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Abstract

This thesis presents high-order, discontinuous Galerkin (DG) discretizations of the Reynolds-
Averaged Navier-Stokes (RANS) equations and an output-based error estimation and mesh
adaptation algorithm for these discretizations. In particular, DG discretizations of the
RANS equations with the Spalart-Allmaras (SA) turbulence model are examined. The
dual consistency of multiple DG discretizations of the RANS-SA system is analyzed. The
approach of simply weighting gradient dependent source terms by a test function and inte-
grating is shown to be dual inconsistent. A dual consistency correction for this discretization
is derived. The analysis also demonstrates that discretizations based on the popular mixed
formulation, where dependence on the state gradient is handled by introducing additional
state variables, are generally asymptotically dual consistent. Numerical results are pre-
sented to confirm the results of the analysis.

The output error estimation and output-based adaptation algorithms used here are
extensions of methods previously developed in the finite volume and finite element com-
munities. In particular, the methods are extended for application on the curved, highly
anisotropic meshes required for boundary conforming, high-order RANS simulations. Two
methods for generating such curved meshes are demonstrated. One relies on a user-defined
global mapping of the physical domain to a straight meshing domain. The other uses a lin-
ear elasticity node movement scheme to add curvature to an initially linear mesh. Finally,
to improve the robustness of the adaptation process, an “unsteady” algorithm, where the
mesh is adapted at each time step, is presented. The goal of the unsteady procedure is to
allow mesh adaptation prior to converging a steady state solution, not to obtain a time-
accurate solution of an unsteady problem. Thus, an estimate of the error due to spatial
discretization in the output of interest averaged over the current time step is developed.
This error estimate is then used to drive an h-adaptation algorithm.

Adaptation results demonstrate that the high-order discretizations are more efficient
than the second-order method in terms of degrees of freedom required to achieve a desired
error tolerance. Furthermore, using the unsteady adaptation process, adaptive RANS sim-
ulations may be started from extremely coarse meshes, significantly decreasing the mesh
generation burden to the user.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

In recent decades, Computational Fluid Dynamics (CFD) technology has achieved signifi-

cant maturity. In particular, CFD is widely used throughout industry, academia, and gov-

ernment for analysis and design of aerospace vehicles. Despite this widespread use, many

challenging problems remain. For example, when high accuracy simulations are necessary,

computational costs using current industry standard techniques are very large. Further-

more, it is unclear if the grid generation practices and second-order finite volume methods

typically used by the aerospace community are adequate given the stringent accuracy re-

quirements of aerodynamic design.

To assess the current state of the art in CFD for applied aerodynamics, one can examine

the results of the recent American Institute of Aeronautics and Astronautics (AIAA) Drag

Prediction Workshops (DPW) [70, 65, 75]. These workshops, held in June 2001, June 2003,

and June 2006, were convened with the explicit goals of assessing CFD as a practical tool for

computation of aerodynamic forces for industry relevant geometries and identifying areas

for additional research and development.

Over the three workshops, increasing effort has been directed to determining the effects

of spatial discretization error. In the most recent workshop, four geometries were studied:

two wing-body configurations and two wing-alone configurations [75, 101]. The wing-alone

geometries were specifically included to minimize the complexity of the flow physics and

enable grid convergence studies. The results show that the uncertainties associated with

standard CFD methods are unacceptably high. In particular, the standard deviation of

the submitted values of the total drag increases with the number of mesh points for both

wing-alone geometries [75]. Also, the magnitude of the standard deviation, 5-7 drag counts,

is substantially larger than the uncertainty desired by airframe designers [75, 100]. Further-

more, restricting comparison to only those submissions that used the SA turbulence model,

the spread in the drag results extrapolated to continuum is more than 20 counts, or more
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than ten percent of the total drag [101].

Additional evidence that discretization error plays a significant role in the errors in

current CFD methods is presented by Mavriplis [73]. In particular, he demonstrates that,

even for very large grids, asymptotic results appear to be different for different families of

self-similar grids. This behavior has been attributed to the large range of scales present

in high speed, turbulent aerodynamic flows. This large range of scales makes it difficult

to adequately resolve all regions of the flow via global uniform refinement starting from

an arbitrary mesh. Thus, even “fine” meshes may produce inaccurate results if important

regions of the flow are not well resolved.

These results show that, not only is discretization error a significant contributor to the

error in current CFD solutions, it can be very difficult to detect, even for expert prac-

titioners. Thus, there exists a need in the CFD community for additional research and

development aimed at detecting and reducing errors associated with spatial discretization.

High-order, adaptive techniques have significant promise to accomplish this aim.

1.1 Objective

The objective of this work is to develop a high-order, adaptive method for the simulation of

high Reynolds number, turbulent flows and to demonstrate the performance of the method

for two-dimensional aerodynamic test cases.

1.2 Previous Work

1.2.1 High-Order Methods

High-order methods have significant potential to decrease the impact of discretization error

on the accuracy of CFD solutions. Most CFD methods in widespread use in the aerospace

industry achieve, at best, E ∝ h2, where E is a measure of the error in the solution

and h is a measure of the mesh spacing. Thus, in the context of this work, high-order

methods are those that achieve E ∝ hr, where r > 2, for sufficiently smooth problems.

While second-order finite volume discretizations are popular, high-order methods have been

extensively studied. These efforts have led to many types of high-order schemes, including

finite difference, finite volume, and finite element methods.

In the context of finite difference methods, Lele [68] introduced up to tenth-order

compact finite difference schemes. This work was extended and applied by Visbal and

Gaitonde [104], who used high-order compact difference methods to solve the compress-

ible Navier-Stokes equations on curvilinear meshes. Additional work in high-order finite
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difference methods for aerodynamics was conducted by Zingg et al. [113], who showed

that high-order compact difference methods are more efficient, in terms of number of nodes

required to accurately compute drag, than typical second-order finite differences.

While these high-order finite difference techniques have been successfully used in many

cases, their application is limited to structured meshes. To minimize mesh generation ef-

fort for complex geometries, unstructured meshes are of interest. For unstructured meshes,

Barth [11] pioneered high-order finite volume methods using the least-squares k-exact re-

construction method. For this method, additional nodes and control volumes are added

to each element to enable high-order reconstruction without extending the reconstruction

support outside of the element. More recently, a similar idea, known as the spectral volume

method, has been developed by Wang [105]. In this scheme, each mesh cell—i.e. spectral

volume—is divided into sub-cells. The state averages on these sub-cells are then used to

build a high-order reconstruction of the solution within the spectral volume.

In the context of finite element methods, researchers in the early 1980s pioneered the

so-called p-type finite element method. In the p-type method, the grid spacing, h, remains

fixed while the interpolation order, p, is increased to improve the accuracy of the solution.

Babuska et al. [8] applied the p-type method to the elasticity equations in 1981 and con-

cluded that the p-type method achieved superior performance in terms of the degrees of

freedom required to achieve a desired accuracy. Later, Patera [81, 64] introduced a vari-

ant of the p-type method, known as the spectral element method, and used it to solve the

incompressible Navier-Stokes equations.

While finite element methods offer a conceptually simple path to high-order accuracy,

it is well known that the standard, continuous Galerkin method is inappropriate for use

on convection-dominated problems. This drawback stems from the fact that the basic con-

tinuous Galerkin discretization is unstable for convection. Thus, even for subsonic flows,

the discretization of the Euler or Navier-Stokes equations with finite element methods re-

quires the addition of stabilization. One popular technique is the Streamline-Upwind Petrov

Galerkin method [61]. Another method that has received significant attention is the dis-

continuous Galerkin (DG) method.

1.2.2 Discontinuous Galerkin Methods

For achieving high-order accuracy, DG is attractive for two reasons. First, it allows the de-

velopment of stable, high-order accurate discretizations of convection-dominated problems

using upwinding methods developed in the finite difference and finite volume communities.

Second, the resulting discretizations have element-wise compact stencils. These compact
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stencils simplify the task of achieving high-order accuracy on unstructured meshes and near

boundaries, and they allow the development of efficient solution methods.

In 1973, Reed and Hill [90] introduced the DG method for the neutron transport equa-

tion. Since that time, there has been a rapid proliferation of new DG techniques as well as

analyses and applications of those techniques. Cockburn et al. [26] provides an excellent

review of work in DG methods through the year 2000. Highlights of this review as well as

relevant recent advances are summarized here.

In 1974, LeSaint and Raviart [69] proved the first a priori error estimates of the DG

method for linear hyperbolic problems. They showed that, assuming a smooth exact so-

lution, the error measured in the L2-norm is O(hp). Later, Johnson and Pitkaranta [63]

and Richter [92] improved upon the estimate of LeSaint and Raviart. Specifically, Johnson

and Pitkaranta proved that, in the most general case, O(hp+1/2) is the optimal convergence

rate in L2, while Richter showed that, assuming the characteristic direction is not exactly

aligned with the grid, O(hp+1) can be obtained.

The extension from the method of Reed and Hill for linear problems to nonlinear hyper-

bolic problems is accomplished by the use of a Riemann solver to evaluate the flux across

element boundaries. Riemann solvers have been extensively developed in the finite volume

community [93, 97]. The first application of the DG method to a nonlinear hyperbolic

problem was accomplished by Chavent and Salzano [24] using Godunov’s flux.

A breakthrough in the application of DG methods to nonlinear hyperbolic problems

using explicit time integration was made by Cockburn, Shu, and co-authors [28, 27, 25, 30],

who introduced the Runge Kutta Discontinuous Galerkin (RKDG) method. The original

RKDG method uses an explicit TVD second-order Runge Kutta scheme introduced by Shu

and Osher [94]. This method was later generalized to be high-order accurate in time as well

as space.

Independent of the above work, Allmaras [2] and Allmaras and Giles [4] developed a

second-order DG scheme for the 2-D Euler equations. Their method is the extension of

van Leer’s method of moments [98] from the 1-D, linear wave equation to the 2-D Euler

equations. Thus, it requires that state and gradient averages be computed at each cell to

allow linear reconstruction of the state variables. Halt [49] later extended this technique to

be higher-order accurate.

For elliptic operators, in the late 1970s and early 1980s, Arnold [6] and Wheeler [107]

introduced discontinuous finite element methods known as penalty methods. More recently,

many researchers [14, 78, 29, 15, 16, 31, 20] have applied DG methods to diffusion problems.

One procedure, pioneered by Bassi and Rebay [14, 15] and generalized by Cockburn and

Shu [29, 31], is to rewrite a second-order equation as a first-order system and then discretize
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the first-order system using the DG formulation. Methods derived in this fashion will

be referred to as mixed formulations. The first mixed formulation developed by Bassi

and Rebay (BR1) is not coercive and produces an extended stencil. However, a slight

modification of BR1 leads to a coercive scheme with a nearest-neighbor stencil, referred to as

the second method of Bassi and Rebay (BR2). The generalization of the first-order system

idea by Cockburn and Shu leads to the so-called Local Discontinuous Galerkin methods

(LDG). In multiple dimensions, LDG has an extended stencil, but a recent modification

of LDG by Persson and Peraire [82] known as Compact Discontinuous Galerkin (CDG)

recovers a compact stencil while retaining the attractive properties of LDG.

The penalty-type and mixed formulation DG methods have been brought into a single

analysis framework. This framework, introduced by Arnold et al. [7], provides for a unified

analysis, including error estimates, of these schemes. One recently introduced scheme which

has not been incorporated into this framework is that of van Leer [99], who uses a patch

reconstruction of the solution to evaluate the flux across element boundaries.

This work examines three DG discretizations of the RANS equations with the Spalart-

Allmaras (SA) turbulence model. The application of DG discretizations to the RANS

equations has been somewhat limited. At the time of this writing, the author is aware

of three DG implementations of the RANS equations. Specifically, Bassi and Rebay [12]

used the BR2 method to discretize the RANS equations coupled with the k−ω turbulence

model, and Nguyen, Persson, and Peraire [76] used CDG for the RANS equations coupled

with the SA turbulence model. Most recently, Landmann [66] has applied both LDG and

BR2 to discretize the RANS equations coupled with the SA and k − ω turbulence models.

All three of these methods are based on mixed formulations, which are examined in detail

in Chapter 3.

1.2.3 Error Estimation and Adaptation

It is widely recognized that error estimation and adaptation increase the usefulness of CFD

computations. Estimating the error in a CFD solution and generating appropriate high-

quality meshes are difficult tasks, even for experts in CFD and aerodynamics. By enabling

the user to set the error tolerance of the computation and automatically adapting the

discretization to satisfy that tolerance, the confidence in the computed solution increases

and the user is freed from the onerous task of generating a high-quality mesh.

Given the potential impact of error estimation and adaptation on the usefulness of

CFD, many researchers have studied error estimation and adaptation algorithms. A brief

summary of relevant advances is given here.
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Error Estimation

This section gives a brief review of error estimation techniques used to drive mesh adap-

tation algorithms. Thus, the techniques discussed include both rigorous a posteriori error

estimation algorithms as well as more ad hoc ideas used to construct “error indicators” to

target mesh adaptation.

A common technique for driving adaptation in the CFD community is feature detection.

This method aims to identify the dominant flow features, such as shock waves and boundary

layers, by finding regions with large gradients [9, 86, 106]. The underlying assumption is that

the error in these regions dominates the error in the solution. Thus, the identified large

gradient regions are targeted for grid refinement. Such methods have been successfully

applied to some flow problems, but they are clearly ad hoc. Furthermore, it has been

demonstrated that simply refining the dominant features of the flow can lead to incorrect

results [106]. For example, small errors in the upstream flow can affect shock or separation

locations, leading to large errors in computed outputs. These errors are not reduced by

continually refining the shock or boundary layer.

A less ad hoc procedure is offered by Zienkiewicz and Zhu [110, 111, 112], who propose

an error estimation algorithm based on recovery. The idea underlying these techniques

is to use the current discrete solution to reconstruct a better approximation of the exact

solution. Then, the difference between the discrete solution and the reconstruction can be

used to assess the local error in the solution. Many researchers have used similar schemes

based on interpolation error estimates [21, 48, 83, 106]. However, such schemes have many

drawbacks. For example, Ainsworth and Oden [1] present a second-order ODE case where

the recovery-based error estimate is zero while the actual error can be arbitrarily large.

Furthermore, given the local nature of such error estimates, they may fail to correctly

capture propagation of error for convection-dominated problems. This failure can lead to

similar problems as those described for purely feature-based algorithms.

Another type of error estimation technique relies on the residual. These estimates are

motivated by the observation that it is often possible to bound the error by an appropriately

defined residual norm. For example, consider a linear PDE of the form

Lu = f.

Then, given an approximate solution, uh, the error, eh ≡ u− uh, is governed by

Leh = rh
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where rh ≡ f − Luh. Furthermore, this provides an error bound of the form

‖eh‖1 ≤ C‖rh‖2,

where ‖ · ‖1 and ‖ · ‖2 are appropriate norms, and C is a constant.

Certainly, the analysis is more difficult for nonlinear problems, but in many cases, it

is possible to bound the error using an appropriate residual and norm [109, 87]. Thus,

it is possible to construct error indicators based on the residual. An interesting study

is provided by Zhang et al. [109]. They find that, for driving mesh adaptation in one-

dimensional subsonic flow, both recovery-based and residual-based error estimation schemes

are adequate, but that the residual-based method is more efficient for fine meshes. For one-

dimensional transonic flow with shocks, they conclude that the residual-based method is

superior because it is able to account for the transport of error due to convection. However,

neither estimate is adequate for driving adaptation in two dimensions.

A significant drawback of both recovery- and residual-based procedures discussed thus

far is that they aim to estimate some global solution error—e.g. the L2 or H1 norm of

the error over the entire domain. Alternatively, the most important errors are generally

those in quantities of engineering interest—e.g. lift, drag, etc. Hence, another class of

methods has been developed to estimate the error in the output of interest directly. Such

algorithms are known as output-based or goal-oriented error estimation schemes. These

schemes are generally divided into two types: Type I methods, which depend explicitly on

the solution of an appropriate dual problem, and Type II methods, where the dependence on

the dual problem is eliminated. While both types of methods can be used to construct error

indicators to target adaptation, Type I methods have been shown to be superior [55, 54]

for efficient and accurate computation of functional outputs. Thus, Type I methods are

examined here. In particular, the method used in this work is based on the Dual Weighted

Residual (DWR) method due to Becker and Rannacher [17, 18]. The DWR method uses the

property of Galerkin orthogonality of finite element discretizations, combined with duality

concepts, to express the output error in terms of weighted residuals.

Many implementations, variations, and extensions of the DWR methods appear in the

literature. For example, Pierce and Giles [85, 43, 45] and Venditti and Darmofal [102, 103]

have developed duality based error correction methods that extend the superconvergence

properties of finite element methods to more general discretizations. Venditti and Dar-

mofal [103] also used an estimate of the error remaining after correction to drive a mesh

adaptation procedure. This procedure was the first output-based, anisotropic adaptation

method applied to the RANS equations. The results show that, for a second-order finite
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volume discretization, the output-based approach is significantly more reliable than a purely

feature-based adaptation scheme.

For DG finite element methods, Hartmann and Houston [55, 56, 57], Hartmann [52],

Houston and Süli [59, 60], Lu [72], and Fidkowski [42, 41] have all used techniques based

directly on or fundamentally similar to the DWR method. Similar ideas are also used in

this work. They are presented in detail in Chapter 4.

Adaptation

Given an error indicator or estimate, the goal of the adaptation procedure is to modify

the discretization to decrease the error. For finite element methods, this can be done in

one of three ways: p-adaptation, where the order of the elements is modified on a constant

mesh; h-adaptation, where the mesh is changed but the order of the elements remains

fixed; or hp-adaptation, where both h and p are allowed to change. While p-adaptation

is known to be more efficient for sufficiently regular solutions, h-adaptation easily allows

for the generation of highly anisotropic meshes, which are critical for efficiency in high Re

flows. While hp-adaptation might be the most efficient, in that case, one must contend with

the additional difficulty of deciding between h and p adaptation. Some researchers have

proposed algorithms for making this choice [60], but it is not a solved problem. Thus, for

simplicity, h-adaptation alone is chosen for this work.

The h-adaptation is driven by an output-based error estimate. However, as noted earlier,

appropriately anisotropic meshes are crucial for efficient simulation of high Re flows. In this

work, the desired anisotropy calculation is based on equidistributing interpolation error.

This approach is similar to that of Peraire et al. [83], who use the Hessian of the density

to determine the mesh spacing request. Castro-Diaz et al. [21] and Habashi [48] also

use the Hessian of a scalar quantity to determine the desired mesh spacing. Alternatively,

Venditti [102, 103] uses an output error estimate to determine the absolute mesh size request

and only uses the Hessian to determine the desired anisotropy. Fidkowski [42, 41] extended

Venditti’s approach to higher-order discretization methods. A similar technique based on

higher-order derivatives has been applied by Leicht and Hartmann [67], who also consider

an anisotropic adaptation indicator based on the inter-element jumps in the DG solution.

The method of Fidkowski, described in Chapter 5, is used here.

