Language Design for Distributed Stream Processing
by
Ryan Rhodes Newton

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2009
(©) Massachusetts Institute of Technology 2009. All rights reserved.

AUthOr .. e
Department of Electrical Engineering and Computer Science
Jan 30, 2009

Certified by
Samuel Madden
Associate Professor
Thesis Supervisor

Certified By ..ot
Arvind
Johnson Professor
Thesis Supervisor

Accepted Dy

Professor Terry P. Orlando
Chair, Department Committee on Graduate Students

Language Design for Distributed Stream Processing
by

Ryan Rhodes Newton

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 30, 2009, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Applications that combine live data streams with embedded, parallel, and distributed pro-
cessing are becoming more commonplace. WaveScript is a domain-specific language that
brings high-level, type-safe, garbage-collected programming to these domains. This is
made possible by three primary implementation techniques, each of which leverages char-
acteristics of the streaming domain. First, WaveScript employs an evaluation strategy that
uses a combination of interpretation and reification to partially evaluate programs into
stream dataflow graphs. Second, we use profile-driven compilation to enable many op-
timizations that are normally only available in the synchronous (rather than asynchronous)
dataflow domain. Finally, an empirical, profile-driven approach also allows us to compute
practical partitions of dataflow graphs, spreading them across embedded nodes and more
powerful servers.

We have used our language to build and deploy applications, including a sensor-network
for the acoustic localization of wild animals such as the Yellow-Bellied marmot. We evalu-
ate WaveScript’s performance on this application, showing that it yields good performance
on both embedded and desktop-class machines. Our language allowed us to implement the
application rapidly, while outperforming a previous C implementation by over 35%, using
fewer than half the lines of code. We evaluate the contribution of our optimizations to this
success. We also evaluate WaveScript’s ability to extract parallelism from this and other
applications.

Thesis Supervisor: Samuel Madden
Title: Associate Professor

Thesis Supervisor: Arvind
Title: Johnson Professor

Acknowledgments

Acknowledgements are a place to recognize that which we take for granted. I confess that
I always assumed I would go to graduate school and since entering graduate school the
whole process has grown normal and its endpoint expected. But I’d like to recognize that it
could have been otherwise—without supportive friends, family, and teachers things would
have certainly turned out differently.

My parents could not be more supportive of my education. My wife, Irene Garcia
Newton, is always there for me in more ways than I can count, including reading drafts
and picking up the slack when I have a deadline. I am grateful to the IMACS program
for setting me on my path early in life and to Dan Friedman for reaching out to me while
I was still in high school. My undergraduate mentors, Dan Friedman, Kent Dybvig, and
Amr Sabry, are responsible for stoking my academic interests and sending me to where I
am now.

I am lucky to have a great advisor, Samuel Madden—always available, responsive,
helpful in all the ways an advisor should be. I have also been fortunate to interact with many
faculty members while at MIT. Chronologically, Gerald Sussman and Jonathan Bachrach
got me interested in amorphous computing. Later Norman Ramsey introduced me to Matt
Welsh who brought me into the sensor networking field, helping me get my sea legs as a
researcher and publish my first paper. For that, I am indebted to him. Greg Morrisett has
consistently made available to me his expertise in programming languages and compilers.
And if it weren’t for him, I may have had no one with whom to discuss compiler internals
(and would surely have gone crazy).

Professor Arvind has been a source of insight throughout my graduate career. He is a
great sage of parallelism, always helpful in cutting away surface details and getting to the
heart of things. Hari Balakrishnan has provided enormous help both in the actual process
of paper writing and in playing a great skeptic when it comes to the benefits I might claim

of my systems.

Contents

L__Introduction

(1.~ Background: Design Space Exploration|

(I.1.1 ~ Evolution of Design|

(1.2 Summary|

2 A Representative Mini-language|

[2.1 ~Operational Semantics| oL

2.2 Evaluating MimiWS to MiniGraph|

3 WaveScript: Full Language|

[3.1 Prelude: Applications Overview|

[3.1.1 Application: Locating Yellow-Bellied Marmots|

[3.2 Ataste of the language| oL,

[3.3 Examples using Marmot Application|

[3.4 Core Operators: iterate and merge{

[3.5 Defining Custom Synchronization Policies|.

[3.6 Windowing and Sigsegs|. o

(3.7 Distributed Programs| 0 o000

[3.8 Other Language Features|

[3.9 Pragmatics: Foreign Interface|.o

[3.9.1 Foreign functions| Lo

[3.9.2 Foreign Sources| L.

15
18
20
21

25
26
30

[3.9.4 Converting WaveScript and C types|

[3.9.5 Importing C-allocated Arrays|
3.9.6 “Exclusive” Pointers|

4

Discussion: Language Extensibility|

4.2 Peek/Pop/Push with ExplicitRates|

4.3 ‘leleporting Messages| Lo

4.4 Swappable Components|.,

WaveScript Implementation|

[5.1 A Straw-man Implementation|.

[5.2 The WaveScript Approach|

[5.3 WaveScript Backend Code Generation|

3.4 Legacy Backends| oo o

[6.2 Stream Graph Optimizations|

[6.2.1 Batching via Sigsegs and Fusion| 0oL

[6.3 Extensible Algebraic Rewrites|

[6.4 Implementing Rewrites|

Partitioning Algorithms|

[/.1 Preprocessing|

(7.2 Optimal Partitionings|

53
53
55
57
58

61
61
62
62
65
66
68
68
69
71
74

75
75
77
80
81
82

[7.2.1 Integer Linear Programmimng (ILP)[. 88

Data R Fr riablel 91

(/.4 Dynamic Programming when the DAGisalree|. 92
[7.4.1 Summary| 94

8 Experimental Results| 95
[8.1 Marmot: Comparing against handwritten C| 96
(8.2 Effects of Optimization on Marmot Application| 98
(8.3 Evaluation: Partitioning|. 101
[8.3.1 EEG Application: Seizure Onset Detection| 101

[8.3.2 Partitioning the EEG Application| 102

[8.3.3 Speech Detection Application| 103

[8.3.4 Partitioning the Speech Detection Applicationf. 108

[8.3.5 WaveScript Deployment| 111

(8.4 Parallelism: Background Subtraction Case Study| 114
124

A Related Workl 127
B Prototype Type System for Metaprograms| 135
[B.1T TFirst Phase: Type Checking| 136
[B.2 Second phase: Constraint Solving for Regular Types| 139
[B.3 Third phase: E/U Constraint Solving|. 140
(B.4 Applicationto MmiWS| 140
[B.5 'Type Checker Code Listing| 141

10

List of Figures

11

[2-1 Shared expression productions used by both the MiniGraph and MiniWS$ |
languages.| 27

[2-2 Grammar for MiniGraph. This 1s a reduced version of the stream graph |
representation manipulated by the compiler backend. It 1s monomorphic |

and contains no function applications. Only while 1s used for looping.| . . . 27

[2-3 Grammar for MimiWS source language. This language includes abstraction |
(function definitions), including those that accept and return stream values. |

For simplicity, the language omits recursion, relying on while loops. Note |

that Stream types may not contain arrows within them.| 27

[3-1 Diagram illustrating the major components of the marmot-detection appli- |
CatloN.l 35

[3-2 Main program composing all three phases of the marmot-detection appli- |
cation. WaveScript primitives and library routines are in bold. Type anno- |
tations are for documentationonly| o000 38

[3-3 A stream transformer that sums up the energy 1n a certain frequency band |
within 1ts input stream. Energy in this band corresponds to the alarm call |

| ofamarmot). 38
[3-4 Zip—the simplest synchronization function.| 41
[3-5 Mapping between WaveScript and C types. Conversions performed auto- |
matically| 50

-1 Code for pull-based streams.| 56

51

Compilation Work-flow and Compiler Architecture]

52

Execution times (in milliseconds) of legacy WaveScript backends on ap-

plication benchmarks. Single-threaded benchmark on AMD Barcelona,

optimizations enabled. Benchmarks include three stages of the marmot ap-

plication (detection, DOA, and fusing DOAs), as well as a complete multin-

ode simulation—eight nodes simulated on one server, as when processing

data traces offline. Also included are our pipeline leak detection, and road

surface anomaly (pothole) detection applications. |

[6-1

Visualizations produced by the compiler. (Labels not intended to be legible; see Figure|3-6|

for a clearer rendering of the left-hand graph.) On the left, profiled graphs for a speech de-

tection application, including data rates and CPU consumption, for each of four embedded

platforms: TMote, N80, iPhone, and Gumstix (PXA255). On the right, cascades of filters

corresponding to three channels of our 22-channel EEG application. Turquoise indicates

operators assigned to the embedded node in an optimal partitioning for a particular CPU

budget| e e e e e

62

Pseudo-code for the portion of the compiler that applies rewrite optimizations.| 83

[7-1

Simple motivating example. Vertices are labeled with CPU consumed,

edges with bandwidth. The optimal mote partition 1s selected 1n red. This

partitioning can change unpredictably, for example between a horizontal

and vertical partitioning, with only a small change 1n the CPU budget. | . . .

72

The notation for the dynamic programming algorithm.|

B-1

Parallel speedups achieved by applying fission optimizations to the DOA

phase of the marmot application. |.

12

99

B2

CDF of the time required for 1p_solve to reach an optimal partitioning for

the full EEG application (1412 operators), invoked 2100 times with data

rates. The higher curve shows the execution time at which an optimal so-

lution was found, while the lower curve shows the execution time required

to prove that the solution 1s optimal. Execution times are from a 3.2 GHz

Intel Xeon. | 103
[8-3 Custom audio board attached toa TMote Sky.| 104
[8-4 Performance of the envelope detector, in comparison to the ground truth |
presence of speech and the first cepstral coefficient,| 104
[8-5 Optimal partitioning for varying data rates (as a fraction of real time). X |
axis shows the selected data rate; Y axis shows number of operators in |
computed node partition. The EEG application (a) consists of 1dentical pro- |
cessing pipelines for separate channels (only one channel pictured). Speech |
detection application are shown 1n (b)—note log scale on X axis.| 109
[8-6 Data 1s reduced by processing, lowering bandwidth requirements, but in- |
creasing CPU requirements. | L. 111
[8-7 Normalized cumulative CPU usage for different platforms. Relative exe- |
cution costs of operators vary greatly on the tested systems.| 111
[8-8 Loss rate measurements for a single TMote and a basestation, over different |
partitionings. The curves show the percentage of input data sampled, the |
percentage of network messages received, and the product of these which |
represents the percent goodput. | oL oL 114
[8-9 Goodput rates for a single TMote and for a network of 20 TMotes, over |
different partitionings when running on our TMote testbed. |. 115
[8-10 Example of background subtraction: (A) Original Image (B) Difference |
from background model (C) Image with positive detections highlighted| . . 116
B-1T Code for tile fevel transformJ 122

[8-12° An example dataflow graph resulting from using a tile/pixel transform with |

rows = cols = 2. Even though the pixels are partitioned into four disjoint |

tiles (dark purple), an extra margin must be included around each tile (or- |

ange) to ensure each dark-purple pixel may access its local neighborhood. |

[8-13 Parallel speedup for Bhattacharyya distance based background subtraction |

on 16-core AMD Barcelona machine. Datapoint O represents the single- |

threaded case with thread-support disabled. All runs are on a Linux 2.6 ker- |

nel, with the number of cores artificially limited using the /sys/devices/system/cpu

14

Chapter 1

Introduction

The goal of this thesis is to provide an effective method for compiling an important class of
future programming languages: those specialized to embedded and distributed processing
of data streams. These programming languages will be driven to prominence by three inter-
secting trends. First, as embedded computing grows ever more ubiquitous, each person and
every object of value will gain the capacity for computation and communication. Second,
parallel and distributed computing is moving from niche applications into the mainstream
of software development, forced there by stagnation in uniprocessor (single core) perfor-
mance. Third, high-volume data streams are becoming more numerous and more widely
available: stock ticks, weather information, audio and video feeds.

These developments pose serious difficulties for programmers both alone and in combi-
nation. Embedded programs are frequently more troublesome to debug than their desktop
counterparts. For example, tight resource budgets encourage optimization at the expense
of abstraction and modularity. Similarly, parallel programming has long been recognized
as treacherous, given the potential for non-determinism and unpredictable interactions be-
tween stateful components. Finally, high-rate data streams require carefully designed pro-
grams that optimize communications and minimize per-element overheads.

Many applications touch all three of these trends—for example, sensor network appli-
cations processing data from acoustic, video, or vibrational sensors. In Chapter@ we will
review representative applications that have been undertaken during the course of this the-

sis, spanning several sensory modalities and various sensor network hardware platforms.

15

These include: audio processing applications (animal localization, speaker classification),
computer vision, and processing of EEG signals and vibrational data (detecting pipeline

leaks).

The central claim of this thesis is that the above programming problems have a single,
simple solution: namely, that a sufficiently powerful stream programming language with
the right kind of compiler can replace embedded programming tools, parallel program-
ming with threads and locks, streaming databases, and DSP systems based on synchronous
dataflow. The WaveScript programming language and attendant compiler provides such a

system.

WaveScript is based on two fundamental design decisions. First, the WaveScript com-
piler manipulates and produces a complete and fixed graph of dataflow operators connected
by streams. This assumption is typical of stream processing systems—and a surprisingly
broad range of applications can meet this constraint—but it should still be acknowledged as
substantially restricting the design space. For example, this decision excludes dynamically
changing graphs and requires whole-program compilation. This is acceptable for most em-
bedded and high performance applications, but presents obstacles to supporting on-the-fly
addition of multiple user’s queries, or other applications that require changes during ex-
ecution. The second major design decision is to use a non-synchronous, or event-driven
dataflow model. Synchronicity, in this case, refers to whether the data-rates on streams are
known and constant or are variable at run time. This allows WaveScript to handle a broader
range of applications than most stream processing languages. We will see that WaveScript
replaces the synchronicity assumptions of other digital signal processing (DSP) and stream
processing systems with a profile-driven approach that opportunistically leverages data-rate

regularities where they occur, while allowing dynamically varying behavior elsewhere.

These two major decisions set up limitations and opportunities for the design. Whole-
program compilation can mean long compile times, but provides several advantages to
program optimization, including the ability to expand polymorphic source programs (i.e.
generic programs which work for multiple types) into a monomorphic form. The monomor-
phic form allows for more efficient data representations because all types are known at all

program points. Also, the profile-driven approach provides information that can be used

16

to schedule computations onto parallel and distributed architectures, including automati-
cally partitioning applications between embedded nodes and heavyweight servers (one of
the primary features that WaveScript provides). The compiler can then implement these
distributed schedules by automatically generating all communication and synchronization

code.

WaveScript also includes many secondary design decisions that could be changed while
maintaining much of the thrust of this thesis. For example, WaveScript is a type-safe,
polymorphic, higher-order functional language. Rather than specify dataflow graphs di-
rectly, WaveScript uses a multi-stage evaluation model (metaprogramming) to reduce gen-
eral purpose programs returning stream values into explicit graphs of operators; this allows
expressive, programmatic construction of graphs, while simultaneously allowing compiler
optimizations that require access to the graph structure. WaveScript is also minimalist, in-
cluding only two fundamental dataflow operators: one for merging streams into a single
stream, and one for executing a (possibly stateful) user-provided function on every element
of a stream. WaveScript includes a means for expressing algebraic rewrite rules for these
arbitrary user-provided functions, which compensates for the minimalism in built-in opera-
tors. Thus, when compared with a streaming database, WaveScript replaces the fixed set of
operators with a general programming language, relying on extensible rewrite-rules (and on

profile-driven general purpose stream optimizaitons) to substitute for the query optimizelﬂ

Minimialism in the streaming model and runtime is buoyed by certain features in the
source language: multi-stage evaluation (metaprogramming), higher-order functions, and
first-class streams. These features make WaveScript powerful enough to encode more ex-
otic streaming features or operators as WaveScript libraries rather than by changing the exe-
cution model. In Section 4] we will see examples of this: a library that enables synchronous
dataflow programming with known data rates, with scheduling performed by library itself
(during metaprogram evaluation), and another library that enables migrating operators, in

spite of the runtime model supporting only static dataflow graphs.

! The use of rewrite rules as a foundation for database optimization has been attempted in several imple-
mentations [56]].

17

1.1 Background: Design Space Exploration

The present work on this thesis has grown out of experience designing and implementing
WaveScript’s precursor, Regiment. Regiment is a language for programming sensor net-
works that was introduced in [48]], and substantially revised in [49]]. Regiment is based
on the concept of functional reactive programming (FRP) [23]]. Sensor network state is
represented as time-varying signals. Signals might represent sensor readings on an indi-
vidual node, the state of a node’s local computation, or aggregate values computed from
multiple source signals. Regiment also supports the notion of regions, which are spatially
distributed signals. An example of a region is the set of sensor readings from nodes in a
given geographic area. The use of regions make Regiment a “macroprogramming” lan-
guage in the sense of “programming the network as a whole”. Regiment abstracts away
the details of sensor data acquisition, storage, and communication from the programmer,
instead permitting the compiler to map global operations on signals and regions onto local

structures within the network.

Regiment Concept #1: Signals

Signals represent continuously varying values. For example, the temperature sensor of a
given node has type Signal<float>. Conceptually, a signal is a function that maps a time
t to a value v, but in practice the time ¢ will always be “now” and the signal must be sampled
to produce a discrete stream; however, the nature of this sampling is at the discretion of the
compiler.

Regiment provides a number of operations for building new signals from existing sig-

nals. For example, smap applies a function to each value of a signal, producing a new

signal. Thus, the code fragment:
smap(fun(x) { x > THRESH }, tempvals)

converts a sensor’s floating-point signal tempvals to a boolean signal that is true whenever

the temperature is above a threshold thresh.

18

Regiment Concept #2: Regions

Central to Regiment is the concept of a region, which, in contrast to a signal, represents a
value varying over space as well as time. “Space” in this case refers to the set of nodes in
the network rather than points in a continuous Cartesian space. A major job of the Reg-
iment implementation is to enable the illusion of cohesion—that a region, sampled at a
point in time, presents a coherent set of values drawn from different points in space: a
“snapshot”. This must be accomplished without overly expensive synchronization opera-

tions, and without sacrificing distributed implementation.

It is important to note that membership in a region may vary with time; for example,
the region defined as “temperature readings from nodes where temperature > THRESH” will
consist of values from a varying set of nodes over time. The membership of a region can
also vary due to node failures or communication failures or, alternatively, the addition of
new nodes into the network. One of the advantages of programming at the region level is
that the application can be insulated from the low-level details of network topology and

membership.

Regiment provides three key operations on regions: rmap, rfilter, and rfold. Rmap
is the region-level version of smap and applies a function to each value in the region. For

instance,

outreg = rmap(fun(x) {x / SCALEFACTOR}, inreg)

divides each value in the region inreg by a scaling factor. Rfilter applies a function to
each member of a region to determine whether each member of the input region should
remain in the output region. Rfold is used to aggregate the values in a region into a
single signal using an associative and commutative combining function. Regiment hides
the details of how the aggregation is performed at runtime. In our Regiment implementation
aggregation is always performed using a spanning tree rooted at the node consuming the

output signal of the rfold operation.

19

1.1.1 Evolution of Design

The language has changed substantially from the original Regiment design. This thesis
focuses on the more recent WaveScript language. But before discussing the specifics of
the language, we will examine the shape of the design space explored in coming to our
current design. After several years of experience designing and implementing languages for
distributed sensor networks, several abstractions have been tested and sometimes discarded,
usually due to diffiulty of implementation. The following are some of the design trade-offs

we faced:

o Continuous Signals vs. Discrete Event Streams The original Regiment design sought
to separate sampling from algorithm specification. That is, the user writes a program
over continuous signals, and only at the very end applies a sampling regime to the
output. With experience, we felt that this abstraction hides too much, as sampling
rates are powerfully relevant in low-powered sensor nodes. Further, arbitrary func-
tions over continuous signals make it impossible to guarantee that discretization will
yield a faithful approximation—a problem that’s compounded if one adds stateful
functions. Thus we eventually moved to a model where streams of discrete events
replaced signal This means that operations that take windows over streams (for
example, an FFT) are specified in terms of an integral numbers of samples rather

than in terms of continuous time intervals.

e Lazy vs. Strict The original Regiment language was purely functional with a lazy
evaluation strategy [37]]. WaveScript, on the other hand, is an eager language that
includes mutable variables and arrays. This was necessary for achieving the perfor-
mance we desired. (Simply put, ML implementations are used for high-performance
computations, Haskell is generally not.) It kept implementation simpler, and made
it easier for those learning the language without previous experience in functional

programming.

e Regions vs. Sets of Streams

“Note that in the remainder of this proposal, the term “signal” will only be used in the sense of “digital
signal processing” (DSP) rather than in the sense of Regiment’s Signal data-type.

20

Regions can be nested arbitrarily. They are perfectly well defined in an idealized
model with continuous signals, no message loss, and instantaneous transmission and
compute times. Given real-world constraints, on the other hand, the coherent snap-
shots implicit in Regiment’s regions prove difficult to implement in a manner accept-
able for all applications. This is not to say that the functionality is not desirable,
but only that it is something to be achieved through libraries and specialized to each
application rather than baked into the core language abstraction in a one-size-fits-all
manner. For example, the rfold operation implicitly selects a snapshot of samples in
each aggregate it produces—but there are a wide variety of methods and priorities
that might drive this selection. How narrow must the time-slice be from which the
samples are drawn? Is it critical that there is no overlap in the time-slices of adjacent

aggregates?

WaveScript, in contrast, currently provides only basic communication facilities—
data flows only from sensors to base stations without in-network aggregation. And
instead we have focused on compiling, scheduling, and partitioning streaming appli-
cations for performance. In the future, WaveScript will regain some of the commu-

nication functionality present in the original Regimenﬂ

1.2 Summary

Ultimately, for the applications we will consider in this thesis, WaveScript provided three

key features:

1. Embedded Operation: A compiled WaveScript program yields an efficient, com-
pact binary which is well suited to the low-power, limited-CPU nodes used in our
applications. WaveScript also includes pragmatic necessities such as the ability to
integrate with drivers that capture sensor data, interfaces to various operating sys-

tem hooks, and a foreign function interface (FFI) that makes it possible to integrate

3If we exposed only a simple message intercept facility, that would be sufficient for in-network aggrega-
tion. Low-level primitives could be used to build various snapshot mechanisms and rfold operators, which
should be carefully cataloged so as to make their different semantics clear to the programmer

21

legacy code into the system.

. Distribution: WaveScript is a distributed language in that the compiler can execute
a single program across many nodes in a network (or processors in a single node).
Typically, a WaveScript application utilizes both in-network (embedded) computa-
tion, as well as centralized processing on a desktop-class “base station”. On base
stations, being able to parallelize across multiple processors is important, especially

as it can speed up offline processing of batch records in after the fact analysis.

Ultimately, distribution of programs is possible because WaveScript, like other lan-
guages for stream-processing, divides the program into distinct stream operators
(functions) with explicit communication and separate state. This dataflow graph
structure allows a great deal of leeway for automatic optimization, parallelization,

and efficient memory management.

. Hybrid synchronicity: WaveScript assumes that streams are fundamentally asyn-
chronous, but allows regularly timed streams to group elements (via special window-
ing operations) into windows—called Signal Segments, or “Sigsegs”—that have a
known time-interval between samples. For example, a stream of audio events might
consist of windows of several seconds of audio that are regularly sampled, such that
each sample does not need a separate timestamp, but where windows themselves
arrive asynchronously, and with variable delays between them. Support for asyn-

chronicity is essential in our applications.

Our research addresses how these requirements can be met effectively by a high-level

language. Execution efficiency is accomplished by three key techniques, each of which is

enabled or enhanced by the language’s domain-specificity. First, the compiler employs a

novel evaluation strategy that uses a combination of interpretation, reification (converting

objects in memory into code), and compilation. This technique evaluates programs into

stream dataflow graphs, enabling abstraction and modularity without runtime overhead.

Second, WaveScript uses a profile-driven optimization strategy to enable compile-time op-

timization and parallelization of stream dataflow graphs in spite of their asynchronicity.

Specifically, WaveScript uses representative sample data to estimate stream’s rates and

22

compute times of each operator, and then applies a number of well-understood techniques
from the synchronous dataflow world. Third, WaveScript incorporates extensible alge-
braic rewrite rules to capture optimizations particular to a sub-domain or a library. As we
will show, providing rewrite rules with a library (for example, containing DSP operators)
can enable the user to compose functionality at a high-level, without sacrificing efficiency.
The next chapter, Chapter [2 lays out a representative toy language, called MiniWs.
Subsequently, Chapter [3] will provide an informal description of the complete WaveScript
system. Chapter [5.5]describes the compiler implementation, while leaving matters of opti-
mization to Chapter 6] and Chapter [7| presents the WaveScript algorithms for automatically
partitioning dataflow graphs across devices. Finally, Chapter [§] presents empirical results

evaluating the system and applications.

23

24

Chapter 2

A Representative Mini-language

MiniWS is a representative subset of the WaveScript source language (the language fed to
the frontend compiler). MiniGraph, on the other hand, is a language similar to the stream
dataflow graphs that the backend compiler employs for profiling, partitioning, and code
generation. The grammars for MiniWS and MiniGraph are shown in Figures and
respectively. We can see that after the first stage of evaluation is complete (MiniWS is con-
verted to MiniGraph) several language features have disappeared. All function definitions
have been inlined. Programs are monomorphic rather than polymorphic. Stream values
are no longer first class (they cannot be stored in variables). Instead, the graph structure is

made explicit.

Both MiniWS and MiniGraph are fully typed languages. Neither MiniWS nor Mini-
Graph are concerned with type inference. (WaveScript does provide type inference.) Both
languages include product types, but, for simplicity, omit sum types. Sum types could be
(inefficiently) mapped onto product types if one were willing to choose dummy values for
each type. (That is, « | 5 can be represented by (Int, @,) where the integer index selects
one of the @ or B values.) MiniWS omits recursion (letrec), which does appear in the full
source language, but not in the full stream graph language. MiniGraph, on the other hand,
contains no function definitions at all; whereas in practice it is more desirable to allow some

code sharing in the stream graph through global monomorphic, first-order functions.

The iterate operator appearing in these grammars is a purely functional formulation

25

of WaveScript’s iterate. It’s type is the following:
iterate :: ((a,0) = (List B,0)) —» 0 — Stream @ — Stream 3

Iterate receives a work function, an initial state, and an input stream. The work function
is in invoked on every a-typed item in the input stream together with the current state. It

produces a new state, and a list of S-typed elements to be added to the output stream.

2.1 Operational Semantics

Here we lay out a simple operational semantics for MiniGraph. We will model the state of
the execution by (1) an infinite stream of incoming events to process, and (2) a queue of
incoming events for each stream operator. We will concern ourselves with the semantics
of the graph and communications between operators, rather than the evaluation of terms

within one operator.

Specifically, the (primitive) production in Figure is left abstract. These primitives
could include various arithmetic and boolean operations. Further, we will not give an
evaluation semantics for the standard constructs in MiniGraph or MiniWS. Instead, we
will assume an evaluation function (), such that {¢) — val, iff expression e evaluates to val

(within an empty environment and store).

Next, we will define two functions for extracting information from MiniGraph pro-
grams. The Init function constructs an initial state of the model based on a particular Min-
1Graph program. The Init function requires a substitution relation R as input. R(v) denotes
the set of symbols for which v is an alias. Evaluating a top-level MiniGraph program is
done with the empty relation {}. These substitutions allow us to ignore merge operations in
our semantics. That is, as long as our graphs support the notion of multiple stream sources
connecting to a single sink, then merge serves only a renaming purpose. Subscribing to the

output stream of a merge is the same as subscribing to both its input streams.

26

(exp) — (literal) | v
| tuple((exp)*)
| tupleref({exp):(type), (literal), (literal))
| if (exp) (exp) (exp)
| let v : (type) = (exp) in (exp)
| while (exp) do (exp)
| ref((exp))
| deref((exp))
| v 1= (exp)
| begin((exp)*)
| (primitive) (exp)*

Figure 2-1: Shared expression productions used by both the MiniGraph and MiniWS lan-
guages.

