.

//

// What: "@(#) TclModelBuilder.C, revA"

#include <stdlib.h>

#include <string.h>

#include <Domain.h>

#include "Pipelin2.h"

#include <TrussSection.h>

#include <TclModelBuilder.h>

#include <CorotTruss.h>

#include <CorotTrussSection.h>

extern void printCommand(int argc, TCL_Char **argv);

int

TclModelBuilder_Pipelin2(ClientData clientData, Tcl_Interp *interp, int argc,

 TCL_Char **argv, Domain*theTclDomain,

TclModelBuilder *theTclBuilder,

 int eleArgStart){

 //make sure at least one other

argument to contain type of system

 if (argc!=8 && argc!=9){

 interp->result = "WARNING bad

command - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 //get the id, x_loc, y_loc

 int trussId, iNode, jNode, matID;

 double A, C_3, Gamma=0.0;

 if (Tcl_GetInt(interp,argv[2],

&trussId)!= TCL_OK){

 interp->result = "WARNING

invalid eleId - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 if (Tcl_GetInt(interp, argv[3],

&iNode) != TCL_OK) {

 interp->result = "WARNING

invalid iNode - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 if (Tcl_GetInt(interp, argv[4],

&jNode) != TCL_OK) {

 interp->result = "WARNING

invalid jNode - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

151

 if (Tcl_GetInt(interp, argv[5],

&matID) != TCL_OK) {

 interp->result = "WARNING

invalid matID - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[6],

&A) != TCL_OK) {

 interp->result = "WARNING

invalid Area - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[7],

&C_3) != TCL_OK) {

 interp->result = "WARNING

invalid C_3 - Pipelin2 eleId iNode jNode matID Area c_3 Gamma";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[8],

&Gamma) != TCL_OK) {

 interp->result = "WARNING

invalid C_3 - Pipelin2 eleId iNode jNode matID Area c_3 gamma";

 return TCL_ERROR;

 }

 UniaxialMaterial *theMaterial =

theTclBuilder->getUniaxialMaterial(matID);

 if (theMaterial ==0) {

 opserr << "WARNING

TclPipelin2 - Pipelin2 - no Material found with tag ";

 opserr << matID << endln;

 return TCL_ERROR;

 }

 //now create the truss and add it

to the domain

 Element *theTruss = 0;

 theTruss=new

Pipelin2(trussId,iNode,jNode,*theMaterial,A,C_3,Gamma);

 if (theTruss==0) {

 opserr << "WARNING

TclPipelin2 - Pipelin2 - ran out of memory for node ";

 opserr << trussId << endln;

 return TCL_ERROR;

 }

 if (theTclDomain-

>addElement(theTruss)==false) {

 delete theTruss;

 opserr << "WARNING

TclPipelin2 - Pipelin2 - could not add Pipelin2 to the domain";

 opserr << trussId << endln;

 return TCL_ERROR;

 }

152

 //Everything is OK

 return TCL_OK;

}

153

Appendix G

Fully Turbulent Flow Drains Source Code

1. Class Implementation
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1.00 $

// $Date: 2008/07/18 18:05:53 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/pipe/Pipe.h,v $

// Written: Antonios Vytiniotis

// Created: 07/08

// Revision: A

//

// Description: This file contains the definition for the Pipe3. A Pipe3

object

// provides the abstraction of the small deformation bar element plus

predicts the

// uncoupled pore pressure change according to Darcy Weisbach equation. Each

pipe

// object is associated with a material object dealing with the axial

compressibility

// of the drain. This Pipe3 element will work in 2d problems in a 3DOF

domain.