1.3 Thesis Overview

This thesis describes the development of a high-order, h-adaptive, DG discretization for the

RANS equations coupled with the SA turbulence model. In particular, the thesis makes
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the following contributions:

• an analysis of the dual consistency of DG discretizations of source terms depending

on state gradients, like those appearing in the SA model,

• extension of the output-based error estimation implementation to curved meshes,

• development of curved mesh generation techniques, including a global mapping ap-

proach and a linear elasticity mesh movement approach,

• application of the output-based error estimation and adaptation algorithms to high-

order discretizations of the RANS equations on curved meshes, and

• development of an unsteady adaptation algorithm to improve the robustness of adap-

tation for steady state problems.

The thesis begins with a review of the RANS equations and the SA turbulence model

in Chapter 2. Chapter 2 also describes modifications to the SA model made to improve

robustness. Test results demonstrate that, as the mesh is refined, the modifications to the

model have a diminishing effect on the computed solution. Finally, the chapter concludes

by detailing the discretizations of the RANS-SA system used in this work.

An analysis of the dual consistency of these discretizations is given in Chapter 3. The

analysis shows that, for source terms depending on the gradient of the state, the straight-

forward method of weighting the source term by a test function and integrating leads to a

dual inconsistent scheme. A dual consistency correction to the standard weighting scheme

is derived. Further analysis demonstrates that discretizations based on the popular mixed

formulation are, in general, asymptotically dual consistent. Model problem and RANS

results confirm the conclusions of the analysis.

Chapter 4 details the error estimation algorithm, including implementation modifica-

tions used here to improve the performance of the algorithm on curved meshes. Numerical

results show that the error estimate is quite accurate for two high Re, two-dimensional test

flows. Chapter 5 discusses the adaptation algorithm, including two curved mesh generation

techniques. The first of these techniques relies on a global mapping from a straight mesh-

ing space to the curved physical domain. While this method is successfully demonstrated

in two dimensions, it is quite restrictive. Thus, a more general technique, using a mesh

movement algorithm based on a linear elasticity analogy, is developed. This technique is

demonstrated on two-dimensional test problems, but it can be extended to three-dimensions

in a straightforward manner. Chapter 5 concludes with multiple two-dimensional test cases

demonstrating the performance of the adaptive algorithm.
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Chapter 6 provides an unsteady adaptation algorithm for improving the robustness of the

algorithm from Chapter 5. A major weakness of the standard algorithm is the need to obtain

a steady state solution prior to adaptation. Especially when starting from coarse meshes,

this need places an unacceptably high robustness requirement on the flow solver. Thus,

the goal of the new adaptation approach is to allow mesh adaptation prior to obtaining a

converged steady state solution. The new approach is referred to as the unsteady algorithm

because the mesh is adapted at every time step while marching to the steady state solution.

However, the goal is not a time accurate solution. Simple test cases demonstrate that the

unsteady algorithm is capable of obtaining accurate steady state RANS solutions starting

from very coarse, inviscid-style meshes.

The thesis ends with Chapter 7, which gives conclusions and suggestions for future work.
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Chapter 2

Discretization of the RANS

Equations

This chapter describes the RANS equations, the SA turbulence model, and the discretization

of the RANS-SA system. It begins with a brief review of the RANS equations and the SA

turbulence model in Sections 2.1 and 2.2. Sections 2.3 and 2.4 show the spatial and temporal

discretizations used in this work. An in-depth analysis of the spatial discretizations is given

in Chapter 3. Finally, Section 2.5 provides a brief overview of the solution method used to

solve the discrete system.

2.1 The RANS Equations

The RANS equations are derived by averaging the Navier-Stokes equations. Specifically,

for compressible flows, the Favre averaging procedure is used. This procedure as well as

simplifying assumptions used here are described in Appendix A. The form of the RANS

equations used in this work is given by

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0, (2.1)

∂

∂t
(ρ̄ũi) +

∂
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∂ũk
∂xk

δji

)]

, (2.2)

∂

∂t

[

ρ̄

(

ẽ+
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∂ũk
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, (2.3)
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where ρ denotes the density, ui are the velocity components, p is the pressure, e is internal

energy, h is the enthalpy, T is the temperature, sij = 1
2

(

∂ui
∂xj

+
∂uj
∂xi

)

is the strain-rate tensor,

µ is the dynamic viscosity, µt is the dynamic eddy viscosity, Pr is the Prandtl number, and

Prt is the turbulent Prandtl number. The (̄·) and (̃·) notation indicates Reynolds-averaging

and Favre-averaging, respectively. These averages are defined in Appendix A.

Equations (2.1) through (2.3) contain more unknowns than equations. In particular,

the eddy viscosity, µt, which relates the mean flow viscous stresses to the apparent stresses

due to turbulent fluctuations, cannot yet be computed. Thus, to close the system, (2.1)

through (2.3) are augmented by the SA turbulence model, described in Section 2.2.

To avoid confusion, the (̄·) and (̃·) notation is dropped for the remainder of the thesis.

All uses of the standard flow variables refer to the appropriate mean flow quantities—e.g.

ρ is the Reynolds-average density and ui is the Favre-average velocity.

2.2 The SA Turbulence Model

The closure of the RANS system is accomplished by the addition of a turbulence model. In

this work, the SA turbulence model [95] is used. The model is widely used in the aerospace

industry and is generally regarded as robust. Moreover, it has been shown to be accurate

for most attached and mildly separated aerodynamic flows [46, 89, 108, 23].

2.2.1 Baseline Model

The model takes the form of a PDE for a working variable, ν̃, which is algebraically related

to the eddy viscosity, µt. In particular, the eddy viscosity is given by

µt = ρν̃fv1,

where

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
,

and ν = µ/ρ is the kinematic viscosity. Then, ρν̃ is governed by

∂

∂t
(ρν̃) +

∂

∂xj
(ρuj ν̃) = cb1S̃ρν̃

+
1

σ

[

∂

∂xj

(

(µ+ ρν̃)
∂ν̃

∂xj

)

+ cb2ρ
∂ν̃

∂xj

∂ν̃

∂xj

]

− cw1fw
ρν̃2

d2
, (2.4)

30



where

S̃ =







S + S̄, S̄ ≥ −cv2S
S +

S(c2v2S+cv3S̄)

(cv3−2cv2)S−S̄
, S̄ < −cv2S,

S is the magnitude of the vorticity, and

S̄ =
ν̃fv2
κ2d2

, fv2 = 1 − χ

1 + χfv1
.

The remaining closure functions are

fw = g

(

1 + c6w3

g6 + c6w3

)1/6

, g = r + cw2(r
6 − r), r =

ν̃

S̃κ2d2
,

where d is the distance to the nearest wall, cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw1 = cb1/κ
2+(1+cb2)/σ, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9, and Prt = 0.9.

Some clarifying remarks are in order. To begin, the laminar suppression and trip terms

from the original model are omitted because they are not used in this work. All cases are

run fully turbulent with no effort to model transition or force the flow to transition at a

desired location.

In addition, the form of the SA model shown in (2.4) has been modified in two ways

from that given in [95]. First, it is a straightforward generalization of the original model

to the compressible flow case. For incompressible flows, the two models are exactly the

same. No effort was made in this work to optimize the form of the model for flows where

compressibility effects are highly important. Thus, it is likely that another form would be

more appropriate for such cases. For example, Catris and Aupoix [22] propose a form of the

model that is compatible with density variations in the log layer of a compressible boundary

layer.

Second, the form of the production term has been changed. In the original production

term, S̃ is given by simply S̃ = S + S̄. This form can cause robustness problems because

the production can be negative, even for positive values of ν̃. Negative values can occur

because the fv2 closure function is negative for approximately 1.00 ≤ χ ≤ 18.40, as shown

in Figure 2-1.

The new form of the production was developed by Johnson and Allmaras to avoid the

possibility of negative S̃ for positive ν̃ [3]. In fact, S̃ is non-negative for all ν̃, and as

S̄ → −∞, S̃ → (1− cv3)S. Furthermore, the function is C1 continuous, with the value and

derivative matching at S̄ = −cv2S, where S̃ = (1 − cv2)S.
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Figure 2-1: SA model fv2 closure function versus χ

2.2.2 Negative ν̃ Modifications

The exact solution of (2.4) is non-negative, which agrees with the physical intuition that µt ≥
0. However, the discrete solution of (2.4) may not share this property. More importantly,

negative ν̃ values can adversely impact the iterative convergence of the discrete solution,

even causing it to diverge in some cases.

To ameliorate this behavior, changes can be made to the model for negative ν̃ values.

The most obvious change is to the definition of the eddy viscosity. The modified definition

is given by

µt =

{

ρν̃fv1 ν̃ > 0

0 ν̃ ≤ 0.
(2.5)

Clearly, this modification ensures that the eddy viscosity is non-negative. Furthermore, the

definition is continuous and has continuous first and second derivatives.

The remaining changes are motivated by examining the energy of the turbulence model

working variable, eν̃ ≡ 1
2 ν̃

2. One can derive a governing equation for eν̃ by multiplying (2.4)

by ν̃. The resulting equation is

∂

∂t
(ρeν̃) +

∂

∂xj
(ρujeν̃) =

1

σ

[

∂

∂xj

(

η
∂eν̃
∂xj

)

+ (cb2ρν̃ − η)
∂ν̃

∂xj

∂ν̃

∂xj

]

+ ν̃(P −D), (2.6)

where η = µ+ ρν̃, P = cb1S̃ρν̃, D = cw1fwρν̃
2/d2.

For ν̃ < 0, the right-hand side of (2.6) should act to dissipate eν̃ . This property ensures
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that, in regions where ν̃ < 0, the energy of the turbulence model working variable will

decrease with time.

To make this notion more precise, define the integrated energy by

Eν̃(t) =

∫

Ω
ρeν̃(x, t) dx,

where the bounded set Ω ⊂ R
n is the domain of interest. Furthermore, define the following

sub-domains:

Ω+
t = {x ∈ Ω | ν̃(x, t) > 0},

Ω−
t = {x ∈ Ω | ν̃(x, t) < 0}.

Then, Eν̃ = E+
ν̃ + E−

ν̃ , where

E+
ν̃ (t) =

∫

Ω+
t

ρeν̃(x, t) dx,

E−
ν̃ (t) =

∫

Ω−

t

ρeν̃(x, t) dx.

To bound the solution in regions where ν̃ < 0, consider the integrated energy contained

in Ω−
t , E−

ν̃ . Given an initial value at time t0, one can determine if this energy will grow by

examining the derivative
dE−

ν̃

dt . In particular,

dE−
ν̃

dt
=

d

dt

∫

Ω−

t

ρeν̃(x, t) dx,

=

∫

∂Ω−

t

ρeν̃~v · ~nds+

∫

Ω−

t

∂

∂t
(ρeν̃) dx,

where ~v denotes the velocity of the movement of the boundary of Ω−
t and ~n is the outward

pointing unit normal vector.

Consider the case where ∂Ω−
t ∩ ∂Ω = ∅. Then, assuming that ν̃ is continuous, it is clear

that ν̃|∂Ω−

t
= 0, which implies that eν̃ |∂Ω−

t
= 0. Thus,

∫

∂Ω−

t

ρeν̃~v · ~n ds = 0.
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Furthermore, using (2.6),

∫

Ω−

t

∂

∂t
(ρeν̃) dx =

∫

Ω−

t

[

− ∂

∂xj
(ρujeν̃) +

1

σ

∂

∂xj

(

η
∂eν̃
∂xj

)]

+

∫

Ω−

t

[

(cb2ρν̃ − η)

σ

∂ν̃

∂xj

∂ν̃

∂xj
+ ν̃(P −D)

]

Applying the divergence theorem and recalling that ν̃|∂Ω−

t
= 0 gives

dE−
ν̃

dt
=

∫

Ω−

t

[

(cb2ρν̃ − η)

σ

∂ν̃

∂xj

∂ν̃

∂xj
+ ν̃(P −D)

]

. (2.7)

If the right-hand side of (2.7) is negative or zero, then E−
ν̃ is a non-increasing function of

time. Thus, E−
ν̃ is bounded by its initial value, which provides a bound on the size of the

solution in regions where ν̃ < 0.

However, for the baseline model,
dE−

ν̃

dt can be positive. The contribution of the term

1
σ (cb2ρν̃ − η) ∂ν̃

∂xj
∂ν̃
∂xj

is positive whenever (cb2ρν̃ − η) is positive, which occurs for χ <

1/(cb2 − 1) ≈ −2.65. Furthermore, the contribution of the production term, given by

ν̃P = cb1S̃ρν̃
2,

is non-negative regardless of ν̃. Finally, the contribution of the destruction term is

−ν̃D = −cw1fw
ρν̃3

d2
.

The sign of this term is not entirely determined by ν̃ because the function fw changes sign

at r ≈ −1.18, and r depends on ν̃, S̃, and d. However, for r < −1.18, fw is positive, which,

for ν̃ < 0, implies that −ν̃D is positive.

To fix these problems, one can change the model when ν̃ < 0 to ensure that

(cb2ρν̃ − η) < 0, (2.8)

ν̃(P −D) < 0. (2.9)

To satisfy these properties, changes to the diffusion coefficient, η, as well as the produc-

tion, P , and destruction, D, terms have been made. These changes were suggested by

Allmaras [3].
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To satisfy (2.8) the diffusion coefficient is re-defined as

η =

{

µ (1 + χ) , χ ≥ 0

µ
(

1 + χ+ 1
2χ

2
)

, χ < 0.
(2.10)

The diffusion coefficient and the quantity cb2χ − η/µ are plotted in Figure 2-2. Clearly,

the modification ensures that the diffusion coefficient is always positive and cb2χ − η/µ is

always negative. Also, η is continuous and has continuous first derivatives.

The modified production is given by

P =

{

cb1S̃ρν̃, χ ≥ 0

cb1Sρν̃gn, χ < 0,
(2.11)

where

gn = 1 − 1000χ2

1 + χ2
.

The function gn is chosen such that P has continuous first derivatives at ν̃ = 0. This

choice implies that gn > 0, and thus ν̃P > 0, for some negative ν̃. However, gn < 0 for

χ < −
√

1/999 ≈ −0.032, which implies that ν̃P < 0 for χ < −0.032.

Finally, the modified destruction is given by

D =

{

cw1fw
ρν̃2

d2
, χ ≥ 0

−cw1
ρν̃2

d2
, χ < 0.

(2.12)

Clearly, D is negative for ν̃ < 0. Thus, −ν̃D < 0 for ν̃ < 0. Furthermore, D is continuous

and has continuous first derivatives.

2.2.3 Comparison of SA Model Versions

To demonstrate the effects of the modifications to the SA turbulence model on computed

flow solutions, an example case is solved using three versions of the model: the original

model as presented in [95], the baseline model presented in Section 2.2.1, and the modified

model presented in Section 2.2.2. For all the models, the non-negative form of µt, given

in (2.5), is used, as this modification was required to obtain converged solutions for the

original and baseline models.

The case is M∞ = 0.25, Rec = 1× 107 flow over a flat plate with zero pressure gradient.

This test case will be examined further in Chapters 3, 4, and 5. Here, the only interest

is the dependence of the solution on the modifications to the turbulence model. For each

model, the RANS-SA system is discretized using the standard weighting scheme, which is
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Figure 2-2: Comparison of baseline and modified SA model diffusion terms
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described in Section 2.3. All results shown were computed using p = 3 polynomials.

Figures 2-3 and 2-4 show the turbulence model working variable profiles computed on

coarse (234 elements) and fine (866 elements) meshes, respectively. Two stations are shown:

x/c = 0.5 and x/c = 1.0. The profiles are very similar except in the boundary layer edge
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Figure 2-3: Turbulence model working variable profiles for flow over a flat plate, computed
using three versions of the SA model on the coarse mesh

region. In this region, the original and baseline models are still very similar. However, while

all three models predict ν̃ < 0, the modified model gives negative ν̃ values with smaller

magnitude. Furthermore, the differences between the solutions from the two models are

smaller on the fine mesh. Thus, as the mesh is refined, the solutions from the models

appear to converge.
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Figure 2-4: Turbulence model working variable profiles for flow over a flat plate, computed
using three versions of the SA model on the fine mesh
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More importantly, the differences in the ν̃ solution have very little impact on the other

flow variables. Figure 2-5 shows the velocity profile at x/c = 0.5, computed on the coarse

mesh. The three models produce virtually the same profile. Figure 2-6 shows the skin fric-
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Figure 2-5: Velocity profiles for flow over a flat plate at Rex = 5 × 106, computed using
three versions of the SA model on the coarse mesh

tion distribution for all three models, also computed on the coarse mesh. The distributions

are practically indistinguishable. Furthermore, the drag computed using the three models

differs by only 0.02 percent. On the fine mesh, the spread of the drag is less than 5 × 10−5

percent.

Thus, as expected, the modifications to the turbulence model have little effect on the

converged solution. However, as desired, the negative ν̃ modifications tend to increase ν̃ in

regions where ν̃ < 0, leading to a more robust scheme.

2.3 Spatial Discretization

To simplify the notation for the discretization, rewrite the RANS equations as

∂u

∂t
+ ∇ · F(u) −∇ · (A(u)∇u) = S(u,∇u), (2.13)

where u = [ρ, ρui, ρE, ρν̃]
T is the conservative state vector, F is the inviscid flux, A∇u is

the viscous flux, and S is the source term.

Let Th be a triangulation of the domain Ω ⊂ R
n into non-overlapping elements κ. Define
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Figure 2-6: Skin friction distributions for flow over a flat plate, computed using three
versions of the SA model on the coarse mesh

the function space Vph by

Vph ≡ {v ∈ [L2(Ω)]r | v ◦ fκ ∈ [P p(κref )]
r, ∀κ ∈ Th},

where r is the length of the state vector, P p denotes the space of polynomials of order p,

and fκ denotes the mapping from the reference element to physical space for the element

κ, as illustrated in two dimensions by Figure 2-7.

κref

ξ2

ξ1

x2

κ

x1

fκ

Figure 2-7: Illustration of the map fκ from the reference element to the element κ in physical
space

Then, the spatially discrete problem is as follows: find uh(·, t) ∈ Vph such that

∑

κ∈Th

∫

κ
vTh

∂uh
∂t

+Rh(uh,vh) = 0, ∀vh ∈ Vph, (2.14)
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where

Rh(wh,vh) = Rh,I(wh,vh) +Rh,V (wh,vh) +Rh,S(wh,vh),

and Rh,I , Rh,V , and Rh,S denote the discretizations of the inviscid, viscous, and source

terms, respectively.

2.3.1 Inviscid Discretization

The discretization of the inviscid terms is given by

Rh,I(wh,vh) ≡ −
∑

κ∈Th

∫

κ
∇vTh · F(wh)

+

∫

Γi

(v+
h − v−

h )TH(w+
h ,w

−
h , ~n

+) +

∫

∂Ω
vThFb · ~n,

where (·)+ and (·)− denote trace values taken from opposite sides of a face, ~n+ is the normal

vector pointing from + to −, and H is a numerical flux function for interior faces. In this

work, H is the Roe flux [93]. The inviscid boundary flux, Fb, is computed by evaluating

the flux at a boundary state, ub, which, in general, depends on both the interior state and

the boundary conditions. The boundary condition specification is discussed in more detail

in Appendix E.