(prog) — v | let v = (stream) in (prog)
(stream) — timer (literal)

| merge v v

| iterate (A4 vi:(type) . (exp)) (exp) v,
(type) — Int | Bool | List (type) | ({type)*)

Figure 2-2: Grammar for MiniGraph. This is a reduced version of the stream graph repre-
sentation manipulated by the compiler backend. It is monomorphic and contains no func-
tion applications. Only while is used for looping.

(prog) — (exp)
(exp) — ... | timer (exp)
| merge (exp) (exp)
| iterate (exp) (exp) (exp)
| A (identifier) . (exp)
| app({exp), (exp))

(type) — Stream (type) |
Int | Bool | @ | List (type) | Ref (type) | ((type)*) | (type) — (type)
(type) — Int | Bool | a | List (type) | Ref (type) | ((type)*)

Figure 2-3: Grammar for MiniWS source language. This language includes abstraction
(function definitions), including those that accept and return stream values. For simplicity,
the language omits recursion, relying on while loops. Note that Stream types may not
contain arrows within them.

27

Init(let v = timer f in p, R) = nit(p,R)
Init(let v = merge a b in p, R) = mit(p, {(v,a), (v,b)} U R)
Init(let v = iterate ri s in p, R) = {(R(s), v, I, t. {i,00))} U mnit(p,R)

Init(v) = {}

Here we have introduced a convention of using the let-bound variable names as proxies
for operator names. For this purpose, V be the set of all variables used in a program. The
state of an operator is a 5-tuple, (in, out, queue, term, state), where in C V and out € V
name input and output streams. The queue is a list of input messages, which are values in a
simple domain consisting of literals and tuples. Together with an incoming message, term

and state provide all thats needed to execute the work function.

Below, we provide an operational semantics for MiniGraph in terms of a (S, E): a sys-
tem state S, which is a set of (in, out, queue, term, state) tuples, and an infinite stream E of
input timer events. We write E stream simply as a sequence of variable names, correspond-
ing to the timer operators in the program. We are not concerned with the timing of these
events, only their interleaving (for example, E = aabaaab...). We will also use notation for
lists. The empty list is written [], adding to the front of a list h.t and appending lists a@b.

We will write tuple values simply as (a, b, ¢).

First, we define a simple function that appends a list of new messages to the input queue

of every operator subscribed to a given name:

Insert(S,[,v) =S U {(i,0,q@lLe,o)|veiA(io,q,e,0)€eS}

- {(,0,q,e,0)|veEiN(i,0,q,e,0)€S}

Using Insert, we now define an evaluation relation (S, E) = (S’, E’) to evaluate com-
plete stream graphs together with their input streams. The behavior of (=) is governed

by only two rules: one handling the processing of input events, and the other handling of

28

messages in operator queues.

TIMERINPUT

(S, v.E) = (Insert(S,[0],v), E)

HANDLEMSG
(i,0,hte,0) €S (app(e,tuple(h, o)) — (I,07)

(S, E) = (Insert(S,1,0) U{(i,0,t,e,0)} —{(i,0,h.t,e,o0)}, E)

The above rules leave evaluation order entirely unconstrained. The system may execute
any operator that has messages in its input queue, and queues need not be empty before
more messages are accepted from the timer sources. This is what we mean by an asyn-
chronous stream processing system. Without merge both synchronous and asynchronous
semantics would give the same deterministic evaluation. In the presence of merge, asyn-
chrony results in a non-deterministic interleaving of merged streams.

Unfortunately, without further constraints, the above semantics would admit undesir-
able executions that never produce output. (For example, the timers could be processed
repeatedly but other queues never drained, left to grow indefinitely.) Thus we add a fairness
constraint on scheduling, which ensures that any message in any queue will eventually be

processed:
¢ In any infinite execution, all queues are processed an infinite number of times.

In an unbounded memory model, this constraint is sufficient. In practice, operators
consuming multiple streams must internally buffer messages until they have sufficient in-
formation to complete a computation. Therefore unfairness in the scheduler will result
in greater memory usage as operators are forced to buffer more state. So more fairness
is better in practice. Examples of fair scheduling strategies include round-robin (queue’s
“take turns” in a fixed order) or depth-first (after one queue is processed, any new mes-

sages enqueued are processed before proceeding). Our current implementation executes on

! Other systems require more complex notions of weak and strong fairness [[17]. These are equivalent here,
because processing each queue is an independent event that neither depends on, or disables the readiness of
queues.

29

multiple processors, where each processor possesses a subset of the operators and checks
its input streams in round-robin order, but performs a depth-first traversal upon receiving a

message. Many alternatives are possible.

2.2 Evaluating MiniWS to MiniGraph

We have not yet addressed how MiniWS is reduced to MiniGraph. Each MiniWS program
is reduced to a normal form through the through standard applicative-order reduction rules,
just as any other call-by-value language. However, these reductions are insufficient to
reduce any well formed program in MiniWS into a well formed program in MiniGraph.
There are a couple complications. First, the reduction process may not terminate. This
we consider an acceptable behavior, as it will only occur when there is a genuine infinite
loop in the program that would have surfaced at runtime (in a single-stage instead of multi-
stage execution). Second, some programs, even when fully reduced will not conform to
the grammar in Figure Specifically, that grammar requires that applications and A

expressions be eliminated. Consider the following example:

let £ =2 ...

letg=24 ...

let s = iterate (4db . app(if b then f else g, 99)) init strm
in ...

The app construct above cannot be reduced, because the expression occupying its op-
erator position is a conditional, in this case, a conditional that depends on stream data that
will not be available till runtime Pl

In the present WaveScript implementation, these failures of metaprogram evaluation
are reported as compile-time errors (i.e. failure to inline application at code location such
and such). For most practical purposes this is sufficient. The errors are encountered at
compile-time and are localized to a code location; therefore, they are typically easy for a

programmer to understand and fix.

20f course, being smart about it, one might duplicate the conditional’s continuation, pushing “99” inside
both branches of the “if” and fixing this particular example. Yet, in general, higher-order programs contain
call-sites invoking indeterminate functions.

30

In the future, however, it would be desirable to enforce through a type system that
MiniWS programs (and likewise WaveScript programs) reduce to MiniGraph programs (or
diverge). This would have two primary benefits. First, the point at which an error is en-
countered would be moved forward in the compiler pipeline. One could imagine a situation
where metaprogram evaluation takes hours, making it better to receive errors earlier. Sec-
ond, a type system would result in a more concise definition for well-formed WaveScript
programs; without one, the metaprogram evaluator becomes part of the language specifica-
tion.

As a first step, Appendix [B| contains a prototype type system that enforces the suc-
cessful reduction of metaprograms by restricting the use of higher-order functions (but still
permitting many useful usages, such as map or fold). This prototype should be thought of

a sketch—it has not been proven sound.

31

32

Chapter 3

WaveScript: Full Language

In this section, we informally describe the features of the full WaveScript language as it
is implemented and currently available from http://wavescope.csail.mit.edu. We
introduce the language and provide code examples drawn from our marmot-detection ap-

plication.

WaveScript is an ML-like functional language with special support for stream-processing.
Although it employs a C-like syntax, WaveScript provides type inference, polymorphism,
and higher-order functions in a call-by-value language. And like other SP languages [66),
13,64]], a WaveScript program is structured as a set of communicating stream operators.
A complete WaveScript program specifies a complete stream graph, a directed graph with

stream sources at one end, and a single designated output stream at the other.

In WaveScript, rather than directly define operators and their connections, the program-
mer writes a declarative program that manipulates named, first-class streams and stream
transformers (functions that accept and produce streams). Those stream transformers in
turn do the work of assembling the stream operators that make up the vertices in an exe-
cutable stream graph. The first stage of evaluation that happens during compile time and
assembles this graph is called meta-program evaluation. The implementation of this tech-

nique will be described in Chapter [5}

33

http://wavescope.csail.mit.edu

3.1 Prelude: Applications Overview

While the purpose of this Chapter is to describe the WaveScript language, we will first put

it in the context of the applications that we have built using it.

e Marmot Localization: This application involves the acoustic localization of animals
in the wild and has been deployed in Colorado. We evaluate the performance of this

implementation in various ways.

o EEG Seizure Detection: This application, introduced in Section [8.3.1} seeks to de-
tect the onset of seizures in 22-channels of EEG data. It is based on work being done

by Eugene Shih on mobile health monitoring [61]].

e Speech Detection: This application, introduced in Section [8.3.3] and based on the
approach in [19], detects human speech on a variety of sensor network platforms.
Together with the EEG application, the speech detection application is used to eval-

uate WaveScript’s program partitioning capabilities.

e Background subtraction: This application is part of a computer vision system used
to detect and identify birds in the wild based on work being done in the UCLA
Vision lab. It is introduced in Section [8.4] and serves to illustrate the ability of
metaprogramming to extend stream-based parallelism to also encompass stateful,

parallel processing of matrices.

The marmot localization application will serve as a motivating example in this chapter.

Other applications will be described in more detail as they become relevant.

3.1.1 Application: Locating Yellow-Bellied Marmots

Marmots, medium-sized rodents native to the southwestern United States, make loud alarm
calls when their territory is approached by a predator, and field biologists are interested in
using these calls to determine their locations when they call. During our recent deployment,
we used WaveScript to build a real-time, distributed localization system that biologists can

use in the field, while also archiving raw-data for offline analysis.

34

Remote

Marmots Acoustic ENS Box 1 Direction of

Arrival i
Streams
’—HSample |—>{ Detect [DOA l\
Analog Raw, 44Khz Filtered
Signal Data Detections Server

Acoustic ENS Box 2

Sample |—>| Detect |—>| DOA |/e

Analog Raw, 44Khz Filtered
Signal Data Detections

:?Fﬁ

/ l Detection
Stream
Acoustic ENS Box 3

@—H Sample |—>| Detect |—>| DOA l/ Probabllty Map

Analog Raw, 44Khz Filtered Visualization
Signal Data Detections

Figure 3-1: Diagram illustrating the major components of the marmot-detection applica-
tion.

The marmot localization application uses an eight-node VoxNet network, based on the
earlier acoustic ENSBox nodes [25], using an XScale PXA 255 processor with 64 MB
of RAM. Each sensor node includes an array of four microphones as well as a wireless
radio for multi-hop communication with the base station (a laptop). The structure of the
marmot application is shown in Figure [3-1] The major processing phases implemented by

the system are the following.

e Detect an event. Process audio input streams, searching for the onset of energy in

particular frequency bands.

e Direction of arrival (DOA). For each event detected, and for each possible angle of

arrival, determine the likelihood that the signal arrived from that angle.

e Fuse DOAs. Collect a set of DOA estimates from different nodes that correspond
to the same event. For every location on a grid, project out the DOA estimates from

each node and combine them to compute a joint likelihood.

3.2 A taste of the language

Here’s a simple but complete WaveScope program:

35

main = timer(10.0)

This creates a timer that fires at 10 Hz. The return value of the timer function is a stream
of empty-tuples (events carrying no information). The return value of the whole program
is, by convention, the stream named “main”. The fype of the above program is Stream (),
where () designates the empty-tuple.

In our next program, we will print “Hello world” forever.

main = iterate x in timer(10.0) {

emit "Hello world!";

The iterate keyword provides a special syntax for accessing every element in a stream,
running arbitrary code using that element’s value, and producing a new stream as output.
In the above example, our iterate ignores the values in the timer stream (“x”’), and produces
one string value on the output stream on each invocation (thus, it prints “Hello world!” at
10 Hz). The type of the program is Stream String.

Note that we may produce two or more elements on the output stream during each
invocation. For example, the following would produce two string elements for each input

element on the timer stream.

main = iterate x in timer(10.0) {
emit "Hello world!";

emit "Hello again!";

The above program creates a stream graph with two operators: a timer source operator,
and an iterate operator that processes the timer’s output stream. Timers are the only built-in
WaveScope stream sources (aside from foreign sources, see Section [3.9). All other stream
procedures only transform existing streams.

Iterate also allows persistent, mutable state to be kept between invocations. This is
introduced with the sub-keyword state. For example, the following produces an infinite

stream of integers counting up from zero.

36

main = iterate x in timer(10.0) {
state { cnt = 0; }
emit cnt;

cnt = cnt + 1;

Notice that the assignment operator for mutating mutable variables (:=) is different than
the operator used for declaring new variables (=ﬂ (WaveScope also has +=, -= etc for use
on mutable variables.) These are second-class mutable variable bindings (i.e., they cannot
be passed by reference to functions).

As a final example, we’ll merge two streams operating at different frequencies.

sl iterate x in timer(3.0) { emit 0; }
s2 = iterate x in timer(4.0) { emit 1; }

main = merge(sl,s2)

This will output a sequence of zeros and ones, with four ones for every three zeroes.
The merge operator combines two streams of the same type, interleaving their elements in

real time.

3.3 Examples using Marmot Application

Figure shows the main body of our marmot-detection application. It consists of two
sets of top-level definitions—one for all nodes and one for the server. Note that :: state-
ments declare the types of variables or expressions. In this program, variable names are
bound to streams, and function applications transform streams. Network communication
occurs wherever node streams are consumed by the server, or vice-versa. (One stream is
designated the “return value” of the program by main = grid.) First-class streams make

wiring stream dataflow graphs convenient.

! Actually, all variable bindings are mutable. An iterate operator can also be made stateful simply by ref-
erencing any mutable state in its lexical scope. However, state references by more than one iterate generates
an error at meta-program evaluation. So the explicit state syntactic form is a good way of enforcing that state
not be shared between iterates.

37

// Node-local streams, run on every node:
namespace Node {
(chl,ch2,ch3,ch4) = VoxNetAudioAllChans(44100);

// Perform event detection on chl only:

scores :: Stream Float;
scores = marmotScores(chl);
events :: Stream (Time, Time, Bool);

events = temporalDetector(scores);

// Use events to select audio segments from all:
detections = syncSelect(events, [chl,ch2,ch3,ch4]);

// In this config, perform DOA computation on VoxNet:
doas = DOA(detections);

}

// What is not in the Node partition is on the Server:
// Once on the base station, we fuse DOAs:
clusters = temporalCluster(doas);

grid = fuseDOAs(clusters);

// We return these likelihood maps to the user:
main = grid;

Figure 3-2: Main program composing all three phases of the marmot-detection application.
WaveScript primitives and library routines are in bold. Type annotations are for documen-
tation only.

fun marmotScores(strm) {
filtrd = bandpass(32, LO, HI, strm);
freqs = toFreq(32, filtrd);
scores =
iterate ss in fregs {
emit Sigseg.fold((+), O,
Sigseg.map(abs, ss));
1

scores

Figure 3-3: A stream transformer that sums up the energy in a certain frequency band
within its input stream. Energy in this band corresponds to the alarm call of a marmot.

38

Defining functions that manipulate streams is straightforward. Figure shows a
stream transformer (marmotScores) that implements the core of our event detector—scoring
an audio segment according to its likelihood of containing a marmot alarm call. It uses a
bandpass filter (window-size 32) to select a given frequency range from an audio signal.
Then it computes the power spectral density (PSD) by switching to the frequency domain
and taking the sum over the absolute values of each sample.

The return value of a function is the last expression in its body—whether it returns a
stream or just a “plain” value. The marmotScores function declares local variables (filtrd,
fregs), and uses the iterate construct to invoke a code block over every element in the
stream freqs. The iterate returns a stream which is bound to scores. In this case, each
element in the stream (ss) is a window of samples, a Sigseg. The Sigseg map and fold (e.g.
reduce) functions work just as their analogs over lists or arrays.

The code in Figures @ and@raises several issues which we will now address. First,
we will explain the fundamental iterate construct in more depth. Second, we will dis-
cuss synchronization between streams. Third, we will address Sigsegs and their use in the
marmot-detection application. Finally, we describe how programs are distributed through

a network.

3.4 Core Operators: iterate and merge

WaveScript is a language built on a small core. In this section, we will examine the prim-
itives that make up the kernel of the language, and serve as the common currency of the
compiler. Aside from data sources and network communication points, only two stream
primitives exist in WaveScript: iterate and merge. Iterate applies a function to each
value in a stream, and merge combines streams in the real-time, asynchronous order that
their elements arrive.

Both these primitives are stream transformers (functions applied to stream arguments)
but they correspond directly to operators in the stream graph generated by the compiler,
and are referred to interchangeably as functions or operators. WaveScript provides special

syntactic sugar for iterate, as seen above. We will return to this syntax momentarily, but

39

first we present a formulation of iterate as a pure, effect-free combinator.

iterate :: (((a, 0)—(List B8, o)), o, Stream @) — Stream S8

merge :: (Stream @, Stream @) — Stream «

Notice that iterate takes only a single input stream; the only way to process multiple
streams is to first merge them. Also, it is without loss of generality that merge takes two
streams of the same type: an algebraic sum type (discriminated union) may be used to lift
streams into a common type. Similarly, a sum type may be used to multiplex two distinct
output streams onto the single output of an iterate operator. It is a matter of optimization to
implement this efficiently (i.e. avoid broadcasting all elements of the multiplexed stream
to all consumers).

Iterate is similar to a map operation, but more general in that it maintains state be-
tween invocations and it is not required to produce exactly one output element for each
input element. The function supplied to iterate is referred to as the kernel function. The
kernel function takes as its arguments a data element from the input stream (), and the
current state of the operator (o). It produces as output zero or more elements on the output
stream (List 8) as well as a new state (o). Iterate must also take an additional argument

specifying the initial state (o).

3.5 Defining Custom Synchronization Policies

In asynchronous dataflow, synchronization is an important issue. Whereas in a synchronous
model, there is a known relationship between the rates of two streams—elements might be
matched up on a one-to-one or n-to-m basis—in WaveScript two event streams have no a
priori relationship. Yet it is possible to build arbitrary synchronization policies on top of
merge. And in fact, we find it desirable to make synchronization of streams application-
specific.

One example, shown in Figure [3-2] is syncSelect. SyncSelect takes windowed
streams (streams of Sigsegs) and produces an output stream containing aligned windows

from each source stream. SyncSelect also takes a “control stream” that instructs it to

40

fun zip(si1,s2) {
bufl = Fifo:new();
buf2 = Fifo:new();
iterate msg in mergeTag(sl,s2) {
switch msg {
Left (x): Fifo:enqueue(bufl,x);
Right(y): Fifo:enqueue(buf2,y);
}
if (!Fifo:empty(bufl) &&
IFifo:empty(buf2))
then emit(Fifo:dequeue(bufl),
Fifo:dequeue(buf2));

Figure 3-4: Zip—the simplest synchronization function.

sample only particular time ranges of data. In Figure [3-2] syncSelect extracts windows
(specified by the events stream) containing event detections from all four channels of mi-
crophone data on each node.

In Figure [3-4) we define a simpler synchronization function, zip, that forms one-to-
one matches of elements on its two input streams, outputting them together in a tuple. If
one uses only zips to combine streams, then one can perform a facsimile of synchronous
stream processing. As prerequisite to zip, we define mergeTag, which lifts both its input
streams into a common type using a tagged union. It tags all elements of both input streams

before they enter merge. (Left and Right are data constructors for a two-way union type.)

fun mergeTag(sl, s2) {

sltagged = iterate x in sl { emit Left(x) };

s2tagged = iterate y in s2 { emit Right(y) };

merge(sltagged, s2tagged);

Here we have returned to our syntactic sugar for iterates. In Figure [3-4 Zip is
defined by iterating over the output of mergeTag, maintaining buffers of past stream ele-
ments, and producing output only when data is available from both channels. These buffers
are mutable state, private to zip. Note that this version of zip may use an arbitrarily large
amount of memory for its buffers, but in practice a fair scheduler will keep memory usage

down.

41

As a final example, let’s take a look at the definition for unionList. This stream
operator takes a list of streams, merges them and tags output tuples with the index in the
list of its originating stream. A few notes on list operations: fold (reduce) operations
collapse a list using a binary operator. Foldl is variant that assumes the list is not empty,
and mapi is a variant of map that also passes an elements index in the list to its function
argument. The unionList function produces a stream graph with a number of merge

operators proportional to the length of its input list.

fun unionList(1s) {
using List;
foldl(merge,
mapi(fun(i,strm)
streammap (fun(x) (i,x), strm),

1s));

3.6 Windowing and Sigsegs

The marmotScores function in Figure [3.3] consumes a stream of Sigsegs. In addition to
capturing locally isochronous (regularly spaced in time) ranges of samples, Sigsegs serve
to logically group elements together. For example, a fast-Fourier transform operates on
windows of data of a particular size, and in WaveScript that window size is dictated by the
width of the Sigsegs streamed to it.

A Sigseg contains a sequence of elements, a timestamp for the first element, and a time
interval between elements. We refer to a stream of type Stream (Sigseg 7) as a “windowed
stream”. All data produced by hardware sensors comes packaged in Sigseg containers,
representing the granularity with which it is acquired. For example, the microphones in
our acoustic localization application produce a windowed stream of type Stream (Sigseg
Int16).

Of course, the audio stream produced by the hardware may not provide the desired
window size. WaveScript makes it easy to change the window size of a stream using the

rewindow library procedure. Rewindow(size,overlap,s) changes the size of the windows,

42

and, with a nonzero overlap argument, can make windows overlapping. In our implemen-
tation, Sigsegs are read only, so it is possible to share one copy of the raw data between
multiple streams and overlapping windows. The efficient implementation of the Sigseg
ADT was addressed in [[26]].

Because windowing is accomplished with Sigsegs, which are first-class objects, rather
than a built-in property of the communication channel or an operator itself, it is possible to

define functions like rewindow directly in the language.

3.7 Distributed Programs

A WaveScript program represents a graph of stream operators that is ultimately parti-
tioned into subgraphs and executed on multiple platforms. This partitioning can be user-
controlled or automated by the compiler. The current WaveScript implementation is based
on separating dataflow graphs into two partitions: a node and a server partitiorﬂ In the
future, WaveScript may support more distinctions between different kinds of platforms in
one, heterogeneous network. The code in Figure [3-2] defines streams that reside on the
node (namespace Node) as well as those on the server. (The “Node”” namespace is the same
irrespective of what physical platform is targetted, platform choice is selected on the com-
mand line when invoking the compiler.) Top-level definitions may be used by either. The
crossings between the node and server partitions (e.g. named streams declared in the Node
namespace and used outside of it), become the points at which to cut the graph. Presently,
the default is that the cut edges may experience message loss but other streams in the pro-
gram may not. Note that with the application in Figure[3-2] moving the DOA computation
from node to server requires only cutting and pasting a single line of code.

The WaveScript backend compiles individual graph partitions for the appropriate plat-
forms. The runtime deals with disseminating and loading code onto nodes. The networking
system takes care of transferring data over the edges that were cut by graph partitioning,
for example using TCP sockets. We will return to the issue of graph partitioning in greater

detail in Chapter[7]and Section[5.5]

21t is a separate matter to schedule operators within a partition onto a multiprocessor platform.

43

3.8 Other Language Features

This thesis does not describe in detail all the features of the WaveScript language. For that
purpose, please refer to the user manual, which can be found on the WaveScript website:
http://wavescope.csail.mit.edu/. However, here we will briefly summarize the
major language features that go into the full-fledged WaveScript language. Most of these
are a selection of off-the-shelf components from the literature that are implemented for

WaveScript using standard techniques.

e Type Inference WaveScript employs the standard Hindley-Milner/Damas-Milner
type-checking and type-inference algorithms [45]] along with a few extensions that

do not affect the basic structure of the type-checker. These extensions are as follows.

o Numeric subkind

WaveScript’s type system includes a new kind for numeric type variables. These
type variables may be bound to only scalar numeric types supporting arithmetic op-
erations: Ints, Floats, Complex numbers and so on. These numeric type variables

are written as “#a” rather than “a”. For example, the type of + is “(#a, #a) — #a”.

This enables writing code that is reusable with different numeric types (especially

relevant in the presence of so many numeric types at various precisions).

This is a feature that would be subsumed by type classes, were they added to Wave-
Script. But note that rather than the detailed numeric class hierarchy present in
Haskell, WaveScript presently makes no type-level distinctions between the different
numeric operations. This design presents simpler types to the user (lacking the com-
plex qualified types one would see in Haskell: Fractional, Integral, etc). Yet not all
numeric operations support all types. What happens if you try to take sin of an inte-
ger? WaveScript cannot catch this error in the initial type-checking pass. However,
because of the multi-stage structure of WaveScript, and because after meta-program
evaluation the program becomes monomorphic, WaveScript does detect these errors

at compile time, which is effectively as good as an error during the initial type check.
e Generic Printing

44

http://wavescope.csail.mit.edu/

The type of the WaveScript show function is “@ — String”. Once the program is
in a monomorphic form, WaveScript can generate printing code for any type. This

same functionality is accomplished by “deriving Show” in Haskell.

Marshaling

WaveScript also has support for marshaling (or serializing) any data structure. This
simply requires a pair of functions with the following signatures. (Calls to unmarshal

requires an explicit type annotation.)

marshal :: a -> Array Uint8;

unmarshal :: Array Uint8 -> a;

These functions are necessary for writing streams of data to disk and sending them
over network devices. They are used internally by the compiler when generating
networking code, as well as directly by the user when they want to add addition

communication or storage capabalities.

Records WaveScript implements the extensible record system described in the paper
“Extensible Records With Scoped Labels” [40]. These are uniquely important for
stream processing applications, which frequently need to pass an increasing amount
of metadata attached on each stream element as it passes through layers of process-
ing. The implementation in WaveScript is more efficient than those described in
the paper, owing again to the multi-stage structure of the WaveScript language. Af-
ter meta-program evaluation, when the program is monomorphic, it is possible to
rewrite record types as ordered tuples in a straightforward fashion. WaveScript cur-

rently represents all records as a flat tuple with fields in alphabetical order by label.

In some cases, it may be more efficient to instead use a different physical representa-
tion. A nested tuple representation could make extension cheaper if tuples are boxed
(don’t copy all the fields, just add new fields and keep a poniter to the parent record).
It’s an open question as to whether an optimizer could derive any benefit from using
profiling information to globally select the representation for each record type in the

program.

45

e Foreign Function Interface WaveScript has a natural and easy to use FFI for inter-

facing with legacy C code. This system is described in Section [3.9]

3.9 Pragmatics: Foreign Interface

The WaveScript compiler provides a facility for calling external (foreign) functions written
in C or C++. This functionality is essential to WaveScript, first, for reusing existing libraries
(especially DSP related, e.g. Gnu Scientific Library, FFTW, etc), and second, for adding
new data sources and data sinks — for network communication, disk access, new hardware
sensor types and so on — without modifying the WaveScript compiler itself.

The foreign interface provides a natural mapping between WaveScript types and C
types. Barring some documented implementation limitations, the foreign interface ex-
hibits the same behavior irrespective of which WaveScript backend is employed. (Different
backends produce code for different runtimes, including Scheme, ML, and C.) The one
exception is the TinyOS backend, which represents a sufficiently different platform that it
requires its own distinct foreign interface.

There are three WaveScript primitives used to interface with foreign code. The foreign
primitive registers a single C function with WaveScript. Alternatively, foreign_source
imports a stream of values from foreign code. It does this by providing a C function that
can be called to add a single tuple to the stream. Thus we can call from WaveScript into C
and from C into WaveScript. The third primitive is inline _C. It allows the programmer to
construct arbitrary C code at compile time which is then linked into the final stream query.
The programmer can of course call functions within the generated C code from WaveScript

just as any other C functions.

3.9.1 Foreign functions

The basic foreign function primitive is called as follows: “foreign(function-name,
file-1ist)”. Like any other primitive function, foreign can be used anywhere within
a WaveScript program. It returns a WaveScript function representing the corresponding C

function of the given name. The only restriction is that any call to the foreign primitive

46

must have a type annotation. The type annotation lets WaveScript type-check the program,
and tells the WaveScript compiler how to convert (if necessary) WaveScript values into
C-values when the foreign function is called.

The second argument is a list of dependencies—files that must be compiled/linked into
the query for the foreign function to be available. For example, the following would import

a function “foo” from “foo.c”.
c_foo :: Int -> Int = foreign("foo", ["foo.c"])

Currently C-code can be loaded from source files (.c, .cpp) or object files (.o, .a,
.s0). When loading from object files, it’s necessary to also include a header (.h, .hpp).