//

// What: "@(#) Pipe3.h, revA"

#ifndef Pipe3_h

#define Pipe3_h

#include <Element.h>

#include <Matrix.h>

154

class Node;

class Channel;

class UniaxialMaterial;

//#define ELE_TAG_MyTruss 4002

// This is a trial implementation of a simle 2-d Pipe3 element

class Pipe3:public Element {

public:

 //constructors

 Pipe3 (int tag, int Nd1, int Nd2, UniaxialMaterial &theMaterial, double

A, double C_3, double Gamma=0.0, double D_C=0.0);

 Pipe3();

 //destructor

 ~Pipe3();

 //public methods to obtain information about dof & connectivity

 int getNumExternalNodes(void) const;

 const ID &getExternalNodes(void);

 int getNumDOF(void);

 Node **getNodePtrs(void);

 //public methods to set the state of the element

 void setDomain(Domain *theDomain);

 int commitState(void);

 int revertToLastCommit(void);

 int revertToStart(void);

 int update(void);

 //public methods to obtain stiffness, mass, damping, and residual

information

 const Matrix &getTangentStiff(void);

 const Matrix &getInitialStiff(void);

 const Matrix &getDamp(void);

 const Matrix &getMass(void);

 void zeroLoad(void);

 int addLoad(ElementalLoad *theLoad, double loadFactor);

 int addInertiaLoadToUnbalance(const Vector &accel);

 const Vector &getResistingForce(void);

 const Vector &getResistingForceIncInertia(void);

 //public methods for output

 int sendSelf(int commitTag, Channel &theChannel);

 int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker

&theBroker);

 int displaySelf(Renderer &theViewer, int displayMode, float fact);

 void Print(OPS_Stream &s, int flag=0);

 Response *setResponse(const char **argv, int argc, OPS_Stream &s);

 int getResponse(int responseID, Information &eleInformation);

//protected:

private:

 //private member function - only availabe to objects of the class

 double computeCurrentStrain(void) const;

 //private attributes - a copy for each object of the class

155

 UniaxialMaterial *theMaterial; //pointer to a material

 ID externalNodes; // contains the id's of end nodes

 Matrix trans; //hold the transformation matrix

// Vector *theLoad; // pointer to the load vector P

 double L; //length of Pipe3 based on undeformed configuration

 double C_3;

 double A;

 double D_C;

 double d_y_class;

 int eletag;

 double Gamma; //weight per unit volume

 Node *end1Ptr, *end2Ptr; //two pointer to the trusses nodes

 Node *theNodes[2]; //two pointer to the trusses nodes

in a matrix form (AV)

 //private class attribute

 static Matrix trussK;

 static Matrix trussD;

 static Matrix trussM;

 static Vector trussR;

};

#endif

2. Class Definition
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1.00 $

// $Date: 2008/07/18 18:05:53 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/Pipe/Pipe3.cpp,v $

// Written: Antonios Vytiniotis

// Created: 07/08

// Revision: A

156

//

// Description: This file contains the implementation for the Pipe3 class.

// The current implementation does not work very well for Newton and

EnergyIncr

// (Flow does not go to zero at end of analysis)

// It works well for DispIncr and KrylovNewton Analysis eventhough some

leakage

// seem to be happening after the end of the analysis. More verification is

needed

// in order to see the effect of the d_c parameter and incrementation and

integration

// schemes. Also, minor controls might be needed to calculate R at very low

i.

//

#include "Pipe3.h"

#include <Information.h>

#include <Parameter.h>

#include <Domain.h>

#include <Node.h>

#include <Channel.h>

#include <FEM_ObjectBroker.h>

#include <UniaxialMaterial.h>

#include <Renderer.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <ElementResponse.h>

#include <Matrix.h>

#include <Vector.h>

#include <ElasticMaterial.h>

// initial the class wide variables

Matrix Pipe3::trussK(6,6);

Matrix Pipe3::trussM(6,6);

Matrix Pipe3::trussD(6,6);

Vector Pipe3::trussR(6);

Pipe3::Pipe3(int tag,

 int Nd1, int Nd2,

 UniaxialMaterial &theMat,

 double a, double c3, double g, double dc)

 :Element(tag,ELE_TAG_Pipe3),

 theMaterial(0),

 externalNodes(2),/*theLoad(0),*/

 trans(1,4),L(0.0), A(a), C_3(c3), Gamma(g), D_C(dc),

end1Ptr(0), end2Ptr(0), eletag(tag),

 d_y_class(0.0)