2.3.2 Viscous Discretization

The viscous terms are discretized using the second method of Bassi and Rebay [15, 16]. To

write the discretization in a compact form, the jump, J·K, and average, {·}, operators are

used. For interior faces, let

{s} =
1

2
(s+ + s−), {~v} =

1

2
(~v+ + ~v−),

JsK = (s+~n+ + s−~n−), J~vK = (~v+ · ~n+ + ~v− · ~n−),

where s is a scalar and ~v is a vector. Then, the viscous discretization is given by

Rh,V (wh,vh) ≡
∑

κ∈Th

∫

κ
∇vTh · (A(wh)∇wh)

−
∫

Γi

[

JwhK
T · {AT (wh)∇vh} − JvhK

T · ({A(wh)∇wh} + ηf{~rf (wh)})
]

−
∫

∂Ω

[

(w+
h − ub)T (AT (ub)∇v+

h ) · ~n+ + vTh

(

Fb
v − ηf~r

b
f (wh)

)

· ~n
]

,
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where Fb
v denotes the viscous boundary flux function, ~rf and ~rbf are auxiliary variables,

and ηf is a stabilization parameter. The stabilization parameter is set to ηf = 6 for all

cases shown in this work. Given that ηf > 3 implies stability of the BR2 discretization for

triangular meshes (ηf > 4 for quadrilateral meshes), this value is somewhat conservative.

The auxiliary variables are defined by the following auxiliary problems: for each face, σf ,

find ~rf ∈ [Vph]n such that

∑

κ∈Th

∫

κ
~τ Th ·~rf (wh) =

∫

σf

JwhK
T · {AT (wh)~τ h}, ∀~τh ∈ [Vph]n,

for interior faces, and find ~rbf ∈ [Vph]n

∑

κ∈Th

∫

κ
~τTh ·~rbf (wh) =

∫

σf

(w+
h − ub)T (AT (ub)~τ+

h ) · ~n+, ∀~τh ∈ [Vph]n,

for boundary faces.

2.3.3 Source Discretization

Three options for the discretization of the source terms are considered. The first option is

referred to as the standard weighting approach. In this approach, the source term is simply

multiplied by the test function and integrated over the domain. Thus,

Rh,S,SW (wh,vh) ≡ −
∑

κ∈Th

∫

κ
vThS(wh,∇wh). (2.15)

The second approach is a modification of the standard weighting approach that ensures

the source term discretization is dual consistent. The dual consistent discretization is given

by

Rh,S,DC(wh,vh) ≡ −
∑

κ∈Th

∫

κ
vThS(wh,∇wh)

+

∫

Γi

JwhK
T · {~β(wh,∇wh,vh)} +

∫

∂Ω
(ub − w+

h )~βb(wh,∇wh,vh) · ~n.

The requirements on the “dual fluxes” ~β and ~βb will be specified in Chapter 3, where a full

derivation and analysis of this discretization are given.

The third approach is based on mixed formulations—e.g. BR2 [15, 16] and LDG [29,

31]—where an auxiliary state variable is solved for the gradient of the state. Specifically,
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the discretization is given by

Rh,S,MF (wh,vh) ≡ −
∑

κ∈Th

∫

κ
vThS(wh, ~qh). (2.16)

where ~qh ∈
[

Vph
]n

satisfies

∑

κ∈Th

∫

κ
~τ h · ~qh = −

∑

κ∈Th

∫

κ
wh∇ · ~τ h +

∫

Γi

(JûK · {~τ h} + {û}J~τ hK)

+

∫

∂Ω
ub~τ h · ~n, ∀~τh ∈

[

Vph
]n
, (2.17)

and û = û(w+
h ,w

−
h ) is a numerical flux function. In this work, û(w+

h ,w
−
h ) = {wh} is used.

However, other valid choices are available. See Chapter 3 for a complete analysis.

The additional state variable ~qh can be eliminated by rewriting it in terms of ∇wh and

lifting operators. Begin by integrating by parts on (2.17):

∑

κ∈Th

∫

κ
~τ h · ~qh =

∑

κ∈Th

∫

κ
~τ h · ∇wh +

∫

Γi

Jû− whK · {~τ h} +

∫

Γi

{û − wh}J~τ hK

+

∫

∂Ω
(ub − wh)~τ h · ~n, ∀~τh ∈

[

Vph
]n
. (2.18)

Define the lifting operators ~rh and ~ℓh (see e.g. [7]) by the following problems: find ~rh(wh) ∈
[Vph]n and ~ℓh(wh) ∈ [Vph]n such that

∑

κ∈Th

∫

κ
~τh ·~rh(wh) = −

∫

Γi

Jû− whK · {~τ h} −
∫

∂Ω
(ub − wh)~τ h · ~n, ∀~τh ∈

[

Vph
]n
, (2.19)

∑

κ∈Th

∫

κ

~τh ·~ℓh(wh) = −
∫

Γi

{û − wh}J~τ hK, ∀~τh ∈
[

Vph
]n
. (2.20)

Then, using (2.18) gives

~qh = ∇wh −~rh(wh) −~ℓh(wh). (2.21)

Thus, substituting (2.21) into (2.16), the discretization can be written as

Rh,S,MF (wh,vh) ≡ −
∑

κ∈Th

∫

κ
vThS(wh,∇wh −~rh(wh) −~ℓh(wh)).

2.4 Temporal Discretization

The spatially discrete problem (2.14) can be written as a system of ODEs. In particular,

let {vi} for i = 1, . . . , N be a basis of the space Vph. Then, for all wh ∈ Vph, there exists a
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vector W ∈ R
N such that

wh(x) =
N
∑

i=1

Wivi(x).

Thus, the spatially discrete problem can be written as the following initial value problem:

given U(0), find U(t) such that

MdU

dt
+R(U) = 0, (2.22)

where R is the spatial residual vector,

Ri(W ) = Rh(wh,vi),

and M is the mass matrix,

Mij =
∑

κ∈Th

∫

κ
vTi vj .

To fully discretize the problem, any number of standard ODE integration techniques can

be applied. The interest of this work is steady problems. Thus, the temporal discretization

will be used to march the solution in time to a steady state. In this case, temporal accuracy is

not a primary concern. Thus, the temporal discretization need not be higher-order accurate.

However, to avoid time step restrictions, an implicit method is used. In particular, the

backward Euler method is applied. Thus, one time step of the fully discrete problem is as

follows: given Um ∈ R
N , find Um+1 ∈ R

N such that

1

∆t
M
(

Um+1 − Um
)

+R(Um+1) = 0, (2.23)

where m is the iteration number and ∆t is the current time step length. The current time

step is set based on an input CFL number. In particular, for each element, define

∆tκ = CFL
hκ
λκ
,

where hκ is a measure of the element grid spacing and λκ is the maximum convective wave

speed over the element. Then,

∆t = min
κ∈Th

∆tκ.

At each successful iteration, the CFL number is increased by a user specified factor, and a

new time step is computed.
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2.5 Solution Technique

At each time step, the discrete, nonlinear problem (2.23) can be solved using Newton’s

method. For a solution tolerance of ǫ, the algorithm is composed of the following steps:

1. Set k = 0, V k = Um.

2. While ‖ 1
∆tM

(

V k − Um
)

+R(V k)‖ > ǫ,

V k+1 = V k −
(

1

∆t
M +

∂R

∂U

∣

∣

∣

∣

V k

)−1( 1

∆t
M
(

V k − Um
)

+R(V k)

)

,

k = k + 1.

3. Set Um+1 = V k.

Clearly, this algorithm requires the solution of the linear system

(

1

∆t
M +

∂R

∂U

∣

∣

∣

∣

V k

)

(

V k+1 − V k
)

= −
(

1

∆t
M
(

V k − Um
)

+R(V k)

)

.

This system is inverted using the GMRES algorithm with element-block ILU0 or multigrid

preconditioning with line reordering. See [35, 34] for the details of this procedure.

As noted in Section 2.4, steady problems are the primary interest of this work. Thus,

given that temporal accuracy is not crucial, the nonlinear system (2.23) is generally not

fully solved at each time step. Instead, only one sub-iteration is taken. In this case, Um+1

is given by

Um+1 = Um −
(

1

∆t
M +

∂R

∂U

∣

∣

∣

∣

Um

)−1

R(Um).

Note that this statement is not true when the unsteady adaptation algorithm is used. For

more details, see Chapter 6.

In either case, the solution is marched forward in time until ‖R(Um)‖ is less that the

desired tolerance.
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Chapter 3

Dual Consistency Analysis

The focus of this chapter is the impact of dual consistency on discretizations of source

terms depending on the gradient of the state, like those seen in the SA turbulence model

in Chapter 2. Dual consistency provides a connection between the continuous and discrete

dual problems. This concept is made rigorous in Section 3.1, which gives a review of dual

consistency and its importance. Section 3.2 analyzes the dual consistency of the source term

discretizations shown in Chapter 2. The results of the analysis are confirmed by numerical

experiments on a model problem, shown in Section 3.3. Section 3.4 shows results for the

RANS-SA system.

3.1 Review of Dual Consistency

3.1.1 Definition

Consider the following primal problem: compute J (u), where J : V → R is a functional of

interest, V is an appropriate function space, and u ∈ V solves

R(u, v) = 0, ∀v ∈ V,

where R : V × V → R is the weak form of a PDE of interest. For simplicity, it is assumed

that both the primal and dual problems are well-posed.

Let Wp
h ≡ Vph + V, where

Vph + V ≡ {h = f + g | f ∈ Vph, g ∈ V}.

Then, consider a general DG discretization of the primal problem: find uh ∈ Vph such
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that

Rh(uh, vh) = 0, ∀vh ∈ Vph,

where Rh : Wp
h ×Wp

h → R is a semi-linear form derived from the weak form of the primal

problem. It is assumed that this discrete problem is also well-posed.

Let Jh : Wp
h → R be the discrete version of the functional of interest. Then, the discrete

dual problem is given by the following statement: find ψh ∈ Vph such that

R′
h[uh](vh, ψh) = J ′

h[uh](vh), ∀vh ∈ Vph.

Here, R′
h[uh](·, ψh) : Wp

h → R is the linear functional given by evaluating the Frechét

derivative of the functional Nψh : Wp
h → R at uh, where, for fixed ψh ∈ Wp

h,

Nψh(wh) = Rh(wh, ψh), ∀wh ∈ Wp
h.

Similarly, J ′
h[uh](·) : Wp

h → R is the linear functional given by evaluating the Frechét

derivative of Jh at uh.

Dual consistency has been used in the analysis of DG methods by multiple authors. For

example, [51, 50, 7] define dual consistency for linear problems. A general definition of dual

consistency for nonlinear problems is provided by both Lu [72] and Hartmann [53]. Lu also

defines asymptotic dual consistency for general nonlinear problems. The definitions used

here follow [72].

Definition 1. The discretization defined by the semi-linear form, Rh, and functional, Jh,
is said to be dual consistent if, given exact solutions u ∈ V and ψ ∈ V of the continuous

primal and dual problems, respectively,

R′
h[u](v, ψ) = J ′

h[u](v), ∀v ∈ Wp
h.

Definition 2. The discretization defined by the semi-linear form, Rh, and functional, Jh,
is said to be asymptotically dual consistent if, given exact solutions u ∈ V and ψ ∈ V of

the continuous primal and dual problems, respectively,

lim
h→0



 sup
v∈Wp

h
,‖v‖

W
p
h
=1

|R′
h[u](v, ψ) − J ′

h[u](v)|



 = 0.

Clearly, all dual consistent discretizations are automatically asymptotically dual consis-

tent. In this work, a discretization will be referred to as asymptotically dual consistent only

if it is not also dual consistent.
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3.1.2 Importance

For many types of discretization, algorithms involving the dual problem have become pop-

ular for design optimization, error estimation, and grid adaptation [62, 77, 36, 44, 18, 103].

It is well known that dual consistency can significantly impact the performance of these

algorithms. For example, Collis and Heinkenschloss [33] showed that when applying a dual

inconsistent SUPG method for linear advection-diffusion to an optimal control problem,

superior results are obtained using a direct discretization of the continuous dual problem

as opposed to the discrete dual problem derived from the primal discretization. Specifi-

cally, both the control function and the adjoint solution converge at a higher rate when the

continuous dual problem is discretized directly.

For DG discretizations, Harriman et al. [51, 50] examined symmetric and non-symmetric

interior penalty—SIPG and NIPG, respectively—DG methods for the solution of Poisson’s

equation. They showed that to achieve optimal convergence rates for a linear functional out-

put, the dual consistent method, i.e. SIPG, must be used. Lu [72] considered the impact of

dual consistency on the accuracy of functional outputs computed using DG discretizations

of the Euler and Navier-Stokes equations. He demonstrated the importance of implementing

the boundary conditions on the primal problem in a dual consistent manner. In particular,

when using dual consistent boundary conditions, super-convergent functional output results

are obtained, while, when using a dual inconsistent boundary condition treatment, signifi-

cant degradation of the output convergence rates is observed. More recently, Hartmann [53]

has developed a framework for analyzing the dual consistency of DG discretizations. He

uses the framework to analyze DG discretizations of many equations, including the com-

pressible Euler and Navier-Stokes equations. For example, applying the framework to the

SIPG discretization of the Navier-Stokes equations, a modification of the original SIPG

method to make the boundary conditions dual consistent is derived. Similar to the results

shown by Lu, Hartmann’s modification of the SIPG scheme produces superior results to the

original, dual inconsistent boundary condition treatment.

In addition, it is well known that dual consistency can impact the convergence of the

error in the primal solution [7]. For example, for many DG discretizations of Poisson’s

equation, standard proofs of order of accuracy of the solution error in the L2 norm exist.

Typically these proofs rely on the Aubin-Nitsche “duality trick” [96, 88] to obtain an optimal

estimate in the L2 norm given an optimal estimate in the energy norm [20, 7]. The use of this

duality argument requires that the scheme be dual consistent. Thus, some dual inconsistent

methods—e.g. NIPG and the Baumann-Oden method—do not achieve optimal accuracy

in the L2 norm, and dual inconsistent methods that do achieve optimal accuracy in the L2

49



norm are typically super-penalized [7].

3.2 Analysis of DG Discretizations of Source Terms

This section considers DG discretizations of source terms depending on the state and first

derivatives of the state. For simplicity of notation, the analysis will be done on a scalar

model problem. Despite this simplification, the results easily generalize to the RANS-SA

case.

Let u ∈ V ≡ H1(Ω) be the solution of the following scalar problem:

−∇ · (ν∇u) = f(u,∇u) for x ∈ Ω ⊂ R
n (3.1)

u = 0 for x ∈ ∂Ω,

where ν is constant and f ∈ C1(Rn+1) is the source term of interest. As before, it is assumed

that this problem and its dual are well-posed.

Let J : V → R be a functional of interest defined as

J (w) =

∫

Ω
J(w), (3.2)

where J ∈ C(R). For simplicity, the functional output analyzed here does not include

boundary integrals. The inclusion of boundary integrals would slightly alter the boundary

conditions on the dual problem and the analysis of the boundary terms. However, these

modifications are not central to the analysis of the source term discretization. For an

analysis of dual consistency for equations without source terms that includes functionals

with boundary integrals, see [72].

For the output defined in (3.2), the dual PDE is given by

−∇ · (ν∇ψ) −D1f(u,∇u)ψ + ∇ · (D∇uf(u,∇u)ψ) = J ′[u] for x ∈ Ω, (3.3)

where ψ is the adjoint state, D1f(u,∇u) is the partial derivative of f with respect to u

evaluated at (u,∇u) and

D∇uf(u,∇u) = [D2f(u,∇u), . . . ,Dn+1f(u,∇u)]T

where Dif(u,∇u) is the partial derivative of f with respect to ∂u
∂xi−1

for 2 ≤ i ≤ n + 1,

evaluated at (u,∇u). The boundary conditions on the dual problem can be written in the
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following weak form:

−
∫

∂Ω
ψq = 0, ∀q ∈ H−1/2(∂Ω).

The analysis in Sections 3.2.1 and 3.2.2 considers whether the discrete dual problems

for the source discretizations defined in Section 2.3.3 are consistent with (3.3) and the

associated boundary conditions.

3.2.1 The Standard Weighting and Dual Consistent Methods

As will be shown, the simple approach of weighting by a test function and integrating leads

to a dual inconsistent scheme. However, a dual consistent discretization can be constructed

by adding terms to the discretization.

Consider the following DG discretization: find uh ∈ Vph such that

Rh(uh, vh) ≡ Bh(uh, vh) −
∑

κ∈Th

∫

κ
vhf(uh,∇uh) = 0, ∀vh ∈ Vph, (3.4)

where Bh is a consistent and dual consistent bilinear form for the diffusion operator (e.g.

BR2 [15] or LDG [29, 31]). Clearly, the source term discretization in (3.4) is equivalent to

that given for the RANS-SA case in (2.15). Furthermore, define the discrete functional of

interest, Jh : Wp
h → R, as

Jh(wh) =
∑

κ∈Th

∫

κ
J(wh). (3.5)

In the following dual consistency analysis, additional smoothness is assumed for the exact

primal and dual solutions, u and ψ. In particular, it is assumed that u, ψ ∈ H2(Ω). This

smoothness assumption is common in the analysis of dual consistency for discretizations of

second-order operators [7, 72].

Proposition 1. The discretization defined by the semi-linear form Rh, defined in (3.4),

together with the discrete functional Jh, defined in (3.5), is dual inconsistent.

Proof. Linearizing Rh about the exact solution and integrating by parts gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ
wh(D1f(u,∇u)vh −∇ · (D∇uf(u,∇u)vh))

−
∫

Γi

(JwhK · {D∇uf(u,∇u)vh} + {wh}JD∇uf(u,∇u)vhK)

−
∫

∂Ω
wh(D∇uf(u,∇u)vh) · ~n.

The assumptions ψ ∈ H2(Ω), u ∈ H2(Ω), and f ∈ C1(Rn+1), imply that {D∇uf(u,∇u)ψ} =
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D∇uf(u,∇u)ψ and JD∇uf(u,∇u)ψK = 0. Thus,

R′
h[u](vh, ψ) = Bh(vh, ψ) −

∑

κ∈Th

∫

κ
vh(D1f(u,∇u)ψ −∇ · (D∇uf(u,∇u)ψ))

−
∫

Γi

JvhK · (D∇uf(u,∇u)ψ) −
∫

∂Ω
vh(D∇uf(u,∇u)ψ) · ~n.

Evaluating the dual consistency using the discrete functional as defined in (3.5) gives

R′
h[u](vh, ψ) − J ′

h[u](vh) = (Lh,I(u, ψ))(vh) + (Lh,B(u, ψ))(vh),

where

(Lh,I(u, ψ))(vh) ≡ −
∫

Γi

JvhK · (D∇uf(u,∇u)ψ), (3.6)

(Lh,B(u, ψ))(vh) ≡ −
∫

∂Ω
vh(D∇uf(u,∇u)ψ) · ~n. (3.7)

In general, there exists vh ∈ Vph such that at least (Lh,I(u, ψ))(vh) does not vanish. Thus,

the scheme is dual inconsistent. Due to the boundary condition on the dual problem,

the boundary term, (Lh,B(u, ψ))(vh), will vanish if (D∇uf(u,∇u)vh · ~n)|∂Ω ∈ H−1/2(∂Ω).