For example:

c_bar =
(foreign("bar", ["bar.h", "bar.a"])

:: Int -> Int)

Of course, you may want to import many functions from the same file or library. Wave-
Script uses a very simple rule. If a file has already been imported once, repeated imports are
suppressed. (This goes for source and object files.) Also, if you try to import multiple files

with the same basename (e.g. “bar.0” and “bar.so”) the behavior is currently undefined.

3.9.2 Foreign Sources
A call to register a foreign source has the same form as for a foreign function:
“foreign_source(function-name, file-1ist)”

However, in this case the function-name is the name of the function being exported. The
call to foreign _source will return a stream of incoming values. It must be annotated with
a type of the form Stream 7, where T is a type that supports marshaling from C code.

We call the function exported to C an entrypoint. When called from C, it will take a
single argument, convert it to the WaveScript representation, and fire off a tuple as one

element of the input stream. The return behavior of this entrypoint is determined by the

47

scheduling policy employed by that particular WaveScope backend. For example, it may
follow the tuple through a depth-first traversal of the stream graph, returning only when
there is no further processing. Or the entrypoint may return immediately, merely enqueuing
the tuple for later processing. The entrypoint returns an integer error code, which is zero if
the WaveScope process is in a healthy state at the time the call completes. Note that a zero
return-code does not guarantee that an error will not be encountered in the time between

the call completion and the next invocation of the entrypoint.

Currently, using multiple foreign sources is supported (i.e. multiple entrypoints into
WaveScript). However, if using foreign sources, you cannot also use built-in WaveScript
“timer” sources. When driving the system from foreign sources, the entire WaveScript
system becomes just a set of functions that can be called from C. The system is dormant

until one of these entrypoints is called.

Because the main thread of control belongs to the foreign C code, there is another
convention that must be followed. When using one or more foreign sources, the user must
implement three functions that WaveScript uses to initialize, start up the system, and handle

errors respectively.

void wsinit(int argc, char** argv)
void wsmain(int argc, char** argv)

void wserror(const char¥)

Wsinit is called at startup, before any WaveScript code runs (e.g. before statef}
blocks are initialized, and even before constants are allocated). Wsmain is called when
the WaveScript dataflow graph is finished initialing and is ready to receive data. Wsmain
should control all subsequent acquisition of data, and feed data into WaveScript through
the registered foreign_source functions. Wserror is called when WaveScope reaches an
error. This function may choose to end the process, or may return control to the WaveScope
process. The WaveScope process is thereafter “broken”; any pending or future calls to

entrypoints will return a non-zero error code.

48

3.9.3 Inline C Code

The function for generating and including C code in the compiler’s output is inline _C.
We want this so that we can generate new/parameterized C code (by pasting strings to-
gether) rather than including a static .c or .h file, and instead of using some other mech-
anism (such as the C preprocessor) to generate the C code. The function is called as
“inline C(c-code, init-function)”. Both of its arguments are strings. The first
string contains raw C-code (top level declarations). The second argument is either the null
string, or is the name of an initialization function to add to the list of initializers called
before wsmain is called (if present). This method enables us to generate, for example, an
arbitrary number of C-functions dependent on an arbitrary number of pieces of global state.
Accordingly we also generate initializer functions for the global state, and register them to
be called at startup-time.

The return value of the inline_C function is a bit odd. It returns an empty stream (a
stream that never fires). This stream may be of any type; just as the empty list may serve as
a list of any type. This convention is an artifact of the WaveScript metaprogram evaluation.
The end result of metaprogram evaluation is a dataflow graph. For the inline C code to
be included in the final output of the compiler, it must be included in this dataflow graph.
Thus inline_C returns a “stream”, that must in turn be included in the dataflow graph for
the inline C code to be included. You can do this by using the merge primitive to combine
it with any other Stream (this will not affect that other stream, as inline_C never produces
any tuples). Alternatively, you can return the output of inline C directly to the “main”

stream, as follows:

main = inline C(...)

3.9.4 Converting WaveScript and C types

An important feature of the foreign interface is that it defines a set of mappings between
WaveScript types and native C types. The compiler then automatically converts, where nec-

essary, the representation of arguments to foreign functions. This allows many C functions

49

WaveS cript C | explanation

Int int | native ints have a system-
dependent length, note that in
the Scheme backend WaveScript
Ints may have less precision

than C ints
Uint16 | unsigned short | WaveScript supports 8, 16, 32,

and 64 bit signed and unsigned

integers.
Float float | WaveScript floats are single-
precision
Double double
Bool int
String char* | pointer to null-terminated string
Char char
Array T T* | pointer to C-style array of ele-

ments of type T, where T must be

a scalar type
Pointer void* | Type for handling C-pointers.

Only good for passing back to C.

Figure 3-5: Mapping between WaveScript and C types. Conversions performed automati-
cally.

to be used without modification, or “wrappers”. Figure [3-5|shows the mapping between C

types and WaveScript types.

3.9.5 Importing C-allocated Arrays

A WaveScript array is generally a bit more involved than a C-style array. Namely, it in-
cludes a length field, and potentially other metadata. In some backends it is easy to pass
WaveScript arrays to C without copying them, because the WS array contains a C-style
array within it, and that pointer may be passed directly.

Going the other way is more difficult. If an array has been allocated (via malloc) in
C, it’s not possible to use it directly in WaveScript. It lacks the necessary metadata and
lives outside the space managed by the garbage collector. However, WaveScript does offer
a way to unpack a pointer to C array into a WaveScript array. Simple use the primitive

‘‘ptrToArray’’. As with foreign functions, a type annotation is required.

50

3.9.6 ‘Exclusive” Pointers

Unfortunately, ptrToArray is not always sufficient for our purposes. When wrapping
an external library for use in WaveScript, it is desirable to use memory allocated outside
WaveScript, while maintaining a WaveScript-like API.

For instance, consider a Matrix library based on the Gnu Scientific Library (GSL) (as
is included with the WaveScript distribution). GSL matrices must be allocated outside of
WaveScript; yet we wish to provide a wrapper to the GSL matrix operations that feels
natural within WaveScript. In particular, the user should not need to manually deallocate
the storage used for matrices.

For this purpose, WaveScript supports the concept of an exclusive pointer. “Exclusive”
means that no code outside of WaveScript holds onto the pointer. Thus when WaveScript is
done with the pointer the garbage collector may invoke free to deallocate the referenced
memory. (This is equivalent to calling free from C, and will not, for example, successfully
deallocate a pointer to a pointer.)

Using exclusive pointers is easy. There is one function exclusivePtr that converts a
normal Pointer type (machine address) into a managed exclusive pointer. By calling this,
the user guarantees that that copy of the pointer is the only one in existence. Converting
to an exclusive pointer should be thought of as “destroying” the pointer—it cannot be used
afterwards. To retrieve a normal pointer from the exclusive pointer, the getPtr function
can be used, however, when the garbage collector collects the exclusivePtr the pointer

returned from getPtr will be invalidated.

51

52

Chapter 4

Discussion: Language Extensibility

Stream transformers, combined with first-class windowing, has enabled us to implement
a variety of libraries that extend WaveScript with new abstractions. In addition to custom
synchronization policies, we use WaveScript to define new abstract stream datatypes that
model streaming domains other than the push-based asynchronous one. Here we highlight
some of the libraries that we have implemented. Implementing these abstractions in most
stream-processing languages is difficult or impossible without modifying the underlying

compiler or runtime.

4.1 Pull-based Streams

We have built a library that provides an ADT for pull-based or demand-driven streams.
These are useful for a number of purposes. For example, some data sources (such as files),
don’t have natural data rates and instead can be read on demand. However, if the data file
is consumed using the pull-based ADT, then the subsequent results will be available on a
demand-driven basis. For example, one could then subsequently zip the pull-based stream
with a push-based stream, pulling one value on the former for each pushed on the latter,
and pairing the results.

This library is based on the type PullStream. Internally, a PullStream is imple-

mented as a function that takes a stream of requests, and returns a stream of responses.

type PullStream t = (Stream ()) -> Stream t;

53

Using that type definition, it is straightforward to construct a library that provides all
the desired operations over PullStreams, including, filtering, mapping, applying (stateful)
stream transformers. The function for applying arbitrary stream transformers is interesting.

The function is called pull:applyST, and has the following type.
(Int, PullStream a, Stream a -> Stream b) -> PullStream b;

The integer is a buffer size, which is necessary because the iterate operators produced
by the Stream a —Stream b transformer may produce multiple outputs on a single execu-
tion, which need to be buffered until there is a demand for them[] The stream transformer
(Stream a -> Stream b) can be visualized as a component with one input and one out-

put. (Of course, this box may internally actually consist of many stream operators.)

a a arbitrary stream | b
transformer

Essentially, the job of this library is to add extra wiring to provide a back-channel for

pull requests, in addition to the forward channels for data.

aa, b
demand-driven
stream

(p_u_/l_ transformer ‘pull

The implementation of Pull:applyST is shown in Figure Pull-based stream graphs
have cycles. Thus, Pull:applyST is defined using the WaveScript feedbackloop operator,
which takes an initial stream and a stream transformer. It ties the stream transformer in a
knot (its output is fed back in as input), and merges in the initial stream to provide external
input. The event handler has to deal with four kinds of messages corresponding to the four

wires in the previous diagram.

'If a resizing Fifo implementation is used, this is unnecessary.

54

For the purposes of the current library’s implementation, we assume that the original
stream transformer provided by the user will always produce some output for each input. In
the future, this could be relaxed by using a timeout—if the user’s subgraph does not respond
with results after 7" elapsed time, then send it more data. Further improvement in that re-
spect would require a more intrusive API, where the user provides only a single work func-
tion (that takes (state, streamelement), and produces (newstate, outputelements)) rather
than an arbitrary stream transformer.

Also, there are some interesting optimizations that could be applied within the PullStream
library that are not currently exploited. Presently, a request for data is relayed up the chain
of operators one-at-a-time. If a chain of operators consists of, for example, maps (which
are one-to-one input/output) then it is reasonable to short-circuit the backchannels and send

the pull request directly to the start of the chain, eliminating unnecessary relaying.

4.2 Peek/Pop/Push with Explicit Rates

Another library allows windowed streams to be accessed with a peek/pop/push interface
rather than by manipulating Sigsegs directly. Each operator is annotated with explicit rates
for the peek/pop/pushing. This mimics the style in which StreamIT programs are writ-
ten. (If these annotations are violated at runtime, an exception is raised.) Like StreamlT,
scheduling happens at compile time (metaprogram evaluation time, in this case). The
WaveScript library code selects buffer sizes and schedules executions to match input and
output rates. The library is invoked by calling “filter” (the StreamIT term for a stream op-
erator) with explicit rates and a user work function as arguments. That work function in

turn takes peek, pop, and push functions as arguments.

fun Combine(N)
// Peek/pop N elements, Push just one:
filter(N,N,1, fun(peek,pop,push) {
sum = 0;
for i = 0 to N-1 { sum += pop(1); }
push(sum) ;

i)

55

uniontype PullIterEvent a b =
UpstreamPull O |
DownstreamPull () |
UpstreamResult a |
FinalResult b ;

fun Pull:applyST(gsize, src, transformer) {
fun(pullstring) {
filtFinalResult(
feedbackloop(stream_map (fun(x) DownstreamPull(()), pullstring),
fun(loopback) {
// First any pulls to the upstream we have to route appropriately:
source = src(filtUpstreamPull (loopback));
// We apply the user’s stream transformer to that upwelling stream of results:
results = stream_map(UpstreamResult, transformer(source));
// This is the central event-dispatcher:
iterate evt in merge(results,loopback) {
state { buf = FIFO:make(gsize);

owed = 0 }
case evt {
FinalResult(x) : {} // This is just the echo from the outbound stream.

UpstreamPull () : {} // This will have been handled above.

DownstreamPull (L)

{
// 1f we have buffered data, respond with that:

if not(FIFO:empty(buf))

then emit FinalResult(FIFO:dequeue(buf))

else {
// Otherwise we have to pull our upstream to get some tuples.
owed += 1;
emit UpstreamPull((Q))

}

}
UpstreamResult (x)

if owed > 0 then {
owed -= 1;
emit FinalResult(x);

} else
FIFO:enqueue(buf,x)

i3))

Figure 4-1: Code for pull-based streams.

56

This extension shows two things. First, the generality of the WaveScript system, in this
case evidenced by its ability to imitate a more restrictive stream model. And, second, that
metaprogram-evaluation provides an additional phase, before the dataflow-graph is con-
sumed by the WaveScript compiler, in which additional scheduling or graph manipulation

can occur. We will return to this theme in Section

4.3 Teleporting Messages

Another StreamIT feature worthy of imitation is the teleporting message. Frequently dis-
tant operators within an stream graph wish to communicate (for example, when there’s a
change of configuration). It is painful, however, to refactor all of the operators in between
the communication endpoints (to pass along the additional message). Nor should one al-
ways add a new edge in the graph directly connecting the two endpoints. In that case, when
would the message arrive? Frequently, the messages are meant to remain synchronized
with the data that flows through the intervening operators. StreamIT’s teleporting mes-
sages accomplishes exactly this, without requiring refactoring of intervening operators.

Unfortunately, by tacking on this language feature, StreamIT’s semantics and runtime
are made more complicated. In WaveScript, we can implement this abstraction in a library
without extending the language. We define a datatype for pass-through operators. These
are stream operators that process their inputs normally, but also pass through an additional
channel of data without touching it. Specifically, all outputs in the outgoing normal channel
are tagged with the value most recently received on the pass-through channel.

Similar to the PullStreams above, this library is based on a definition of pass-through
stream transformers. These simply expect both their inputs and outputs to be annotated

with an extra field.

type PassThruST (a,b,t) = Stream (a * t) -> Stream (b * t);

The library then provides various ways to construct and compose these stream trans-
formers (map, filter, etc). The tricky part is to compose stream transformers in the presence

of multiple, distinct teleporting messages traveling overlapping paths. The current library

57

leverages WaveScript’s extensible record system for this purpose. A teleporting message
is sent with a particular record label, and the record system deals with combining multiple
distinct labels to build final type that will annotate stream elements. Because WaveScript
does not yet have variant types, we use records of option types. For example, when passing
a message with label “Msgl1”, the receiver could test its input to see if it contains a Msg1l
message: x.Msgl == None.

An open question is whether, using only general purpose optimizations, this sort of

embedding can be made as efficient as StreamIT’s native support for teleporting messages.

4.4 Swappable Components

Finally, the most ambitious new stream abstraction that we’ve built atop WaveScript is a
library for building swappable components. This allows one to instantiate multiple ver-
sions of a stream operator that are swappable at runtime. This can be useful, for example,
when there are different implementations of an algorithm that perform better in different
situations. Or, it can be used to swap between two identical scopies of a component that
are mapped to different physical machines, thereby migrating the component.

Like the other stream abstractions above, this library requires that one use its API to
build stream transformers within the library’s ADT for swappable components. Because
swapping components requires freezing and migrating state, it is not possible to swap be-
tween arbitrary stream transformers. Instead the user may use the below makeSwapable func-
tion to build a pair of swappable components by providing two alternate work functions.
(These work functions must explicitly take and return their state, o, so that the library can
manage it.) Instantiate, in turn, can invoke a swappable component with an input stream
as well as a control stream that carries no data (Stream ()), but signals when the swap

should occur.

type WorkFun (a,b,0) = (a, o) -> (b, 0);
makeSwappable :: (WorkFun(a,b,o), WorkFun(a,b,0)) — Swappable (a,b);

instantiate :: (Stream (), Stream a, Swappable(a,b)) — Stream b;
The result of a instantiating a swappable component is pictured below. A controller

58

intercepts all incoming data, as well as “switch!” messages on the control stream. When
a switch occurs, the controller stops sending data to the active component (A or A”), and
instead sends it an “off” message. Upon receiving that message, the active component
bundles its state, and sends it back with an “ack(state)” message. The controller buffers
all incoming data between sending the “off” message and receiving the “ack” message.
Once it receives the “ack”, the controller may send an “on(state)” message to the inactive
component, followed by resuming transfer of incoming data to that component (starting
with any that has been buffered).

Because of asynchronous communication, output-elements from A may be languishing
on A’s outgoing channel when A’ is activated. For this reason a reordering operator is
necessary on the outgoing side. Accordingly, outgoing messages are numbered, and the

counter is appended to the state that is handed between A and A’.

data | off! | on(state)
A

incoming data

—> Controller' ack(State)>

3

(ensure Outhing
ordering) i

-~

/

switch! Al

If the A/A’ operator falls at the boundary between the node and the server, then this
structure can effectively create a migrating operator. For example, the controller and A
could be assigned to the embedded node; A" and downstream operators could be assigned
to the server. For example, in our marmot application, A and A" could represent two instan-
tiations of the direction-of-arrival (DOA) component. The controller would be on the sen-
sor node, and would decide whether DOA should be computed locally or sent to the server.
Unfortunately, these swappable components do not compose in the way most desirable for
migrating computations. If two swappable components are instantiated in sequence, they
will be separated in the middle by a controller. This controller can be statically assigned
only to one machine. Even if both migratable operators move to the other machine, the data
transfer between them will still be routed through the first machine! A more composable

form of swappable components is a topic for future work.

59

60

Chapter 5

WaveScript Implementation

The WaveScript language is part of the ongoing WaveScope project, which delivers a com-
plete stream-processing system for high data-rate sensor networks. It includes many com-
ponents that fall outside the scope of this thesis, including: the networking layer, scheduling
engines, and control and visualization software. Instead, in this chapter we focus on the
language implementation: compilation and code generation. We save compiler optimiza-
tions for Chapter [0} and then save the details of the program partitioning algorithm for

Chapter

5.1 A Straw-man Implementation

A naive way to implement WaveScript is to use a general-purpose language with support for
threads and communication channels, such as Concurrent ML or Java. In that setting, each
node of the dataflow graph would be represented by a thread, and the connections between
the nodes by channels. Each thread would block until necessary inputs are received on
input channels, perform the node’s computation, and forward results on output channels.
While such an approach could leverage parallelism, the overhead of running a distinct
thread for each node, and of synchronizing through communication channels, would be
prohibitive for many parts of the computation. Because the compiler would not have direct
access to the structure of the (fixed) stream graph, the job would fall to the runtime to

handle all scheduling of threads. For example, if the OS-scheduler is permitted to schedule

61

threads it will load balance them across CPUs, but knowing nothing of the communication
structure, will not try to minimize edge crossings across CPU boundariesﬂ This approach

is used in some streaming databases, to the detriment of performance [26].

5.2 The WaveScript Approach

WaveScript instead exposes the stream graph to the compiler, allowing a range of stream
optimizations described in Section [l The scheduler uses profiling data to assign operators
to threads, with one thread per CPU. Each thread, when a data element becomes available,
performs a depth-first traversal of the operators on that thread, thereby “following” the data
through. This depth-first algorithm is modified to accommodate communication with op-
erators on other threads. Outgoing messages are placed on thread-safe queue whenever
the traversal reaches an edge that crosses onto another CPU. Also, the traversal is stopped
periodically to check for incoming messages from other threads, while respecting that in-
dividual operators themselves are not reentrant. The original WaveScope runtime system
was described in [26], though new versions of the system include a reimplementation of
the runtime along with the newer ANSI C backend (described in this chapter).

The overall structure of the WaveScript compiler is depicted in Figure The inter-
pret&reify evaluator, described in the next section, is the critical component that transforms
the WaveScript program into a stream graph. Subsequently, it is optimized, partitioned,
lowered into a monomorphic, first-order intermediate language, and sent through one of

WaveScript’s three backends.

5.2.1 Execution Model

WaveScript targets applications in which the structure of the stream graph remains fixed

during execution. We leverage this property to evaluate all code that manipulates stream

1Of course, this scenario would also be costly due to thread context-switching.

2Queue implementation is a area worthy of study in its own right. We use the same lock-free algorithm as
adopted by Java’s concurrency library, described by Michael and Scott in [44]. This implementation provides
unbounded queues, but must allocate on each enqueue. In the future, we hope to systematically experiment
with alternatives.

62

| Parse, Desugar, Typecheck |

Program Tree v

| Interpret & Reify |

\ 4
| Rewrite Rules

Stream Graph v

| Partition / Profile |

\/
‘ Stream Graph Optimizer |

\/
| Monomorphize & Defunctionalize |

.ﬁ Y
Scheme Backend [ML Backend] C++ Backend

Figure 5-1: Compilation Work-flow and Compiler Architecture

graphs at compile time. For the supported class of programs, however, this multi-phase
evaluation is semantics preserving (with respect to a single-phase evaluation at runtime).
A WaveScript evaluator is a function that takes a program, together with a live data

stream, and produces an output stream.
Eval :: program — inputstream — outputstream

Our evaluation method is tantamount to specializing the evaluator (partially evaluating)
given only the first argument (the program). The end result is a stream dataflow graph
where each node is an iterate or a merge. (In a subsequent step of the compiler, we
perform inlining within those iterate’s until they are monomorphic and first-order.)
WaveScript’s evaluation technique is key to enabling higher-order programming in the
performance-critical, resource limited embedded domains—some features (closures, poly-
morphism, first-class streams) are available to the programmer but evaluated at compile-
time. We find that this provides much of the benefit, in terms of modularity and library
design, without the runtime costs. Further, this method simplifies backend code genera-
tion, as our low-level backends (described in Section [5.4) may omit these features. The
main benefit of the evaluation method, however, is that it enables stream graph optimiza-

tions. Thus the performance increases described in Section 8.2 can be directly attributed to

63

interpret&reify.

Our method is in contrast with conventional metaprogramming, where multiple explicit
stages of evaluation are orchestrated by the programmer. For example, in MetaML [65],
one writes ML code that generates additional ML code in an arbitrary number of stages.
This staging imposes a syntactic overhead for quotation and antiquotation to separate code
in different stages. Further, it imposes a cognitive burden on the programmer—extra com-
plexity in the program syntax, types, and execution. For the streaming domain in particular,
WaveScript provides a much smoother experience for the programmer than a more general

metaprogramming framework.

Interpret & Reify: Now we explain our method for reducing WaveScript programs
to stream graphs. During compile time, we feed the WaveScript source through a simple,
call-by-value interpreter. E] The interpreter’s value representation is extended to include
streams as values. The result of interpretation is a stream value. A stream value contains
(1) the name of a built-in stream-operator it represents (e.g. iterate, merge, or a source
or network operator), (2) input stream values to the operator where applicable, and (3) in
the case of iterate, a closure for the kernel function.

The dependency links between stream values form the stream graph. All that remains
is to reify the kernel functions from closures back into code. Fortunately this problem is
much studied [60]. Closures become A-expressions once again. Variables in the closure’s
environment are recursively reified as let-bindings surrounding the A-expression. The al-
gorithm uses memoization (through a hash table) to avoid duplicating bindings that occur
free in multiple closures. These shared bindings become top-level constants.

Let’s consider a small example. Within the compiler, the kernel function argument to
an iterate is always represented (both before and after interpret & reify) by a let-binding

for the mutable references that make up its state, surrounding a A-expression containing the

code for the kernel function. The abstract syntax looks approximately like the following.

iterate (let st=ref(3) in Ax.emit(x+!st)) S

3 Originally, we used an evaluator that applied reduction rules, including 8- and é-reduction, until fixa-
tion. Unfortunately, in practice, to support a full-blown language (letrec, foreign functions, etc.) it became
complex, monolithic, and inscrutable over time, as well as running around 100 times slower than our current
interpret/reify approach.

64

When interpreted, the let-form evaluates to a closure. During reification, mutable state
visible from the closure (st) is reified into binding code no differently than any other state.
However, it is a compile-time error for mutable state to be visible to more than one kernel
function. For the simple example above, interpret & reify will generate the same code as
it was input. More generally, this pass will eliminate all stream transformers (such as zip
from Figure [3-4)) leaving only iterates, merges, and network/source operators—in other

words, a stream graph.

5.3 WaveScript Backend Code Generation

WaveScript’s compiler front-end uses multiple backend compilers to generate native code.
Before the backend compilers are invoked, the program has been profiled, partitioned into
per-node subgraphs, optimized, and converted to a first-order, monomorphic form. The
WaveScript compiler does not generate native code, but source code in another language.
Some would call it a source-to-source compiler for this reason. By eliminating some of the
trickier language features at compile-time (polymorphism, recursion, higher-order func-
tions), WaveScript avoids the usual need for a compiler to go all the way to native-code so
as to optimize the implementation of these difficult features. As a software artifact, one of
the advantages of WaveScript is that it is easily retargetable and doesn’t require much of
potential backend targets. This is a necessary feature for supporting a range of embedded

devices.

Ultimately WaveScript targets two families of computer architectures: commodity mul-
ticore processors, and embedded processors. Over time, the set of backend code generators
has expanded to support specific hardware platforms and operating systems. There were
two major generations of the system, corresponding to the first three WaveScript backends
(Chez Scheme, MLton, and C++/XStream) and the more recently added backends (ANSI

C, TinyOS, JavaME). Both generations of the system are described here for completeness.

65

14000 ChezScheme 7.
GCC 41.
12000 f MLton rev 566

10000 r .

3 I
3 mmm
6 I

8000 | -
6000 | -
4000 + -
2000 | -

Figure 5-2: Execution times (in milliseconds) of legacy WaveScript backends on applica-
tion benchmarks. Single-threaded benchmark on AMD Barcelona, optimizations enabled.
Benchmarks include three stages of the marmot application (detection, DOA, and fusing
DOAs), as well as a complete multinode simulation—eight nodes simulated on one server,
as when processing data traces offline. Also included are our pipeline leak detection, and
road surface anomaly (pothole) detection applications.

5.4 Legacy Backends

The first generation of the WaveScript system used three compilers as backends for gener-
ating native code: Chez Scheme [22], MLton [67], and G++/GCC. These backends each
provide a different combination of compile-time, debugging, performance, and parallelism.

The backends’ relative performance on a benchmark suite is shown in Figure [5-2]

Scheme backend: The WaveScript compiler itself is implemented in the Scheme pro-
gramming language. Accordingly, the first, and simplest backend is simply an embedding
of WaveScript into Scheme using macros that make the abstract syntax directly executable.
This backend is still used for development and debugging. Furthermore, it enables faster

compile times than the other backends. And when run in a special mode, it will enable di-

66

rect evaluation of WaveScript source immediately after type checking (without evaluating
to a stream-graph). This provides the lowest-latency execution of WaveScript source, which
is relevant to one of our applications that involves large numbers of short-lived WaveScript
“queries” submitted over a web-site. It also keeps us honest with respect to our claim that

our reification of a stream graph yields exactly the same behavior as direct execution.

MLton backend: MLton is an aggressive, whole-program optimizing compiler for
Standard ML. Generating ML code from the kernel functions in a stream graph is straight-
forward because of the similarities between the languages’ type systems. This provided us
with an easy to implement single-threaded solution that exhibits surprisingly good perfor-
mance [67], while also ensuring type- and memory-safe execution. In fact, it is with our
MLton backend that we beat the handwritten C version of the acoustic localization applica-
tion. MLton in itself is an excellent option for building embedded software, if GC pauses
can be tolerated. However, using MLton directly would forego WaveScript’s stream graph

optimization.

C++ backend : Originally, we had intended for our C++ backend to be the best-
performing of the three backends, as it includes a low-level runtime specifically tailored
for our streaming domain. However, in the MLton backend actually outperforms our C++

backend, due to three primary factors:

1. The C++ backend leverages the flexible WaveScope scheduling engine for execut-
ing stream graphs. The engine supports several different scheduling policies and
combinations thereof. The cost of this flexibility is that transferring control between
operators is at least a virtual method invocation, and may involve a queue. The ML-
ton and Scheme backends support only single-threaded depth-first traversal, where

control transfers between operators are direct function calls.

2. MLton incorporates years of work on high-level program optimizations that GCC
cannot reproduce (the abstractions are lost in the C code), and which we do not have

time to reproduce within the WaveScript compiler.