{

 //create a copy of the material object

 theMaterial=theMat.getCopy();

157

 //fill in the ID containing external node info with node id's

 externalNodes(0)=Nd1;

 externalNodes(1)=Nd2;

 for (int i=0; i<2; i++)

 theNodes[i] = 0;

}

//constructor which should be invoked by an FE_ObjectBroker only

Pipe3::Pipe3()

 :Element(0,ELE_TAG_Pipe3),

 theMaterial(0),

 externalNodes(2),/*theLoad(0),*/

 trans(1,4), L(0.0), A(0.0), C_3(0.0), Gamma(0.0),

D_C(0.0),end1Ptr(0), end2Ptr(0),

 d_y_class(0.0)

{

 for (int i=0; i<2; i++)

 theNodes[i] = 0;

 }

 Pipe3::~Pipe3()

 {

 if (theMaterial !=0)

 delete theMaterial;

 }

 int Pipe3::getNumExternalNodes(void) const

 {

 return 2;

 }

 const ID &

 Pipe3::getExternalNodes(void)

 {

 return externalNodes;

 }

 int

 Pipe3::getNumDOF(void){

 return 6;

 }

 Node **

 Pipe3::getNodePtrs(void)

 {

 return theNodes;

 }

 void

 Pipe3::setDomain(Domain *theDomain)

 {

 //first ensure nodes exist in Domain and set the node

pointers

 int Nd1 =externalNodes(0);

 int Nd2 =externalNodes(1);

 end1Ptr =theDomain->getNode(Nd1);

158

 end2Ptr =theDomain->getNode(Nd2);

 theNodes[0] = theDomain->getNode(Nd1);

 theNodes[1] = theDomain->getNode(Nd2);

 if (theNodes[0]==0)

 return;

 if (theNodes[1]==0)

 return;

 // call the DomainComponent class method

 this->DomainComponent::setDomain(theDomain);

 //ensure connected nodes have corrent number of dof's

 int dofNd1=theNodes[0]->getNumberDOF();

 int dofNd2=theNodes[1]->getNumberDOF();

 if ((dofNd1 !=3) || (dofNd2 !=3))

 return; //don't go any further otherwise segmentation

fault

 //now determine the length & transformation matrix

 const Vector &end1Crd=theNodes[0]->getCrds();

 const Vector &end2Crd=theNodes[1]->getCrds();

 double dx= end2Crd(0)-end1Crd(0);

 double dy= end2Crd(1)-end1Crd(1);

 d_y_class=dy;

 L=sqrt(dx*dx+dy*dy);

 if (L==0.0)

 return;

 double cs=dx/L;

 double sn=dy/L;

 trans(0,0)=-cs;

 trans(0,1)=-sn;

 trans(0,2)= cs;

 trans(0,3)= sn;

// // determine the nodal mass for lumped mass approach

// M=M*A*L/2; //M was set to rho by the constructor

 }

 int

 Pipe3::commitState()

 {

 return theMaterial->commitState();

 }

 int

 Pipe3::revertToLastCommit()

 {

 return theMaterial->revertToLastCommit();

 }

 int

159

 Pipe3::revertToStart()

 {

 return theMaterial->revertToStart();

 }

 int

 Pipe3::update()

 {

 //determine the current strain given trial displacements at

nodes

 double strain=this->computeCurrentStrain();

 //set the strain in the materials

 theMaterial->setTrialStrain(strain);

 return 0;

 }

 const Matrix &

 Pipe3::getTangentStiff(void)

 {

 if (L==0) {//if length ==zero - we zero and return

 trussK.Zero();

 return trussK;

 }

 //get the current E from the material for the strain that

was set

 // at the material when the update() method was invoked

 double E = theMaterial->getTangent();

 //form the tangent stiffness matrix

 Matrix K_temp(4,4);

 K_temp =trans^trans; //This is a temporary matrix

containing the truss stiffness parameters

 K_temp *=A*E/L;