However, if this condition does not hold, the boundary term will also contribute to the dual

inconsistency.

Remark 1. It is possible to construct a dual consistent discretization by adding terms to

the semi-linear form Rh. In particular, define a new bilinear form,

Rh,DC(wh, vh) ≡ Rh(wh, vh) +Ah,I(wh, vh) +Ah,B(wh, vh),

where Ah,I will serve to eliminate the interior face dual inconsistency term, LI , and Ah,B

will serve to eliminate the boundary face dual inconsistency, LB. Furthermore, to maintain

consistency, Ah,I and Ah,B must vanish when evaluated at u:

Ah,I(u, vh) = 0, ∀vh ∈ Vph,

Ah,B(u, vh) = 0, ∀vh ∈ Vph.

The interior face and boundary face contributions to the dual inconsistency are examined

separately. To eliminate the dual inconsistency from the interior faces, the following term
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is added to the semi-linear form Rh:

Ah,I(wh, vh) =

∫

Γi

JwhK · {~βi(wh, vh)},

where dual consistency requires that {~βi(u, ψ)} = D∇uf(u,∇u)ψ.

To eliminate the boundary dual inconsistency, the following term is added to Rh:

Ah,B(wh, vh) =

∫

∂Ω
wh ~βb(wh, vh) · ~n,

where dual consistency requires ~βb(u, ψ) = D∇uf(u,∇u)ψ.

Proposition 2. Let Bh be a dual consistent bilinear form corresponding to the diffusion

operator. Let ~βi be such that ~βi(w, v) = D∇uf(w,∇w)v for all w, v ∈ H2(Ω). Let ~βb be such

that ~βb(w, v) = D∇uf(w,∇w)v for all w, v ∈ H2(Ω). Then, the semi-linear form given by

Rh,DC(wh, vh) = Bh(wh, vh) −
∑

κ∈Th

∫

κ
vhf(wh,∇wh)

+

∫

Γi

JwhK · {~βi(wh, vh)} +

∫

∂Ω
wh ~βb(wh, vh) · ~n,

together with the discrete functional Jh, defined in (3.5), is dual consistent.

Proof. Linearizing Rh,DC gives

R′
h,DC [u](vh, ψ) = R′

h[u](vh, ψ) +

∫

Γi

JvhK · (D∇uf(u,∇u)ψ)

+

∫

∂Ω
vh(D∇uf(u,∇u)ψ) · ~n, ∀vh ∈ Wp

h.

Thus,

R′
h,DC [u](vh, ψ) − Jh[u](vh) = 0, ∀vh ∈ Wp

h.

Remark 2. The choices of ~βi and ~βb are not fully determined by requiring dual consistency.

One valid choice is given by

~βi(wh, vh) = {D∇uf(wh,∇wh)vh}; ~βb(wh, vh) = D∇uf(wh,∇wh)vh.
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Then,

Rh,DC(wh, vh) = Bh(wh, vh) −
∑

κ∈Th

∫

κ
vhf

+

∫

Γi

JwhK · {D∇uf(wh,∇wh)vh} +

∫

∂Ω
wh(D∇uf(wh,∇wh)vh) · ~n. (3.8)

However, if necessary, one can construct more complex functions that satisfy the dual

consistency requirement as well as add stability to the discretization. For example, given

that the dual problem is a convection-diffusion-reaction problem, one option to add stability

is to construct a dual flux that results in an upwind discretization of convective term of the

dual problem.

Remark 3. In addition to being dual consistent, if Bh is a consistent bilinear form for the

diffusion operator, the discretization given in Proposition 2 is consistent for any choice of

~βi and ~βb because, for the exact solution u, JuK = 0 and u|∂Ω = 0. Thus,

Rh,DC(u, vh) = Bh(u, vh) −
∑

κ∈Th

∫

κ
vhf(u,∇u) = 0, ∀vh ∈ Vph.

3.2.2 The Mixed Formulation

The mixed formulation discretization of the model problem is as follows: find uh ∈ Vph such

that

Bh(uh, vh) −
∑

κ∈Th

∫

κ
vhf(uh,∇uh − ~rh(uh) − ~ℓh(uh)) = 0, ∀vh ∈ Vph, (3.9)

where ~rh and ~ℓh are lifting operators analogous to those defined in Section 2.3.3. In par-

ticular, they are defined by the following problems: find ~rh(uh) ∈ [Vph]n and ~ℓ(uh) ∈ [Vph]n

such that

∑

κ∈Th

∫

κ
~τh · ~rh(uh) = −

∫

Γi

Jû(uh) − uhK · {~τh}

−
∫

∂Ω
(ub(uh) − uh)~τh · ~n, ∀~τh ∈

[

Vph
]n
, (3.10)

∑

κ∈Th

∫

κ
~τh · ~ℓh(uh) = −

∫

Γi

{û(uh) − uh}J~τhK, ∀~τh ∈
[

Vph
]n
. (3.11)

To complete the scheme, one must define the numerical flux functions û and ub. For the

remainder of the chapter, it is assumed that these fluxes have the following properties:
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1. for each interior edge, e, there exists a constant vector ~de such that

û(wh) = {wh} + ~de · JwhK,

2. ub = 0.

Remark 4. While the assumptions on the numerical fluxes may seem restrictive, to the best

of the author’s knowledge, all existing mixed formulations that are consistent use fluxes sat-

isfying these assumptions for problems with homogeneous Dirichlet boundary conditions [7].

The dual consistency of this discretization is considered in two parts. First, a restrictive

condition is assumed which implies that the scheme is dual consistent. Then, the proof is

extended to the general case, where only asymptotic dual consistency can be shown.

Proposition 3. Let D∇uf(u,∇u)ψ ∈ [Vph]n. Then, the DG formulation defined in (3.9)

together with the functional Jh defined in (3.5) forms a dual consistent discretization.

Proof. Noting that the lifting operators ~rh and ~ℓh are linear functionals and that ~rh(u) =

~ℓh(u) = 0, linearizing Rh about the exact solution gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ
vhD1f(u,∇u)wh

−
∑

κ∈Th

∫

κ
vhD∇uf(u,∇u) · (∇wh − ~rh(wh) − ~ℓh(wh)).

Thus, integrating by parts gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ
wh (D1f(u,∇u)vh −∇ · (D∇uf(u,∇u)vh))

−
∫

Γi

(JwhK · {D∇uf(u,∇u)vh} + {wh}JD∇uf(u,∇u)vhK)

−
∫

∂Ω
wh(D∇uf(u,∇u)vh) · ~n

+
∑

κ∈Th

∫

κ
vhD∇uf(u,∇u) · (~rh(wh) + ~ℓh(wh)). (3.12)

Using the assumptions on û and ub combined with the hypothesis that D∇uf(u,∇u)ψ ∈
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[Vph]n,

∑

κ∈Th

∫

κ
(D∇uf(u,∇u)ψ) · ~rh(wh) =

∫

Γi

JwhK · {D∇uf(u,∇u)ψ}

+

∫

∂Ω
wh(D∇uf(u,∇u)ψ) · ~n, (3.13)

∑

κ∈Th

∫

κ
(D∇uf(u,∇u)ψ) · ~ℓh(wh) = −

∫

Γi

(~de · JwhK)JD∇uf(u,∇u)ψK. (3.14)

Substituting (3.13) and (3.14) into (3.12) gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ
wh (D1f(u,∇u)vh −∇ · (D∇uf(u,∇u)vh))

−
∫

Γi

(û(wh)JD∇uf(u,∇u)vhK) .

Furthermore, by the assumptions on the smoothness of u, ψ, and f , JD∇uf(u,∇u)ψK = 0.

Thus,

R′
h[u](vh, ψ) = Bh(vh, ψ) −

∑

κ∈Th

∫

κ
vh (D1f(u,∇u)ψ −∇ · (D∇uf(u,∇u)ψ)) .

Finally,

R′
h[u](vh, ψ) − J ′

h[u](vh) = 0, ∀vh ∈ Wp
h,

which implies that the scheme is dual consistent.

Of course, in general, the assumption of D∇uf(u,∇u)ψ ∈ [Vph]n is not realistic. For

D∇uf(u,∇u)ψ 6∈ [Vph]n, Proposition 3 does not hold. In this case, the mixed formulation is

only asymptotically dual consistent.

Proposition 4. If D∇uf(u,∇u)ψ ∈ [Hk+1(Ω)]n, where 1 ≤ k ≤ p, then the DG discretiza-

tion defined in (3.9) together with the functional Jh defined in (3.5) forms an asymptotically

dual consistent discretization.

To simplify the proof, some preliminary notation and lemmas are required. In particular,

let Eh denote the set of all faces in the triangulation Th. Define the jump operator, J·K, on

boundary faces by JsK = s~n for scalar quantities and J~vK = ~v ·~n for vector quantities. Define

the average operator, {·}, on boundary faces by {~v} = ~v.

For the following lemmas, it is assumed that Wp
h = (Vph + H2(Ω)) ∩ H1

0 (Ω). Further-

more, it is assumed that the set of triangulations, [Th]h>0, is quasi-uniform (see [38, 88] for
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definition).

Lemma 1. There exists a norm, ||| · |||∗ : Wp
h → R, and a constant, c, such that

h−1/2
∑

e∈Eh

‖JvK‖0,e ≤
∑

e∈Eh

h−1/2
κe ‖JvK‖0,e ≤ c|||v|||∗, ∀v ∈ Wp

h,

where κe is such that e ⊂ ∂κe, h = maxκ∈Th hκ, and hκ = supx,y∈κ |x− y|.

Proof. An example of such a norm is used by Arnold et al. [7]. In particular,

|||v|||2∗ ≡
∑

κ∈Th

(|v|21,κ + h2
κ|v|22,κ) +

∑

e∈Eh

‖re(JvK)‖2
0,Ω,

where
∫

Ω
re(JvK) · ~τ = −

∫

e
JvK · {~τ} ∀~τ ∈ [Vph]n.

For the proof of the lemma for this norm, see [7], Section 4.1, or [20], Lemma 2. Note that

only the existence of such a norm, not its particular form, is important here.

Lemma 2. For a face, e ∈ Eh, such that e ⊂ ∂κ, there exists a constant, c, such that, for

all v ∈ H1(κ) and w ∈ L2(e),

∫

e
|vw| ≤ ch−1/2

κ (‖v‖0,κ + hκ|v|1,κ)‖w‖0,e.

Proof. Apply the Cauchy-Schwarz inequality, and then use

‖v‖0,e ≤ ch−1/2
κ (‖v‖0,κ + hκ|v|1,κ), ∀v ∈ H1(κ),

which is a standard trace theorem [7].

Lemma 3. For all w ∈ Hk+1(Ω), where 1 ≤ k ≤ p, there exists a constant, c, such that





∑

κ∈Th

‖w − Πp
h(w)‖2

1,κ





1/2

≤ chk|w|k+1,Ω,

where Πp
h : L2(Ω) → Vph is the L2(Ω)-orthogonal projection onto Vph.

Proof. If Πp
κ : L2(κ) → P p is the L2(κ)-orthogonal projection onto P p, then

Πp
h(v)|κ = Πp

κ(v|κ), ∀v ∈ L2(Ω).
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To complete the proof, apply Proposition 1.134(iii) from [38] to each element κ and sum

over the elements.

Proof (Proposition 4). Define ~π ∈ [Vph]n by

πj = Πp
h((D∇uf(u,∇u)ψ)j), for j = 1, . . . , n.

Furthermore, define ~ǫ ∈ [L2(Ω)]n by

ǫj = (D∇uf(u,∇u)ψ)j − πj, for j = 1, . . . , n.

By assumption, D∇uf(u,∇u)ψ ∈ [H1(Ω)]n. Thus, ~ǫ|κ ∈ [H1(κ)]n, for all κ ∈ Th. From the

proof of Proposition 3, it is clear that

Eh(vh) ≡ R′
h[u](vh, ψ) − J ′

h[u](vh) =
∑

κ∈Th

∫

κ
(D∇uf(u,∇u)ψ) ·

(

~rh(vh) + ~ℓh(vh)
)

−
∫

Γ
JvhK · (D∇uf(u,∇u)ψ), ∀vh ∈ Wp

h,

where Γ ≡ Γi ∪ ∂Ω. Thus,

Eh(vh) =
∑

κ∈Th

∫

κ
(~π + ~ǫ) ·

(

~rh(vh) + ~ℓh(vh)
)

(3.15)

−
∫

Γ
JvhK · (~π + ~ǫ), ∀vh ∈ Wp

h.

From (2.19), (2.20), and the assumptions on û and ub,

∑

κ∈Th

∫

κ
~π · ~rh(vh) =

∫

Γ
JvhK · {~π}, (3.16)

∑

κ∈Th

∫

κ
~π · ~ℓh(vh) = −

∫

Γi

(~de · JvhK)J~πK. (3.17)

Substituting (3.16) and (3.17) into (3.15) gives

Eh(vh) =
∑

κ∈Th

∫

κ
~ǫ · (~rh(vh) + ~ℓh(vh)) −

∫

Γ
JvhK · {~ǫ} −

∫

Γi

(~de · JvhK)J~πK.

By the definition of ~ǫ,
∑

κ∈Th

∫

κ
~ǫ · ~zh = 0, ∀~zh ∈ [Vph]n.
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Furthermore, since JD∇uf(u,∇u)ψK = 0, it is clear that J~πK = −J~ǫK. Thus,

Eh(vh) = −
∫

Γ
JvhK · {~ǫ} +

∫

Γi

(~de · JvhK)J~ǫK.

Then, using the assumption on û, Eh(vh) can be rewritten as

Eh(vh) = −
∫

∂Ω
vh~ǫ · ~n−

∫

Γi

JvhK ·
[(

1

2
− ~de · ~n+

)

~ǫ+ +

(

1

2
+ ~de · ~n+

)

~ǫ−
]

,

where (·)+ and (·)− refer to trace values taken from opposite sides of an interior face, and

~n+ is the outward pointing unit normal for κ+.

Applying Lemma 2 to each edge in the triangulation, one can show that

|Eh(vh)| ≤
∑

e∈Eh

n
∑

j=1

[

ceh
−1/2
κe (‖ǫj‖0,κe + hκe |ǫj|1,κe) ‖JvhK‖0,e

]

.

Thus,

|Eh(vh)| ≤
∑

e∈Eh

n
∑

j=1

[

ceh
−1/2
κe

(

‖ǫj‖2
1,κe

)1/2 ‖JvhK‖0,e

]

,

≤
∑

e∈Eh

n
∑

j=1






ceh

−1/2
κe





∑

κ∈Th

‖ǫj‖2
1,κ





1/2

‖JvhK‖0,e






,

≤ C
n
∑

j=1











∑

κ∈Th

‖ǫj‖2
1,κ





1/2





×





∑

e∈Eh

h−1/2
κe ‖JvhK‖0,e



 .

Finally, applying Lemmas 1 and 3 gives

|Eh(vh)| ≤ C|||vh|||∗hk
n
∑

j=1

|(D∇uf(u,∇u)ψ)j |k+1,Ω.

Thus, as h→ 0, |Eh(vh)| → 0 for all vh ∈ Wp
h, which implies that the scheme is asymptoti-

cally dual consistent.

3.3 Model Problem Results

As a demonstration of the effects of dual consistency, a simple test problem based on a

nonlinear ODE is considered. The effect of dual consistency on the convergence rates of the

solution and adjoint solution errors as well as a simple functional output is demonstrated.
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Consider the following ODE:

−((ν + u)ux)x − cuxux = g for x ∈ (0, 1),

u(0) = u(1) = 0,

where ν = 1 and c = 1
2 . Setting

g(x) = π2((ν + sin(πx)) sin(πx) − (1 + c) cos2(πx)),

it is easy to show that the exact solution is given by

u(x) = sin(πx).

This nonlinear problem has been solved using three discretizations: the standard weight-

ing method as shown in (3.4), a dual consistent method with a penalty term as shown in

(3.8), and an asymptotically dual consistent mixed method with û = {u}. In all cases, the

BR2 scheme is used to discretize the nonlinear diffusion operator.

Figure 3-1 shows the error in the primal solution versus grid refinement. The error is

measured in a broken H1 norm defined by

‖v‖2
H1(Ω;Th) =

∑

κ∈Th

∫

κ
(v2 + v2

x).

In this norm, all three schemes produce essentially the same error in the primal solution.

However, as shown in Figure 3-2, the dual consistent and asymptotically dual consistent

schemes produce superior results when the error is measured in the L2 norm. In particular,

for the dual inconsistent discretization, the L2 norm of the error is proportional to hp

for even p and proportional to hp+1 for odd p. It is not clear why the even and odd p

results show different asymptotic rates, but similar results have been observed for other

dual inconsistent discretizations [51].

Alternatively, the dual consistent and asymptotically dual consistent discretizations give

O(hp+1) for all p tested. Furthermore, it is interesting to note that the asymptotically

dual consistent method produces essentially exactly the same results as the dual consistent

discretization. This fact shows that, for the asymptotically dual consistent scheme, the

contribution of the dual inconsistency error to the total error is sufficiently high-order that

it does not degrade the asymptotic rate convergence rate of the L2 error. This result is not

surprising given the form of the dual consistency error derived in Section 3.2.2.
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(c) Mixed formulation

Figure 3-1: Primal error in the broken H1 norm for the scalar model problem
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(c) Mixed formulation

Figure 3-2: Primal error in the L2 norm for the scalar model problem
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Let the output of interest be

J (u) =
1

2

∫ 1

0
(w − u)2,

where w(x) = 2 sin(πx). Then, examining the adjoint solution error, one can see that the

dual consistent and asymptotically dual consistent schemes are superior for computing the

adjoint. Figure 3-3 shows the adjoint error in the broken H1 norm. The adjoint error
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(c) Mixed formulation

Figure 3-3: Adjoint error in the broken H1 norm for the scalar model problem

is computed relative to a 40th order solution of a Galerkin spectral discretization of the

dual problem. When using the dual inconsistent discretization, the broken H1 norm of the

adjoint error does not converge to zero with grid refinement. For the dual consistent and
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asymptotically dual consistent schemes, this error converges at O(hp). Similarly, Figure 3-

4 shows that the L2 norm of the adjoint error converges at O(h) when using the dual

inconsistent scheme, regardless of p, while, for the dual consistent and asymptotically dual

consistent schemes, this error converges at O(hp+1).
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(c) Mixed formulation

Figure 3-4: Adjoint error in the L2 norm for the scalar model problem

Since the exact solution is known, computing the exact functional output is trivial,

enabling comparison of the computed result with the exact value, J (u) = 1/4. Figure 3-5

shows the error in the computed functional for the three discretizations considered. The

figure shows that, as in the state and adjoint results, the performance of the dual consistent

and asymptotically dual consistent schemes is very similar. Both schemes achieve O(h2p) for
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(c) Mixed formulation

Figure 3-5: Functional output error for the scalar model problem
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1 ≤ p ≤ 4. However, for the dual inconsistent scheme, the convergence rate of the functional

is O(hp) for even p and O(hp+1) for odd p. Thus, the dual consistent and asymptotically

dual consistent discretizations predict the functional with greater accuracy than the dual

inconsistent discretization for similar numbers of degrees of freedom.