3. Our prototype uses a naive reference counting scheme (with cycles prevented by the

67

type system) that is less efficient than MLton’s tracing collector. (Although it does
reduce pauses relative to MLton’s collector.) In the future we believe that we can
implement a substantially more efficient domain-specific collector by combining de-
ferred reference counting with the fact that our stream operators do not share mutable

state.

As we show in Section |8} in spite of its limitations, our current prototype C++ runtime
is the best of these choices when parallelism is available. This is important in several
of our applications where large quantities of offline data need to be processed quickly
on multi-core/multiprocessor servers, such as when evaluating our algorithms on over a
terabyte of accumulated marmot audio data. The MLton runtime and garbage collector do
not support concurrent threads, and it would be a daunting task to add this functionality. We
could, however, attempt process-level parallelism using MLton, but because MLton does
not directly support inter-process shared memory, this would require additional copying of

data.

5.5 Recent Backends

Unfortunately, none of the legacy backends above could plausibly be adapted to program
extremely resource constrained devices such as Telos motes. When we decided to target
NesC/TinyOS, our first step was to replace the WaveScript C++ backend with a low-level
ANSI C backend. This C backend is used to execute the server-side portion of a partitioned
program, as well as the node-side portion on Unix-like embedded platforms that run C,

such as the iPhone and the Gumstix.

5.5.1 Code Generation: ANSI C

The original backend depended on features such as Boost smart pointers and templates (for
generic printing and so on). There were sufficient C++ dependencies that we decided to

reimplement the code generator rather than modify the existing oneﬂ In particular, the C++

4As a minor point, an additional motivation was to rewrite the generator in an object-oriented fashion so
as to subclass the TinyOS and Java code generation from the basic generator.

68

backend depended on the separate XStream scheduling engine. Removing that dependency
and handling scheduling directly within the generated code adds complexity but allows the
compiler greater control and generally improves performance.

By default, our C code-generator produces single threaded code in which each operator
becomes a function definition. Passing data to a downstream operator is accomplished by
calling its function. As with the C++ backend, the newer C backend also produces threaded
code. It uses one thread per stream operator and relies on earlier phases of the compiler
(fusion/fision, Chapter [6)) to groom the stream graph to contain an appropriate number of
operators.

As we improved our compiler and ANSI C code generator, the performance of our C
backend surpassed the MLton compiler. Currently the ANSI C backend is WaveScript’s
flagship, and except for some as-yet-unsupported features we turn to it first in both single-

and multi-threaded scenarios.

5.5.2 ANSI C Backend: Stream-Optimized Garbage Collection

One of the ways that the C backend improved over its predecessor was through superior
garbage collection. The C++ backend used simple reference counting, whereas the C back-
end provides—in addition to simple reference counting and conservative collection via the
Boehm collector [|11]—an efficient form of deferred reference counting. We call this col-
lector stream optimized because it takes advantage of the structure of streaming programs
(independent, atomically executed stream operators) to improve collection times.

Two restrictions on the source language make this possible. First, the language only
allows programs that generate dataflow-graphs to be written. Second, by forbidding recur-
sive datatypes, WaveScript avoids cycles, and therefore avoids the necessity of a backup
tracing collector to detect the cycles that a reference counting collector will miss. With-
out recursive datatypes, long pauses for freeing objects also become less likely (because
large linked structures are less common) even without implementing more sophisticated
incremental deallocation strategies. (And, indeed, the lack of cycles benefits the older C++

backend as well.)

69

Traditional deferred reference counting [20] ignores pointers from the stack (local vari-
ables), which typically account for a majority of reference count updates. The downside of
this approach is that heap objects may not be immediately discarded upon their reference
count going to zero and may therefore contribute to larger space consumption. Instead,
these pointers are stored in a “zero count table” (ZCT). Periodically, the stack is traced,
and once those pointers are taken into account, then objects in the ZCT that still have no

references can be deallocated.

We have additional information about the structure of a WaveScript program’s execu-
tion: it consist of independent, atomically executed stream operators. Because the Wave-
Script semantics do not allow shared mutable state between operators, each operator log-
ically has its own “heap”. Therefore it is a legitimate strategy to keep disjoint physical
heaps, in which case collections may proceed independently from one another. This is
ideal for parallel garbage collection. But with a deferred reference counting approach there
is an additional benefit. When an operator is finished executing, there are no stack frames
to trace. Therefore the ZCT can immediately be cleared. Thus we keep the benefits of

deferred reference counting while avoiding the costﬂ

The problem with the disjoint heap model is that it precludes opportunities for sharing
immutable objects between operators. It does not, however, require that objects always be
copied when they are transmitted between operators. It is rare in practice for an operator
that allocates a new object, to both keep it and forward it along. Thus it is sensible to
simply transfer ownership of objects to between operators, as long as the source opera-
tor relinquished all pointers to it. This optimization requires, however, a shared memory

implementation.

SHowever, deferred reference counting may result in substantially larger memory footprints, as objects
are collected later. Also, while stream operators are typically kept small (fine grained), they are of course
permitted to perform arbitrary allocation and computation. In this case a backup collector must be in place to
perform a collection before the end of an operator’s execution. A conservative collector can serve as a simple
backup.

70

5.5.3 Code Generation: TinyOS 2.0

Supporting TinyOS 2.0 posed a number of challenges, including the extreme resource con-
straints of motes, the fact that TinyOS requires tasks to be relatively short-lived, and the
requirement that all IO be performed with split-phase asynchronous calls.

Our implementation does not support the entirety of the WaveScript language on TinyOS.
Notably, we don’t support dynamic memory management in code running on motes. We
may support memory management in the future, for example using TinyAlloc together
with reference counting, but it remains to be seen whether this style of programming can
be made effective for extremely resource constrained devices. We note that to preserve
the existing failure modes of WaveScript (dropped stream items on designated edges, but
no abortion of execution/corruption of operator state), the compiler would need to move

dynamic allocations ahead of any operator-state mutation or else checkpoint the state.

Scheduling by Cooperative Multitasking

The most difficult issue in mapping a high-level language onto TinyOS is handling the
TinyOS concurrency model. All code executes in either task or interrupt context, with only
a single, non-preemptive task running at a time. WaveScript simply maps each operator
onto a task. Each data element that arrives on a source operator, for example a sensor sam-
ple or an array of samples, will result in a depth-first traversal of the operator graph. This
graph traversal is not re-entrant. Instead, the runtime buffers data at the source operators
until the current graph traversal finishes.

This simple design raises several issues. First, task granularity should fall within a re-
stricted range. Tasks with very short executions incur unnecessary overhead, and tasks that
run too long degrade system performance by starving important system tasks (for example,
sending network messages). Second, the best method for transferring data items between
operators is no longer obvious. In the basic C backend, we simply issue a function call to
the downstream operator, wait for it to complete, and then continue computation. If we at-
tempt this method in TinyOS, we are forced to perform an entire traversal of the graph in a

single very long task execution. The alternative, to execute an operator in its entirety before

71

executing any downstream operators, would require a queue to buffer all output elements

of the current operator.

We now describe our solution to each of these problems:

Merging Tasks: WaveScript provided an existing framework for merging operators for
optimization purposes. By simply controlling the parameters involved, we can prevent
WaveScript from generating tasks smaller than a certain granularity. Their small execution
times (gleaned from profiling data) will cause them to be merged with adjacent upstream

or downstream operators.

Splitting Tasks: Splitting existing large tasks into smaller pieces is much more difficult
than merging but is critically important for system health. Splitting involves inserting yield
points to create a cooperative multitasking system. Once the yield points are selected, it is
possible for WaveScript to split operators at those points by saving the current state (local
variables) of the execution. In the TinyOS context, a task yields by storing its state and
reposting itself. This process is made easier by the fact that WaveScript operators do not
share mutable state or hold locks. Of course, storing the state of a stalled operator execution
requires additional memory. But because graphs are acyclic, and only a single traversal of

the graph is active at once, only one stored copy of each operator’s state is needed.

The benefits of cooperative multithreading in embedded systems and sensor networks
are well appreciated. But in general, it is difficult to automatically insert yield points in
arbitrary, Turing-complete programs. Not knowing the bounds on loops or the amount of
time spent within them makes it difficult to insert yield points. For example, the loop could
yield on every iteration, or every N iterations, where N is either fixed heuristically or based

on a estimate of the loops execution time derived from program analysis.

WaveScript instead uses profile data to determine yield points. If an operator consis-
tently takes approximately 7" time to execute, where T is greater than a fixed limit L, the
system must insert [7/L] — 1 yield points. The goal is to evenly divide the execution. By
mapping points in an execution trace back onto code locations (using the profiling method
from Section WaveScript determines where to insert yield points. Optimizing the pre-

cise placement of yield points is an open question.

72

Moving Data Elements: Once tasks are split and merged to the correct granularity, there
still remains the issue of inter-operator communication. Here, we again leverage the co-
operative multithreading method. A WaveScript operator sends data to its output stream
using the emit keyword. We insert a yield point after each emit command. The running
task schedules the downstream operator (by posting a task). It then stores its state, re-posts
itself, and yields. This enables us to process stream elements as soon as they are produced,
just as in the basic C backend, without a monolithic task.

This same method could be used to split WaveScript work functions at blocking func-
tion call sites which (in TinyOS) become asynchronous. For example, reading a sensor
or flushing the printf port requires an asynchronous, split-phase call in TinyOS. However,
such calls introduce unpredictable delays in a graph traversal that interfere with our au-
tomatic partitioning and scheduling. Thus, we presently assume that no split-phase calls
occur within WaveScript work functions. (Split-phase calls to acquire data are made by the

system before beginning a graph traversal.)

Messaging

Aside from scheduling, messaging is the most important TinyOS feature abstracted by
WaveScript. The user writes programs in terms of an abstract stream model where individ-
ual stream elements may be of arbitrary size. Stream transport in TinyOS involves subdi-
viding large stream elements across multiple messageﬁ marshaling data from memory into
packets, routing packets out of the network, and retransmitting dropped messages. Though
the model does not demand perfectly reliable channels (Section because stream items
may be broken up across multiple messages, message loss is particularly painful.
Fortunately, the TinyOS 2.0 software suite simplifies many of these tasks. The Collec-
tion Tree Protocol (CTP) provides a convenient routing tree implementation that we use to
transport all streams from the network. CTP also takes care of link-level retransmission.
The power management system of TinyOS 2.0 allows the microprocessor to switch into a

low-power mode when there are no active tasks—without being explicitly told to do so.

®Tt is nevertheless beneficial for the programmer to keep in mind the size range of TinyOS messages when
designing their program.

73

Also, the MIG tool generates code to unpack C structs from network messages. However,
that leaves WaveScript with the job of choosing binary formats for more complex Wave-
Script datatypes (e.g. tuples containing pointer types such as arrays), and of dividing stream

elements across messages, numbering, and reassembling them.

5.5.4 Code Generation: JavaME

JavaME is a portable execution environment for cellular phones. Generating code for
JavaME is much simpler than for TinyOS, with Java itself providing a high level program-
ming environment that abstracts hardware management. The basic mapping between the
languages is the same as in the C backend. Operators become functions, and an entire graph
traversal is a chain of function calls. In fact, the JavaME code generator is a simplified ver-
sion of the C generator. Reference counting is omitted, with the JVM handling garbage
collection. It is straightforward to construct Java datatypes to represent WaveScript types
(e.g. lists, arrays). However, other minor stumbling blocks unique to Java arise: for exam-
ple, boxing and unboxing scalar types, or the lack of unsigned integer types. Especially on
embedded platforms, the performance of the Java backend relative to C was surprisingly

poor, which may in part be due to these difficulties in mapping the types.

74

Chapter 6

Optimization Framework

With the basic structure of the compiler covered, we now focus on the optimization frame-
work. The cornerstone of this framework is the profiling infrastructure, which gathers
information on data-rates and execution times that subsequently enable the application of
graph optimizations from the synchronous dataflow community. In this section we’ll also
cover our method for performing algebraic rewrite optimizations, which are not currently

driven by profiling information.

6.1 Profile & Partition

The WaveScript compiler, implemented in the Scheme language, can profile stream graphs
by executing them directly within Scheme during compilation (using sample input traces).
This produces platform-independent data rates, but cannot determine execution time on
embedded platforms. For this purpose, we employ a separate profiling phase on the device
itself, or on a cycle-accurate simulator for its microprocessor.

First, the partitioner determines what operators might possibly run on the embedded
platform, discounting those that are pinned to the server, but including movable operators
together with those that are pinned to the node. The code generator emits code for this parti-
tion, inserting timing statements at the beginning and end of each operator’s work function,
and at emit statements, which represent yield points or control transfers downstream. The

partition is then executed on simulated or real hardware. The profiler generates a visual-

75

A A
i3

5

0000

tedeo-00

i
H
i

III I-iIT ¢
: : : P

i

5
i

it
i

H
H
5

i

Irlll
H H

5

¥

Elglflil}ilélil—fl‘i i
i i i i i i i i H §
i i i i 4 H i 1 :

H i

Figure 6-1: Visualizations produced by the compiler. (Labels not intended to be legible; see Figure
for a clearer rendering of the left-hand graph.) On the left, profiled graphs for a speech detection application,
including data rates and CPU consumption, for each of four embedded platforms: TMote, N80, iPhone, and
Gumstix (PXA255). On the right, cascades of filters corresponding to three channels of our 22-channel EEG
application. Turquoise indicates operators assigned to the embedded node in an optimal partitioning for a
particular CPU budget.

ization summarizing the results for the user. We show an example of the visualization in
Figure [6-1]

Because our current model only allows communication from node to server, it is unnec-
essary for the profiler to instantiate the server partition to gather profile data. It is sufficient
to execute only the embedded partition and discard its output stream(s). The inserted timing
statements print output to a debug channel read by the compiler. For example, we execute
instrumented TinyOS programs either on TMote Sky motes or by using the MSPsim sim-
ulatmﬂ In either case, timestamps are sent through the USB serial port, where they are
collected by the compiler.

For most platforms, the above timestamping method is sufficient. That is, the only rele-

vant information for partitioning is how long each operator takes to execute on that platform

'"We also tried Simics and msp430-gdb for simulation, but MSPsim was the easiest to use. Note that
TOSSIM is not appropriate for performance modeling.

76

(and therefore, given an input data rate, the percent CPU consumed by the operator). For
TinyOS, some additional profiling is necessary. To support subdividing tasks into smaller
pieces, we must be able to perform a reverse mapping between points in time (during an
operator’s execution) and points in the operator’s code. Ideally, for operator splitting pur-
poses, we would recover a full execution trace, annotating each atomic instruction with a
clock cycle. Such information, however, would be prohibitively expensive to collect. We
have found it is sufficient to instead simply time stamp the beginning and end of each for
or while loop, and count loop iterations. As most time is spent within loops, and loops
generally perform identical computations repeatedly, this enables us to roughly subdivide
execution of an operator into a specified number of pieces.

After profiling, control transfers to the partitioner. The movable subgraph of operators
has already been determined. Next, the partitioner formulates the partitioning problem in
terms of this subgraph, and invokes an external solver (described in Section /) to identify
the optimal partition. When the partitioning is computed, a visualization of the partition is
presented to the user. The program graph is repartitioned along the new boundary, and code
generation proceeds, including generating communication code for cut edges (e.g., code to
marshal and unmarshal data structures).

The stream-graph optimizations described in this chapter are applied independently to
each partition, corresponding to the operators that run on a single physical node (possibly
with multiple cores/processors). The rewrite optimizations, on the other hand, are applied

during metaprogram evaluation and before partitioning.

6.2 Stream Graph Optimizations

There are a breadth of well-understood transformations to static and dynamic dataflow
graphs that adjust the parallelism within a graph—balancing load, exposing additional par-
allelism (fission), or decreasing parallelism (fusion) to fit the number of processors in a
given machine. The Streamlt authors identify task, data, and pipeline parallelism as the
three key dimensions of parallelism in streaming computations [[66]]. Task parallelism is

the naturally occurring parallelism between separate branches of a stream graph. Data par-

77

allelism occurs when elements of a stream may be processed in parallel, and must be teased
out by replicating (fissioning) operators into multiple workers. Pipeline parallelism is found
in separate stages (downstream and upstream) of the stream graph that run concurrently.
We have not taken the time to reproduce all the graph optimizations found in StreamlIt
and elsewhere. Instead, we have implemented a small set of optimizations in each ma-
jor category, so as to demonstrate the capability of our optimizer framework—through
edge and operator profiling—to effectively implement static graph optimizations normally
found in the synchronous dataflow domain. Keep in mind that these optimizations are ap-
plied after the graph has been partitioned into per-node (e.g. a VoxNet node or laptop)
components. Thus they affect intra-node parallelism (e.g., placement onto cores of a pro-
cessor). Our partitioning methodology separately treats the question of what should go on

different physical nodes.

Operator placement: For the applications in this paper, sophisticated assignment of
operators to CPUs (or migration between them) is unnecessary. We use an extremely simple
heuristic, together with profiling data, to statically place operators. We start with the whole
query on one CPU, and when we encounter split-joins in the graph, assign the parallel
paths to other CPUs in round-robin order, if they are deemed “heavyweight”. Our current
notion of heavyweight is a simple threshold function on the execution time of an operator
(as measured by the profiler). This exploits task-parallelism in a simple way but ignores

pipeline parallelism.

Fusion: We fuse linear chains of operators so as to remove overheads associated with
distinct stream operators. Any lightweight operators (below a threshold) are fused into ei-
ther their upstream or downstream node depending on which edge is busier. This particular
optimization is only relevant to the C++ backend, as the Scheme and MLton backends bake
the operator scheduling policy into the generated code. That is, operators are traversed in a

depth first order and emits to downstream operators are simply function calls.

Fission: Stateless Operators: Any stateless operator can be duplicated an arbitrary
number of times to operate concurrently on consecutive elements of the input stream. (A

round-robin splitter and joiner are inserted before and after the duplicated operator.) The

78

current WaveScript compiler implements this optimization for maps, rather than all state-
less operators. A map applies a function to every element in a stream, for example,
map(£,s). In WaveScript, map is in fact a normal library procedure and is turned into an
anonymous iterate by interpret-and-reify. We recover the additional structure of maps
subsequently by a simple program analysis that recognizes them. (A map is an iterate
that has no state and one emit on every code path.) This relieves the intermediate compiler
passes from having to deal with additional primitive stream operators, and it also catches
additional map-like iterates resulting from other program transformations, or from a
programmer not using the “map” operator per-se.

Wherever the compiler finds a map over a stream (map(£,s)), if the operator is deemed

sufficiently heavyweight, based on profiling information, it can be replaced with:

(sl1,s2) = split2(s);
join2(map(f,s1), map(f,s2))

Currently we use this simple heuristic: split the operator into as many copies as there are
CPUs. Phase ordering can be a problem, as fusion may combine a stateless operator with
an adjacent stateful one, destroying the possibility for fission. To fix this we use three steps:

(1) fuse stateless, (2) fission, (3) fuse remaining.

Fission: Array Comprehensions: Now we look a splitting heavyweight operators that
do intensive work over arrays, specifically, that initialize arrays with a non-side-effecting
initialization function. Unlike the above fusion and fission examples, which exploit ex-
isting user-exposed parallelism (separate stream kernels, and stateless kernels), this opti-
mization represents additional, compiler-exposed parallelism.

Array comprehensions are a syntactic sugar for constructing arrays. Though the code
for it was not shown in Section [3] array comprehensions are used in both the second and
third stages of the marmot application (DOA calculation and FuseDOA). The major work of
both these processing steps involves searching a parameter space exhaustively, and record-
ing the results in an array or matrix. In the DOA case, it searches through all possible
angles of arrival, computing the likelihood of each angle given the raw data. The output is

an array of likelihoods. Likewise, the FuseDOA stage fills every position on a grid with the

79

likelihood that the source of an alarm call was in that position.
The following function from the DOA stage would search a range of angles and fill the

results of that search into a new array. An array comprehension is introduced with #[|].

fun DOA(n,m) |
fun(dat) {

#[searchAngle(i,dat) | i = n tom]

With this function we can search 360 possible angles of arrival using the following
code: map(DOA(1,360),rawdata). There’s a clear opportunity for parallelism here. Each
call to searchAngle can be called concurrently. Of course, that would usually be too fine a
granularity. Again, our compiler simply splits the operator based on the number of CPUs

available.

map (Array.append,
zip2(map(DOA(1, 180), rawdata)
map (DOA(181,360), rawdata)))

In the current implementation, we will miss the optimization if the kernel function con-
tains any code other than the array comprehension itself. The optimization is implemented
as a simple program transformation that looks to transform any heavyweight maps of func-

tions with array comprehensions as their body.

6.2.1 Batching via Sigsegs and Fusion

High-rate streams containing small elements are inefficient. Rather than put the burden on
the runtime engine to buffer these streams, the WaveScript compiler uses a simple program
transformation to turn high-rate streams into lower-rate streams of Sigseg containers. This
transformation occurs after interpret-and-reify has executed, and after the stream graph has
been profiled.

The transformation is as follows: any edge in the stream-graph with a data-rate over

a given threshold is surrounded by a window and dewindow operator. Then the compiler

80

repeats the profiling phase to reestablish data-rates. The beauty of this transformation is
that its applied unconditionally and unintelligently; it leverages on the fusion optimizations
to work effectively.

Let’s walk through what happens. When a window/dewindow pair is inserted around
an edge, it makes that edge low-rate, but leaves two high-rate edges to the left and to the
right (entering window, exiting dewindow). Then, seeing the two high-rate edges, and the
fact that the operators generated by window and dewindow are both lightweight, the fusion
pass will merge those lightweight operators to the left and right, eliminating the high-rate

edges, and leaving only the low-rate edge in the middle.

6.3 Extensible Algebraic Rewrites

The high-level stream transformers in WaveScript programs frequently have algebraic prop-
erties that we would like to exploit. For example, the windowing operators described in

Section [3| support the following laws:

dewindow(window(n, s)) S

window(n, dewindow(s)) rewindow(n, 0, s)

rewindow(x, y, rewindow(a, b, s)) rewindow(x, y, s)

window(n, s)

rewindow(n, 0, window(m, s))

In the above equations, it is always desirable to replace the expression on the left-hand side
with the one on the right. There are many such equations that hold true of operators in the
WaveScript Standard Library. Some improve performance directly, and others may simply

pave the way for other optimizations, for instance:

map(f,merge(x,y)) = merge(map(f,x),map(f,y))

WaveScript allows rewrite rules such as these to be inserted in the program text, to be

read and applied by the compiler. The mechanism we have implemented is inspired by

81

similar features in the Glasgow Haskell Compiler [32]. However, the domain-specific
interpret-and-reify methodology enhances the application of rewrite rules by simplifying to
a stream graph before rewrites occur—removing abstractions that could obscure rewrites
at the stream level. Extensible rewrite systems have also been employed for database
systems [57]. And there has been particularly intensive study of rewrite rules in the context
of signal processing [3]].

It is important that the set of rules be extensible so as to support domain-specific and
even application-specific rewrite rules. (Of course, the burden of ensuring correctness is
on the rules’ writer.) For example, in a signal processing application such as acoustic lo-
calization, it is important to recognize that Fourier transforms and inverse Fourier transfers
cancel one another. Why is this important? Why would a programmer ever construct an
fft followed by an i£ft? They wouldn’t—intentionally. But with a highly abstracted set
of library stream transformers, it’s not always clear what will end up composed together.

In fact, when considered as an integral part of the design, algebraic rewrite rules enable
us to write libraries in a simpler and more composable manner. For example, in Wave-
Script’s signal processing library all filters take their input in the time domain, even if they
operate in the frequency domain. A lowpass filter first applies an ££t to its input, then the
filter, and finally an i £t on its output. This maximizes composability, and does not impact
performance. If two of these filters are composed together, the ££t/ifft in the middle will

cancel out. Without rewrite rules, we would be forced to complicate the interfaces.

6.4 Implementing Rewrites

A classic problem in rewrite systems is the order in which rules are applied. Applying one
rewrite rule may preclude applying another. We make no attempt at an optimal solution to
this problem. We use a simple approach; we apply rewrites to an abstract syntax tree from
root to leaves and from left-to right, repeating the process until no change occurs in the
program.

A key issue in our implementation is at what stage in the compiler we apply the rewrite

rules. Functions like rewindow are defined directly in the language, so if the interpret-

82

// Before the original interpret/reify pass

When (rewrites-enabled)
// Turn special functions into primitives:
runpass(hide-special-libfuns)
Extend-primitive-table(special-libfuns)
runpass(interpret-reify)
// Groom program and do rewrites:
runpass(inline-let-bindings)
run-until-fixation(apply-rewrite-rules)
// Reinsert code for special functions:
runpass(reveal-special-libfuns)
Restore-primitive-table()

// Continue normal compilation....

Figure 6-2: Pseudo-code for the portion of the compiler that applies rewrite optimizations.

and-reify pass inlines their definitions to produce a stream graph, then rewrite rules will
no longer apply. On the other hand, before interpret-and-reify occurs, the code is too
abstracted to catch rewrites by simple syntactic pattern matching.

Our solution to this dilemma is depicted in Figure [6-2] We simply apply interpret-
and-reify twice. The first time, we hide the top-level definitions of any “special” func-
tions whose names occur in rewrite rules (rewindow, fft, etc), and treat them instead
as primitives. Next we eliminate unnecessary variable bindings so that we can pattern
match directly against nested compositions of special functions. Finally, we perform the
rewrites, reinsert the definitions for special functions, and re-execute interpret-and-reify,
which yields a proper stream graph of iterates and merges.

In summary, we have presented several forms of optimization applied by the Wave-
Script compiler. Rewrite rules simplify the program at a high level. Profiling and partiti-
tioning (which is described in Chapter|/) set the stage for our stream graph optimizations.

Each of these optimizations is applicable to the applications we will examine in Chapter|[§]

83

84

Chapter 7

Partitioning Algorithms

In this section, we describe WaveScript’s algorithms to search for appropriate partitionings
of the stream graph. We consider a directed acyclic graph (DAG) whose vertices are stream
operators and whose edges are streams, with edge weights representing bandwidth and
vertex weights representing CPU utilization or memory footprint. We only include vertices
that can move across the node-server partition; i.e., the movable subgraph between the
inner-most pinned operators in either partition. The server is assumed to have infinite
computational power compared to the embedded nodes, which is a close approximation of
reality.

The partitioning problem is to find a cut of the graph such that vertices on one side of the
cut reside on the nodes and vertices on the other side reside on the server. The bandwidth
of a given cut is measured as the sum of the bandwidths of the edges in the cut. An example
problem is shown in Figure

Unfortunately, existing tools for graph partitioning are not a good fit for this problem.
Tools like METIS [33]] or Zoltan [[12,21]] are designed for partitioning large scientific codes
for parallel simulation. These are heuristic solutions that generally seek to create a fixed
number of balanced graph partitions while minimizing cut edges. Newer tools like Zoltan
support unbalanced partitions, but with a specified ratios, not allowing unlimited and un-
specified capacity to the server partition. Further, they expect a single weight on each
edge and each vertex. They cannot support a situation where the cost of a vertex changes

depending on the partition is it placed in. This is the situation we’re faced with: diverse

85

hardware platforms that not only have varying capacities, but for which the relative cost of
operators varies (for example, due to a missing floating point unit).

We may also consider traditional task scheduling algorithms as a candidate solution to
our partitioning problem. These algorithms assign a directed graph of tasks to processors,
attempting to minimize the total execution time. The most popular heuristics for this class
of problem are variants of list scheduling, where tasks are prioritized according to some
metric and then added one at a time to the working schedule. But there are three major
differences between this classic problem and our own. First, task-scheduling does not
directly fit the nondeterministic dataflow model, as no conditional control flow is allowed at
the task level—all tasks execute exactly once. Second, task-scheduling is not designed for
vastly unequal node capabilities. Finally, schedule length is not the appropriate metric for
streaming systems. Schedule length would optimize for latency: how fast can the system
process one data element. Rather, we wish to optimize for throughput, which is akin to
scheduling for a task-graph repeated ad infinitum.