// trussK.Zero();

 // Truss stiffness components:

 trussK(0,0)=K_temp(0,0);

 trussK(1,0)=K_temp(1,0);

 trussK(0,1)=K_temp(0,1);

 trussK(1,1)=K_temp(1,1);

 trussK(3,3)=K_temp(2,2);

 trussK(4,3)=K_temp(3,2);

 trussK(3,4)=K_temp(2,3);

 trussK(4,4)=K_temp(3,3);

 trussK(2,2)=0.0;

 trussK(5,5)=0.0;

 trussK(5,2)=0.0;

 trussK(2,5)=0.0;

 return trussK;

 }

160

 const Matrix &

 Pipe3::getInitialStiff(void)

 {

 if (L==0) {

 trussK.Zero();

 return trussK;

 }

 //get the current strain from the material

 double strain = theMaterial->getStrain();

 //get the current stress from the material

 double stress = theMaterial->getStress();

 //compute the tangent

 double E=stress/strain;

 //form the tangent stiffness matrix

 Matrix K_temp(4,4);

 K_temp =trans^trans; //This is a temporary matrix

containing the truss stiffness parameters

 K_temp *=A*E/L;

// trussK.Zero();

 // Truss stiffness components:

 trussK(0,0)=K_temp(0,0);

 trussK(1,0)=K_temp(1,0);

 trussK(0,1)=K_temp(0,1);

 trussK(1,1)=K_temp(1,1);

 trussK(3,3)=K_temp(2,2);

 trussK(4,3)=K_temp(3,2);

 trussK(3,4)=K_temp(2,3);

 trussK(4,4)=K_temp(3,3);

 trussK(2,2)=0.0;

 trussK(5,5)=0.0;

 trussK(5,2)=0.0;

 trussK(2,5)=0.0;

 return trussK;

 }

 const Matrix &

 Pipe3::getDamp(void)

 {

 //No damping associated with this type of element

 trussD.Zero();

 // Darcy-Weisbach components

 const Vector &vel1 = end1Ptr->getTrialVel();

 const Vector &vel2 = end2Ptr->getTrialVel();

// const Vector &disp1 = theNodes[0]->getIncrDisp();

// const Vector &disp2 = theNodes[1]->getIncrDisp();

 double i_a;

 i_a=vel2(2)/L-vel1(2)/L+d_y_class*Gamma/L; //Element

hydraulic gradient

161

// Find the sign of the gradient:

 double sign_i_a=1;

 if (i_a<0)

 sign_i_a=-1;

//Control for singularities in the incrementaly linearized equation (can be

changed)

 if (sign_i_a*i_a<D_C)

 i_a=sign_i_a*D_C;

// i_a=D_C;

 trussD(2,2)=-C_3/2/sqrt(sign_i_a*i_a)/L;

 trussD(5,5)=-C_3/2/sqrt(sign_i_a*i_a)/L;

 trussD(5,2)=C_3/2/sqrt(sign_i_a*i_a)/L;

 trussD(2,5)=C_3/2/sqrt(sign_i_a*i_a)/L;

 return trussD;

 }

 const Matrix &

 Pipe3::getMass(void)

 {

 if (L==0){

 trussM.Zero();

 return trussM;

 }

// At this point we have zero lumped mass

 trussM.Zero();

 return trussM;

 }

 void

 Pipe3::zeroLoad(void)

 {

 //does nothing - no element load associated with this

object

 }

 int

 Pipe3::addLoad(ElementalLoad *theLoad, double loadFactor)

 {

 opserr <<"MyTruss::addLoad - load type unknown for truss with

tag: " << this->getTag() << endln;

 return -1;

 }

 int

 Pipe3::addInertiaLoadToUnbalance(const Vector &accel)

 {

 return 0;

 }

 const Vector &

 Pipe3::getResistingForce()

 {

 if (L==0) {//if length ==zero - zero and return

 trussR.Zero();

162

 return trussR;