3.4 RANS Results

Three test cases are considered. First, the adjoint solution and its derivatives are examined

for flow over a flat plate solved using all three source term discretizations. Second, a grid

refinement study is conducted for flow around a NACA 0012 airfoil using both the standard

weighting and dual consistent discretizations. Finally, a RAE 2822 airfoil case is solved

using the dual consistent scheme.

3.4.1 Flat Plate Adjoint Results

To begin, adjoint solutions for flow over a flat plate are examined. In particular, the test

case is M∞ = 0.25, Rec = 1 × 107 flow over a flat plate with zero pressure gradient. The

output of interest is the drag force on the plate.

Figures 3-6 and 3-7 show p = 3 adjoint solution profiles computed on an 866 element

mesh and on a 3464 element mesh generated by uniformly refining the 866 element mesh.

Even on the coarser mesh, it is difficult to see a difference between the profiles. This fact

is consistent with the adjoint results from the model problem. Specifically, for the model

problem, the adjoint error measured in the L2 norm converges for all three schemes but at

different rates.

However, as can be seen in Figures 3-8 and 3-9, there are clearly differences in the

derivatives of the adjoint. In particular, the figures show that the y derivatives of the

adjoint computed using the standard weighting scheme are highly oscillatory, while the

dual consistent and mixed formulation results are relatively smooth. Furthermore, the

oscillations in the derivatives produced by the standard weighting scheme are not decreasing

with grid refinement. This result is consistent with the results obtained for the adjoint error

measured in the broken H1 norm for the model problem. In that case, the adjoint error did

not converge for the standard weighting scheme. Finally, the figure shows that, while the

dual inconsistency in the standard weighting scheme is caused only by the discretization of

the turbulence model—none of the other equations have gradient dependent source terms—

it adversely affects the adjoint components corresponding to the other equations as well.

This adverse effect is not surprising given the coupling between the turbulence model and

the flow equations.
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Figure 3-6: Comparison of x-momentum adjoint solution profiles for dual consistent, mixed
formulation, and standard weighting discretizations at x/c = 0.5 for flow over a flat plate
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Figure 3-7: Comparison of turbulence model adjoint solution profiles for dual consistent,
mixed formulation, and standard weighting discretizations at x/c = 0.5
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Figure 3-8: Comparison of x-momentum adjoint y-derivative profiles for dual consistent,
mixed formulation, and standard weighting discretizations at x/c = 0.5 for flow over a flat
plate
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Figure 3-9: Comparison of turbulence model adjoint y-derivative profiles for dual consistent,
mixed formulation, and standard weighting discretizations at x/c = 0.5 for flow over a flat
plate
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3.4.2 NACA 0012 Refinement Study

To examine the accuracy of the discretizations, a grid refinement study is conducted for

M∞ = 0.25, Rec = 1 × 107, α = 0 flow over a NACA 0012 airfoil. The airfoil is modified

slightly such that the trailing edge has zero thickness. Specifically, the airfoil is defined by

y = ±0.6(0.2969
√
x− 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4),

for 0 ≤ x ≤ 1. The outer boundary of the computational domain is the circle of radius

40, centered at the origin. To generate a family of meshes, a coarse, 1280 element linear

mesh of this domain was generated by meshing a rectangle and then mapping the mesh

nodes to the physical domain using transfinite interpolation. The resulting mesh is shown

in Figure 3-10. Given the coarse mesh, medium, fine, and ultra-fine linear meshes were

generated by uniformly refining the coarse mesh.

Results are presented for p = 1, 2, 3, 4 for the dual consistent and standard weighting

discretizations on the coarse, medium, and fine meshes. Only p = 1, 2 results have been

obtained on the ultra-fine mesh, and no mixed formulation results are presented because

this discretization has not been implemented in parallel.

All results are isoparametric. Thus, curved meshes are required. To generate these

curved meshes, a linear elasticity based node movement algorithm, described in Section 5.1.3,

was applied to the linear meshes. To illustrate the differences between the linear and curved

meshes, the q = 1 and q = 3—where q denotes the polynomial order of the mesh—versions

of the coarse mesh are shown in Figure 3-11. The q = 3 mesh is plotted by linearly inter-

polating between the edge nodes. The figure shows the leading edge region of the airfoil,

where the differences between the q = 1 and q = 3 meshes are the largest. Far away from

the airfoil, the two meshes are essentially the same.

To examine the drag error, an exact value of the drag must be chosen. Since the exact

solution is not known, the “exact” drag in this work is computed by extrapolating high-

order results. Specifically, the error is computed relative to a drag value of 75.612866 counts,

which is obtained by extrapolating the dual consistent, p = 5 drag results from the coarse

and medium meshes, assuming the drag error for p = 5 is proportional to h3. This rate

was chosen after examining the order of accuracy obtained by the p = 1, 2, 3, 4 results for

different p = 5 rate assumptions. The results of this examination are shown in Figure 3-12.

The figure shows the order of accuracy obtained for p = 1, 2, 3, 4 by refining from the coarse

mesh to the fine mesh versus the assumed order of accuracy used to extrapolate the p = 5

drag results to the “exact” value. The p = 1, 2 results are relatively insensitive to the

p = 5 rate assumption. This result gives confidence that the computed error and order of
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Figure 3-10: Coarse (1280 elements), linear mesh of the NACA 0012 airfoil
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Figure 3-11: Leading edge of the q = 1 and q = 3 versions of the coarse mesh of the NACA
0012 airfoil
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Figure 3-12: Order of accuracy obtained for p = 1, 2, 3, 4 versus order of accuracy assumed
for p = 5 for drag error for flow over a NACA 0012 airfoil, computed using the dual
consistent discretization

accuracy for p = 1, 2 are very close to the true values. Alternatively, the p = 3, 4 results

are quite sensitive to the assumed rate. However, it appears that assumed rates between

two and three give the most consistent results. Assuming p = 5 is converging faster than

approximately O(h4) leads to a scenario where p = 3 obtains between O(h3) and O(h4)

while p = 4 gives between O(h2) and O(h3). This result makes little sense. On the other

hand, assuming p = 5 obtains O(h3) gives that p = 3, 4 both achieve roughly O(h3). While

this rate is suboptimal, is can be reasonably explained if the solution is not smooth. Thus,

O(h3) is chosen here.

Figure 3-13 shows the drag error results obtained using the dual consistent discretiza-

tion. In particular, Figure 3-13(a) shows the drag error versus grid refinement. The p = 1

order of accuracy is slightly better than the expected optimal rate of O(h2), and the p = 2

accuracy appears optimal at approximately O(h4). Alternatively, p = 3, 4 do not achieve

the asymptotic convergence rates expected for smooth problems. While the precise rates

obtained are dependent on the assumed p = 5 rate, no assumed rate gives optimal perfor-

mance for both p = 3 and p = 4, as shown in Figure 3-12. This suboptimal behavior is

attributed to under-resolution in the boundary layer edge region. Neglecting the effect of

the viscosity of the fluid, the RANS-SA system has discontinuous first derivatives at the

boundary layer edge in both the primal and adjoint solutions. The discontinuities in the
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Figure 3-13: Drag error for flow over a NACA 0012 computed using the dual consistent
discretization
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adjoint derivatives can be seen in Figures 3-8 and 3-9. While the addition of viscosity for-

mally eliminates these discontinuities, given that the solution in this region is not resolved,

the effect on the numerical solution is the same.

Figure 3-13(b) shows the drag error results again. In this figure, the drag error versus

DOF is shown for p refinement on the coarse, medium, fine, and ultra-fine meshes. The figure

shows that, on each mesh, as p is increased, the drag error eventually becomes proportional

to DOF−3/2. In this regime, the error is dominated by the boundary layer edge region, as

will be confirmed by examining an error estimate in Section 4.3.2. To further confirm that

the boundary layer edge singularity is the root cause of the suboptimal accuracy, a laminar

case is examined using the same set of meshes used here. The laminar case has no boundary

layer edge singularity, and, as expected, the order of accuracy does not asymptote to O(h3)

as the resolution increases. The results of this study are shown in Appendix B.

The results of the refinement study for the standard weighting discretization are shown

in Figure 3-14. As in the dual consistent case, the p = 1 discretization gives better than

expected results. However, the effect of the dual inconsistency can be observed for the p = 2

scheme, which obtains only O(h2) accuracy. This rate is consistent with the suboptimal

results observed for the standard weighting discretization applied to the model problem.

For p ≥ 3, it appears that errors due to the boundary layer edge singularity are dominant.

Thus, no degradation of the accuracy due to the dual inconsistency is observed. In fact, in

this regime, the standard weighting discretization appears to be slightly more accurate for

this case.

3.4.3 RAE 2822 Refinement Study

To demonstrate the performance of the dual consistent scheme on a slightly more difficult

problem, a RAE 2822 airfoil case is considered. The freestream flow conditions are M∞ =

0.6, Rec = 6.3 × 106, α = 2.57◦. The computational domain is the circle of radius 40,

centered at the origin, which is the leading edge of the airfoil. The meshes are generated

analogously to those used for the NACA 0012 case. That is, a coarse, linear mesh containing

4000 elements was generated. Figure 3-15 shows this coarse mesh. The linear coarse mesh

was uniformly refined twice to produce meshes of 16000 and 64000 elements. Then, high-

order meshes were constructed using the linear elasticity node movement scheme. Results

are presented for p = 1, 2, 3, 4, 5 for the coarse and medium meshes. For the fine mesh, only

p = 1, 2, 3 solutions have been computed.

Figure 3-16 shows the drag error results obtained using the dual consistent discretization.

The error is computed relative to an “exact” drag value, which is computed by extrapolating
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Figure 3-14: Drag error for flow over a NACA 0012 computed using the standard weighting
discretization
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the p = 5 drag results, assuming that the error is proportional to h3. This rate is chosen to

be consistent with the NACA 0012 case. The resulting value is 94.542604 counts.

The figure shows the drag error versus grid refinement and DOF. The p = 1 order of

accuracy is better than expected at approximately O(h3), and the p = 2 accuracy oscillates

slightly about the optimal O(h4). However, as in the NACA 0012 case, the p = 3, 4 results

do not achieve optimal accuracy. Unlike the NACA 0012 case, the suboptimal accuracy

here is attributed to under-resolution of the trailing edge region. This under-resolution will

be demonstrated by examining elemental error estimates, as shown in Section 4.3.3.
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Figure 3-15: Coarse (4000 elements), linear mesh of the RAE 2822 airfoil
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Figure 3-16: Drag error for flow over a RAE 2822 computed using the dual consistent
discretization
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Chapter 4

Output Error Estimation

This chapter details the error estimation approach applied in this work. Sections 4.1 and 4.2

show the error estimation algorithm, which is based on the method of Dual Weighted

Residuals, due to Becker and Rannacher [17, 18], and draws heavily on recent work by

Fidkowski and Darmofal [42, 39]. The main contribution of this chapter is the application

of the algorithm to high-order discretizations of the RANS equations on curved, boundary

conforming meshes. Numerical results, shown in Section 4.3, demonstrate that the error

estimation algorithm produces acceptable estimates of the drag error for three high Re

problems.

4.1 Motivation

Let RH(·, ·) be a semi-linear form, and let uH ∈ VH be such that

RH(uH ,vH) = 0, ∀vH ∈ VH , (4.1)

where VH is an appropriate finite dimensional function space—e.g. Vph as defined in Sec-

tion 2.3. Furthermore, let u ∈ V be the exact solution of the PDE of interest. Then, for a

general output of interest, J (·), define the following dual problem: find ψ ∈ V such that

R̄H(u,uH ;v,ψ) = J̄ (u,uH ;v), ∀v ∈ VH + V, (4.2)

where R̄H and J̄ are mean-value linearizations given by

R̄H(u,uH ;v,w) ≡
∫ 1

0
R′
H [θu + (1 − θ)uH ](v,w) dθ,

J̄ (u,uH ;v) ≡
∫ 1

0
J ′[θu + (1 − θ)uH ](v) dθ.
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Then,

R̄H(u,uH ;u− uH ,w) = RH(u,w) −RH(uH ,w),

J̄ (u,uH ;u − uH) = J (u) −J (uH).

Assuming that RH(u,w) = 0, ∀w ∈ VH + V and using (4.1) and (4.2), the error in the

output may be written as

J (u) − J (uH) = −RH(uH ,ψ −ψH), (4.3)

for arbitrary ψH ∈ VH . Alternatively, by defining the adjoint residual,

R̄ψH(u,uH ;v,w) ≡ R̄H(u,uH ;v,w) − J̄ (u,uH ;v),

it is possible to express the error in terms of the exact primal solution. In particular, one

can show that

J (u) − J (uH) = −R̄ψH(u,uH ;u − uH ,ψH), (4.4)

again for any ψH ∈ VH .

4.2 Implementation

Given that (4.3) and (4.4) depend on the unknown exact solutions, it is necessary to make

some approximations to compute error estimates. To begin, all mean-value linearizations

are replaced by linearizations about the discrete solution, uH . Then, to minimize the error

due to this approximation, ψH is set to the discrete adjoint solution [40, 42]. That is,

ψH ∈ VH is chosen such that

RψH(uH ;vH ,ψH) ≡ R′
H [uH ](vH ,ψH) − J ′[uH ](vH) = 0, ∀vH ∈ VH .

Furthermore, the differences u−uH and ψ−ψH are replaced by approximations uh−uH

and ψh − ψH , where uh and ψh are surrogates for u and ψ, that exist in a richer space,

Vh, than uH and ψH . In this work, if VH is given by the space of polynomials of order p in

reference space,

VH ≡ {v ∈ [L2(Ω)]r | v ◦ fκ ∈ [P p(κref )]
r, ∀κ ∈ TH},
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then Vh is taken to be the space of polynomials of order p+ 1. In particular,

Vh ≡ {v ∈ [L2(Ω)]r | v ◦ fκ ∈ [P p+1(κref )]
r, ∀κ ∈ TH}.

For linear geometry elements (i.e. fκ is affine), one common approach is to define uh

and ψh by a local L2 or H1 patch reconstruction [72, 42]. For example, the L2 patch

reconstruction takes the following form: for each element κ, find v ∈ P p+1(P(κ)) such that

v = arg min ‖v − uH‖L2(P(κ)),

where P(κ) denotes the union of κ and the elements that share a face with κ, as depicted

in Figure 4-1. Then, the reconstruction on κ is defined by restricting v to κ: uh|κ = v|κ.

P(κ)

κ

Figure 4-1: The patch of elements centered at κ, denoted P(κ), highlighted in blue

However, in the curved element case, since pth order polynomials in the reference space

are generally not pth order polynomials in physical space, it is not likely that uh defined

in this manner is in the space Vh. Furthermore, the patch reconstruction fails to account

for the physics of the problem. Specifically, the reconstruction does not properly account

for the propagation of information in convection dominated problems. Thus, while it is

possible to generalize the patch reconstruction procedure to generate a reconstruction in

the desired space or to chose a different space Vh, a different technique is applied here.

To motivate the procedure, one would expect that choosing uh and ψh to be the DG

solutions of the primal and adjoint problems posed on the solution space Vh would give

accurate error estimates. However, for the purposes of error estimation, these solutions
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are regarded as too expensive to compute. Thus, instead of computing these solutions, the

exact solution surrogates are defined by injecting uH and ψH into Vh and taking a small

number of element-block Jacobi iterations on the p+ 1 discrete problem. To be precise, the

algorithm has the following steps:

1. Compute the injections of uH and ψH into Vh. That is, find U0 ∈ R
N and Ψ0 ∈ R

N

such that

uH(x) =
N
∑

i=1

U0
i φi(x), ψH(x) =

N
∑

i=1

Ψ0
iφi(x),

where {φi} for i = 1, . . . , N forms a basis of Vh.

2. Take K element-block Jacobi iterations on the primal problem. That is, for k =

0, . . . ,K − 1,

Uk+1 = Uk − P−1(Uk)R(Uk),

where R(Uk) is the primal residual vector evaluated at Uk and P(Uk) is the element-

block diagonal of the Jacobian matrix, dR
dU , evaluated at Uk.

3. Set uh(x) =
∑N

i=1 U
K
i φi(x).

4. Take K element-block Jacobi iterations on the dual problem. That is, for k =

0, . . . ,K − 1,

Ψk+1 = Ψk − P−T (UK)Rψ(UK ; Ψk),

where Rψ(UK ; Ψk) is the residual vector for the dual problem taken about UK and

evaluated at Ψk.

5. Set ψh(x) =
∑N

i=1 ΨK
i φi(x).

Finally, given the surrogate solutions uh and ψh, the error can be approximated using

either the primal residual or the dual residual:

|J (u) − J (uH)| ≈ ǫprim ≡ |Rh(uH ,ψh −ψH)|, (4.5)

|J (u) − J (uH)| ≈ ǫdual ≡ |Rψh (uH ;uh − uH ,ψH)|, (4.6)

where Rh and Rψh denote the primal and dual residual forms, respectively, on the space Vh.
An elemental error indicator is required for the mesh adaptation procedure. This indi-

cator is constructed by averaging the primal residual and dual residual approximations to

the error contribution from the element. In particular, for each element κ,

ǫκ =
1

2

(

∣

∣Rh(uH , (ψh −ψH)|κ)
∣

∣+
∣

∣Rψh (uH ; (uh − uH)|κ,ψH)
∣

∣

)

. (4.7)
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Another error estimate can be constructed by summing the elemental contributions above:

ǫ =
∑

κ

ǫκ.

Due to the absolute values, this estimate is generally larger than both ǫprim and ǫdual.

4.3 Numerical Results

In this section, the error estimation algorithm is applied to three high Re test cases. In all

cases, uniform refinement studies have been conducted to enable comparison of the error

estimates to the error computed relative to fine mesh or extrapolated results. Only results

for the standard weighting and dual consistent discretizations are presented because the

mixed formulation implementation has not been parallelized.

4.3.1 Flat Plate

The first test case is Rec = 1 × 107, M∞ = 0.25 flow over a flat plate with zero pressure

gradient. The coarse mesh in this study is a 1516 element mesh generated by mesh adap-

tation using the p = 3, dual consistent discretization. At each refinement level, the mesh

spacing is halved, leading to a set of three nested meshes. These meshes—referred to as the

coarse, medium, and fine meshes—contain 1516, 6064, and 24256 elements. The exact drag

is taken to be that computed from the solution of the p = 4, dual consistent discretization

on a uniform refinement of the fine mesh. This value is 28.579496056 counts.

Dual Consistent Discretization

Figure 4-2 shows the drag error for the dual consistent discretization. The discretization

attains optimal order of accuracy for the drag for p = 1, 2. However, for p = 3, the order is

suboptimal. The cause of this behavior is uncertain, but it may be linked to the singularity

in the solution at the leading edge of the plate or to a lack of resolution at the boundary

layer edge. Despite the observed rate, the accuracy of the p = 3 solution is very good.

In particular, the error on the coarse mesh is approximately 1 × 10−4% of the total drag.