Thus we have developed a different approach. Our technique first preprocesses the
graph to reduce the partition search space. Then it constructs a problem formulation based
on the desired objective function and calls an external ILP solver. By default, WaveScript
currently uses the minimum-cost cut subject to not exceeding the CPU resources of the
embedded node or the network capacity of the channel. Cost here is defined as a linear
combination of CPU and network usage (which can be a proxy for energy usage). For
each platform we set four numbers: the two resource limits, and coefficients «, 8 to trade
off the two minimization objectives. The user may also override these quantities to direct

the optimization process.

7.1 Preprocessing

The graph preprocessing step precedes the actual partitioning step. The goal of the pre-
processing step is to eliminate edges that could never be viable cut-points. Consider an
operator u that feeds another operator v such that the bandwidth from v is the same or

higher than the bandwidth on the output stream from u. A partition with a cut-point on the

86

budget =2 budget = 3 budget =4

bandwidth = 8 bandwidth = 6 bandwidth = 5

Figure 7-1: Simple motivating example. Vertices are labeled with CPU consumed, edges
with bandwidth. The optimal mote partition is selected in red. This partitioning can change
unpredictably, for example between a horizontal and vertical partitioning, with only a small
change in the CPU budget.

v’s output stream can always be improved by moving the cut-point to the stream u — v; the
bandwidth does not increase, but the load on the embedded node decreases (v moves to the
server). Thus, any operator that is data-expanding or data-neutral may be merged with its
downstream operator(s) for the purposes of the partitioning algorithm, reducing the search
space without eliminating optimal solutions.

One implementation issue that arises is whether preprocessing should be accomplished
by actually generating a simplified graph and using that throughout the rest of the compi-
lation, or rather constructing a temporary simplified version, performing the partitioning
phase of the compiler, and then mapping the results back to the non-simplified graph. The
latter can involve duplicated executions of portions of the compiler.

Presently we instead do the former; we implement preprocessing using WaveScript’s
existing framework for merging operators in a source-to-source transform. This keeps the
compiler simple, and avoids the necessity of repeated compilation steps, and of extra meta-
data for tracking the relationship between the original operators and the merged operators
(for the purpose of partitioning). This approach has a couple drawbacks, however. Individ-

ual operator’s work functions—and therefore TinyOS tasks—will increase in size due to

87

merging. This is addressed in Section where we describe a method for subdividing
tasks to improve multitasking. Second, for parts of the program that will end up on a multi-
core machine, the additional merging of operators in the preprocessing step can reduce the

available parallelism.

7.2 Optimal Partitionings

It is well-known that optimal graph partitioning is NP-complete [24]]. Despite the intrinsic
difficulty of the problem, the problem proves tractable for the graphs seen in realistic ap-
plications. Our pre-processing heuristic reduces the problem size enough to allow an ILP

solver to solve it exactly within a few seconds to minutes.

7.2.1 Integer Linear Programming (ILP)

Let G = (V, E) be the directed acyclic graph (DAG) of stream operators. For all v € V, the
compute cost is given by ¢, > 0 and the communication (radio) cost is given by r,, for all
edges (u,v) € E. One might think of the compute cost in units of MHz (megahertz of CPU
required to process a sample and keep up with the sampling rate), and the bandwidth cost in
kilobits/s consumed by the data going over the radio. Adding memory-footprint constraints
for both RAM usage (assuming static allocation) and for code storage is straightforward in
this formulation. We can also use mean or peak load for each of these costs (we can
compute both from our profiles.) Because our applications have predictable rates, we use
mean load here, but have also experimented with partitioning for peak loads, which might
be more appropriate in applications characterized by bursty rates.

The DAG G contains a set of terminal source vertices S, and sink vertices T, that
have no inward and outward edges, respectively, and where S,7 C V. As noted above, we
construct G from the original operator graph such that these boundary vertices are pinned—
all the sources must remain on the embedded node; all sinks on the server; and all of the
non-boundary nodes in the graph are movable. Recall that the partitioning problem is to
find a single cut of the G that assigns some vertices to the nodes and some to the server.

The graph represents the server and just one node, but the vertices that are assigned to the

88

node are executed by all the nodes in the system.

We encode a partitioning using a set of indicator variables f, € {0, 1} for all vin V. If
fv = 1, then operator v resides on the node; otherwise, it resides on the server. The pinning

constraints are:
NMuel) f,=1

MveT)f,=0 (7.1)
(v) f, €{0,1} .

Next, we constrain the sum of node CPU costs to be less than some total budget C.

cpu < C where cpu=) fic, (7.2)

veV

A simple expression for the total cut bandwidth is 3}, ,)ee(fu — £)?ru,. (Because f, €
{0, 1}, the square evaluates to 1 when the edge (i, v) is cut and to O if it is not; | f, — f,| gives
the same values.) However, we prefer to formulate the integer programming problem as
one with a linear rather than quadratic objective function, so that standard ILP techniques

can be used to solve the problem.

We can convert the quadratic objective function to a linear one by introducing two new

’
uv?

variables per edge, e,, and e/, , which are subject to the following constraints:

V(u,v)eE)e,, >0
(7.3)
Mu,v)eE) f,—f,+en=0

(Y(u,v) €E) f,— fu+ e, >0

~Mwu,v)eE)e, >0

The intuition here is that when the edge (u,v) is not cut (i.e., # and v are in the same
partition), we would like e,, and e, to both be zero. When u and v are in different partitions,
we would like a non-zero cost to be associated with that edge; the constraints above ensure
that the cost is at least 1 unit, because f, — f, is -1 when u is on the server and v on the

embedded node. These observations allow us to formulate the bandwidth of the cut, cap

89

that bandwidth, and define the objective function in terms of both CPU and network load.

D (ew + €) (7.4)

net < N where net= [
(u,v)eE

objective: min(a cpu+ S net) (7.5)

Any optimal solution of (7.5) subject to (7.1), (7.2), (7.3)), and (7.4) will have ¢, + €,

equal to 1 if the edge is cut and to O otherwise. Thus, we have shown how to express our
partitioning problem as an integer programming problem with a linear objective function,
2|E|+ |V| variables (only |V| of which are explicitly constrained to be integers), and at most
4|E| + |V| + 1 equality or inequality constraints.

We could use a standard ILP solver on the formulation described above, but a further
improvement is possible if we restrict the data flow to only one direction, from node to
server. This restriction is not particularly restrictive in practice because most of the flow
is in fact in that direction. On the positive side, the restriction reduces the size of the
partitioning problem, which speeds up its solution.

Another set of constraints now apply:
Mwu,v)€E) fu-£ 20 (7.6)

With this constraint, the network load quantity simplifies:

net = [Z (fu - fv)ruv) . (77)

(u,v)eE

’

This formulation eliminates the ¢, and ¢/,

variables, simplifying the optimization problem.
We now have only |V/| variables and at most |E| + |V| + 1 constraints. We have chosen this
restricted formulation for our current, prototype implementation, primarily because the
per-platform code generators don’t yet support arbitrary back-and-forth communication

between node and server. We use an off-the-shelf integer programming solver, lp,solv

"'1p_solve was developed by Michel Berkelaar, Kjell Eikland, and Peter Notebaert. It is available from
http://lpsolve.sourceforge.net. It uses branch-and-bound to solve integer-constrained problems, like
ours, and the Simplex algorithm to solve linear programming problems.

90

to minimize ((7.7]) subject to (7.1) and (7.2).

We note that the restriction of unidirectional data flow does preclude cases when sinks
are pinned to embedded nodes (e.g., actuators or feedback in the signal processing). It
also prevents a good partition when a high-bandwidth stream is merged with a heavily-
processed stream. In the latter case, the merging must be done on the node due to the high-
bandwidth stream, but the expensive processing of the other stream should be performed on
the server. In our applications so far, we have found our restriction to be a good compromise

between provable optimality and speed of finding a partition.

7.3 Data Rate as a Free Variable

It is possible that the partitioning algorithm will not be able to find a cut that satisfies all of
the constraints (i.e., there may be no way to “fit” the program on the embedded notes.) In
this situation we wish to find the maximum data rate that will support a viable partitioning.
The algorithm given above cannot directly treat data rate as a free variable. Even if CPU
and network load varied linearly with data rate, the resulting optimization problem would
be non-linear. However, it turns out to be inexpensive to perform the search over data-rates

as an outer loop that on each iteration calls the partitioning algorithm.

This is because in most applications, CPU and network load increase monotonically
with input data rate. If there is a viable partition when scaling input data rates by a factor
X, then any factor ¥ < X will also have a viable partitioning. Thus WaveScript simply
does a binary search over data rates to find the maximum rate at which the partitioning
algorithm returns a valid partition. As long as we are not over-saturating the network such
that sending fewer packets actually result in more data being successfully received, this
maximum sustainable rate will be the best rate to pick to maximize outputs (throughput) of

the data flow graph. We will re-examine this assumption in Section (8.3

91

7.4 Dynamic Programming when the DAG is a Tree

A branch-and-bound integer programming solver like 1p_solve finds an optimal solution
to our partitioning problem, but its running time can be exponential in the size of the prob-
lem. Branch-and-bound solvers find a sequence of progressively better solutions and a
sequence of progressively tighter lower bounds, until eventually they find an optimal so-
lution. Therefore, one way to address the potentially-exponential running time is to halt
the solver when it has found a solution that is provably good but not necessarily optimal.
(We note that for our problem, the solution that assigns all the non-sources to the server is

feasible, so merely finding a solution is not difficult.)

When G is a tree and when the ¢,’s are bounded integers, the unidirectional partitioning
problem can be solved efficiently (in polynomial time) and optimally. This solution is
“approximate” only in the sense that CPU coefficients are rounded to integers. Given that
the profiler can only provide execution times up to a certain granularity, discretization of

execution times need not lose information. (The scale can be arbitrarily fine.)

Given a subgraph H C G, a partition plan f is a unidirectional assignment of f, for
every v € H (that is, an assignment satisfying (7.6)). The cost of the plan is c(f) =
2ven Jveyv, bandwidth of the plan is r(f) = 3¢, en(fu — f\)7uw» and the external bandwidth
of the plan is x(f) = X .yemuectven Juluv-

Consider a subgraph H consisting of the union of the subtrees rooted at all the children
uy,...,u; of some vertex v. Any plan f for H in which at least one of uy, ...,y is assigned
to the server can only be extended to v by also assigning v to the server. The cost of the
extended plan f” is the cost of f, its bandwidth is r(f”) = r(f)+2i.‘:1 SuTup = r(f)+x(f), and
its external bandwidth is 0. Any plan f for which all the ;’s are assigned to the node (there
is only one such plan) can be extended by assigning v to either the server or the node. If we
assign v to the server, the cost is the cost of f, the bandwidth is r(f”") = x(f) = r(f) + x(f),
and the external bandwidth is 0. If we extend the plan by assigning v to the node, the cost
of the new plan is ¢(f) + ¢,, the bandwidth is O, and the external bandwidth is r,,, where w

is the parent of v.

The algorithm works by recursively traversing the tree starting from the root. At every

92

(f)=6+4=10
Hf)=T+5=12
X(f)=3+2=5

Figure 7-2: The notation for the dynamic programming algorithm.

vertex v, we first construct a set of plans for each subtree rooted at a child u; of v. The
set contains for each possible cost (there are ¢ + 1 such values) a plan f with the minimal

possible total bandwidth r(f) + x(f).

Next, the algorithm merges these sets to one set for the union of the subtrees rooted at

the children uy, ..., u;, of v. We initialize this set to that of u;. We extend the set of plans
for union of the subtrees rooted at uy,...,u;_; to the union of uy,...,u;_1,u; as follows.
For every pair of plans, one for uy,...,u;_; and the other for u, we compute the cost and

bandwidths for the merged plans. If the new set does not contain a plan with this set, we put
it in the set. If it does but the existing plan has lower total bandwidth, we discard the new
merged plan. If the new merged plan has better total bandwidth than the existing candidate

with the same cost, we replace the existing one with the new one.

Finally, we extend the set of plans to include v, using the rules given above. This may
increase the number of plans in the set by one, but the number of plans remains bounded
by ¢ + 1. As we consider plans, we always discard ones with total cost greater than c,

our upper bound. The algorithm is correct because all of the sets that it constructs contain

93

a plan that can be extended to an optimal partitioning. This property holds because for
subgraphs H that are unions of subtrees rooted at the children of one vertex, all the plans
with the same cost and same total bandwidth are equivalent; if one can be extended to an
optimal partitioning then so can the others. The complexity of this algorithm is O(c*|V]);
the bound is somewhat loose but it is beyond the scope of this paper to sharpen it fur-
ther. For profile-driven CPU-load estimates, ¢ around 1000 gives sufficient accuracy and a

reasonable running times.

7.4.1 Summary

In this chapter we have examined the algorithm, based on integer linear programming, that
WaveScript uses to partition stream programs into embedded node and server components.
In Chapter [§] we will evaluate the use of this algorithm to partition and execute our applica-

tions on various platforms.

94

Chapter 8

Experimental Results

Evaluating a new programming language is difficult. Until the language has had substantial
use for a period of time, it lacks large scale benchmarks. Microbenchmarks, on the other
hand, can help when evaluating specific implementation characteristics. But when used for
evaluating the efficacy of program optimizations, they risk becoming contrived.

Thus we chose to evaluate WaveScript “in the field” by using it to developing a sub-
stantial sensor network application for localizing animals in the wild. First, we compare
our implementation to a previous (partial) implementation of the system written in C by
different authors. The WaveScript implementation outperforms its C counterpart—with
significant results for the sensor network’s real-time capabilities. Second, in Section [8.3]
we showcase our compiler optimizations in the context of this application, explaining their
effect and evaluating their effectiveness.

Subsequently, in Section [§ we turn to evaluating the WaveScript program partition-
ing facility. While we don’t have an in-the-field evaluation of these components, we use
two prototype sensing applications—acoustic speaker detection and EEG based siezure
detection—to evaluate the system.

Finally, in Section [8.4] we turn to the issue of parallelism, which we evaluate in the
context of a fourth application: a computer vision application that highlights the ability
of WaveScript to capture a variety of forms of paralleism, including parallel computations
over matrices in addition to pipeline and task parallelism between streams, and data paral-

lelism between stream elements.

95

8.1 Marmot: Comparing against handwritten C

A year previous to our own test deployment of the distributed marmot detector, a different
group of programmers implemented the same algorithms (in C) under similar conditions in
a similar time-frame. This provides a natural point of comparison for our own WaveScript
implementation. Because the WaveScript implementation surpasses the performance of the
C implementation, we were able to run both the detector and the direction-of-arrival (DOA)
algorithm on the VoxNet nodes (our custom sensing platform) in real-time—something the

previous implementation did not accomplish (due to limited CPU).

Table|8.1|shows results for both the continuously running detector, and the occasionally
running DOA algorithm (which is invoked when a detection occurs). The detector results
are measured in percentage CPU consumed when running continuously on an VoxNet node
and processing audio data from four microphone channels at 44.1 KHz (quantified by aver-
aging 20 top measurements over a second interval). DOA results are measured in seconds
required to process raw data from a single detection. Along with CPU cycles, memory is
a scarce resource in embedded applications. The WaveScript version reduced the memory
footprint of the marmot application by 50% relative to the original hand-coded version.
(However, even the original version used only 20% of VoxNet’s 64 MB RAM.) GC per-
formance of MLton was excellent. When running both detection and DOA computations,
only 1.2% of time was spent in collection, with maximum pauses of 4ms—more than ade-
quate for our application. Collector overhead is low for this class of streaming application,
because they primarily manipulate arrays of scalars, and hence allocate large quantities of
memory but introduce relatively few pointers. Table lists the size of the source-code
for the Detector and DOA components, discounting blank lines and comments. Both ver-
sions of the application depend on thousands of lines of library code and other utilities.
Lacking a clear boundary to the application, we chose to count only the code used in the

implementation of the core algorithms, resulting in modest numbers.

The ability to run the DOA algorithm directly on VoxNet results in a large reduction
in data sent over the network—=800 bytes for direction-of-arrival probabilities vs. at least

32KB for the raw data corresponding to a detection. The reduced time in network trans-

96

Table 8.1: Performance of WaveScript marmot application vs. handwritten C implementa-
tion. Units are percentage CPU usage, number of seconds, or speedup factor.

C WaveScript | Speedup
VoxNet DOA | 3.00s 2.18s 1.38

VoxNet Detect 879% 565% 156

mission offsets the time spent running DOA on the VoxNet node (which is much slower
than a laptop), and can result in lower overall response latencies. The extra processing
capacity freed up by our implementation was also used for other services, such as continu-
ously archiving all raw data to the internal flash storage, a practical necessity that was not

possible in previous attempts.

Our original goal was to demonstrate the ease of programming applications in a high-
level domain-specific language. In fact, we were quite surprised by our performance ad-
vantage. We implemented the same algorithm in roughly the same way as previous authors.
Neither of the implementations evaluated here represent intensively hand-optimized code.
A significant fraction of the application was developed in the field during a ten-day trip to
Colorado. Indeed, because of the need for on-the-fly development, programmer effort is the
bottleneck in many sensor network applications. This is in contrast with many embedded,
or high-performance scientific computing applications, where performance is often worth
any price. Therefore, languages that are both high-level and allow good performance are

especially desirable.

After the deployment we investigated the cause of the performance advantage. We
found no significant difference in the efficiency of the hottest spots in the application (for
example, the tight loop that searches through possible angles of arrival). However, the
C implementation was significantly less efficient at handling data, being constrained by
the layered abstraction of the EmStar framework. It spent 26% percent of execution time
and 89% percentage of memory in data acquisition (vs. 11% and 48% for WaveScript). In
short, the application code we wrote in WaveScript was as efficient as hand-coded C, but by
leveraging the WaveScript platform’s vertical integration of data acquisition, management

of signal data, and communication, overall system performance improved.

97

Table 8.2: Non-whitespace, non-comment lines of code for WaveScript and C versions of
the core localization algorithm.

LOC/WaveScript | LOC/C
Detector 92 252
DOA 124 239

8.2 Effects of Optimization on Marmot Application

Here we relate the optimizations described in Section [6] to our marmot application case
study. One thing to bear in mind is that there are multiple relevant modes of operation for
this application. A given stage of processing may execute on the VoxNet node, the laptop
base station, or offline on a large server. Both on the laptop and offline, utilizing multiple

processor cores is important.

Rewrite-rules: As discussed in Section [6.3] many of our signal processing operations
take their input in the time domain, but convert to the frequency domain to perform pro-
cessing. An example of this can be seen in the bandpass library routine called from
the marmotScores function in Section [3] (part of the detector phase). Notice that the
marmotScores function is another example; it also converts to the frequency domain to
perform the PSD. The rewrite-rules will eliminate all redundant conversions to and from
the frequency domain, with a 4.39x speedup for the detector phase in the MLton backend

and 2.96x speedup in the C++ backend.

Fusion and Batching: The fusion optimizations described in Section[6.2]are relevant to
the C++ backend, which has a higher per-operator overhead. Fusion is most advantageous
when many lightweight operators are involved, or when small data elements are passed at a
high rate. Because the marmot application involves a relatively small number of operators,
and because they pass data in Sigsegs, the benefits of fusion optimization are modest. (For
the same reason, the batching optimizations performed by the compiler, while invaluable

in many cases, provide no benefit to the marmot application.)

The detector phase of the application speeds up by 7%, and the DOA phase by 2.7%.
The FuseDOA phase does not benefit.

98

Speedup from Fission optimizations
14

Stateless Opérator —

12 L Partial Stateless i —

Array Comprehension —¥— ++

Speedup over benchmark timing

0 2 4 6 8 10 12 14
Number of Worker CPUs

Figure 8-1: Parallel speedups achieved by applying fission optimizations to the DOA phase
of the marmot application.

Fission and Parallelization: Offline processing has intrinsic parallelism because it
applies the first and second phases of the application (detector and DOA) to many data
streams in parallel (simulating multiple nodes). To squeeze parallelism out of the individual

marmot phases, we rely on our fission optimizations from Section

To evaluate our fission optimizations, we applied each of them to the DOA phase of the
marmot application and measured their performance on a commodity Linux server. Our
test platform is a 4 X 4 motherboard with 4 quad-core AMD Barcelona processors and
8 GB of RAM, running Linux 2.6.23. In our parallel tests, we control the number of CPUs
actually used in software. We used the Hoard memory allocator to avoid false sharing of

cache lines.

Fission can be applied to the DOA phase in two ways: by duplicating stateless opera-
tors, and by using array comprehension to parallelize a loop. Figure [8-1|shows the parallel
speedup gained by applying each of these optimizations to the DOA phase of the mar-
mot application. In this graph, both flavors of fission optimization are presented to show
speedup relative to a single-threaded version. Each data point shows the mean and 95%
confidence intervals computed from 5 trials at that number of worker CPUs. The point
at ‘0’ worker CPUs is single-threaded; the point at ‘1” worker CPU places the workload

operator on a different CPU from the rest of the workflow (e.g., the I/O, split, join, etc).

99

The greatest gain, a speedup of 12X is achieved from parallelizing stateless operators. In
our application, the entire DOA phase of the workflow is stateless, meaning that the whole
phase can be duplicated to achieve parallelism. As described in Section [6.2] a map operator
or a sequence of map operators is replaced by a split— join sequence that delivers tuples
in round robin order to a set of duplicated worker operators, and subsequently joins them
in the correct order. Running this on our 16 core test machine, we see near-linear speedup
up to 13 cores, where performance levels off. This level is the point at which the serial
components of the plan become the bottleneck, and are unable to provide additional work

to the pool of threads.

Array comprehension parallelization yields a lesser, but still significant maximum speedup
of 6x. This case is more complex because fission by array comprehension applies to only
a portion of the DOA phase. The DOA computation consists of a preparation phase that
computes some intermediate results, followed by a work phase that exhaustively tests hy-
pothetical angle values. This structure limits the maximum possible speedup from this
optimization. As a control, the “Partial Stateless” curve designates the speedup achieved
by restricting the stateless operator fission to the phase duplicated by the array comprehen-
sion. From the graph we see that the parallel benefit is maximized when distributing the
work loop to 6 worker cores; beyond that point the additional overhead of transferring be-
tween cores (e.g., queueing and copying overhead) diminishes the benefit. The appropriate
number of cores to use is a function of the size of the work loop and the expected copying

and queueing overhead.

Optimizing for latency is often important for real time responses and for building feed-
back systems. Although the stateless operator optimization achieves higher throughput
through pipelining, it will never reduce the latency of an individual tuple passing through
the system. However, array comprehension can substantially reduce the latency of a partic-
ular tuple by splitting up a loop among several cores and processing these smaller chunks in
parallel. In our experiments we found that the array comprehension optimizations reduced

the average latency of tuples in our test application from 30 ms to 24 ms, a 20% reduction.

100

8.3 Evaluation: Partitioning

In this section we evaluate the WaveScript system on two applications, seizure onset detec-
tion and speech detection, that were mentioned briefly in Chapter |3.1{and will be described
in more detail below. We focus on two key questions:
1. Can WaveScript efficiently select the best partitioning for a real application, across a
range of hardware devices and data rates?
2. Inan overload situation, can WaveScript effectively predict the effects of load-shedding

and recommend a “good” partitioning?

8.3.1 EEG Application: Seizure Onset Detection

We used WaveScript to implement a patient-specific seizure onset detection algorithm [62]].
The application was previously implemented in C++, but by porting it to WaveScript we
enabled its embedded/distributed operation, while reducing the amount of code by a factor
of four without loss of performance. This application will later be used to evaluate the
program-partitioning capabilities of WaveScript.

The algorithm is designed to be used in a system for detecting seizures outside a clinical
environment. In this application, a user would wear a monitoring cap that typically consists
of 16 to 22 channels. Data from the cap is processed by a low-power portable device.

The algorithm we employ [63] samples data from 22 channels at 256 samples per sec-
ond. Each sample is 16-bits wide. For each channel, we divide the stream into 2 second
windows. When a seizure occurs, oscillatory waves below 20 Hz appear in the EEG signal.
To extract these patterns, the algorithm looks for energy in certain frequency bands.

To extract the energy information, we first filter each channel by using a polyphase
wavelet decomposition. We use a repeated filtering structure to perform the decomposition.
The filtering structure first extracts the odd and even portions of the signal, passes each
signal through a 4-tap FIR filter, then adds the two signals together. Depending on the
values of the coefficients in the filter, we either perform a low-pass or high-pass filtering
operation. This structure is cascaded through 7-levels, with the high frequency signals from

the last three levels used to compute the energy in those signals. Note that at each level, the

101

amount of data is halved.

As a final step, all features from all channels, 66 in total, are combined into a single
vector which is input into a patient-specific support vector machine (SVM). The SVM
detects whether or not each window contains epileptiform activity. After three consecutive

positive windows have been detected, a seizure is declared.

There are multiple places where WaveScript can partition this algorithm. If the entire
application fits on the embedded node, then the data stream is reduced to only a feature
vector—an enormous data reduction. But data is also reduced by each stage of processing

on each channel, offering many intermediate points which are profitable to consider.

8.3.2 Partitioning the EEG Application

Our EEG application provides an opportunity to explore the scaling capability of our par-
titioning method. In particular, we look at our worst case scenario—partitioning all 22-
channels (1412 operators). As the CPU budget increases, the optimal strategy for band-
width reduction is to move more channels to the nodes. On our lower-power platforms,
not all the channels can be processed on one node. The graph in Figure [8-5[a) shows par-
titioning results only for the first of 22 channels, where we vary the data rate on the X axis
and measure the number of operators that “fit” on different platforms. We ran 1p_solve to
derive a 22-channel partitioning 2100 times, linearly varying the data rate to cover every-
thing from “nothing fits” to “everything fits easily”. As we reduce data rate (moving to the
left), more operators can fit within the CPU bounds on the node (moving up). The sloping
lines show that every stage of processing yields data reductions.

The distribution of resulting execution times are depicted as two CDFs in Figure [8-2]
where the x axis shows execution time in seconds, on a log scale. The top curve in Fig-
ure 8-2| shows that even for this large graph, 1p_solve always found the optimal solution in
under 90 seconds. The typical case was much better: 95 percent of the executions reached
optimality in under 10 seconds. While this shows that an optimal solution is typically
discovered in a reasonable length of time, that solution is not necessarily known to be opti-

mal. If the solver is used to prove optimality, both worst and typical case runtimes become

102

CDF of runtime required to find optimal solution
100 T T T

90

80
70
60
50

Percentile

40 |
30 |
20 |

10 Time to discover optimal b
—~ _Time to prove optimal

0.1 1 10 100 1000
Run time in seconds

Figure 8-2: CDF of the time required for 1p_solve to reach an optimal partitioning for
the full EEG application (1412 operators), invoked 2100 times with data rates. The higher
curve shows the execution time at which an optimal solution was found, while the lower
curve shows the execution time required to prove that the solution is optimal. Execution
times are from a 3.2 GHz Intel Xeon.

much longer, as shown by the lower CDF curve (yet still under 12 minutes). To address
this, we can use an approximate lower bound to establish a termination condition based on

estimating how close we are to the optimal solution.

8.3.3 Speech Detection Application

We also used WaveScript to build a speech detection application that uses sampled audio
to detect the presence of a person who is speaking near a sensor. The ultimate goal of
such an application would be to perform speaker identification using a distributed network
of microphones. For example, such a system could potentially be used to locate missing
children in a museum by their voice, or to implement various security applications.
However, in our current work we are only concerned with speech detection, a precursor
to the problem of speaker identification. In particular, our goal is to reduce the volume of
data required to achieve speaker identification, by eliminating segments of data that proba-
bly do not contain speech and by summarizing the speech data through feature extraction.
Our implementation of speech detection and data reduction is based on Mel Frequency

Cepstral Coefficients (MFCC), following the approach of prior work in the area [19]]. Re-

103

Figure 8-3: Custom audio board attached to a TMote Sky.

Ground Truth Ranbes of Sbeech Data
Envelope Value

Long term average envelope
Trigger Points -

First Cepstral Coefficient

Energy

0 50 100 150 200 250 300 350 400
Frames (at 40 frames per second)

Figure 8-4: Performance of the envelope detector, in comparison to the ground truth pres-

ence of speech and the first cepstral coefficient.