 }

 // R=Ku-Pext

 //force =F*transformation

 double force = A* theMaterial->getStress();

 trussR(0)= trans(0,0)*force;

 trussR(1)= trans(0,1)*force;

 trussR(3)= trans(0,2)*force;

 trussR(4)= trans(0,3)*force;

 const Vector &vel1 = theNodes[0]->getTrialVel();

 const Vector &vel2 = theNodes[1]->getTrialVel();

 if ((vel2(2)-vel1(2)+d_y_class*Gamma)>0.0)

 {

 trussR(2)=C_3*sqrt((vel2(2)-

vel1(2)+d_y_class*Gamma)/L);

 trussR(5)= -C_3*sqrt((vel2(2)-

vel1(2)+d_y_class*Gamma)/L);

 double deleteme4=(vel2(2)-vel1(2)+d_y_class*Gamma);

 double deleteme5=vel2(2);

 double deleteme6=vel1(2);

 double deleteme7=vel1(2);

 }

 else

 {

 trussR(2)=-C_3*sqrt((-vel2(2)+vel1(2)-

d_y_class*Gamma)/L);

 trussR(5)= +C_3*sqrt((-vel2(2)+vel1(2)-

d_y_class*Gamma)/L);

 double deleteme4=(-vel2(2)+vel1(2)-d_y_class*Gamma);

 double deleteme5=vel2(2);

 double deleteme6=vel1(2);

 double deleteme7=vel1(2);

 }

 double deleteme2=trussR(2);

 double deleteme3=trussR(5);

 return trussR;

 }

 const Vector &

 Pipe3::getResistingForceIncInertia()

 {

 this->getResistingForce();

 //No inertia is included in the in this element formulation

 return trussR;

 }

 int

 Pipe3::sendSelf (int commitTag, Channel &theChannel)

 {

 int dataTag=this->getDbTag();

163

 // Pipe3 packs it's data into a Vector and sends this to

theChannel

 //along with it's dbTag and the commitTag passed in the

arguments

 Vector data(7);

 data(0)= this->getTag();

 data(1)=A;

 data(4)=C_3;

 data(5)=Gamma;

 data(6)=D_C;

 data(2)=theMaterial->getClassTag();

 int matDbTag=theMaterial->getDbTag();

 if (matDbTag==0) {

 matDbTag =theChannel.getDbTag();

 if (matDbTag !=0)

 theMaterial->setDbTag(matDbTag);

 }

 data(3)=matDbTag;

 theChannel.sendVector (dataTag, commitTag, data);

 theChannel.sendID(dataTag, commitTag, externalNodes);

 theMaterial->sendSelf(commitTag, theChannel);

 return 0;

 }

 int

 Pipe3::recvSelf(int commitTag, Channel &theChannel,

FEM_ObjectBroker &theBroker)

 {

 int dataTag= this->getDbTag();

 Vector data(7);

 theChannel.recvVector(dataTag, commitTag, data);

 this->setTag((int)data(0));

 A=data(1);

 C_3=data(4);

 Gamma=data(5);

 D_C=data(6);

 theChannel.recvID(dataTag, commitTag, externalNodes);

 int matClass=data(2);

 int matDb = data(3);

 theMaterial= theBroker.getNewUniaxialMaterial(matClass);

 theMaterial->setDbTag(matDb);

 theMaterial->recvSelf(commitTag, theChannel, theBroker);

 return 0;

 }

 int

 Pipe3::displaySelf(Renderer &theViewer, int displayMode,

float fact)

 {

164

 const Vector &end1Crd= end1Ptr->getCrds();

 const Vector &end2Crd= end2Ptr->getCrds();

 const Vector &end1Disp=end1Ptr->getDisp();

 const Vector &end2Disp=end2Ptr->getDisp();

 Vector v1(3);

 Vector v2(3);

 for (int i=0; i<2;i++) {

 v1(i)=end1Crd(i)+end1Disp(i)*fact;

 v2(i)=end2Crd(i)+end2Disp(i)*fact;