Figure 4-3 shows the error estimates ǫprim and ǫdual. The trends observed in the error

estimates are very similar to those of the exact error. Moreover, taking the maximum of

the primal and dual estimates gives a slightly conservative but still accurate error estimate.

Figure 4-4 shows this maximum estimate, as well as its effectivity, defined as the ratio of

the maximum estimate to the actual error. The effectivity in this case is in the range (1.5,

4.6).
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Figure 4-2: Drag error for the dual consistent discretization versus uniform grid refinement
for the flat plate test case
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(b) Dual Residual Estimate

Figure 4-3: Primal and dual residual drag error estimates for the dual consistent discretiza-
tion versus uniform grid refinement for the flat plate test case
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(b) Effectivity

Figure 4-4: Maximum error estimate and effectivity for the dual consistent discretization
versus uniform grid refinement for the flat plate test case

Standard Weighting Discretization

Figure 4-5 shows the drag error for the standard weighting discretization. The discretization

attains optimal order of accuracy for the drag for p = 1. For p = 2, the discretization is

suboptimal. This behavior is expected and agrees with the results observed for the model

problem in Chapter 3. For p = 3, the order is also suboptimal. As with the p = 3, dual

consistent discretization, the cause of this behavior is unclear. Figure 4-6 shows the error

estimates ǫprim and ǫdual. Unlike the dual consistent discretization, the dual inconsistent

scheme maximum error estimates do not provide a conservative estimate for all p. In

particular, as shown in Figure 4-7, the effectivity for p = 2 is less than one for each grid,

and it decreases with grid refinement.

4.3.2 NACA 0012

The second test case is Rec = 1 × 107, M∞ = 0.25, α = 0 flow over a NACA 0012 airfoil.

The computational domain and meshes for this case are as described in Section 3.4.2. The

“exact” drag error results for this case are also shown in Section 3.4.2. Thus, only the error

estimates and effectivities are shown here.
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Figure 4-5: Drag error for the standard weighting discretization versus uniform grid refine-
ment for the flat plate test case
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(b) Dual Residual Estimate

Figure 4-6: Primal and dual residual drag error estimates for the standard weighting dis-
cretization versus uniform grid refinement for the flat plate test case
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Figure 4-7: Maximum error estimate and effectivity for the standard weighting discretization
versus uniform grid refinement for the flat plate test case
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Dual Consistent Discretization

Figure 4-8 shows the primal and dual error estimates. Unlike the flat plate results, the two

estimates show somewhat different behavior. For example, on the second refinement, the

p = 2 primal estimate decreases dramatically while the dual estimate is relatively constant.

However, as Figure 4-9 shows, the maximum of the two error estimates generally provides a
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(b) Dual Residual Estimate

Figure 4-8: Primal and dual residual drag error estimates for the dual consistent discretiza-
tion versus uniform grid refinement for the NACA 0012 test case

conservative but reasonably accurate estimate. In particular, the effectivity of the maximum

estimate is between 0.8 and 2.1 for all cases except p = 2 on the medium mesh.

In Section 3.4.2, it was observed that the order of accuracy for p ≥ 3 for this case is lower

than that expected for smooth solutions. This behavior was attributed to under-resolution

at the boundary layer edge. To examine this claim in more detail, Figures 4-10 and 4-11

show the elemental error estimate, ǫκ, and Mach number for p = 2 and p = 4, respectively.

The figure demonstrates that, in the p = 2 case, while the error estimate is non-zero at the

boundary layer edge, the errors are largest in the flow upstream of the airfoil. Alternatively,

in the p = 4 case, the error estimate is largest near the boundary layer edge.

Standard Weighting Discretization

Figure 4-12 shows the primal and dual error estimates. The results are qualitatively similar

to those for the dual consistent discretization. The maximum error estimate and effectivity

are shown in Figure 4-13. As with the dual consistent discretization, the maximum error

estimate generally provides an accurate error estimate for this case. However, for p = 2
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Figure 4-9: Maximum error estimate and effectivity for the dual consistent discretization
versus uniform grid refinement for the NACA 0012 test case
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Figure 4-10: Elemental error estimate (left) and Mach number (right) for the p = 2, dual
consistent discretization on the coarse mesh for the NACA 0012 test case

Figure 4-11: Elemental error estimate (left) and Mach number (right) for the p = 4, dual
consistent discretization on the coarse mesh for the NACA 0012 test case
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Figure 4-12: Primal and dual residual drag error estimates for the standard weighting
discretization versus uniform grid refinement for the NACA 0012 test case

the error estimate is converging more rapidly than the actual error, leading to a decreasing

effectivity. Thus, on the fine mesh, the p = 2 effectivity is approximately 0.5. The only

other case with an effectivity outside the range of (0.8, 2) is the p = 3 fine grid result, where

the effectivity is almost seven.

4.3.3 RAE 2822

The final test case is Rec = 6.3×106, M∞ = 0.6, α = 2.57◦ flow over a RAE 2822 airfoil. The

computational domain, meshes, and “exact” drag for this case are given in Section 3.4.3,

which also contains the “exact” drag error results. Thus, only the error estimates and

effectivities are shown here. Furthermore, only the dual consistent discretization is used.

Figure 4-14 shows the primal and dual error estimates. The primal error estimate for

p = 1 on the coarse mesh is so large (3.5×107 counts) that it is not shown in the figure. This

large error estimate results from the fact that the element-block Jacobi iterative procedure

used to compute the surrogate primal solution diverges for this case. However, for the

other cases, where the element-block Jacobi solve is well-behaved, the error estimates are

reasonable. The maximum error estimate and its effectivity are shown in Figure 4-15. The

effectivity is in the range (0.9, 11.0) for all but the p = 1 result on the coarse mesh.

As noted in Section 3.4.3, the order of accuracy for p ≥ 3 for this case is below that

expected for smooth flow. Figure 4-16 shows the p = 3 elemental error estimates on the

coarse and fine meshes. At first glance, it appears that the error is small everywhere near
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Figure 4-13: Maximum error estimate and effectivity for the standard weighting discretiza-
tion versus uniform grid refinement for the NACA 0012 test case
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(b) Dual Residual Estimate

Figure 4-14: Primal and dual residual drag error estimates for the dual consistent discretiza-
tion versus uniform grid refinement for the RAE 2822 test case
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Figure 4-15: Maximum error estimate and effectivity for the dual consistent discretization
versus uniform grid refinement for the RAE 2822 test case
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the airfoil. However, close inspection of the trailing edge region, as shown for the fine

mesh in Figure 4-17, shows that the elemental errors in this region are large. These errors

indicate a lack of resolution in this region. Thus, one can conclude that under-resolution of

the trailing edge singularity is leading to a loss of accuracy for p ≥ 3 for this case.
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(a) Coarse mesh (b) Fine mesh

Figure 4-16: Elemental error estimate for the p = 3, dual consistent discretization on the
coarse and fine meshes for the RAE 2822 test case

(a) Trailing edge (b) Trailing edge zoom

Figure 4-17: Elemental error estimate at the trailing edge for the p = 3, dual consistent
discretization on the fine mesh for the RAE 2822 test case
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Chapter 5

Output-Based Adaptation

In this chapter, the output error estimate is used to drive a mesh adaptation algorithm.

The algorithm combines the output error estimate with interpolation error estimates to de-

termine a desired metric for the new mesh. This technique, described in Section 5.1, closely

follows those of Venditti and Darmofal [102, 103] and Fidkowski and Darmofal [42, 39].

Thus, the main contributions of this chapter are the application of the algorithm to high-

order discretizations of the RANS equations and the use of curved, boundary conforming

meshes. Two techniques for generating curved meshes are detailed in Section 5.1.3. Sec-

tion 5.2 provides numerical results.

5.1 Algorithm

The adaptation algorithm used here takes the following form:

1. Generate an initial mesh.

2. Solve the steady state problem, R(U) = 0, where R denotes the residual vector and

U denotes the discrete solution. Specifically,

(a) Set the solution to some initial guess U0. Initialize the CFL number, and com-

pute the corresponding time step, ∆t. Set i = 1.

(b) While ‖R(Ui−1)‖ > δtol,

i. Update the primal state: Ui = Ui−1 −
(

1
∆tM + ∂R

∂U

∣

∣

∣

∣

Ui−1

)−1

R(Ui−1).

ii. Update ∆t according to Section 2.4.

iii. i→ i+ 1.

where δtol is the solution tolerance, M is the mass matrix.
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3. Solve the adjoint problem: ∂R
∂U

∣

∣

T

U
Ψ = ∂J

∂U

∣

∣

T

U
, where J is the discrete output of interest.

4. Using U and Ψ, compute ǫ, the output error estimate, as described in Chapter 4.

5. If ǫ < ǫtol, where ǫtol is the requested error tolerance, quit. Otherwise, adapt the

mesh, and return to step 2.

Thus, at each adaptation iteration, an error estimate is computed, and, assuming that

estimate is greater than the desired tolerance, a new computational mesh is generated. The

desired mesh is specified by means of an n × n Riemannian metric, M, defined over the

physical domain, where n is the dimension of the domain. The metric contains information

on the desired mesh spacing in physical space. In particular, under the metric, the mesh

spacing is required to be unity in all directions. To be precise, let t̂ be a unit vector, and let

ht(x) be the desired mesh spacing in the t̂ direction at x. Then, the metric at x is defined

by requiring

h2
t t̂
TMt̂ = 1, (5.1)

for all directions t̂. This requirement defines an ellipsoid in physical space. The eigenvectors

of M, ei for i = 1, . . . n, give the directions of the principal axes of an ellipsoid, and the

eigenvalues of M, λi for i = 1, . . . , n are related to the lengths of the ellipsoid axes by

h2
i = 1/λi.

The mesh metric calculation involves two parts: anisotropy detection and mesh opti-

mization.

5.1.1 Anisotropy Detection

The desired anisotropy calculation is motivated by a Hessian-based analysis [21, 103]. The

analysis begins with an interpolation error estimate. If uH is a linear interpolant of a smooth

scalar function u, assuming the interpolation error is zero at the segment endpoints, the

interpolation error along a segment δx is bounded by

max
x∈δx

|u(x) − uH(x)| ≤ C1h
2
δx max

x∈δx

∣

∣

∣u
(2)
δx (x)

∣

∣

∣ ,

where hδx is the length of the segment, C1 is a constant that is independent of u, and u
(2)
δx

is the second derivative of u in the δx direction [96]. Using the Hessian matrix, H, where

Hij =
∂2u

∂xi∂xj
,
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the interpolation error bound can be rewritten as

max
x∈δx

|u(x) − uH(x)| ≤ C1 max
x∈δx

(

δxT |H(x)|δx
)

,

where |H| = V|Λ|V−1 for H = VΛV−1.

The desired mesh is designed to give equal interpolation errors in all directions. Thus,

for some constant C, the requested mesh spacing should satisfy

h2
t t̂
T |H|t̂ =

1

C
, (5.2)

for all unit vectors t̂. Using (5.1), (5.2) can be satisfied by requiring that

M = C|H|. (5.3)

This relationship determines the metric up to a multiplicative constant which is determined

by the mesh optimization step. Furthermore, given that the exact Hessian matrix is not

known it must be approximated to compute the desired anisotropy.

Following Fidkowski [42, 39], this analysis can be extended to p > 1 interpolation. As

with the p = 1 case, the analysis begins with an interpolation error bound:

max
x∈δx

|u(x) − uH(x)| ≤ C2h
p+1
δx max

x∈δx

∣

∣

∣
u

(p+1)
δx (x)

∣

∣

∣
, (5.4)

where uH is a pth order interpolant of u that interpolates u exactly at the endpoints of

the segment δx. For p > 1, there is no analog of the Hessian matrix that can be used to

bound the interpolation error and define the mesh metric. Instead, the principal stretching

directions are explicitly computed. Specifically, define e1 to be the direction of the maximum

(p + 1) derivative. Let e2 be the direction of the maximum (p + 1) derivative in the plane

orthogonal to e1, and so on. Then, the desired anisotropy is determined by requiring equal

interpolation error in the directions given by ei. Thus, for i, j = 1, . . . , n,

hp+1
i u

(p+1)
ei = C ⇒ hi

hj
=

(

u
(p+1)
ej

u
(p+1)
ei

)1/(p+1)

.

As with (5.3), this relationship determines the metric up to a multiplicative constant. This

constant is based on the error estimate, as shown in Section 5.1.2. Furthermore, as with the

exact Hessian, the exact (p + 1) derivatives are not known. Thus, they must be estimated

to compute the desired anisotropy.

To apply this anisotropy detection method on curved meshes, a minor modification
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is required. Specifically, given that the numerical solution is a pth order polynomial in

reference space but not physical space, the interpolation error estimate (5.4) does not hold.

However, an analogous bound holds in reference space. In particular, let

u(x) = (u ◦ f)(ξ) = ũ(ξ),

where f is the map from reference to physical space and ξ denotes the position in the

reference space. Then, if ũH is a pth order interpolant of ũ,

max
ξ∈δξ

|ũ(ξ) − ũH(ξ)| ≤ C2h
p+1
δξ max

ξ∈δξ

∣

∣

∣
ũ

(p+1)
δξ (ξ)

∣

∣

∣
,

where δξ is a segment in reference space. Thus, following the technique above, one can define

the principal stretching directions in reference space, ẽi. Then, requiring equal interpolation

errors in the principal directions gives

h̃p+1
i ũ

(p+1)
ẽi

= constant ⇒ h̃i

h̃j
=





ũ
(p+1)
ẽj

ũ
(p+1)
ẽi





1/(p+1)

,

where h̃i are the desired mesh spacings in reference space. This relationship determines the

metric in reference space to within a multiplicative constant.

To define the metric in physical space, the mapping from the reference to the physical

space is used. In particular, given the metric in reference space, M̃, at ξ0, the points of the

corresponding ellipsoid, ξe, satisfy

(ξe − ξ0)TM̃(ξ0)(ξe − ξ0) = 1.

The image of this ellipsoid under the map f is given by f(ξe). Certainly, since f may be

nonlinear, this image may not be an ellipsoid. However, linearizing f about ξ0 gives

f(ξe) ≈ xe = f(ξ0) +Df(ξ0)(ξe − ξ0).

Using this linearized form, the points xe define an ellipsoid centered at x0 = f(ξ0). This

ellipsoid is used to define the metric in physical space at the point x0. To illustrate this
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calculation, let

H̃ = ṼΛ̃Ṽ−1 =









ẽ1 · · · ẽn

















h̃1

. . .

h̃n



















ẽT1
...

ẽTn











.

If t̂ is a unit vector, then

ξe − ξ0 = H̃t̂,

gives the point ξe on the ellipsoid defined by the metric in reference space. Then,

xe − f(ξ0) = Df(ξ0)H̃t̂,

gives the ellipsoid defining the metric in physical space. Thus, the directions and lengths of

the principal axes of this ellipsoid are given by the left singular vectors and singular values

of Df(ξ0)H̃. This process is illustrated in two dimensions in Figure 5-1.

Reference Space Physical Space

Unit Circle

h̃2
h̃1

h2
Df(ξ0)

Df(ξ0) H̃

h1

H̃

Figure 5-1: Illustration of transfer of desired mesh anisotropy from reference to physical
space for two dimensional case

As noted earlier, the exact (p+ 1) derivatives are not known. Moreover, given that the

discrete solution uH is order p, it contains no information on the (p+ 1) derivatives. Thus,

in this work, the (p + 1) derivatives are estimated using the surrogate solution, uh, which

is computed for the error estimate. This function is a (p + 1)th order polynomial in the

reference element. Thus, the (p + 1) derivatives are constant over the reference element,

which implies that the desired anisotropy in the reference element is also constant. To

transfer the anisotropy request to physical space, the Jacobian, Df , is required. In general,
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this Jacobian varies over the reference element. In this work, the value at the centroid of

the reference element is used to calculate the desired anisotropy in the physical space.

5.1.2 Mesh Optimization

As noted in Section 5.1.1, the anisotropy detection step only determines the desired mesh

metric to within a multiplicative constant. That constant is determined by the mesh op-

timization step. Mesh optimization refers to determining which elements to refine/coarsen

and the appropriate level of refinement/coarsening. In this work, the method of Fid-

kowski [42, 39] is used.

The main idea of the method is to attempt to equidistribute the error over the desired

mesh. To make this idea concrete, let e0 be the desired global error. This desired error is

given by

e0 = max(ηaǫ, ηtǫtol),

where ǫ =
∑

κ ǫκ is the conservative error estimate for the solution on the current mesh,

ǫtol is the error tolerance, and 0 < ηa < 1 and 0 < ηt ≤ 1 are the adaptation aggressiveness

and target error fraction, respectively. Then, letting Nf be the estimated total number of

elements in the desired mesh, e0/Nf is the allowable error per element in the desired mesh.

Furthermore, let nκ be the number of elements in the desired mesh contained in the

element κ in the current mesh. Then, nκ can be approximated by

nκ =
n
∏

i=1

hci
hi
, (5.5)

where hi denotes the desired mesh spacings and hci denotes the current mesh spacings. The

current mesh spacings are computed from the current grid-implied metric. To define the

grid-implied metric, let ℓ be the affine map from the reference element to the unit equi-

lateral triangle/tetrahedron. This map, together with the map from the reference element

to physical space, is illustrated in Figure 5-2. The grid-implied metric is defined by the

left singular vectors and singular values of the product Dℓ−1Dfκ, where Dfκ is evaluated

at the centroid of the reference element. This definition is an extension of that used by

Fidkowski [42, 39] to the curved element case.

Given nκ, one can write the allowable error for the elements in the desired mesh con-

tained in the element κ of the current mesh as nκe0/Nf . To set the mesh spacing on the

desired mesh to achieve this error, it is necessary to relate the mesh spacing to the expected

error. This relationship is given by an a priori error estimate. Specifically, it is assumed
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Unit Equilateral
Triangle

Reference Triangle Physical Element

ℓ fκ

Figure 5-2: Mappings from the reference element to the unit equilateral triangle and physical
space

that
ǫκ
ǫcκ

=

(

h1

hc1

)rκ

,

where ǫcκ is the current error estimate on κ, given by 4.7, and ǫκ is the expected error on

the elements of the desired mesh contained in κ. In this estimate, it is assumed that the

smallest mesh spacing principal directions in the current and desired meshes, ec1 and e1,

align. Clearly, this alignment need not occur. However, one expects that, as the adaptation

progresses, the principal directions will converge.

The order of accuracy rκ is taken to be rκ = s+ t, where s is the convergence rate of the

primal solution in an appropriate energy norm and t is the convergence rate of the adjoint

solution in an appropriate energy norm. See Appendix C for an a priori output error esti-

mate motivating this choice. For elliptic problems, assuming exact geometry representation

and a solution space containing pth order polynomials in physical space, one can show

s = min(p, γ − 1), t = min(p, γψ − 1),

where γ and γψ denote the regularities of the exact primal and dual solutions, respectively—

i.e. u ∈ Hγ(Ω) and ψ ∈ Hγψ(Ω). In this work, unless otherwise noted, optimal rates—

s = t = p—are assumed for all elements not containing geometric singularities. For elements

touching a geometric singularity—e.g. the leading edge of an infinitely thin flat plate or a

sharp trailing edge—s+ t = 1 is used.