104

cent work by Martin, ef al. has shown that clustering analysis of MFCCs can be used to
implement robust speech detection [43]. Another article by Saastamoinen, ef al. describes
an implementation of speaker identification on smartphones, based on applying learning
algorithms to MFCC feature sets [58]]. Based on this prior work, we chose to exercise our

system using an implementation of MFCC feature extraction.

Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are the most commonly used features in
speech recognition algorithms. The MFCC feature stream represents a significant data
reduction relative to the raw data stream.

To compute MFCCs, we first compute the spectrum of the signal, and then summa-
rize it using a bank of overlapping filters that approximates the resolution of human aural
perception. By discarding some of the data that is less relevant to human perception, the
output of the filter bank represents a 4X data reduction relative to the original raw data.
We then convert this reduced-resolution spectrum from a linear to a log spectrum. Using a
log spectrum makes it easier to separate convolutional components such as the excitation
applied to the vocal tract and the impulse response of a reverberant environment, because
transforms that are multiplicative in a linear spectrum are additive in a log spectrum.

Finally, we compute the MFCC:s as the first 13 coefficients of the Discrete Cosine Trans-
form (DCT) of this reduced log-spectrum. By analyzing the spectrum of a spectrum, the
distribution of frequencies can be characterized at a variety of scales [19,/16]. The MFCC
feature stream could then be input to a speaker identification algorithm [58]], but we did not

implement this in our current system.

Tradeoffs in MFCC Extraction

One high level goal of WaveScript is to show that a complex application written in a single
high level language can be efficiently and easily distributed across a network of devices and
support many different platforms. As such, the MFCC application presents an interesting

challenge because for sensors with very limited resources there appears to be no perfect

105

solution; rather, using WaveScript the application designer can explore different trade-offs
in application performance.

These trade-offs arise because this algorithm squeezes a resource-limited device be-
tween two insoluble problems: not only is the network capacity insufficient to forward all
the raw data back to a central point, but the CPU resources are also insufficient to extract
the MFCCs in real time. If the application has any partitioning that fits the resource con-
straints, then the goal of WaveScript is to select the best partition, for example, lowest cost
in terms of energy. If the application does not fit at its ideal data rate, ultimately, some data
will be dropped on some target platforms. The objective in this case is to find a partitioning
that minimizes this loss and therefore maximizes the throughput: the amount of input data
successfully processed rather than dropped at the node or in the network.

Of course, the designer may also use the profiling information to observe hot spots
and change the algorithm. For example, in the MFCC application, initial profiling results
led us to conclude that if we were forced to drop data, it may be beneficial to introduce
a prefilter to help select which data is dropped. To experiment with this technique, we
implemented a simple Finite Impulse Response (FIR) pre-emphasis filter to emphasize
the high end of the spectrum, and an envelope detector to trigger on high-amplitude. We
then use an Exponentially Weighted Moving Average (EWMA) to determine a long-term
average envelope and then trigger the full computation pipeline only when the value of
the envelope exceeds the average by more than a constant threshold factor Tx. Figure [8-4
shows the performance of this pre-filter stage, with T = 1.5, for a segment of audio data

that has been hand-labeled to identify speech sounds.

Implementing Audio Capture

Some platforms, such as the iPhone and embedded-Linux platforms (such as the Gumstix),
provide a complete and reliable hardware and software audio capture mechanism. On other
platforms, including both TMotes and J2ME phones, capturing audio is more challenging.

On TMotes, we used a custom-built audio board to acquire audio. The board uses
an electret microphone, four opamp stages, a programmable-gain amplifier (PGA), and

a 2.5 V voltage reference. One opamp stage is used to buffer the voltage reference, a

106

second to buffer a 1.25 V voltage divider, and two are used as inverting amplifiers. The
buffered 1.25 V is used to bias both the inverting amplifiers and the PGA; the inverting
amplifiers can use an unbuffered divider, but the PGA configuration is non-inverting, so it
requires a low-impedance reference. The referenced and buffered 2.5 V is used to power
the electret microphone (which contains a simple amplifier). We have found that when
the microphone was powered directly by the analog supply of the TMote, the audio board
performed well when the mote was only acquiring audio, but was very noisy when the
mote was communicating. The communication causes a slight modulation of the supply
voltage, which gets amplified into significant noise. Using a separately regulated supply
for the microphone removed this noise. The gain of the PGA is controlled by SPI bus
interface, which allows the program running on the TMote to adjust the audio gain. The
anti-aliasing filter is a simple RC filter; to better reject aliasing, the TMote samples at a
high rate and applies a digital low-pass filter (filtering and decimating a 32 Ks/s stream
down to 8 Ks/s works well). The amplified and filtered audio signal is presented to an
ADC pin of the TMote’s microcontroller, which has 12 bits of resolution. We use TinyOS
2.0 ReadStream<uint16_t> interface to the ADC, which uses double buffering to deliver

arrays of samples to the application.

Phones naturally have built-in microphones and microphone amplifiers, but we have
nonetheless encountered a number of problems using them as audio sensors. Many J2ME
phones support the Mobile Media API (JSR-135), which may allow a program to record
audio, video, and take photographs. Support for JSR-135 does not automatically imply
support for audio or video recording or for taking snapshots. Even when audio recording is
supported, using it is subject to the J2ME security policy which is installed by the phone’s
vendor (the manufacturer or a cellular carrier). In the phones that we have used (Nokia N80,
NO95, E611), recording audio requires the user’s permission every time an unsigned program
starts. The JSR-135 API does not stream audio (or video); it records audio to a file or to an
array, and most phones cannot record continuously. Even if the application stops recording
and immediately starts another recording, there would be a gap in the audio. The audio or
video is delivered as a media file; even if the file contains uncompressed audio samples, its

headers must first be stripped by the program before the samples can be accessed.

107

We ran into a bug on the Nokia N80: after recording audio segments for about 20 min-
utes, the JVM would crash. Other Nokia phones with the same operating system (Symbian
S60 3rd Edition) exhibited the same bug. We worked around this bug using a simple Python
script that runs on the phone and accepts requests to record audio or take a photograph
through a TCP connection, returning the captured data also via TCP. The J2ME program
acquires audio by sending a request to this Python script, which can record indefinitely
without crashing.

The J2ME partition of the WaveScript program uses TCP to stream partially processed
results to the server. When the J2ME connects, the phone asks the user to choose an IP
access point; we normally use a WiFi connection, but the user can also choose a cellular
IP connection. With any of these communication methods, dependence on user interaction
presents a practical barrier to using phones in an autonomous sensor network. Yet these
software limitations are incidental rather than fundamental, and should not pose a long-

term problem.

8.3.4 Partitioning the Speech Detection Application

The speech detection application is a linear pipeline of only a dozen operators. Thus the
optimization process for picking a cut point should be trivial—a brute force testing of all
cut points will suffice. Nevertheless, this application’s simplicity makes it easy to visualize
and study, and the fact that the data rate it needs to process all data is unsustainable for
TinyOS devices provides an opportunity to examine the other side of WaveScript’s usage:
what to do when the application doesn’t fit.

In applying WaveScript to the development process for our speech detection applica-
tion, we were able to quickly assess the performance on several different platforms. The
results of the profiling stage are presented in Figure [6-1] (left) and Figure [8-6| The four
columns in Figure (left) show the profiling results for our four test platforms, in a
graphical form color coded by the running time of the operator (red = longer, green =

shorter).

Figure is a more detailed visualization of the performance tradeoffs, showing only

108

Number of operators in node partition

Number of operators in node partition

80

70

60

50

40

30

20

10 | |
TmoteSky/TinyOS ——
0 A .) ‘ ‘ ‘ NOkinBO/nga

0 2 4 6 8 10 12 14 16 18 20
Maximum data rate achieved on various platforms, as a fraction of real time

(a)
11
10, S — 4
9l J
8t L J
7r i
6 J
5r i
4 + TmoteSky/TinyOS —— g
NokiaN80/Java
3| iPhone/GCC -+ I S S |
PXA 255/GCC
5 Scheme/PC ‘ ‘ ‘
0.001 0.01 0.1 1 10
Maximum data rate achieved on various platforms, as a fraction of real time
(b)

Figure 8-5: Optimal partitioning for varying data rates (as a fraction of real time). X axis
shows the selected data rate; Y axis shows number of operators in computed node partition.
The EEG application (a) consists of identical processing pipelines for separate channels
(only one channel pictured). Speech detection application are shown in (b)—note log scale

the profiling results for TMote Sky (a TinyOS platform). In this figure, the X axis represents
the linear pipeline of operators, and the Y axis represent profiling results. For each operator
the vertical impulse represents the number of microseconds of CPU time consumed by that

operator per frame (left scale), while the line represents the number of bytes per second

109

output by that operator. It is easy to visualize the tradeoff between CPU cost and data rate.
Each point on the X-axis represents a potential graph cut, where the sum of the red bars to

the left provides the processing time per frame.

Thus, we see that the MFCC dataflow has multiple data-reducing steps. The algorithm
must natively process 40 frames per second in real time, or one frame every 25 ms. The
initial frame is 400 bytes; after applying the filter bank the frame data is reduced to 128
bytes, using 250 ms of processing time; after applying the DCT, the frame data is further
reduced to 52 bytes, but using a total of 2 s of processing time. This structure means that
although no split point can fit the application on the TMote at the full rate, we can achieve
different CPU/bandwidth trade-offs by selecting different split points. Selecting a defunct
partitioning can result in retrieving no data, and the best “working” partition provides 20
times more data than the worst. Figure [8-5(b) shows the output of the partitioner for five
different platforms, as a function of different target data rates. This shows the predicted

performance of our speech detection application on different platforms.

As expected, the TMote is the worst performing platform, with the Nokia N80 perform-
ing only about twice as fast—surprisingly poor performance given that the N80 has a 32-bit
processor running at 55X the clock rate of the TMote. This is due to the poor performance
of the JVM implementation. The 412 MHz iPhone platform using GCC performed 3X
worse than the 400 MHz Gumstix-based Linux platform; we believe that this is due to the

frequency scaling of the processing kicking in to conserve power.

We can also visualize the relative performance of different operators across different
platforms. For each platform processing the complete operator graph, Figure [8-7| shows
the fraction of time consumed by each operator. If the time required for each operator
scaled linearly with the overall speed of the platform, all three lines would be identical.
However, the plot clearly shows that the different capabilities of the platforms result in
very different relative operator costs. For example, on the TMote, floating point operations,
which are used heavily in the cepstrals operator, are particularly slow. This shows that
a model that assumes the relative costs of operators are the same on all platforms would

mis-estimate costs by over an order of magnitude.

110

Marginal CPU Cost of Operator
Cumulative CPU Cost 1 50
Bandwidth (Right-hand scale) -+

16406 x 40
100000 |

10000 [

1000 | ,‘-"'* Kerenennns ,{. 1 20
100

o 0 R

Execution time of operator (microseconds)
W
o
Bandwidth of cut (KBytes/Sec)

< RN Q. &

(o) . S, s,

o ug %, ¢ % %%
Operator

Figure 8-6: Data is reduced by processing, lowering bandwidth requirements, but increas-
ing CPU requirements.

1
Mote —#— e YT -
0.9 r N80 — /|
PC YR
% 087 i |
8
5 07F} |
n_ <
o 06y]
g
3 05 |
S 04} |
5
5 03 |
T H
- 0.2 |
01} |
______ p- PSRRI TLERERCIRRERE
. Y U
‘90(,, o, %, %8s, N % op& OC}’o
o@ O?O ’b/ % Q,){_ @%
% % %
Operator

Figure 8-7: Normalized cumulative CPU usage for different platforms. Relative execution
costs of operators vary greatly on the tested systems.

8.3.5 WaveScript Deployment

To validate the quality of the partitions selected by WaveScript, we deployed the speech
detection application on a testbed of 20 TMote Sky nodes. We also used this deployment
to validate the specific performance predictions that WaveScript makes using profiling data

(e.g., if a combination of operators were predicted to use 15% CPU, did they?).

111

Network Profiling

The first step in deploying using WaveScript is to profile the network topology. It is im-
portant to note that simply changing the network size changes the available per-node band-
width and thus requires re-profiling of the network and re-partitioning of the application.
We run a portable WaveScript program that measures the goodput from each node in the
network. This tool sends packets from all nodes at an identical rate, which gradually in-
creases. For our 20 node testbed the resulting network profile is typical for TMote Sky
devices: each node has a baseline packet drop rate that stays steady over a range of sending
rates, and then at some drops off dramatically as the network becomes excessively con-
gested. Our profiling tool takes as input a target reception rate (e.g. 90%), and returns
a maximum send rate (in msgs/sec and bytes/sec) that the network can maintain.For the
range of sending rates within this upper bound the assumption mentioned in holds—
attempting to send more data does not result in additional bytes of data received. Thus we
are free to maximize the data rate within the upper bound provided by the network profil-
ing tool, and thereby maximize total application throughput. This enables us to use binary

search to find the the maximum sustainable data rate when we are in an overload situation.

To empirically verify that our computed partitions are optimal, we established a ground
truth by exhaustively running the speech detection application at every cut point on our
testbed. Figures [8-8 and [8-9] show the results for six relevant cutpoints, both for a single
node network (testing an individual radio channel) and for the full 20 node TMote network.
WaveScript counts missed input events and dropped network messages on a per-node basis.
The relevant performance metric is the percentage of sample data that was fully processed
to produce output. This is roughly the product of the fraction of data processed at sensor

inputs, and the fraction of network messages that were successfully received.

Figure |8-8| shows the input event loss and network loss for the single TMote case, and
shows the resulting goodput. On a single mote, we can see the data rate is so high at
early cutpoints that it drives the network reception rate to zero. Alternatively, at the later
cutpoints too much computation is done on the nodes and therefore the CPU is busy for long

periods and misses the vast majority of input events. In the middle, even a underpowered

112

TMote can process 10% of sample windows. This is equivalent to polling for human speech

four times a second—a reasonably useful configuration.

Figure [8-9] compares the goodput achieved with a single TMote and basestation to the
case of a network of 20 TMotes. For the case of a single TMote, peak throughput rate
occurs at the 4th cut point (filterbank), while for the whole TMote network in aggregate,
peak throughput occurs at the 6th and final cut point (cepstral). As expected, the throughput
line for the single mote tracks the whole line closely until cut point six. For a high-data
rate application with no in-network aggregation, a many node network is limited by the
same bottleneck as a network of only one node: the single link at the root of the routing
tree. At the final cut point, the problem becomes compute bound. In this case the aggregate

compute power of the 20 TMote network makes it more potent than the single node.

We also ran the same test on an a Meraki Mini based on a low-end MIPS proces-
sor. While the Meraki has relatively little CPU power—only around 15 times that of the
TMote—it has a WiFi radio interface with at least 10x higher bandwidth. Thus for the
Meraki the optimal partitioning falls at cut point 1: send the raw data directly back to the

SErver.

Having determined the optimal partitioning in our real deployment, we can now com-
pare it to the recommendation of our partitioning algorithm. Doing this is slightly complex
as the algorithm does not model message loss; instead, it keeps bandwidth usage under the
user-supplied upper bound (using binary search to find the highest rate at which partition-
ing is possible), and minimizes the objective function. In the real network, lost packets
may cause the actual delivered bandwidth to be somewhat less than expected by the pro-
filer. Fortunately, the cut-point that maximizes throughput should be the same irrespective
of loss as CPU and network load scale linearly with data rate.

In this case, binary search found that the highest data rate for which a partition was
possible (respecting network and CPU limits) was at 3 input events per second (with each
event corresponding to a window of 200 audio samples). The optimal partitioning at that

data rat was in fact cut point 4, right after filterbank, as in the empirical data. Like-

'In this case with @ = 0, 8 = 1, although the linear combination in the objective function is not particularly
when we are maximizing data rate we are saturating either CPU or bandwidth

113

1 TMote + Basestation: Percent input received ——
1 TMote + Basestation: Percent network msgs received
100 1 TMote + Basestation: Percent goodput (product) -

80 1
|5
8 e0 1
[0]
o

40 1

20 1

0 1 1
1 2 3 4 5 6

Cutpoint index

Figure 8-8: Loss rate measurements for a single TMote and a basestation, over different
partitionings. The curves show the percentage of input data sampled, the percentage of
network messages received, and the product of these which represents the percent goodput.

wise, the computed partitions for the 20 node TMote network and single node Meraki test

matched their empirical peaks, which gives us some confidence in the validity of the model.

In the future, we would like to further refine the precision of our CPU and network
cost predictions. To use our ILP formulation we necessarily assume that both costs are
additive—two operators using 10% CPU will together use 20%, and don’t account for
operating system overheads or processor involvement in network communication. For ex-
ample, on the Gumstix ARM-linux platform the entire speaker detection application was
predicted to use 11.5% CPU based on profiling data. When measured, the application
used 15% CPU. Ideally we would like to take an automated approach to determining these

scaling factors.

8.4 Parallelism: Background Subtraction Case Study

This application is part of a computer vision system used to detect and identify birds in
the wild. It is part of an effort by the UCLA Vision Group to achieve better classifiers

for birds in one of their James Reserve sensor network deployments. For our purposes, it

114

1 TMote + Basestation: Percent goodput —
10 |+ 20 TMote Network: Percent goodput E
8 L .
5
o
8
3 °f y
€
(0]
2
& 47 I
2 - 4
0 1 Il Il
1 2 3 4 5 6

Cutpoint index

Figure 8-9: Goodput rates for a single TMote and for a network of 20 TMotes, over
different partitionings when running on our TMote testbed.

serves to illustrate the ability of metaprogramming to extend stream-based parallelism to

also encompass stateful, parallel processing of matrices.

In this case study, we focus on the background subtraction component of the vision
system. This phase is a precursor to actual classification of birds; classification algorithms
perform better if the noisy background (leaves blowing, lighting shifting) is first removed.
The background subtraction approach is based on building a model for the colors seen in
the neighborhood around each pixel and subsequently computing the Bhattacharyya dis-
tance between each new pixel value and the historical model for that pixel’s neighborhood.
Therefore, the algorithm must maintain state for each pixel in the image (the model) and
traverse each new input image, comparing each new pixel’s value against the model for that
pixel, and finally read the new values for all surrounding pixels, so as to update the model.

An example result can be seen in Figure 8.4

This algorithm is clearly data parallel. In fact, a separate process can compute each
pixel’s Bhattacharyya distance (and update each pixel’s model) independently. But the
data-access pattern is non-trivial. To update each pixel’s model, each process must read an
entire patch of pixels from the image around it. Thus tiling the matrix and assigning tiles

to worker threads is complicated by the fact that such tiles must overlap so each pixel may

115

Figure 8-10: Example of background subtraction: (A) Original Image (B) Difference from
background model (C) Image with positive detections highlighted

116

reach its neighbors. For these reasons it is not straightforward to implement this algorithm
in most stream processing languages. For example, stream processing languages tend to
require that the input to each stream operator be a linear sequence of data. Exposing par-
allelism and exploiting locality in the background subtraction then requires an appropriate
encoding of the matrix (for example, using Morton-order matrices), but this in turn creates
complicated indexing. It is reasonable to say that the stream-processing paradigm is not
the best fit for parallel matrix computations.

The original C++ source code for the background subtraction phase was shared with
me by Teresa Ko from UCLA. Given the original source code, I proceeded in a four step

process.

1. Port code verbatim to WaveScript.
2. Factor duplicated code; use higher-order functions.
3. Remove unnecessary floating point.

4. Parameterize design; expose parallelism.

Port Verbatim: Because WaveScript has imperative constructs and a similar concrete
syntax, it is straightforward to do a verbatim translation of C or C++ code. This does not
in any way extract parallelism (it results in a dataflow graph with one operator). But it is
the best way to establish correspondence with the output of the original program and then
proceed by correctness preserving refactorings.

The original source code possessed substantial code duplication, as seen in the verbatim
port below. The code pictured is the core of the populateBg function, with the following
signature.

populateBg :: (Array4D Float, Image) -> ();
type RawImage = Array Color;

type Image = (RawImage * Int * Int); // With width/height
type Array4D t = Array (Array (Array (Array t)));

This function builds the initial background model for each pixel. It is called repeatedly

with a series of Images to ready the background model before processing (classifying) new

117

frames. In this version of the code, no significant type abstraction has yet been applied.
The “model” for each pixel is a three-dimensional histogram in color space (the argument
to populateBg is four dimensions to include a 3D histogram for each pixel in the image).

The background subtraction algorithm as a whole consists of 1300 lines of code con-
taining three functions very much like populateBg. A second function updates the model
for each new frame, and a third compares each new image to the existing model to com-
pute Bhattacharyya distances for each pixel. Each of these functions traverses both the
input image and the stored histograms (e.g. matrix_foreachi below). The code is rife

with for-loops and indexing expressions and can be difficult to follow.

Code Sample, First Version — Verbatim Port:

0NN AW~

for r
//

=0 to rows—1 {
clear temp patch

fill (tempHist, 0);

//
c

create the left most pixel’s histogram from scratch
Int = 0;

roEnd = r — offset + SizePatch; // end of patch
coEnd = ¢ — offset + SizePatch; // end of patch

for

ro = r—offset to roEnd-1 { // cover the row

roi = if ro < 0 then -ro-1 else

if ro >= rows then 2 % rows—1-ro else ro;

for co = c-offset to coEnd-1 { // cover the col

coi = if co < 0 then —co-1 else

if co >= cols then 2 * cols—-1-co else co;
// get the pixel location
i = (roi % cols + coi) * 3;
// figure out which bin
binB = Int! (Inexact! image[i] * inv_sizeBinsl);
binG = Int! (Inexact! image[i+1] % inv_sizeBins2);
binR = Int! (Inexact! image[i+2] * inv_sizeBins3);
// add to temporary histogram
tempHist[binB][binG][binR] += sampleWeight;

}
b
// copy temp histogram to left most patch
for c¢cb = 0 to NumBinsl-1 {

for cg = 0 to NumBins2-1 {

for cr = 0 to NumBins3-1 {
bgHist[k][cb][cg]lcr] += tempHist[cb][cg][cr];

1

//

increment pixel index

k += 1;

//

compute the top row of histograms

for ¢ = 1 to cols—1 {
// subtract left col
co = ¢ — offset — 1;
coi = if co < 0 then —-co — 1 else
if co >= cols then 2 % cols — 1 — co else co;

for ro = r - offset to r—offset + SizePatch — 1 {
roi = if ro < 0 then -ro-1 else
if ro >= rows then 2 * rows — 1 — ro else ro;

118

O 001NN AW —

— e
B WO —=O

i = (roi * cols + coi) * 3;

binB = Int! (Inexact! image[i+0] % inv_sizeBinsl);
binG = Int! (Inexact! image[i+1] % inv_sizeBins2);
binR = Int! (Inexact! image[i+2] * inv_sizeBins3);

tempHist[binB][binG][binR] —= sampleWeight;
if (tempHist[binB][binG][binR] < 0) then {
tempHist[binB][binG][binR] := 0;

}:
}s
// add right col
co = ¢ — offset + SizePatch — 1;
coi = if co < 0 then —co-1 else

if co >= cols then 2 * cols—-1-co else co;
for ro = r—offset to r—offset + SizePatch — 1 {
roi = if ro < 0 then -ro-1 else
if ro >= rows then 2 % rows—l-ro else ro;

i = (roi * cols + coi) x 3;

binB = Int! (Inexact! image[i] * inv_sizeBinsl);
binG Int! (Inexact! image[i+1] * inv_sizeBins2);
binR = Int! (Inexact! image[i+2] % inv_sizeBins3);
tempHist[binB][binG][binR] += sampleWeight;

s

// copy over

for cb = 0 to NumBinsl-1 {

for cg = 0 to NumBins2-1 {

for cr = 0 to NumBins3-1 {
bgHist[k][cb][cgllcr] += tempHist[cb][cg][cr];

1
// increment pixel index
k += 1;

Refactor Code: The next step, before trying to expose parallelism, was to simply clean
up the code. Some of this consisted of factoring out simple first-order functions to capture
repeated index calculations (a refactoring applied just as easily to the original C++). Other
refactorings involved using higher order functions, for example, to encapsulate traversals
over the image matrices and thereby remove for-loops and indexing expressions. After

refactoring the code was reduced to 400 lines; the populateBg function is shown below.

// Builds background model histograms for each pixel.
// Additions to the histograms are scaled according the assumption that
// it will receive NumBgFrames # of images.
// tempHist: temporary space
// bgHist : background histograms
// image : frame of video stream
populateBg :: (PixelHist, Array PixelHist, Image) —> ();
fun populateBg (tempHist, bgHist, (image,cols ,rows)) {
using Array; using Mutable;
assert_eq (”Image_must_be_the_right_size:” ,length(image), rows * cols * 3);

// Patches are centered around the pixel.
// [p.x p.y]-[halfPatch halfPatch] gives the upperleft corner of the patch.

119

15
16
17

19
20
21
22
23
24

26
27
28
29

// Histograms are for each pixel (patch).

// First create a histogram of the left most pixel in a row.

// Then the next pixel’s histogram in the row is calculated incrementally by:

// 1. removing pixels in the left most col of the previous patch from the histogram and
// 2. adding pixels in the right most col of the current pixel’s patch to the histogram

// This makes a strong assumption about the order the matrix is traversed.
// It’s not representation—independent in that sense.
matrix_foreachi (bgHist, rows,cols,
fun(r,c, bgHist_rc) {
if ¢==0 then initPatch(r,c, rows,cols, tempHist, image, sampleWeightl)
else shift_patch(r,c, rows,cols, tempHist, image, sampleWeightl);
add_into3D (bgHist_rc , tempHist); // copy temp histogram to left most patch

3]
}

Note that this code uses the same representations and performs the same operations
as the original. We will see later how we further abstract the representation and expose

parallelism.

Reduce Floating Point: One of our goals in porting this application was to run it on
camera-equipeed cell phones, as well as on multicores and partitioned across phones and
desktops. The phones in question use ARM processors without floating-point units. Thus,
the penultimate step was to reduce the use of floating point calculations (for example, in
calculating indices into the color histograms). WaveScript offered no special support for
this. Its numeric operations are polymorphic, but WaveScript doesn’t yet include built-in

support for fixed point-arithmetic; rather, it is provided as a librar

Expose Parallelism, Parameterize Design: Finally, the most interesting part of this
case study was using WaveScript to parallelize the application. Fortunately, the refactoring
for parallelization (abstracting data types, matrix transforms) was also beneficial to code
clarity. The essential change was to move away from code handling monolithic matrices
(arrays) to expressing the transform locally on image tiles, and then finally at the level of
the individual pixel (with the stipulation that a pixel transform must also access its local
neighborhood). The end result was a reusable library for parallel matrix computations (see
parmatrix.ws).

The first step is to implement transforms on local tiles. From the perspective of the

client code, this is the same as doing the transform on the original matrix (only smaller).

’In the future we would like to add tool support for porting computations to fixed point, monitoring
overflows and quantifying the loss of accuracy.

120

However, the library code must handle splitting matrices into (overlapping) tiles and dis-
seminating those tiles to workers. The resulting dataflow graph structure will appear as
in Figure The results of each independent worker are joined again, combined into
a single matrix and passed downstream to the remaining computation. In Figure ?? we
see the interface for building tile kernels via the function tagged tile kernel. Calling
tagged tile kernel(x,y, w, transform,init) will construct a stream transformer that splits
matrices on its input stream into x X y tiles, with an overlap of w. First the init function is
called (at metaprogram evaluation) to initializes the mutable state for each worker. Then at
runtime each tile is processed by the trans form function, producing a new tile, potentially
of a different type.

The type signature for tagged_tile kernel is listed in Figure ??. The extra “tagged” part
is an additional complication introduced by the control-structure of the application. Typical
of stream-processing applications, there is a tension between dividing an application into
finer-grained stream kernels and avoiding awkward data movement between kernels (e.g.
packing many configuration parameters into the stream). Because there is no shared state
between kernels, all data must be passed through streams. In this particular example, it
is frequently desirable to pass an extra piece of information (tag) from the original (cen-
tralized) stream of matrices down to each individual tile- or pixel-worker, which is exactly
what the interface tagged_tile kernel allows. For the background subtraction application,
an earlier phase of processing determines what mode the computation is in (populating
background model, or estimating foreground) and attaches that mode flag as a boolean on
the stream of images.