 }

 if (displayMode==3) {

 //use the strain as the drawing measure

 double strain = theMaterial->getStrain();

 return theViewer.drawLine(v1, v2, strain, strain);

 }

 else if (displayMode==2){

 //otherwise use the material stress

 double stress =A*theMaterial->getStress();

 return theViewer.drawLine(v1,v2,stress, stress);

 }

 else{

 //use the axial force

 double force = A*theMaterial->getStress();

 return theViewer.drawLine(v1,v2,force,force);

 }

 }

 void

 Pipe3::Print(OPS_Stream &s, int flag)

 {

 //compute the strain and axial force in the member

 double strain, force;

 if (L==0.0) {

 strain=0;

 force=0.0;

 }

 else{

 strain = theMaterial->getStrain();

 force=A*theMaterial->getStress();

 }

 trussR(0)= trans(0,0)*force;

 trussR(1)= trans(0,1)*force;

 trussR(3)= trans(0,2)*force;

 trussR(4)= trans(0,3)*force;

 const Vector &vel1 = theNodes[0]->getVel();

 const Vector &vel2 = theNodes[1]->getVel();

 if ((vel2(2)-vel1(2)+d_y_class*Gamma)>0.0)

 {

 trussR(2)=C_3*sqrt((vel2(2)-

vel1(2)+d_y_class*Gamma)/L);

 trussR(5)= -C_3*sqrt((vel2(2)-

vel1(2)+d_y_class*Gamma)/L);

 double deleteme4=(vel2(2)-vel1(2)+d_y_class*Gamma);

 double deleteme5=vel2(2);

165

 double deleteme6=vel1(2);

 double deleteme7=vel1(2);

 }

 else

 {

 trussR(2)=-C_3*sqrt((-vel2(2)+vel1(2)-

d_y_class*Gamma)/L);

 trussR(5)= +C_3*sqrt((-vel2(2)+vel1(2)-

d_y_class*Gamma)/L);

 }

 if (flag==0) {//print everythin

 s<< "Element: " <<this->getTag();

 s<< " type: My Truss iNode: "<< externalNodes(0);

 s<< " jNode: "<<externalNodes(1);

 s<< " Area: "<< A;

 if (Gamma!=0) s << "Gamma: "<<Gamma;

 s<< " \n\t strain: " <<strain;

 s<< " axial load: " <<force;

 s<< " \n\t unbalanced load: " <<trussR;

 s<< " \t Material: " << *theMaterial;

 s<< endln;

 } else if (flag==1) {//just print ele id, strain and force

 s<< this->getTag() << " " <<strain << " " << force

<<endln;

 }

 }

 Response *

 Pipe3::setResponse(const char **argv, int argc , OPS_Stream

&s)

 {

 // we compare arg(0) for known response types for the Truss

 //axial force

 if(strcmp(argv[0], "axialForce")==0)

 return new ElementResponse(this, 1, 0.0);

 //a material quantity

 else if (strcmp(argv[0], "material")==0)

 return theMaterial->setResponse(&argv[1], argc-1, s);

 else

 return 0;

 }

 int

 Pipe3::getResponse(int responseID, Information

&eleInformation)

 {

 switch (responseID){

 case -1:

 return -1;

 case 1:

166

 return eleInformation.setDouble (A*theMaterial-

>getStress());

 default:

 return 0;

 }

 }

 double

 Pipe3::computeCurrentStrain(void) const

 {

 //determine the strain

 const Vector &disp1=end1Ptr->getTrialDisp();

 const Vector &disp2=end2Ptr->getTrialDisp();

 double dLength=0.0;

 for (int i=0;i<2;i++)

 dLength -= (disp2(i)-disp1(i))*trans(0,i);

 double strain =dLength/L;

 return strain;