Equating the allowable and expected errors on the element κ gives

nκ
e0
Nf

= ǫcκ

(

h1

hc1

)rκ

. (5.6)

Using (5.5), h1/h
c
1 can be written in terms of the current mesh spacing ratio, the desired
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mesh spacing ratio from the anisotropy detection step, and nκ. In two dimensions,

h1

hc1
=

(

1

nκ

hc2
hc1

h1

h2

)1/2

. (5.7)

Then, substituting (5.7) into (5.6) and solving for nκ gives

nκ =

(

Nf

e0
ǫcκ

) 2

rκ+2
(

hc2
hc1

h1

h2

)
rκ
rκ+2

. (5.8)

Finally, summing over the elements gives an equation for Nf :

Nf =
∑

κ∈Th

nκ =
∑

κ∈Th

[

(

Nf

e0
ǫcκ

)
2

rκ+2
(

hc2
hc1

h1

h2

)
rκ
rκ+2

]

. (5.9)

Equation (5.9) can be solved for Nf , allowing nκ to be computed from (5.8). Then, h1

can be computed using (5.7). This calculation combined with the desired anisotropy from

Section 5.1.1 completely determines the desired mesh metric.

5.1.3 Curved Mesh Generation

The metric computed as shown in Sections 5.1.1 and 5.1.2 can be input to a mesh generation

package to generate a linear mesh. In this work, the Bi-dimensional Anisotropic Mesh

Generator (BAMG) package is used [19, 58]. However, it is well known that to fully realize

the potential of high-order methods, the geometry representation should be high-order

accurate as well [13]. Thus, for curved geometries, linear meshes are not appropriate.

Unfortunately, curved mesh generation is a non-trivial task. In this work, curved meshes

are generated by first generating a linear mesh and then operating on that linear mesh to

arrive at a suitable curved mesh. Specifically, two methods will be examined: user-generated

global mappings and linear elasticity mesh movement.

User-Generated Global Mapping

The user-generated global mapping approach is motivated by the observation that it is

often possible to specify a global map from a simple, linear meshing domain—such as a

rectangle—to the physical domain of interest. Figure 5-3 shows a cartoon example of such

a map, g : ΩM → Ω, where ΩM denotes the meshing domain.

Given this map, the idea applied here is to generate a linear mesh of the meshing domain

and then map that mesh to the physical domain. Of course, the resulting mesh is required

to satisfy the desired mesh metric in physical space. To enforce this condition, a metric is
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r1

r2

x1

x2

gΩ
ΩM

Figure 5-3: Illustration of the global map, g, from meshing to physical domain

generated for the meshing domain. The procedure for transferring the metric in physical

space to a metric in meshing space is analogous to that of transferring the anisotropy request

from the reference to the physical space as shown in Section 5.1.1. Specifically, ignoring any

high-order terms, the map g−1 takes the ellipsoid defined by the metric in physical space

to an ellipsoid in meshing space:

re = g−1(x0) +Dg−1(x0)(xe − x0),

where x0 is the center of the ellipsoid in physical space, xe are points on the ellipsoid in

physical space, and re are points on the ellipsoid in meshing space. This ellipsoid is used

to define the mesh metric in meshing space.

Using this metric, one can generate a linear mesh of the meshing space. Then, a high-

order mesh of physical space is generated by adding uniformly spaced higher-order nodes

to the linear mesh in meshing space and mapping the nodes to the physical domain. After

computing the nodes in the physical domain, the mesh of the physical domain is defined by

high-order Lagrange interpolation of these nodes. This algorithm restricts the use of the

map g and the meshing domain to the mesh generation step. The alternative is to define

the mesh of the physical space as the image of the linear mesh of the meshing domain

under the map g. While this latter approach has some nice features—e.g. exact geometry

representation—it is not used here because it requires the map g to compute the residual.

Linear Elasticity Node Movement

While the user-generated mapping technique yields good results, it places a fairly high

burden on the user to generate a suitable meshing domain and associated global map.

Especially for complicated three-dimensional problems, this burden is unacceptable. Thus,

a second, more general, approach is also explored. In this approach, the metric is used

directly to generate a linear mesh of the physical domain. After adding uniformly spaced

higher-order nodes to the linear mesh, all mesh nodes are moved to generate a valid, high-
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order mesh.

The node movement is governed by the linear elasticity equations, as used by [77]. Let

ΩL denote the domain covered by the linear triangulation, Th,L. Then, in two dimensions,

the node movement is governed by

∇ · (∇V + σ) = 0, x ∈ ΩL

V − VBC = 0, x ∈ ∂ΩL.

where V = [u, v]T is the displacement vector,

σ =

[

AR(∇ · V) 0

0 AR(∇ ·V)

]

,

and AR is the aspect ratio of the underlying linear element. Using the aspect ratio to set

the material properties in this manner results in high aspect ratio cells that act like nearly

incompressible materials, which adds robustness to the node movement in highly stretched

regions [77]. The Dirichlet boundary conditions, VBC , are set by requiring that

xp = x + VBC(x), x ∈ ∂ΩL,

where xp is the projection of the point x onto the exact geometry of the physical domain.

The node movement equations are discretized using a high-order continuous Galerkin

discretization. The order of this discretization, denoted q, is set by the desired order of the

geometry representation. Thus, the mesh movement is given by the solution of the following

problem: find Vh ∈ Xq
h,BC such that

∑

κ∈Th,L

∫

κ
∇φTh · (∇Vh + σh) = 0, ∀φh ∈ Xq

h,0,

where the function spaces are given by

Xq
h ≡ {φh ∈ C0(ΩL) | φh|κ ∈ P q(κ), ∀κ ∈ Th,L},

Xq
h,0 ≡ {φh ∈ Xq

h | φh|∂ΩL = 0},

Xq
h,BC ≡ {φh ∈ Xq

h | φh(xj) = VBC(xj), ∀j = 1, . . . ,Nbn},

and {xj | j = 1, . . . , Nbn} denotes the nodes on ∂ΩL. Clearly, this discrete problem is

linear. Thus, computing the node movement solution requires a single linear solve. In this

implementation, the sparse linear system is solved using Gaussian elimination.
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5.2 Numerical Results

In this section, the adaptation algorithm is applied to four two-dimensional test flows: a flat

plate, an ellipse, and two airfoil flows. In all cases, the output used to drive the adaptation

is drag, and the Mach number is used to determine the anisotropy. Furthermore, the

adaptation aggressiveness factor, ηa, is set to 0.1, and the error tolerance is set arbitrarily

small such that it will never be reached. This tolerance was chosen to simulate very stringent

accuracy requirements. For brevity, the results for all three source term discretizations

are shown only for the flat plate case. For the remaining cases, only the dual consistent

discretization is used.

5.2.1 Flat Plate

The first test case is M∞ = 0.25, Rec = 1 × 107 flow over a flat plate with zero pressure

gradient. Figure 5-4 shows the adaptation histories for each source term discretization

investigated. In particular, the error estimate and actual error are plotted versus DOF for

each adaptation iteration. The error estimate shown is the maximum of the primal and

dual residual estimates given by (4.5) and (4.6), respectively. The actual error is computed

relative to the same value used for this case in Section 4.3.1.

From the figure, it is clear that, for all the source term discretizations examined, the

p = 2 and p = 3 discretizations are substantially more efficient than p = 1 in terms of DOF

required to achieve a desired accuracy. For example, using the dual consistent discretization,

the p = 2 and p = 3 discretizations both achieve an error of approximately 5 × 10−3 drag

counts using approximately 2.5 × 103 DOF. Alternatively, the p = 1 discretization requires

more than 4 × 104 DOF, an order of magnitude increase.

To facilitate comparison of the three source discretizations, the adaptation histories are

shown again in Figure 5-5. For all p, the three source term discretizations produce very

similar error estimates. However, the actual errors are somewhat different. The most drastic

differences occur for p = 2, where the dual consistent and mixed formulation discretizations

significantly outperform the standard weighting scheme. For example, using 7374 DOF, the

standard weighting scheme gives an error of approximately 4 × 10−3 counts while the dual

consistent and mixed formulations give errors of less than 3 × 10−4 counts using similar

DOF.

Figures 5-6 through 5-8 show skin friction distributions on the initial mesh and after

two adaptation iterations for p = 1, 2, 3. The figures show that the computed skin friction

matches the experimental data of Wieghart [32] very closely after two adaptation iterations

for all p and all discretizations used. Furthermore, the skin friction distributions reinforce
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Figure 5-4: Estimated and actual drag error versus DOF for adaptation on the drag on a
flat plate, comparison of p = 1, 2, 3 results
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Figure 5-5: Estimated and actual drag error versus DOF for adaptation on the drag on a flat
plate, comparison of standard weighting (SW), dual consistent (DC) and mixed formulation
(MF) discretizations
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the conclusion from the adaptation histories that the p = 2 and p = 3 discretizations are

far superior to p = 1. In particular, for all three discretizations, after two adaptation

iterations, the p = 2 and p = 3 skin friction distributions appear smoother than the p = 1

result, despite the fact that the p = 1 uses more than twice the DOF.

5.2.2 Ellipse

The second test case is M∞ = 0.25, Rec = 1 × 107, α = 0 flow over an ellipse. The ellipse

has a semi-major axis length a = 1.0 and a semi-minor axis length b = 0.1. Furthermore,

assuming the x-axis is oriented along the major axis of the ellipse, the flow is symmetric

about y = 0. Thus, only the upper half of the domain is used for the simulation. The

boundary of the physical domain is given by ∂Ω = ∪3
i=0Γi, where

Γ0 = {(x, y) | − 100 ≤ x ≤ −1, y = 0},

Γ1 = {(x, y) | − 1 ≤ x ≤ 1, y = b
√

1 − x2/a2},

Γ2 = {(x, y) | 1 ≤ x ≤ 100, y = 0},

Γ3 = {(x, y) | − 100 ≤ x ≤ 100, y =
√

100 − x2}.

On Γ3, the full state boundary condition is used. Boundaries Γ0 and Γ2 are symmetry lines,

and Γ1 is a no slip, adiabatic wall.

Given the simple geometry of the domain, it is straightforward to construct a mapping

from a rectangular meshing domain to the physical domain. Specifically, the mapping from

the meshing space to the physical space, g : ΩM → Ω, is given by

g(ξ, η) =







exp ξ cos η

exp ξ
logR

[

b
√

1 − cos2 η
a2

(logR− ξ) + ξ sin η

]






,

where R = 100.0 and ΩM = {(ξ, η) | 0 ≤ ξ ≤ logR, 0 ≤ η ≤ π}. Furthermore, superpara-

metric elements are used. In particular, the geometry of each element is described using

q = 5 Lagrange polynomials for all p. To illustrate the mesh map, Figure 5-9 shows the

initial mesh used for the adaptation run in both the meshing and physical spaces.

Figure 5-10 shows the adaptation history for this case. The actual error is computed

relative to the drag from a p = 3 solution on a 8752 element mesh generated by uniformly

refining (in the meshing space) the finest mesh generated by adaptation on the p = 3

discretization. This value is 81.344140792 counts. The figure shows that, in general, the

p = 3 discretization is slightly more efficient, in terms of DOF required to achieve a given
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(b) Adapt Iter 2, p = 1, DOF = 7929
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(c) Adapt Iter 0, p = 2, DOF = 1404
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(d) Adapt Iter 2, p = 2, DOF = 3054
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(e) Adapt Iter 0, p = 3, DOF = 2340
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(f) Adapt Iter 2, p = 3, DOF = 3520

Figure 5-6: Skin friction distributions for flow over a flat plate computed using the standard
weighting discretization
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(a) Adapt Iter 0, p = 1, DOF = 702
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(b) Adapt Iter 2, p = 1, DOF = 8850
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(c) Adapt Iter 0, p = 2, DOF = 1404
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(d) Adapt Iter 2, p = 2, DOF = 3390
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(e) Adapt Iter 0, p = 3, DOF = 2340
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(f) Adapt Iter 2, p = 3, DOF = 3610

Figure 5-7: Skin friction distributions for flow over a flat plate computed using the dual
consistent discretization
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(a) Adapt Iter 0, p = 1, DOF = 702
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(b) Adapt Iter 2, p = 1, DOF = 8544
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(c) Adapt Iter 0, p = 2, DOF = 1404
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(d) Adapt Iter 2, p = 2, DOF = 3096
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(e) Adapt Iter 0, p = 3, DOF = 2340
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(f) Adapt Iter 2, p = 3, DOF = 3530

Figure 5-8: Skin friction distributions for flow over a flat plate computed using the mixed
formulation discretization
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Figure 5-9: Initial mesh (1600 elements) for the ellipse adaptation test case, shown in both
the meshing and physical spaces
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Figure 5-10: Estimated and actual drag error versus DOF for adaptation on the drag on an
ellipse

accuracy, than the p = 2 discretization. Moreover, both p = 2 and p = 3 are significantly

more efficient that p = 1. For example, the p = 1 discretization requires 21999 DOF to

achieve an error of approximately 3.0× 10−2 counts. Alternatively, the p = 3 discretization

gives an error of approximately 2.1 × 10−2 counts using only 6280 DOF.

Figure 5-11 shows the pressure coefficient distribution on the initial and final meshes

for p = 1, 2, 3. While the differences in the pressure coefficient between the initial and final

meshes are fairly minor, the skin friction changes dramatically. Figure 5-12 shows the skin

friction distribution on the initial and final meshes for p = 1, 2, 3. On the initial mesh, the

skin friction is highly oscillatory for all p. Furthermore, the values over much of the airfoil

are significantly larger on the initial mesh than the final, leading to drag values that are too

large. Despite the fact that the initial solutions are severely under-resolved, the adaptation

algorithm is able to improve the quality of the meshes and the resulting solutions. Thus, on

the final meshes, while some oscillations are still visible, their amplitude has been reduced,

especially for p = 2, 3.

Finally, to demonstrate the changes the adaptation scheme makes to the mesh, Figure 5-

13 compares the final mesh resulting from the p = 3 run with the initial mesh. While the

initial mesh is somewhat anisotropic, it is clear that, as expected, the final adapted mesh

has much more resolution near the wall.
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Figure 5-11: Pressure coefficient distributions on initial and final meshes for flow over an
ellipse
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Figure 5-12: Skin friction distributions on initial and final meshes for flow over an ellipse
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Figure 5-13: Initial (left) and final (right) meshes for the p = 3 adaptation on the ellipse
test case
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5.2.3 NACA 0012

The third test geometry is a NACA 0012 airfoil. The airfoil definition and computational

domain for this case are given in Section 3.4.2. Two flow conditions are considered: M∞ =

0.25, Rec = 1× 106, α = 0 and M∞ = 0.25, Rec = 1× 107, α = 0. In both cases, the airfoil

surface is a no slip, adiabatic wall while the outer boundary is treated with the farfield,

full state approach. Only the linear elasticity mesh movement approach with isoparametric

elements is used in this case. Finally, the assumed error convergence rate was lowered from

s+ t = 2p to s+ t = p+ 1. This step was taken to improve the performance of the scheme

for the initial adaptation iterations, where the solution is severely under-resolved. In this

regime, it is unrealistic to expect to achieve the optimal asymptotic order of accuracy. Thus,

the assumed rate was lowered, causing the adaptation to be more aggressive—i.e. decrease

h more rapidly.

Figure 5-14 shows the adaptation history for the Rec = 1 × 106 case. The initial mesh

for this case was generated by taking two p = 3 adaptation iterations on M∞ = 0.25, Re =

1 × 105, α = 0 flow, starting from a 1280 element structured mesh. The actual error is

computed relative to the drag from a p = 3 solution on a 8170 element mesh generated by

taking an additional p = 3 adaptation iteration from the finest p = 3 result shown. For this

solution, the drag value is 107.17549806 counts. As expected, the p = 2 and p = 3 schemes
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Figure 5-14: Estimated and actual drag error versus degrees DOF for adaptation on the
drag on a NACA 0012 in Rec = 1 × 106 flow

are both more efficient than the p = 1 discretization. For example, to achieve an error of

7.5 × 10−2 counts, the p = 3 discretization uses 12110 DOF, while the p = 1 discretization
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would require more than 20000.

The pressure coefficient distribution on both the initial and final meshes for all p is

shown in Figure 5-15. Oscillations on the initial mesh are more apparent here than in

the ellipse case. However, after adaptation, smooth cp profiles are obtained for all p. The

skin friction is also oscillatory on the initial mesh, as shown in Figure 5-16. Again, the

adaptation algorithm is successful in improving the mesh and solution qualities despite the

poor quality of the initial solutions. Thus, the profiles on the final meshes are significantly

smoother than on the initial meshes.

Figure 5-17 shows the adaptation history for the Rec = 1×107 case. The initial mesh for

this case is the mesh generated after four p = 3 adaptation iterations on the Rec = 1× 106

case. The actual error is computed relative to the extrapolated p = 5 result given in

Section 3.4.2. For this case, the p = 2 method produces the best results for errors larger

than approximately 1 × 10−3 counts. This fact results at least partially from the mesh

generation parameters used here. The BAMG mesh generator bounds the rate of change of

the mesh size by a user specified parameter (see “-ratio” in the BAMG User’s Guide [58]).

When “-ratio” is set to r, the rate of change of the mesh spacing is bounded by log(r). For

the p = 1, 2 cases, r = 4 was used. For p = 3, the solution diverged after a single adaptation

iteration when using r = 4. Setting r = 2 alleviates this problem, but results in larger,

less efficient meshes. Despite this fact, for small error tolerances, p = 3 is competitive with

p = 2.

Figure 5-18 shows the pressure coefficient distribution on the initial and final meshes

for p = 1, 2, 3. The oscillations observed on the initial mesh are virtually eliminated by

the adaptive algorithm. Figure 5-19 shows the skin friction distributions. As observed in

the previous cases, the oscillations in the skin friction are much more severe than those in

the pressure coefficient. In the p = 2, 3 cases, these oscillations are largely eliminated by

adaptation. However, the DOF required to eliminate the oscillations in the skin friction is

larger than that necessary to achieve engineering accuracy for the drag. For p = 1, the skin

friction on the final adapted mesh is still quite oscillatory. It is expected that additional

adaptation iterations would produce a smooth skin friction distribution if enough DOF were

allowed.
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Figure 5-15: Pressure coefficient distributions on initial and final meshes for Rec = 1× 106

flow over a NACA 0012
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Figure 5-16: Skin friction distributions on initial and final meshes for Rec = 1 × 106 flow
over a NACA 0012
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Figure 5-17: Estimated and actual drag error versus DOF for adaptation on the drag on a
NACA 0012 in Rec = 1 × 107 flow
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Figure 5-18: Pressure coefficient distributions on initial and final meshes for Rec = 1× 107

flow over a NACA 0012
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Figure 5-19: Skin friction distributions on initial and final meshes for Rec = 1 × 107 flow
over a NACA 0012
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Chapter 6

Unsteady Adaptation Algorithm

This chapter describes a modification to the adaptation algorithm presented in Chapter 5.