The next step in building the parmatrix.ws library was to wrap the tile-level operator
to expose only a pixel-level transform. This has a similar interface, shown below. Note
that the resulting stream transformer on matrices has the same type as with the tile-level

version.

3Whether the matrix tiles are physically copied depends on whether WaveScript is running in single-heap
mode or with independent heaps. In single-heap mode it is possible for the workers to share one copy of
the input image, except for two problems. (1) It is not clear that sharing one copy of the data is desirable
given caching issues. (2) Unless unsafe optimizations are enabled the matrix tiles must be copied because
WaveScript doesn’t currently perform enough analysis to determine that the workers do not mutate the input
image. One solution to (2) would be to add immutable vectors (a la Standard ML) to the language in addition
to arrays, which would allow more sharing.

121

0NN AW~

OO 00 AW PR WM —

—_

O 001N W A W=

/% This function creates X+*Y workers, each of which handles a region
* of the input image. The tile_transform is applied to each tile ,
* and also may maintain state between invocation, so long as that
* state is encapsulated in one mutable value and passed as an

* argument to the transform.

*

*

*

This assumes the overlap between tilees is the same in both
dimensions .

tagged_tile_kernel
(Int, Int, Int,
((tag, st, Tile px) —> Tile px2),
(Tile px) —> st)
—>
Stream (tag * Matrix px) —> Stream (Matrix px2);

/% A tile is a piece of a matrix together with metadata to tell us

* where it came from. Fields are:

* (1) a matrix slice

* (2) tile origin on original matrix
* (3) original image dimensions

*/

type Tile t = (Matrix t % (Int % Int) % (Int % Int));

Figure 8-11: Code for tile level transform.

tagged_pixel_kernel_with_neighborhood

(Int, Int, Int,
// Work function at each pixel:
(tag, st, Nbrhood px) —> px2,
// Per—pixel state initialization function
(Int, Int) —> st)

-

Stream (tag % Matrix px) —> Stream (Matrix px2);

type Nbrhood a = (Int,Int) —> a;

The Nbrhood type is used to represent the method for accessing the pixels in a local
vicinity. It is a function mapping (x,y) locations onto pixel values. Calling it with (0, 0)
gives the value of the center pixel—the one being transformed and updated. Now we are
able to express the background subtraction application as a simple pixel-level transfor-
mation. The core of the implementation is show below. Given a boolean tag on the input
stream (bgEstimateMode), and a state argument that contains the histogram for just that pixel

(bghist), the kernel decides whether top populate the background (populatePixHist) or to

estimate the foreground (estimateFgPix).

tagged_pixel_kernel_with_neighborhood (workersX, workersY, overlap,
// This is the work function at each pixel.
fun (bgEstimateMode , bghist, nbrhood) {
if bgEstimateMode then {
populatePixHist(bghist, sampleWeightl , nbrhood);
} else {
estimateFgPix (bghist , nbrhood);
}
.

122

10
11

tagWithMode_6

Y
bhattaPixKern_7

bhattaPixKern_10 bhattaPixKern_9
bhattaPixKern_12

bhattaPixKern_13 bhattaPixKern_8

bhattaPixKern_11

bhattaPixKern_16 bhattaPixKern_14

Tlle

Overlap

bhattaPixKern_19

Figure 8-12: An example dataflow graph resulting from using a tile/pixel transform with
rows = cols = 2. Even though the pixels are partitioned into four disjoint tiles (dark
purple), an extra margin must be included around each tile (orange) to ensure each dark-
purple pixel may access its local neighborhood.

// This initializes the per—pixel state; create a histogram per pixel:
fun(i,j) Array3D:make(NumBinsl, NumBins2, NumBins3, 0))

Conclusion: The end result of this case-study was a cleaned up implementation that
also exposes parallelism. (And a reusable parallel matrix library!) Parallel speedup results
up to 16 cores are shown in Figure[8.4] These results are generated given a single, fixed 4x4
tiling of the matrix. A more appropriate approach is to have the metaprogram set the tiling
parameters based on the number of CPUs on the target machine. But this is complicated by
the need to factor the target number of threads into separate x and y components such that
xy = numthreads. In general, this is fine, but for simplicity the measurements in Figure @
are taken using a fixed grid size and allowing the operating system scheduler to figure out
how to schedule the threads.

Allowing the metaprogram to read the number of CPUs and determine a grid size is
another example of the utility of the metaprogram as a separate phase that precedes the

WaveScript compiler’s own dataflow-graph scheduling and optimization. (The first was in

123

'RESULTS txt' u'2:(157641 / $3) ——

Figure 8-13: Parallel speedup for Bhattacharyya distance based background subtraction on
16-core AMD Barcelona machine. Datapoint O represents the single-threaded case with
thread-support disabled. All runs are on a Linux 2.6 kernel, with the number of cores
artificially limited using the /sys/devices/system/cpu interface.

Section 4.2] where Streamit-style scheduling was performed during metaprogram evalua-
tion.) Still, it would be ideal to expose more of this tuning problem to the compiler itself.
In the future perhaps a means will be found to reify the compiler’s own profile-driven op-
timization and auto-tuning process in a way that it can be invoked by the programmer to

determine the grid size.

8.5 Conclusion

This thesis described WaveScript, a type-safe, garbage collected, asynchronous stream pro-
cessing language. We deployed WaveScript in an embedded acoustic wildlife tracking ap-
plication, and evaluated its performance relative to a hand-coded C implementation of the
same application. We observed a 1.38x speedup—which enabled a substantial increase
in in-the-field functionality by allowing more complex programs to run on our embedded
nodes—using half as much code. We also used this application to study the effectiveness
of our optimizations, showing that the throughput of our program is substantially improved

through domain-specific transformations and that our parallelizing compiler can yield near-

124

linear speedups.

Additionally, we evaluated WaveScript’s program partitioning capabilities. With Wave-
Script, users can run the same program on a range of sensor platforms, including TinyOS
motes and various smartphones. WaveScript uses profiling to determine how each operator
in the dataflow graph will perform using sample data. Its partitioning algorithm models the
problem as an integer linear program that minimizes a linear combination of network band-
width and CPU load, and uses program structure to solve the problem efficiently in practice.
Our results on acoustic and EEG sensing applications show that the system computes op-
timal partitionings rapidly, enables effective exploration of application design space, and
achieves good performance in practice.

In conclusion, we believe that WaveScript is well suited for both server-side and em-
bedded applications, offering good performance and simple programming in both cases.
For the embedded case, its potential to bring high-level programming to low-level domains

is particularly exciting.

125

126

Appendix A

Related Work

WaveScript’s design touches several areas of computer science. Related work falls into
these broad categories: first, work on functional reactive programming and metaprogram-
ming; second, stream processing languages and database query systems; third, work on
languages and programming tools for sensor networks; and fourth, work on program parti-

tioning.

Functional Reactive and Meta-programming

Functional reactive programming (FRP) [23] is form of functional programming that deals
with values that represent continuously varying signals. It was introduced in the context of
the purely functional language Haskell. It differs from previous work on stream processing,
first by addressing the subject in a purely functional manner, and second by modeling
continuously varying signals rather than streams of discrete events. FRP is also reactive in
that it enables the program to handle events that are triggered when a signal meets certain
conditions. FRP was an important initial inspiration for Regiment, though the present
WaveScript design has little in common with it.

Metaprograms are simply programs that generate programs. Metaprogramming, or
“multi-stage” programming, is extremely common in the form of C++ templates, the C
preprocessor, or even PHP scripts that generate websites. Also, macros in the Lisp and

Scheme families of languages are examples of multi-stage programming [34]. Macros

127

and preprocessors, however, are unstructured and undisciplined metaprogramming. Re-
cently, there has been substantial work on metaprogramming in the context of strongly
typed languages of the ML family. MetaML [635]], for example, has explicit quotation and
anti-quotation mechanisms for constructing run-time representations of pieces of ML code
that, when executed, produce a value of a specific type. WaveScript, on the other hand, is
a two-stage language in which the user’s source code executes at compile time to generate
a graph of stream operators. WaveScript differs from MetaML primarily in that it lacks
explicit quotation setting apart the stages of computation. For example, in MetaML, one
writes expressions such as <1 + “x>, where <> are quotations constructing a piece of code,
and "~ is an anti-quotation that injects the code value bound to the variable x. WaveScript
avoids this by leveraging the asymmetry of its stages—the fact that generated stream graphs
follow certain strict requirements differentiating them from source programs.
Metaprogramming is a natural choice for WaveScript because it addresses two re-
quirements: one, the need to programatically construct large and often repetitive dataflow
graphs, and two, the need for a static dataflow graph at runtime. Thus, dataflow graph gen-
eration instead happens at compile time. It is probably for these same reasons that you see a
restricted form of multi-stage execution in some other stream languages, such as StreamlIT.
Also other there is a precedent in other domain specific languages adopting multi-staged
evaluation for similar reasons, for example, the hardware synthesis language Bluespec [51].
Like WaveScript, these languages are asymmetric metaprogramming languages in that their

different stages consist of different languages (in contrast with MetaML or R6RS Scheme).

Stream Processing

Stream processing (SP) has been studied for decades. A survey of older work (through
1996) may be found in [64]. Some related literature takes place under other terminology,
such as dataflow computing [5,38]. In a typical SP model, a graph of operators (or kernel
functions) communicate by passing data messages. Operators “fire” under certain condi-
tions to process inputs, perform computation, and produce output messages. Many specific

SP formalisms have been proposed. For example, operators may execute synchronously or

128

not, deterministically or nondeterministically, and produce one output or many. Likewise,
dozens of domain specific languages and libraries have been developed.

Ptolemy II [39] is widely-used data-flow system that can be used for modeling these
many different dataflow models, and even for combining them. It is frequently used to
model or simulate signal processing applications. Unlike WaveScope, it is not focused on
efficiency or on providing a high-level, optimizable programming language.

SP has received renewed attention in recent years with the advent of multicore pro-
cessors. Several stream processing languages arise out of a desire to program a particular
parallel architecture. The Cell processor, RAW tiled architecture, and GPUs have all been
recent targets for stream programming [[66,|13]]. (StreamIT [[66] is one particular such lan-
guage that will frequently serve as a point of comparison in this thesis.) There are even
commercial chips designed specifically for stream processing such as the Storm processor
from Stream Processors Inc. WaveScript, on the other hand, is a top-down project starting
from a language design rather than a particular processor. In our work thus far, we have fo-
cused on two platforms: embedded sensor nodes (16-bit or 32-bit) and commodity desktop

multicores.

Streaming Database Management Systems

Apart from the architecture and compiler communities, the database community has de-
veloped its own take on stream processing. In the contexts of databases, streaming is
incorporated by extending an SQL-like query language with the ability to operate over
infinite tables (streams), which are turned into finite relations by various windowing opera-
tions. Two primary models arose in academic systems, from the Stanford STREAM [7]] and
Aurora/Borealis [14]] projects, which were later adopted by different commercial entities
respectively (Oracle/CQL [4] and StreamBase/StreamSQL [/1]).

The difference between the models lies primarily in the treatment of time-stamps. Both
require that all tuples have time-stamps (providing a partial order on tuples). The Stream-
SQL model processes every tuple, and CQL processes a batch of input tuples only when the

timestamp advances [31]. Both models treat streams as asynchronous events, which dif-

129

fers from the majority of (synchronous) systems arising from signal processing, graphics,
and architecture areas. This difference arises from distinct application concerns: applica-
tions such as finance or traffic monitoring involve asynchronous events. Partially because
of the need to support dynamic scheduling, streaming databases have substantially more
overheads than signal-processing systems, to the detriment of performance.

One function of WaveScript is that it serves as a general language that can be used both
for both signal processing and streaming database applications—for known and unknown
data-rates. When data rates are stable, WaveScript’s profile-driven approach can apply the
same static-optimization techniques as other streaming languages, otherwise it must fall
back on dynamic scheduling as streaming databases.

Relative to streaming databases, WaveScript has the advantage that it is simultaneously
the language for manipulating streams, and for writing high performance kernels that pro-
cess streams. Typically, databases require that such kernels are written as user-defined
functions (UDFs) in a separate language such as C++ or Java.

Another difference is that WaveScript supports windows as first-class entities, as op-
posed to conventional systems wherein windows are second class and tied to particular op-
erators in the query plan. Flexible support for windows enables queries like time-alignment
to be naturally expressed and efficiently executed. Sequence databases like SEQ [59]] sup-
port time-series data as first class objects. However, these systems are targeted at simple
queries that analyze trends in data over time, and are less suited to expressing complex
signal processing functions. The same is true of Gigascope [18], a streaming sequence
database system for network applications that shares our objective of handling high data

rates.

Language Design for SensorNets

Programming complex coordinated behaviors in sensor networks is a difficult task, which
has inspired recent research into new programming models for sensor networks. The
paucity of resources and operating system services on low-power sensor platforms provide

a challenge. Sensornet programming tools research seeks to (1) raise the abstraction level

130

of the code executed in-network (e.g. virtual machines), (2) replace or simulate missing op-
erating system features, (3) capture network communication idioms, and (4) ease the task
of partitioning an application between embedded nodes and heavier weight servers. Wave-
Script itself contributes to (1), (2), and (4), but not (3). Because sensor networks process
streams of data, unsurprisingly many proposed sensor network programming abstractions

are stream processing systems according to our previous definition.

Maté is a virtual machine designed for motes running the embedded TinyOS operating
system. The Maté project focuses on application specific VM extensions, safety guaran-
tees, and energy-efficient dynamic reprogramming. However, the overhead of bytecode in-
terpretation makes intensive computation prohibitive. Maté hosts high-level programming
systems through application specific VM extensions. For example, TinySQL is a query
processing system built on a specialized Maté VM. Another specialized VM incorporates
the abstract regions communication model of Welsh and Mainland [68]]. Other high-level
languages or language-extensions that have been proposed for programming sensor net-
work applications include: Mottle [[72], TinyScript [72]], SNACK [28]], and the variants of
SQL found in Cougar [[73]] and TinyDB [42].

Tenet [27] addresses the problem of partitioning applications between embedded clients
and servers. It proposes a two-tiered architecture with programs decomposed across sensors
and a centralized server, much as in WaveScript. The VanGo system [29]], which is related
to Tenet, proposes a framework for building high data rate signal processing applications in
sensor networks, similar to the applications that inspired our work on WaveScript. VanGo,
however, is constrained to a linear chain of manually composed filters, does not support
automatic partitioning, and runs only TinyOS code.

Marionette [71] and Spatial Views [S0] use static partitioning of programs between sen-
sor nodes and a server that is explicitly under the control of the programmer. These systems
work by allowing users to invoke pre-defined handlers (written in a low level language like
nesC) from a high-level centralized program that runs on a server, but don’t offer any kind

of automatic partitioning.

COSMOS [6] is a macroprogramming system that allows programmers to specify (pos-

sibly recursive) dataflow programs that are automatically placed inside of a network of

131

motes subject to programmer-specifiable placement constraints. It is an example of a sys-
tem that could benefit from the techniques in WaveScript, since it doesn’t attempt to opti-
mize operator placement using profiler output or other statistics.

Abstract Regions [69], Regiment [47], and Hood [70] provide languages and program-
ming abstractions that perform operations over clusters of nodes (or “regions”), rather than
single sensors. These abstractions allow data from multiple nodes to be combined and
processed, but are targeted more at the coordination of sensors than at stream processing.

TinyDB [41] and Cougar [73] are distributed data flow systems, which typically run the
same program on all nodes. These programs are quite constrained and typically are only
partitioned in one way, with certain computations pushed into the network via heuristics
(e.g., all filters should be applied inside the network; as much aggregation as possible

should be inside the network, etc).

Program Partitioning

WaveScript’s profile-driven approach is conceptually different from distributed systems
that move operators (computation) dynamically at run-time to optimize performance (e.g.,
message processing throughput or latency) or minimize resource consumption. In this sec-
tion we review other systems the employ a compile-time approach to partitioning. Gener-
ally speaking, WaveScript differs from these existing systems in its use of a profile-driven
approach to automatically derive an optimal partitioning, as well as its support for diverse
platforms.

The Pleiades/Kairos systems [35]] statically partition a centralized C-like program into
a collection of node-level nesC programs that run on motes. Pleiades is primarily con-
cerned with the correct synchronization of shared state between nodes, including consis-
tency, serializability, and deadlocks. WaveScript, in contrast, is concerned with high-rate
shared-nothing data processing applications, where all nodes run the same code. Because
WaveScript programs are composed of a series of discrete dataflow operators that repeat-
edly process streaming data, they are amenable to our profile-based approach for cost es-

timation. Finally, by constraining ourselves to a single cut point, we can generate optimal

132

partitionings quickly, whereas Pleiades uses a heuristic partitioning approach to generate a
number of cut points.

Triage [9] is a related system for “microservers” that act as gateways in sensor net-
work applications. Triage’s focus is on power conservation on such servers by using a
lower-power device to wake a higher-power device based on a profile of expected power
consumption and utility of data coming in over the sensor network. However, it does not
attempt to automatically partition programs across the two device classes as WaveScript
does.

There has been substantial work looking at the problem of migrating operators at run-
time, including many stream processing systems [8,55,/10]. Dynamic partitioning is valu-
able in environments with variable network bandwidth, unpredictable load, but also comes
with serious downsides in terms of runtime overheads. Also, by focusing on static par-
titioning, WaveScript is able to provide feedback to users at compile time about whether
their program will “fit” into their chosen sensor platform and hardware configuration.

There has been some related work in the context of traditional, non-sensor related dis-
tributed systems. For example, the Coign [30]] system automatically partitions binary ap-
plications written using the Microsoft COM framework across several machines, with the
goal of minimizing communication bandwidth. Like WaveScript, it uses a profile-driven
approach. Unlike WaveScript, Coign does not formulate partitioning as an optimization
problem, and only targets Windows PCs. Neubauer and Thiemann [46] present a similar
framework for partitioning client-server programs.

Automatic partitioning is also widely-used in high-performance computing, where it is

usually applied to some underlying mesh, and in automatic layout of circuits.

133

134

Appendix B

Prototype Type System for

Metaprograms

In Chapter 2] we saw an example of a metaprogram that would not reduce into a valid object

program:
let £ =24 ...
letg=4 ...
let s = iterate (4b . app(if b then f else g, 99)) init strm
in ...

I will now introduce a draft of a more restrictive typing regime that will rule out the
above example, guaranteeing that terminating MiniWS programs reduce to valid Mini-
Graph programs—while still permitting a range of desirable higher-order programs. This
type system will be described in the context of a mini-language even smaller than MiniWS.
At the end of the section we will discuss application to MiniWS.

The goal of this type system is to ensure that every call site within certain regions of the
program (iterates) will have a corresponding known code location (A expression) that it
invokes. This is related to control-flow analysis. In the context of higher-order languages,
control-flow analyses seek to identify the set of functions callable at each call site. These
analyses are successfully employed in several functional language compilers [15,2], and

are especially effective in the context of whole program compilation.

135

It has been recognized in the literature that type systems can be equivalent to data- and
control-flow analysis [52,|36]. In our present design we seek not to gather information
about arbitrary higher-order programs, but to actively reject all programs that do not satisfy
our restricted control-flow requirements.

Ultimately, our type system must determine which terms will call unknown code dur-
ing their evaluation. Terms in operator position which are not guaranteed to reduce to A-
expressions when the program is in its normal form, are considered unknown. Conversely,
any call to known code will successfully be resolved into a A-expression (and subsequently
B-reduced). The act of calling unknown code is a kind of computational effect tracked by
the type system. This suggests similarities to existing work on effect type systems [54].
In a type-effect system, typing judgements I' + ¢ : T are extended to include additional
information, ¢, about the effects performed during the evaluation of 7, givingus: I' -7 :# T.

In the type system I present here we decorate types with two kinds of information:
effect information (does the corresponding term call unknown code locations?), and, for
arrow types, control flow information (does the corresponding value refer to a knowable
code location). Each piece of information is a boolean, adding two bits to each type. We
use metavariables E, F, G € {0, 1} for effects, and metavariables U, V, W € {0, 1} for control-
flow (X, Y, Z are reserved for normal type variables). We will refer to the new variables as
E/U variables (for Effects and Unknown-code), and constraints on them as E/U constraints.
Thus we write a type 7' decorated with E/U variables as: {;7. Note that U variables are
only relevant to function types, for all other types U = 0.

Let’s look at a few examples. A function type containing an unknown code location
would have type y(7T1—T,) where U = 1, and an integer resulting from evaluating a term
that calls unknown code would have type £Int where E = 1. A function that calls unknown

code during its execution would have type (T} —%T,) where E = 1.

B.1 First Phase: Type Checking

We formulate our type system as an extension to a typical constraint-based type-inference

algorithm [53]]. Such an algorithm has two phases. First, it traverses the input program,

136

introducing fresh type variables for relevant program points, and recording constraints on
these variables. These constraints are of the form fype == type. The second phase then
solves (unifies) the constraints.

In the process of type checking, our algorithm additionally introduces E/U variables
and collects E/U constraints. These do not substantially affect the second phase—the new
analysis does not affect the unification of “normal” types. But a third phase is added to

solve E/U constraints. The new constraints are as follows:

E=F effect variables are equal
u=V unknown-code variables are equal
(T) all arrows within a type T have U = 1
E«F one effect variable depends on another (F = 1) = (E = 1)
E<U effect variable depends on an unknown-code variable

Mask(E,[F, F,,...]) don’tconsider Fy, F;, when computing E via dependencies

The use of these constraints will become apparent as we examine the typing rules in
Figure These constraint typing rules involve relations of the form I' + ¢ : T | C, where
C is a set of constraints including both the effect/control-flow constraints above and the
usual type = type constraints. For clarity, Figure |B-1|omits additional constraints that are
required to ensure freshness of variablesﬂ Instead, simply assume that each typing rule
introduces only unique variables.

We take one further notational liberty. All types are implicitly annotated with effect
and unknown-code variables: £7. In Figure whenever a type is written without one
or the other, such as £T, it is assumed that the elided variable(s) are present, unique, and
unimportant for that particular rule. The implicit U is attached to all references to 7 in all
parts of the rule.

One thing that we see here is that each typing statement contains, in addition to a type-
environment I', an environment mask, M. This is present for typing A-abstractions, which

will be explained shortly. First, note that literals and variables may be typed with any mask,

These constraints can be systematically added to Figure by annotating typing statements to track y
the set of type variables used: I' 7 : T |, C. At the expense of verbosity, all typing rules can be systematically
rewritten to require that subderivations have disjoint variables, and that all newly introduced type variables
are not present in any subderivation.

137

L1TB LiTI

M+ b: EBool | {Mask(E, M)} M+ i: FInt | {Mask(E, M)

VAR

Tov:T;Mvrv:ET | {Mask(E, M)}

IF
[;MFe : EBool | C, Mbye: "T|C,
[Mbye;: °Ty | Cy C'=CLUC,UC;U{fT, =°T,, (T)), F—E)}

[;M+¢if e; thene, elsee;: 'T; | C

APP
['Mvie : 5T |Ci TiMvrey: T, | Cy
C=CiUCU{ET, =T, - %X),G« U G« E, G « F, Mask(G, M)}

[; M+ app(e;, &) : X

ABS
I'v:TyyMi,Myvre:T,|C M, = freeVars(e)

I'MyrAve : Ty > T, | C

Figure B-1: Typing rules to restrict control flow and ensure metaprogram evaluation will
not become stuck.

138

just as they may be typed in any type-environment I'. We typecheck a complete program
with an empty mask as well as an empty type environment.

The purpose of these masks is to separate the computation already completed before the
execution of a function from the computation performed by the body of that function. When
we assign a type to a function, we do not include effects introduced in the computation of its
free variables. Thus, the effects are masked from all the types of all the free variables. This
hiding of effect annotations is deep in that it should propagate through type constructors
(other than (—)).

By associating masks with effect variables, we are recording in the constraints infor-
mation about the structure of variable-binding and variable-reference in the program. With
this information the constraint set is self contained, and the original program is unneeded
in the constraint-solving phase. It will be necessary to unify the type == fype constraints
before resolving the masks, so as to have complete principle types (except for effects) and
thereby determine which effect variables are reachable from which type variables.

There are a few other points to note in these typing judgements. The If rule does
not introduce any new effect or type variables. (And thus it needn’t introduce new Mask
constraints, either.) It only equates and constrains existing variables. The Abs rule is the
only one that extends the mask. The () constraint introduced by If is the only place that
effect/unknown-code variables are directly set to 1. And, like masks, the () operator cannot
be resolved until principle types are resolved for all type variables (and thereby the set of

reachable U variables is determined).

B.2 Second phase: Constraint Solving for Regular Types

This phase proceeds by the usual method (described in [53]) of maintaining a stack of
type equations, and performing repeated substitutions of type variables for their equivalent
types. In the process, we record the resulting types assigned to each type variable, and
thereby achieve principle types for all variable bindings in the program.

We modify this process to also accumulate a list of E/U equations. Whenever a type

equation (5T, = I'T5) is popped from the stack, we record constraints E = F and U = V.

139

These resulting constraints are merged with the E/U from the first type-checking phase and

passed on to the third phase.

B.3 Third phase: E/U Constraint Solving

Solving E/U constraints is somewhat more involved.

1. First, we use all the (E = F) and U = V constraints to generate equivalence classes
for all E/U variables. We then rename all references to E/U variables in types and

constraints to a representative member from the corresponding equivalence class.

2. Second, we use the principle types computed from phase two to determine which
E and U variables are reachable from which type variables. The set of U variables
reachable from types with a (T') constraint form the “seed”. All these U variables
are set to 1. The rest of the computation involves propagating these 1’s through the

various dependency constraints subject to the mask constraints.

3. We then process each distinct Mask in the constraint set. Applying a mask consists of
setting all the E variables referred to in the mask to 0. We then form a table mapping
each E/U variable to a boolean or to unknown, and then recursively apply each «
constraint to each £ « F and E « U pair until no more changes are possible.
This entire table reflects a solution to the system under one particular mask. We
create a solution for every mask, and produce final values for all E/U based on their

corresponding masks.

B.4 Application to MiniW$

The end result of the type-checking process above is a program with type information that
indicates which functions might possibly invoke unknown code. In the case of the MiniWS
language, the important point is to check that after type checking, the function argument
to the iterate operator does not invoke unknown code. If that property holds, then the

MiniWS program passes and is guaranteed to reduce to a MiniGraph program. Also, the

140

—_
[=INR-CREN e Y N N

NSRS IL SIS TSI SR SR S IS IS el s s e
OO0 1A WUN PR WN—=OWOVIAWN A WN —

30
31
32
33
34
35
36
37
38
39
40
41

43
44
45
46
47
48

50
51
52
53
54
55
56

above typing rules would need to be extended in a straightforward to handle the tuples and

side-effects present in the MiniWS language.

B.5 Type Checker Code Listing

module Checker_core3 where

—— This prototype handles a functional mini—language.
—— extended in a straightforward way to handle imperative constructs.

import Control.Monad. State . Lazy
import Data.Map

import qualified Data.Set as Set
import qualified Data.Map as Map

—— Data Type Definitions:

data Exp a =
Lam a Vr (Exp a)

It can be

Let a Vr (Exp a) (Exp a) —— currently sugar for lambda/app

|

| Litl Int
| LitB Bool

| Var Vr

| If (Exp a) (Exp a) (Exp a)
| App (Exp a) (Exp a)
deriving Show

data EUConstraint =

DeepUnknown —— Taint all arrows that are reachable from
EDep Evr —— This tvar is dirty only if this other effect
UDep Uvr —— This is dirty only if this other var

|
|
|
deriving (Show, Ord, Eq)

type Vr = String
type Tyvr = String

data Evr = E String deriving (Show,Ord,Eq)
data Uvr = U String deriving (Show,Ord,Eq)

—— We map each Tvar onto a set of constraints.
—— Thus the domain includes a Tyvr and a Evr:

type EUConstraints = Map.Map Type (Set.Set EUConstraint)

this type var.

var is.

is unknown.
Mask [(Evr,Tyvr)] —— Evr should have its constraints solved after masking

—— These decorate types and indicate whether an arrow type has an

—— unknown code location, or whether a value caries
—— unknown application .

type UTag = Uvr

type ETag = Evr

data Type =
Int ETag
Bool ETag

|
| Tvar ETag Tyvr

| Arrow ETag UTag (Type) (Type)
deriving (Show, Ord, Eq)

—— Misc. Helper Functions

type GS a = State (Map.Map String Integer) a

141

the

taint

of an

these others.