 }

3. Tcl/tk command interpreter
/* ** **

** OpenSees - Open System for Earthquake Engineering Simulation **

** Pacific Earthquake Engineering Research Center **

** **

** **

** (C) Copyright 1999, The Regents of the University of California **

** All Rights Reserved. **

** **

** Commercial use of this program without express permission of the **

** University of California, Berkeley, is strictly prohibited. See **

** file 'COPYRIGHT' in main directory for information on usage and **

** redistribution, and for a DISCLAIMER OF ALL WARRANTIES. **

** **

** Developed by: **

** Frank McKenna (fmckenna@ce.berkeley.edu) **

** Gregory L. Fenves (fenves@ce.berkeley.edu) **

** Filip C. Filippou (filippou@ce.berkeley.edu) **

** **

** ** */

// $Revision: 1. $

// $Date: 2008/07/20 19:20:46 $

// $Source: /usr/local/cvs/OpenSees/SRC/element/pipe/TclPipe3Command.cpp,v $

// File: ~/element/TclPipe3Command.C

//

// Written: avytin

// Created: 09/08

// Revision: A

167

//

// Description: This file contains the implementation of the

TclModelBuilder_Pipe3()

// command.

//

// What: "@(#) TclModelBuilder.C, revA"

#include <stdlib.h>

#include <string.h>

#include <Domain.h>

#include "Pipe3.h"

#include <TrussSection.h>

#include <TclModelBuilder.h>

#include <CorotTruss.h>

#include <CorotTrussSection.h>

extern void printCommand(int argc, TCL_Char **argv);

int

TclModelBuilder_Pipe3(ClientData clientData, Tcl_Interp *interp, int argc,

 TCL_Char **argv, Domain*theTclDomain,

TclModelBuilder *theTclBuilder,

 int eleArgStart){

 //make sure at least one other

argument to contain type of system

 if (argc!=10){

 interp->result = "WARNING bad

command - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 //get the id, x_loc, y_loc

 int trussId, iNode, jNode, matID;

 double A, C_3, Gamma, D_C;

 if (Tcl_GetInt(interp,argv[2],

&trussId)!= TCL_OK){

 interp->result = "WARNING

invalid eleId - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetInt(interp, argv[3],

&iNode) != TCL_OK) {

 interp->result = "WARNING

invalid iNode - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetInt(interp, argv[4],

&jNode) != TCL_OK) {

 interp->result = "WARNING

invalid jNode - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

168

 if (Tcl_GetInt(interp, argv[5],

&matID) != TCL_OK) {

 interp->result = "WARNING

invalid matID - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[6],

&A) != TCL_OK) {

 interp->result = "WARNING

invalid Area - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[7],

&C_3) != TCL_OK) {

 interp->result = "WARNING

invalid C_3 - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[8],

&Gamma) != TCL_OK) {

 interp->result = "WARNING

invalid Gamma - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 if (Tcl_GetDouble(interp, argv[9],

&D_C) != TCL_OK) {

 interp->result = "WARNING

invalid d_c - Pipe3 eleId iNode jNode matID Area c_3 Gamma d_c";

 return TCL_ERROR;

 }

 UniaxialMaterial *theMaterial =

theTclBuilder->getUniaxialMaterial(matID);

 if (theMaterial ==0) {

 opserr << "WARNING TclPipe3 -

Pipe3 - no Material found with tag ";

 opserr << matID << endln;

 return TCL_ERROR;

 }

 //now create the truss and add it

to the domain

// MyTruss *theTruss = new

MyTruss(trussId,iNode,jNode,*theMaterial,A,M);

 Element *theTruss = 0;

 theTruss=new

Pipe3(trussId,iNode,jNode,*theMaterial,A,C_3,Gamma, D_C);

 if (theTruss==0) {

 opserr << "WARNING TclPipe3 -

Pipe3 - ran out of memory for node ";

 opserr << trussId << endln;

 return TCL_ERROR;

169

 }

 if (theTclDomain-

>addElement(theTruss)==false) {

 delete theTruss;

 opserr << "WARNING TclPipe3 -

Pipe3 - could not add Pipe3 to the domain";

 opserr << trussId << endln;

 return TCL_ERROR;

 }

 //Everything is OK

 return TCL_OK;

}

170

Appendix H

Validation of drain elements

i. One dimensional Problems

For verification purposes tests on the element level have been performed using pressure con-

trol and flow control, using one and two drain elements. The results showed great match with

hand calculations. The simulations performed are summarized on the next table.