57 gensym :: String —> GS String
58 gensym prefix =

59 do tbl <- get

60 let n = Map. findWithDefault 0 prefix tbl
61 put (insert prefix (n+1) tbl)

62 return (prefix ++ show n)

63 runGS m = evalState m Map.empty

64

65 add_to_mapset :: (Ord a, Ord b) = a —> b —> Map.Map a (Set.Set b) —> Map.Map a (Set.Set b)
66 add_to_mapset x y = Map. alter f x

67 where

68 f Nothing = Just (Set.singleton y)
69 f (Just s) = Just (Set.insert y s)
70

71 evar :: GS Evr
72 uvar :: GS Uvr
73 evar = do v <— gensym “e”; return (E v)

2.

74 uvar = do v <- gensym “u”; return (U v)

75

76 fresh_tv = do v <- gentvar; e <— evar; return (Tvar e v)
77 gentvar = gensym “v”

78

79 type Tenv = Map.Map Tyvr Type

80 empty-tenv :: Tenv

81 empty_tenv = Map.empty

82 extend_tenv :: Tyvr —> Type —> Tenv —> Tenv

83 extend_tenv = Map.insert

84 lookup-tenv :: Tyvr —> Tenv —> Maybe Type

85 lookup_-tenv = Map.lookup

86

87 —— —— This extracts the type vars that need to be scrubbed clean of effects.

88 skim_tenv :: Tenv —> [(Evr, Tyvr)]
89 skim_tenv tenv = Prelude.map (\ (-, Tvar t v) —=> (t,v)) $ toList tenv

91 delJust (Just x) = x

92

93 —— First Phase: Type check

94

95

96 —— Allowing a little syntactic sugar:

97 preprocess (Let a v el e2) = App (Lam a v e2) el

98 preprocess (Lam a v e) = Lam a v $ preprocess e

99 preprocess (If a b c¢) = If (preprocess a) (preprocess b) (preprocess c)
100 preprocess (App a b) = App (preprocess a) (preprocess b)

101 preprocess (Litl i) = Litl i

102 preprocess (LitB b) = LitB b

103 preprocess (Var v) = Var v

104

105 —— Type checking returns four values:

106 —— (1) The type of the input expression.

107 —— (2) A new expression

108 —— (3) A list of type equations (constraints), and
109 ——— (4) a set of additional U/T constraints.

110 type MaskT = [(Evr, Tyvr)]
111 tcheck :: Tenv —> MaskT —> Exp () —>

112 GS (Type, Exp (Tyvr, Tyvr, Tyvr), [(Type,Type)], EUConstraints)
113 tcheck tenv mask e =

114 let

115 defmask tvar = Map.singleton tvar defmask’

116 defmask’ = if mask == [] then Set.empty else Set.singleton (Mask mask)
117 maskit s = if mask == [] then s else Set.insert (Mask mask) s

118 add_mask (Tvar t v) cs = adjust maskit (Tvar t v) cs

119 add_constraint (Tvar t v) = add-to_mapset (Tvar t v)

120 in

121 case preprocess e of

122 Litl i —=—> do new <- fresh_tv

123 let Tvar tnt _ = new

124 return (new, Litl i, [(new, Int tnt)], defmask new)

142

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

LitB b —> do new <- fresh_tv
let Tvar tnt _ =

new

return (new, LitB b, [

—— Look up in tenv, return that typ
Var v —> do let tvar = deJust $ lookup_tenv v tenv

return (tvar, Var

v, [l

(new, Bool

tnt)], defmask new)

e. No new constraints.

, defmask

tvar)

—— Any lambdas in the result of a conditional become Unknown (a deep operation)

If pred cons alt —>

do (Tvar tntl vl,el,cl,utl) <— tcheck tenv mask pred
(t2,e2,c2,ut2) <— tcheck tenv mask cons
(t3,e3,c3,ut3) <— tcheck tenv mask alt

return (t2, If el e2 e3
[(Tvar tntl vl,

’

Bool

— It’s ok to tag t2,

add_-constraint
add_constraint

utl ‘union‘ ut2

—— There are two different scenarios

tntl), (t2

‘union © ut3)

—— effect —tainted result from an application.
—— may be a tainted value. Second,
—— arrow type OR a tainted function value.

App f x —>

do (tl,el,cl,utl) <— tcheck tenv mask f

(t2,e2,c2,ut2) <— tcheck

ret <— fresh_tv; t <-—
let Tvar tntl tl

let Tvar tnt2 _ t2

u <— uvar

evar

tenv mask x

let arrowt = Arrow t u t2 ret

return (ret,
App el e2,

—— The operator

(tl, arrowt)

, t3)] ++ cl ++ c2 ++ c3,
since it’s equated with t3

t2 (EDep tntl) $
t2 DeepUnknown $

that can lead to an

First, the operator
the operator may be an unknown

typechecks with the arrow:

—— The operand typechecks with the argument:

——(t2, a)
cl ++ c¢2,

—— An unknown arrow

add_constraint

— A effect—tainted arrow taints

add_constraint

add_constraint
add_mask ret $

ret (

taints the result:

UDep u) $

ret (EDep tntl) $
— A effect—tainted operand taints
ret (EDep tnt2) $

utl ‘union‘ ut2)

Lam () v bod —>
—— We could skim all the

do arg <- fresh_tv

tvars

off the surface
—— They can be stored as a constraint on the new typevar.

let tenv’ = extend_tenv v arg tenv

(ret ,el,cl,utl) <— tcheck tenv’

t <— evar; u <- uv

ar

let arrowt = Arrow t u arg

result <— fresh_tv

let Tvar _ retv = ret
let Tvar _ argv = arg
let Tvar _ resultv =

return (result ,

result

ret

Lam (argv,retv ,resultv) v el,
—— Equate the result with the arrow type we constructed:
(result, arrowt)

add_mask resu
add_mask arg
utl)

It $
$ —

cl,

this one

143

(skim_tenv

seems

the result:

the result:

of the tenv, and snapshot those.

tenv ++ mask) bod

unnecessary

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

—— Free type variables within a type, returns a set:

—— Do I need to check for extra free vars within the constraints??

free_tvars (Int t) = Set.empty
free_tvars (Bool t) = Set.empty
free_tvars (Tvar t v) = Set.singleton Vv

free_tvars (Arrow t u a b) = Set.unions [free_tvars a, free_tvars b]

ty_effect (Int t) =t
ty-effect (Bool t) =t
ty_effect (Tvar t _)
ty_effect (Arrow t _ _ _) =t

1l
-

—— Second Phase: Unify ”"Normal” Type Constraints

—— With this unifier we build up a map of principle types, while
—— trying to keep it simple. The result of unification is a type

—— environment containing principle types, as well as a set of U/T

—— equalities .

unify_types :: [(Type, Type)]
—> (Tenv, [(ETag, ETag)], [(UTag, UTag)])

unify_types eqs = loop Map.empty [] [] $ eqs
where

loop tenv teqs ueqs [] = (tenv, teqs, ueqs)

loop tenv teqs ueqs (eq:tl) =

case eq of

(x,y) | x==y —> loop tenv teqs ueqs tl

(Tvar tl1 vl, Tvar t2 v2) | vl == v2 —> error “unimplemenented”

(Tvar t v, ty) | not (Set.member v $§ free_tvars ty) —> shared v t ty
(ty, Tvar t v) | not (Set.member v $§ free_tvars ty) —> shared v t ty

(Arrow t u a b, Arrow t2 u2 a2 b2) —>
loop tenv ((t,t2):teqs) ((u,u2):ueqs) $ (a,a2):(b,b2)
(Bool t1, Bool t2) —> loop tenv ((tl,t2):teqs) ueqs tl
(Int t1, Int t2) —> loop tenv ((tl,t2):teqs) ueqs tl
oth —> error$ “unification._failed:.”++show oth
where
shared v t ty = loop (update_principle v ty tenv)

s tl

((t,ty-effect ty):teqs) ueqs (subst_ls v ty tl)

—— This updates a principle type with new information. It doesn’t
—— need to accumulate new constraints , it just needs to record the

—— least—general type.
update_principle v ty tenv =
let tenv’ = alter (overwriteWith ty) v tenv
Just ty’ = Map.lookup v tenv’
in subst_map v ty’ tenv’

overwriteWith ty Nothing
overwriteWith ty2 (Just tyl)

Just ty
Just$ merge tyl ty2

—— This is an inexhaustive case, but unification will fail first:

merge x (Tvar _ _) = X —— FIXME—— pass the taint on??
merge (Tvar - _) y =y
merge (Int t1) (Int t2) = Int tl

merge (Bool t1) (Bool t2) = Bool tl

merge (Arrow t u a b) (Arrow t2 u2 a2 b2) = Arrow t u (merge a a2) (merge b b2)

subst_map v ty = Map.map (subst_ty v ty)

subst_Is v ty [] = []
subst_ls v ty ((tl,t2):tl) = (subst_ty v ty tl, subst_ty v ty

subst_ty v ty oldty = case oldty of
Int t —> Int t
Bool t —> Bool t
Tvar t vr => if v == vr then ty else Tvar t vr

144

t2)

subst_ls v ty

tl

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Arrow t u a b —> Arrow t u (subst_ty v ty a) (subst_ty v ty b)

—— Third Phase: Unify Additional U/T Var Constraints

trans_closure mapset =
Map. mapWithKey loop mapset
where
loop key visited =
—— Find all that are within two hops.
let next = Set.unions $ Set.toList §
Set.map (\k —> Map.findWithDefault Set.empty k mapset) $

visited
diff = Set.difference next visited
in
if Set.null diff
then Set.delete key visited —— Delete self—edges currently.

else loop key (Set.union visited next)

flatten_.mapset m = concat $
Prelude .map (\ (x,set) —> zip (repeat x) (Set.toList set)) $
Map. toList m

equiv_classes ls = loop Set.empty Is
where
loop set [] = set
loop set ((x,y):tl) =
let contx = Set.filter (Set.member x) set
conty = Set.filter (Set.member y) set
both = Set.union contx conty
other = Set.difference set both
set’ = Set.insert (Set.insert x $ Set.insert y $

Set.unions $ Set.toList both) other
in loop set’ tl

reachable_Uvars ty = loop ty

where

loop (Int t) = Set.empty

loop (Bool t) = Set.empty

loop (Tvar t _) = Set.empty

loop (Arrow t u a b) = Set.insert u §

Set.union (loop a) (loop b)

—— Apply a map to all U/T vars in a type:
subst_ut_types tsubst usubst ty = Ip ty
where
It t = case Map.lookup t tsubst of { Just x —> x ; Nothing —> t }
lu u = case Map.lookup u usubst of { Just x —> x ; Nothing —> u }
Ip (Int t) = Int$ It t
Ip (Bool t) = Bool$ 1t t
Ip (Tvar t v) = Tvar (1t t) v
Ip (Arrow t u a b) = Arrow (It t) (lu u) (lp a) (lp b)

subst_ut_cstrts tsubst usubst set = Set.map f set
where
It t = case Map.lookup t tsubst of { Just x —> x ; Nothing —> t }
Iu u = case Map.lookup u usubst of { Just x —> x ; Nothing —> u }
f (Mask tyls) = Mask$ Prelude.map (\ (t,tyvr) —> (It t, tyvr)) tyls
f (EDep t) = EDep$ 1t t
f (UDep u) = UDep$ lu u
f DeepUnknown = DeepUnknown

—— Here we do the full unification, both on types and on taint/unknown constraints.
unify_all cstrnts __uts =

—— For debugging purposes this temporarily returns a ton of junk:
(principle_types , reachableUs, utbl, ttbl, crosstbl, alltaints , tequivclasses , uequivclasses)

145

329 where

330 (--principle_types , __teqs, -_ueqs) = unify_types cstrnts

331

332 —— Respect equivalence constraints. Here we smash down the U/T

333 —— variables into equivalence classes, and rewrite all Dep/Mask

334 —— constraints in terms of these.

335 tequivclasses = equiv_classes __teqs

336 uequivclasses = equiv_classes __ueqs

337

338 —— Now we must rewrite the principle_types and the U/T constraints:

339 —— We use the "first” var in each equivalence class as a proxy for that class.
340 subst ¢ = Set.fold (\ cls mp —>

341 ——let fst = headf Set.toList cls in

342 let fst = Set.findMin cls in

343 Set.fold (\ x mp —> Map.insert x fst mp) mp cls)

344 Map.empty ¢

345 tsubst = subst tequivclasses

346 usubst = subst uequivclasses

347

348 sty = subst_ut_types tsubst usubst

349 principle_types = Map.map sty __principle_types

350 uts = Map. fromList $

351 Prelude .map (\ (ty,set) —>

352 (sty ty, subst_ut_cstrts tsubst usubst set)) $

353 Map. toList __uts

354

355 —— Next, we solve all the constraints on taint/unknown variables:

356 —— This first involves tracking down “DeepUnknown”—induced dependencies.
357 reachableUs = Map.fold Set.union Set.empty $

358 Map. filter (not . Set.null) $

359 Map. mapWithKey (\ (Tvar t v) s —>

360 if Set.member DeepUnknown s

361 then reachable_Uvars (Map. findWithDefault (error “missing”) v principle_types
362 else Set.empty)

363 uts

364

365 —— Second, we build graphs with edges representing equalities between U/T variables.

366 utbl :: Map.Map Uvr (Set.Set Uvr)
367 utbl = Map.empty
368 ttbl = loop’ flat Map.empty

369 —— And dependencies from U->T

370 crosstbl = loop’’ flat Map.empty

371 flat = flatten_mapset uts

372 loop” [] m=m

373 loop’ ((Tvar tl _, EDep t2) : tl) m = loop’ tl (add_-to_mapset t2 tl m)

374 loop’ (-:tl) m = loop’ tl m
375 loop’’ [] m=m

376 loop’’ ((Tvar t1 _, UDep u) : tl) m = loop’’ tl (add-to_mapset u tl m)
377 loop’’ (-:tl) m = loop’’ tl m

378

379 —— For a given mask, solve the constraints.

380 —— Return sets of “on” U/T vars.

381 solve_ut mask = alltaints

382 where

383 tnts = Prelude .map fst mask

384 tnts ° = Set.fromList tnts

385 —— The masked taint vars cannot be activated or activate others:

386 ttbl* = foldl (\ mp tnt —>

387 let m = Map. filter (mnot . (Set.member tnt)) $ —— Kill any entry that would activate us
388 Map. delete tnt mp

389 in

390 —— Hygiene: filter out entries from the range that are no longer in the domain.
391 Map.map (Set.filter (\x —> Map.member x m)) m

392)

393 ttbl tnts

394 crosstbl > = Map.map (\s —> Set.difference s tnts) crosstbl

395 ttbl °’ = trans_closure ttbl”’

396 lkp tbl u = Map. findWithDefault Set.empty u tbl

146

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

—— We seed the dependencies with the reachable U’s and fill
alltaints =
Set.union crossover $ Set.unions $ Set.toList $
Set.map (lkp ttbl >’) crossover
—— U vars that activate T vars:
crossover =
Set.unions $ Set.toList $
Set.map (lkp crosstbl) reachableUs

—— Finally , we compute a solution by solving for each mask.

alltaints = Set.difference tsO killed
where
init = Map.singleton [] tsO
tsO = solve_ut []

everything in:

We memoize the

results .

—— This accumulates a list of U/T vars that are NOT set because of masking.

killed = Set.fromList $ loop init (toList uts)
loop memo [] = []
loop memo ((Tvar tv _, set):tl) =
case get_mask set of
[] = loop memo tl
Is —> let memo’ = if Map.member ls memo
then memo

else Map.insert Is (solve_ut ls) memo

Just ts = Map.lookup 1ls memo’
in if Set.member tv ts
then loop memo’ tl
else tv : loop memo’ tl
get_mask set =
case Set.toList $ Set.filter is_mask set of
[1 — [1
[Mask 1s] —> 1s
is-mask (Mask _-) = True
is_mask _ = False

147

148

Bibliography

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

http://www.streambase.com/.
Standard ml of new jersey. http://www.smlnj.org/.

Automatic derivation and implementation of signal processing algorithms. SIGSAM Bull., 35(2):1-19,
2001.

A. Arasu, S. Babu, and J. Widom. The cql continuous query language: semantic foundations and query
execution. The VLDB Journal, 15(2):121-242, 2006.

Arvind and R.S. Nikhil. Executing a program on the mit tagged-token dataflow architecture. Computers,
IEEE Transactions on, 39(3):300-318, Mar 1990.

Asad Awan, Suresh Jagannathan, and Ananth Grama. Macroprogramming heterogeneous sensor net-
works using cosmos. In Proc. EuroSys, 2007.

Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIGMOD Rec., 30(3):109-
120, 2001.

M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-Based Load Management in Federated
Distributed Systems. In Proc. USENIX NSDI, San Francisco, CA, March 2004.

Nilanjan Banerjee, Jacob Sorber, Mark D. Corner, Sami Rollins, and Deepak Ganesan. Triage: balanc-
ing energy and quality of service in a microserver. In MobiSys *07: Proceedings of the 5th international
conference on Mobile systems, applications and services, pages 152—164, New York, NY, USA, 2007.
ACM.

Rimon Barr, John C. Bicket, Daniel S. Dantas, Bowei Du, T. W. Danny Kim, Bing Zhou, and Emin Giin
Sirer. On the need for system-level support for ad hoc and sensor networks. SIGOPS Operating Systems
Review, 36(2), 2002.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative environment. Softw.
Pract. Exper., 18(9):807-820, 1988.

Erik Boman, Karen Devine, Lee Ann Fisk, Robert Heaphy, Bruce Hendrickson, Courtenay Vaughan,
Umit Catalyurek, Doruk Bozdag, and William Mitchell. Zoltan 3.0: Data Management Services for
Parallel Applications; User’s Guide. Sandia National Laboratories, Albuquerque, NM, 2007. Tech.
Report SAND2007-4749W http://www.cs.sandia.gov/Zoltan/ug_html/ug.html.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. Brook for gpus: stream computing on graphics hardware. ACM Trans. Graph., 23(3):777-
786, 2004.

D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams—a new class of data management applications. In VLDB, 2002.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure conversion for typed
languages. In ESOP ’00: Proceedings of the 9th European Symposium on Programming Languages
and Systems, pages 5671, London, UK, 2000. Springer-Verlag.

149

http://www.streambase.com/
http://www.smlnj.org/
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and Victor Zue. Survey of the state of
the art in human language technology, 1995.

Gerardo Costa and Colin Stirling. Weak and strong fairness in ccs. Inf. Comput., 73(3):207-244, 1987.

C. Cranor, T. Johnson, O. Spataschek, and Vladislav Shkapenyuk. Gigascope: a stream database for
network applications. In SIGMOD, 2003.

S.B. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word recog-
nition in continuously spoken sentences. IEEE Trans. on ASSP, 28:357-366, 1980.

L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental, automatic garbage collector. Com-
mun. ACM, 19(9):522-526, 1976.

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in Science and Engineering,
4(2):90-97, 2002.

R. Kent Dybvig. The development of chez scheme. In ICFP *06: Proc. of the 11th ACM SIGPLAN intl.
conf on Functional prog., pages 1-12, New York, NY, USA, 2006. ACM.

Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP *97), volume 32(8), pages 263-273, 1997.

M. Garey, D. Johnson, , and L. Stockmeyer. Some simplified np complete graph problems. Theoretical
Computer Science, 1:237-267, 1976.

Lewis Girod, Martin Lukac, Vlad Trifa, and Deborah Estrin. The design and implementation of a
self-calibrating acoustic sensing system. In SenSys, 2006.

Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan, Hari Balakrishnan, and
Samuel Madden. Xstream: A signal-oriented data stream management system. In /CDE, 2008.

Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Ramesh Govindan, Ben Green-
stein, August Joki, Deborah Estrin, and Eddie Kohler. The tenet architecture for tiered sensor networks.
In SenSys '06: Proceedings of the 4th international conference on Embedded networked sensor systems,
pages 153-166, New York, NY, USA, 2006. ACM Press.

Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor network application construction kit
(snack). In Proceedings of the 2nd international conference on Embedded networked sensor systems,
pages 69-80. ACM Press, 2004.

Ben Greenstein, Christopher Mar, Alex Pesterev, Shahin Farshchi, Eddie Kohler, Jack Judy, and Debo-
rah Estrin. Capturing high-frequency phenomena using a bandwidth-limited sensor network. In SenSys,
pages 279-292, 2006.

Galen C. Hunt and Michael L. Scott. The coign automatic distributed partitioning system. In Proc.
OSDI, 1999.

Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom, Hari Balakrish-
nan, Ugur Cetintemel, Mitch Cherniack, Richard Tibbetts, and Stan Zdonik. Towards a streaming sql
standard. Proc. VLDB Endow., 1(2):1379-1390, 2008.

Simon Peyton Jones et al. Playing by the rules: Rewriting as a practical optimisation technique in ghc.
In Haskell Workshop, 2001.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20:359-392, 1998.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro expan-
sion. In LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional programming,
pages 151-161, New York, NY, USA, 1986. ACM Press.

150

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govindan. Reliable and efficient
programming abstractions for wireless sensor networks. In Proc. PLDI, 2007.

Peeter Laud, Tarmo Uustalu, and Varmo Vene. Type systems equivalent to data-flow analyses for
imperative languages. Theor. Comput. Sci., 364(3):292-310, 2006.

John Launchbury. A natural semantics for lazy evaluation. In POPL ’93: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 144—154, New York,
NY, USA, 1993. ACM Press.

E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9):1235-1245,
Sept. 1987.

Edward A. Leet. Overview of the ptolemy project. Technical Report Technical Memorandum No.
UCB/ERL MO03/25, UC Berkeley, 2003.

Daan Leijen. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on Trends
in Functional Programming (TFP’05), September 2005.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation service for ad-hoc sensor
networks. In OSDI, 2002.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. In Proc. the 5th OSDI, December 2002.

A. Martin, D. Charlet, and L. Mauuary. Robust speech/non-speech detection using LDA applied to
MEFCC. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 237—
240, 2001.

Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput., 51(1):1-26, 1998.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and Systems
Science, 17:348-375, 1978.

Matthias Neubauer and Peter Thiemann. From sequential programs to multi-tier applications by pro-
gram transformation. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 221-232, New York, NY, USA, 2005. ACM.

Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming system. In IPSN,
2007.

Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor networks. In
Proc. the First International Workshop on Data Management for Sensor Networks (DMSN), Toronto,
Canada, August 2004.

Ryan Newton and Matt Welsh. The regiment macroprogramming system. In Sixth International Con-
ference on Information Processing in Sensor Networks (IPSN’07), April 2007.

Yang Ni, Ulrich Kremer, and Liviu Iftode. Spatial views: space-aware programming for networks of
embedded systems. In In Proceedings of the 16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2003, 2003.

R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level specifications. Formal Methods
and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE Interna-
tional Conference on, pages 69-70, June 2004.

Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. In POPL ’95: Proceed-
ings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
367-378, New York, NY, USA, 1995. ACM.

Benjamin C. Pierce. Types and Programming Languages. MIT press, 2002.
Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. MIT press, 2005.

151

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo
Seltzer. Network-aware operator placement for stream-processing systems. In Proc. ICDE, 2006.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqgar Hasan. Extensible/rule based query rewrite opti-
mization in starburst. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD international confer-
ence on Management of data, pages 39-48, New York, NY, USA, 1992. ACM.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based query rewrite opti-
mization in Starburst. pages 3948, 1992.

Juhani Saastamoinen, Evgeny Karpov, Ville Hautamki, and Pasi Frnti. Accuracy of MFCC-
Based speaker recognition in series 60 device. EURASIP Journal on Applied Signal Processing,
2005(17):2816-2827, 2005.

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The design and implementation of a se-
quence database systems. In VLDB, 1996.

Peter Sewell et al. Acute: High-level programming language design for distributed computation. J.
Funct. Program., 17(4-5):547-612, 2007.

Eugene Shih and John Guttag. Reducing energy consumption of multi-channel mobile medical moni-
toring algorithms. 2008.

Ali Shoeb et al. Patient-Specific Seizure Onset. Epilepsy and Behavior, 5(4):483—-498, 2004.

Ali Shoeb et al. Detecting Seizure Onset in the Ambulatory Setting: Demonstrating Feasibility. In
IEEE EMBS 2005, September 2005.

Robert Stephens. A survey of stream processing. Acta Informatica, 34(7):491-541, 1997.

W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In Partial Evaluation and
Semantics-Based Program Manipulation, Amsterdam, The Netherlands, June 1997, pages 203-217.
New York: ACM, 1997.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for streaming
applications. In ICCC, April 2002.

Stephen Weeks. Whole-program compilation in mlton. In ML ’06: Proceedings of the 2006 workshop
on ML, pages 1-1, New York, NY, USA, 2006. ACM.

Matt Welsh and Geoff Mainland. Programming sensor networks using abstract regions. In Proc. the
First USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI ’04), March
2004.

Matt Welsh and Geoff Mainland. Programming sensor networks using abstract regions. In NSDI, 2004.

Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a neighborhood abstraction for
sensor networks. In Proc. Mobisys, 2004.

Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan Hui,
Prabal Dutta, and David Culler. Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In Proc. IPSN, 2006.

Bridging The Gap: Programming Sensor Networks with Application Specific Virtual Machines. Uc
berkeley tech report ucb//csd-04-1343.

Yong Yao and J. E. Gehrke. The Cougar approach to in-network query processing in sensor networks.
ACM Sigmod Record, 31(3), September 2002.

152

	Introduction
	Background: Design Space Exploration
	Evolution of Design

	Summary

	A Representative Mini-language
	Operational Semantics
	Evaluating MiniWS to MiniGraph

	WaveScript: Full Language
	Prelude: Applications Overview
	Application: Locating Yellow-Bellied Marmots

	A taste of the language
	Examples using Marmot Application
	Core Operators: iterate and merge
	Defining Custom Synchronization Policies
	Windowing and Sigsegs
	Distributed Programs
	Other Language Features
	Pragmatics: Foreign Interface
	Foreign functions
	Foreign Sources
	Inline C Code
	Converting WaveScript and C types
	Importing C-allocated Arrays
	``Exclusive'' Pointers

	Discussion: Language Extensibility
	Pull-based Streams
	Peek/Pop/Push with Explicit Rates
	Teleporting Messages
	Swappable Components

	WaveScript Implementation
	A Straw-man Implementation
	The WaveScript Approach
	Execution Model

	WaveScript Backend Code Generation
	Legacy Backends
	Recent Backends
	Code Generation: ANSI C
	ANSI C Backend: Stream-Optimized Garbage Collection
	Code Generation: TinyOS 2.0
	Code Generation: JavaME

	Optimization Framework
	Profile & Partition
	Stream Graph Optimizations
	Batching via Sigsegs and Fusion

	Extensible Algebraic Rewrites
	Implementing Rewrites

	Partitioning Algorithms
	Preprocessing
	Optimal Partitionings
	Integer Linear Programming (ILP)

	Data Rate as a Free Variable
	Dynamic Programming when the DAG is a Tree
	Summary

	Experimental Results
	Marmot: Comparing against handwritten C
	Effects of Optimization on Marmot Application
	Evaluation: Partitioning
	EEG Application: Seizure Onset Detection
	Partitioning the EEG Application
	Speech Detection Application
	Partitioning the Speech Detection Application
	WaveScript Deployment

	Parallelism: Background Subtraction Case Study
	Conclusion

	Related Work
	Prototype Type System for Metaprograms
	First Phase: Type Checking
	Second phase: Constraint Solving for Regular Types
	Third phase: E/U Constraint Solving
	Application to MiniWS
	Type Checker Code Listing