Table G-1 Validation tests for laminar and turbulent flow drains

 Pore Pressure Control Flow Control

One element • •

Two Elements • •

ii. Plane Strain Consolidation

The consolidation of a plane strain unit cell, with elastic material governing the response of the

soil skeleton has also been examined. The geometry used is shown in Figure 3.12, and is de-

scretized in 400 quadup elements. The boundaries are all impermeable except for the top of

the drain. The soil material is linear elastic (E=30 000kPa, v=0.3). The described pipe elements

have been used with parameters Ct=0.1, Cl=0.001, and very small stiffness.

Figure 3.13 summarizes the results for this verification. The figure compares the directly calcu-

lated vertical settlement at the top of the drain to the indirectly calculated settlement found by

computing the mass balance of water flowing through the drain. For this indirect calculation it

is assumed that all vertical deformations are due to displacement of pore fluid within the soil

skeleton, and that no water is coming out of the soil layer through the soil. For the laminar

drain, the directly calculated vertical displacement is very close to the indirectly calculated one.

The agreement is not perfect because there is flow of water coming out of the soil without e

tering the drain, through point A. On the other hand, for the turbulent drains we can see that

the results match very closely each other, this time because the permeability of the drain is

very large, and almost all of the flow comes out of drain (very small flow is coming out of the

soil mass).

Figure G-1 Geometry of the plane strain consolidation verifi

applied at point A.

171

The agreement is not perfect because there is flow of water coming out of the soil without e

tering the drain, through point A. On the other hand, for the turbulent drains we can see that

lts match very closely each other, this time because the permeability of the drain is

very large, and almost all of the flow comes out of drain (very small flow is coming out of the

Geometry of the plane strain consolidation verification problem. Zero pore pressure boundary condition is only

The agreement is not perfect because there is flow of water coming out of the soil without en-

tering the drain, through point A. On the other hand, for the turbulent drains we can see that

lts match very closely each other, this time because the permeability of the drain is

very large, and almost all of the flow comes out of drain (very small flow is coming out of the

cation problem. Zero pore pressure boundary condition is only

Figure G-2 Validation for laminar and fully turbulent flow drainsValidation for laminar and fully turbulent flow drains

Appendix I

Verification of Hird axisymmetric to

theory

Analyses have been performed using ABAQUS, simulating the consolidation of a plane strain

and an axisymmetric unit cell around a perfect drain in an elastic soil layer, using the up form

lation (E=50 000kPa, v=0.32, k=0.0003m/s). The results presented in Figure H

average degree of consolidation is matched greatly. Small discrepancies can be observed: diss

pation happens faster in the plane strain unit cell close to the drain, and slower at the bound

ries of the unit cell.

Figure H-1 Comparison excess pore pressures

Verification of Hird axisymmetric to plane strain drain equivalence

performed using ABAQUS, simulating the consolidation of a plane strain

and an axisymmetric unit cell around a perfect drain in an elastic soil layer, using the up form

lation (E=50 000kPa, v=0.32, k=0.0003m/s). The results presented in Figure H

average degree of consolidation is matched greatly. Small discrepancies can be observed: diss

pation happens faster in the plane strain unit cell close to the drain, and slower at the bound

pressures around an axisymmetric and an equivalent plane strain perfect drain

plane strain drain equivalence

performed using ABAQUS, simulating the consolidation of a plane strain

and an axisymmetric unit cell around a perfect drain in an elastic soil layer, using the up formu-

lation (E=50 000kPa, v=0.32, k=0.0003m/s). The results presented in Figure H-1 show that the

average degree of consolidation is matched greatly. Small discrepancies can be observed: dissi-

pation happens faster in the plane strain unit cell close to the drain, and slower at the bounda-

around an axisymmetric and an equivalent plane strain perfect drain