The new algorithm, referred to as the unsteady adaptation algorithm, is intended to improve

the robustness of the standard procedure by removing the need to converge a steady state

solution before adapting. The motivation for this algorithm is described in more detail

in Section 6.1. The algorithm is shown in Section 6.2, and Section 6.3 contains sample

numerical results.

6.1 Motivation

One drawback of the adaptation algorithm presented in Chapter 5 is the need to obtain a

steady state solution prior to adapting the mesh. This need places a very high robustness

requirement on the flow solver. In particular, the solver must be able to obtain the steady

flow and adjoint solutions on arbitrarily bad meshes. This requirement is particularly

restrictive for high-order methods, which tend to produce oscillations in state variables

in under-resolved regions of the flow. These oscillations often cause the discrete solution

to diverge. See [79] for an example of this phenomenon in laminar flow. Thus, while

it is important to maximize the robustness of the solver, another method for improving

robustness is to remove the requirement that a steady state solution be obtained before

adapting the mesh. One idea for removing this requirement is to march the solution forward

in time and adapt the mesh at each time step.

6.2 Unsteady Algorithm

Underlying the unsteady algorithm is a procedure for estimating the error due to spatial

discretization at the current time step. This error estimate is presented in Section 6.2.1.
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Section 6.2.2 describes the unsteady adaptation algorithm for uniform time step. Finally,

in Section 6.2.3, the algorithm is extended to allow the time step to vary throughout the

mesh.

6.2.1 Error Estimation

In the unsteady case, the error estimation algorithm is slightly modified from the standard

case. The output of interest is taken to be the average over the current time step of the

steady state output of interest. Thus, if the output of interest of the steady simulation is

denoted J , the output of interest for the ith time step is given by

Ju(w) =
1

∆t

∫ ti

ti−1

J (w).

where ∆t = ti − ti−1. Only backward Euler time discretization is considered. Thus, the

discrete solution from ti−1 to ti is constant in time—i.e. uiH(x, t) = uiH(x)—which implies

that

Ju(uiH) = J (uiH).

At each time step, the semi-linear form for the unsteady problem is given by

Ru,H(uiH ,vH) ≡ 1

∆t

∑

κ∈TH

∫

κ
vTH
(

uiH − ui−1
H

)

+RH(uiH ,vH),

where RH is the semi-linear form corresponding to the steady problem. Thus, the discrete

problem for a single time step takes the following form: given ui−1
H ∈ VH , find uiH ∈ VH

such that

Ru,H(uiH ,vH) = 0, ∀vH ∈ VH .

Moreover, one can view this discrete problem as a spatial discretization of the following

temporally discrete but spatially continuous problem: given ui−1 ∈ V, find ui ∈ V such

that
1

∆t

∫

Ω
vT
(

ui − ui−1
)

+R(ui,v) = 0, ∀v ∈ V, (6.1)

where R(·, ·) is the weak form of the steady governing equations. Then, by the same analysis

as in Section 4.1, the error can be written in terms of the primal or the adjoint residual:

Ju(ui) −Ju(uiH) = −Ru,H(uiH ,ψ −ψH),

Ju(ui) −Ju(uiH) = −R̄ψu,H(ui,uiH ;ui − uiH ,ψH),
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where ψH ∈ VH is arbitrary, ψ solves the adjoint problem

R̄ψu,H(ui,uiH ;v,ψ) ≡ R̄u,H(ui,uiH ;v,ψ) − J̄u(ui,uiH ;v) = 0, ∀v ∈ VH + V,

and the mean-value linearizations are

R̄u,H(ui,uiH ;v,w) ≡ 1

∆t

∑

κ∈Th

∫

κ
wTv + R̄H(ui,uiH ;v,w),

J̄u(ui,uiH ;v) ≡ J̄ (ui,uiH ;v).

Of course, the exact solution, ui and adjoint, ψ, are unknown. However, making the

same approximations as in the steady case, the contribution to the error due to spatial

discretization of a single element can be estimated by

ǫκ =
1

2

(

∣

∣Ru,h(u
i
H , (ψh −ψH)|κ)

∣

∣+
∣

∣Rψu,h(u
i
H ; (uih − uiH)|κ,ψH)

∣

∣

)

. (6.2)

Then, a global error estimate is given by ǫ =
∑

κ∈Th
ǫκ. In (6.2), ψH is set to the discrete

adjoint. That is, ψH solves the following problem: find ψH ∈ VH such that

R′
u,H [uiH ](vH ,ψH) ≡ 1

∆t

∑

κ

∫

κ
vTHψH +R′

H [uiH ](vH ,ψH)−J ′[uiH ](vH) = 0, ∀vH ∈ VH .

The surrogate solutions ψh and uh are constructed by taking element-block Jacobi iterations

on the (p + 1)th order unsteady problem. This procedure is exactly analogous to that

presented in Section 4.2 for the standard case.

6.2.2 Comparison with Standard Algorithm

To best understand the unsteady procedure, it is compared with the standard algorithm.

Recall the form of the standard adaptation algorithm, presented in Section 5.1. The main

idea of the unsteady algorithm is to estimate the error and adapt the mesh at every time step.

The solution procedure utilized in step 2 of the standard algorithm reduces to Newton’s

method as ∆t→ ∞. For finite ∆t, the state update is that resulting from a single Newton

iteration on a backward Euler discretization of the analogous unsteady problem. By taking

additional Newton iterations on this unsteady problem, one can find the update that solves

the unsteady problem, as shown in Chapter 2. Given this solution and the appropriate

adjoint, the error at the given time step can be estimated, as demonstrated in Section 6.2.1.

This error estimate motivates the following algorithm:

1. Generate an initial mesh and initial condition, U0. Initialize the CFL number, and
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compute the corresponding time step, ∆t. Set i = 1.

2. While ‖R(Ui−1)‖ > δtol,

(a) Solve the unsteady problem at the current time step, Ru(U
i) = 0, where

Ru(U
i) ≡ 1

∆t
M(Ui − Ui−1) + R(Ui).

In particular,

i. Set W0 = Ui−1 and j = 1.

ii. While ‖Ru(W
j−1)‖ > δu,tol, where δu,tol is the unsteady solution tolerance,

and j < Jmax, where Jmax is the maximum number of iterations allowed to

solve the unsteady problem,

A. Update the primal state: Wj = Wj−1−
(

1
∆tM + ∂R

∂U

∣

∣

Wj−1

)−1
Ru(W

j−1).

B. j → j + 1.

iii. If ‖Ru(W
j−1)‖ > δu,tol, decrease the CFL number by the user specified

factor, recompute the time step, and return to step (i.). Otherwise, Ui =

Wj−1.

(b) Find Ψ that solves the appropriate dual problem for the current time step:

(

1

∆t
M +

∂R

∂U

∣

∣

∣

∣

T

Ui

)

Ψ =
∂J

∂U

∣

∣

∣

∣

T

Ui

.

(c) Use Ui and Ψ to compute the error estimate, ǫ, for the current time step.

(d) Increase the CFL number by the user specified factor, and recompute the time

step.

(e) If ǫmin < ǫ < ǫtol, do not adapt the mesh, i → i + 1, and return to step (2).

Otherwise, adapt the mesh, i→ i+ 1, and return to step (2).

3. If ǫ < ǫtol, quit. Otherwise, the steady solution has been obtained, but it is not as

accurate as requested. Thus, run standard adaptation algorithm.

The time step in this algorithm is computed from the CFL number, as shown in Section 2.4.

Furthermore, the CFL number is controlled by user specified increase and decrease factors.

In all cases shown, the CFL increase factor was set to 1.5, and the decrease factor was set to

2.0. Finally, given the error estimate and the surrogate solution used to set the anisotropy,

the adaptation mechanics used in the unsteady algorithm are the same as those described

in Section 5.1.
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6.2.3 Extension to Variable Time Step

The algorithm presented in Sections 6.2.1 and 6.2.2 uses a time step that is constant through-

out the mesh. Thus, although only first-order accurate, the backward-Euler temporal dis-

cretization is at least a consistent discretization of the unsteady problem. This algorithm

should be quite robust—i.e. one expects that if small enough time steps are used, the al-

gorithm could successfully march through any transients encountered between the initial

condition and steady state solution. However, given that the time step is set by taking

a minimum over the entire mesh, the time step will be restricted to that required by the

smallest elements. To march to the steady state solution more rapidly, one can consider

allowing the time step to vary from element to element. In this case, each element, κ, uses

the time step ∆tκ, as defined in Section 2.4. Thus, the semi-linear form for the fully discrete

problem becomes

Ru,H(uiH ,vH) ≡
∑

κ∈TH

1

∆tκ

∫

κ
vTH
(

uiH − ui−1
H

)

+RH(uiH ,vH).

For this case, it is not clear that the corresponding temporally discrete but spatially contin-

uous problem—as shown for uniform time step in (6.1)—is well-posed. However, in practice,

this is of little concern, as one can instead estimate the error relative to a finer spatial dis-

cretization. Specifically, the DWR method is applied to estimate the error J (uih)−J (uiH),

where uih ∈ Vh satisfies

∑

κ∈TH

1

∆tκ

∫

κ
vTh
(

uih − ui−1
h

)

+Rh(u
i
h,vh) = 0, ∀vh ∈ Vh,

and, for example, Vh is a higher-order space than VH . The resulting error estimate has the

same form as that given in (6.2). Moreover, the resulting unsteady algorithm is the same

as that given in Section 6.2.2 except for the use of a different time step on each element.

6.3 Numerical Results

To demonstrate the unsteady algorithm, it is applied to three test cases. For the first two

cases, simple geometries that have already been considered in Chapter 5 are used. Unlike

the results of Chapter 5 however, the initial meshes used here are obviously inappropriate

for RANS calculations. The final test geometry is a multi-element airfoil. This case is

started from an inviscid-style, isotropic mesh, and the unsteady algorithm is used to drive

the adaptation until the mesh is reasonable for obtaining the steady flow solution.
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6.3.1 Flat Plate

The first test case is Rec = 1 × 107, M∞ = 0.25 flow over a flat plate with zero pressure

gradient. The steady adaptation algorithm is applied to this case in Section 5.2.1. The

initial mesh used in that case contained 234 elements, and the height of the first layer of

elements was approximately ∆y+ = 9.5 at x/c = 1.0. The initial mesh used here, shown

in Figure 6-1, has only 78 elements. Furthermore, while the spacing in the x direction is

Figure 6-1: Initial mesh for unsteady adaptation applied to flow over a flat plate

the same as the 234 element mesh, the y spacing is much coarser. In particular, the height

of the first layer of elements is approximately ∆y+ = 2.1 × 103 at x/c = 1.0. This spacing

is clearly too large for accurate RANS boundary layer computations. More importantly,

it has not been possible to obtain converged p > 1, steady state solutions on this mesh.

However, the unsteady adaptation algorithm succeeds using this very coarse initial mesh.

Specifically, initializing the state to uniform flow, i.e.

ρ

ρ∞
= 1.0,

ρu

ρ∞u∞
= 1.0,

ρv

ρ∞u∞
= 0.0,

ρE

ρ∞u2
∞

= 29.07,
ρν̃

µ∞
= 1.0,

with the initial CFL set to 1.0 and using the p = 3, dual consistent discretization, the

unsteady adaptation algorithm eventually converges to a steady state solution that satisfies

the desired error tolerance of 0.2 drag counts.

The adaptation histories for both the uniform and variable time step versions of the

algorithm are shown in Figure 6-2. Examining the uniform time step results, the figure

shows that the estimated error drops below the desired tolerance at iteration 21. However,

since the spatial residual is not yet converged, the algorithm continues to march forward

in time without adapting the mesh. At iteration 25, the error estimate drops below the

minimum error request (one-tenth of the specified error tolerance). Thus, mesh adaptation

is performed. In fact, the mesh is coarsened because the error is smaller than required.

At iteration 42, the error estimate re-enters the desired range for the final time. Thus, no

further adaptation is performed. Also at iteration 42, the time step is decreased by nearly

two orders of magnitude. This decrease was required to obtain a converged solution for the

time step. The steady state solution is obtained after an additional 26 time steps. The

results for the variable time step case are qualitatively similar except that fewer iterations

are required. In particular, the variable time step algorithm obtains the steady state solution
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(f) Time step (Uniform ∆t only)

Figure 6-2: Unsteady adaptation history for the flat plate test case
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in 48 iterations, compared to 68 for the uniform time step case.

Meshes generated by the uniform time step algorithm are shown in Figure 6-3. Over the

course of the adaptation run, the number of DOF increases by a factor of approximately

2.7 from the initial to the final mesh. The largest mesh generated during the run is larger

than the final mesh by a factor of approximately 1.4.

(a) Finest mesh, 288 elements

(b) Final mesh, 208 elements

Figure 6-3: Finest and final meshes for unsteady adaptation using uniform time step applied
to flow over a flat plate

The final mesh generated using the variable time step approach is shown in Figure 6-4.

While this mesh has more elements than the final mesh produced by the uniform time step

Figure 6-4: Final mesh (252 elements) for unsteady adaptation using variable time step
applied to flow over a flat plate

case, it also gives a smaller error estimate, although both solutions satisfy the requested

tolerance.

To ensure that the unsteady algorithm is producing reasonable results, the final error,

error estimate, and DOF can be compared to the results of the standard algorithm. At

the converged steady state, the result from the unsteady algorithm with uniform time step

has 2080 DOF. The maximal error estimate (max(ǫprim, ǫdual)) for the solution on the final

mesh is 2.45 × 10−2 counts, and the actual error is 2.94 × 10−2 counts. Using the variable

time step version of the algorithm, the final steady solution with 2520 DOF has a maximal

error estimate of 1.37×10−2 counts and an actual error of 2.31×10−2 counts. Alternatively,

after a single iteration, the standard algorithm for p = 3, started with 2340 DOF, gives 2630

DOF with a maximal error estimate of 1.55 × 10−2 and an actual error of 4.15 × 10−3.
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6.3.2 Ellipse

The second test case is Rec = 2×107, M∞ = 0.25, α = 0 flow over an ellipse. The geometry

for this case is the same as that considered in Section 5.2.2, but the Reynolds number is

twice as large. The p = 3, dual consistent discretization is used. The initial condition is

the same as that used for the flat plate case, but the initial CFL was set to 0.1. For this

case, only uniform time step results are presented.

As in the flat plate case, the initial mesh, shown in Figure 6-5, is extremely coarse.

It contains 400 q = 3 elements. All meshes for this case are generated using the global

mapping approach described in Section 5.1.3. In the figure, each edge of the true mesh is

approximated by linear interpolation between the q = 3 nodes on the edge.

The adaptation history is shown in Figure 6-6. As with the flat plate case, the mesh is

initially coarsened. After this initial coarsening, elements are added near the body until the

error tolerance is satisfied at 21 iterations. The error estimate drops below the minimum

error request after 24 iterations, and the mesh is coarsened again. The final mesh adaptation

occurs at the 37th iteration, after which 26 additional iterations are required to converge

the steady solution.

Figure 6-7 shows the finest mesh, generated after 21 iterations, and the final mesh. The

finest mesh is significantly finer near the ellipse. This resolution is required to resolve the

very thin boundary layer that forms after starting the calculation from uniform flow. As

expected, the final mesh shows significant refinement in the boundary layer relative to the

initial mesh. However, the wake is left somewhat under-resolved. It is expected that for a

smaller error tolerance, refinement would occur in the wake as well.

6.3.3 Advanced Energy Efficient Transport Three-Element Airfoil

The final test case is M∞ = 0.26, Rec = 9 × 106 (based on the cruise configuration chord),

α = 8◦ flow around the advanced Energy Efficient Transport (EET) three-element airfoil.

For this case, p = 3, isoparametric elements are used, and the curved elements are generated

via the linear elasticity node movement approach. The uniform time step version of the

algorithm is used, and the output of interest is drag.

The initial mesh used here, shown in Figure 6-8, is an 11063 element, isotropic mesh.

This mesh may be adequate for inviscid flow, but it is clearly not appropriate for a high

accuracy RANS calculations.

To begin the calculation, the flow is initialized to zero flow. Specifically,

ρ

ρ∞
= 1.0,

ρu

ρ∞u∞
= 0.0,

ρv

ρ∞u∞
= 0.0,

ρE

ρ∞u2
∞

= 26.416,
ρν̃

µ∞
= 1.0 × 10−2.
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Figure 6-5: Initial mesh for unsteady adaptation applied to flow over an ellipse
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Figure 6-6: Unsteady adaptation history for the ellipse test case
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(d) Final mesh, zoom

Figure 6-7: Finest and final meshes for unsteady adaptation applied to flow over an ellipse
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Figure 6-8: Initial mesh for unsteady adaptation applied to flow over the EET 3-element
airfoil

This initial condition—as opposed to the freestream condition used in the flat plate and

ellipse cases—is used to improve the robustness of the procedure. Using the freestream

flow initial condition here leads to a mesh generation failure due to the very small, high

aspect ratio elements requested to resolve the extremely thin transient boundary layer

encountered at the beginning of the procedure. Starting from the zero flow condition relieves

this transient somewhat. Instead, a different transient is encountered due to the mismatch

between the farfield boundary conditions, which are consistent with the freestream flow,

and the initial condition.

For this case, the unsteady adaptation algorithm is not used to converge the final steady

state solution. Due to the large cost of the current algorithm and the length of the transient

encountered when starting from zero flow, it is used only as a start-up procedure to obtain a

reasonable mesh. In particular, the unsteady algorithm is used to march the solution forward

in time approximately 85 freestream flow convective time scales. After this time, the mesh

shown in Figure 6-9 is obtained. Clearly, this mesh, which contains 10332 elements, has

significantly more resolution in the boundary layer than the initial mesh. Furthermore, it is

possible to obtain the steady state solution on this mesh, allowing the standard adaptation

to be applied. After a single standard adaptation iteration, the mesh shown in Figure 6-10

is generated. This mesh contains 11620 elements and is very similar to the mesh generated
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Figure 6-9: Mesh obtained by unsteady adaptation applied to flow over the EET 3-element
airfoil

Figure 6-10: Mesh obtained by a standard adaptation iteration for flow over the EET
3-element airfoil
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by the unsteady algorithm. However, it is significantly finer near the leading edge of the

slat, as illustrated in Figure 6-11.

Figure 6-12 shows the solution obtained on the final mesh. The surface pressure co-

efficient is shown in Figure 6-13. For this solution, the lift coefficient is cℓ = 3.51, which

agrees well with experimental results and other computations [71, 5, 103]. Finally, the drag

coefficient is cd = 436 counts, and the error estimate is approximately 3 counts. This error

estimate gives a percent error of approximately 0.7%.

To summarize, while the unsteady procedure was not used to converge the steady so-

lution in this case, it did enable a reasonable initial mesh to be automatically generated

starting from an isotropic mesh which was too coarse for RANS simulations. This reasonable

initial mesh then allowed a steady solution to be obtained and used to drive the standard

adaptation algorithm. Thus, the primary benefit of the unsteady procedure for this case

is the automated generation of a reasonable initial mesh. While this is an important step,

future work should look to further refine and improve the algorithm.
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(a) Indication of zoom region near slat leading edge

(b) Before standard adaptation (c) After standard adaptation

Figure 6-11: Boundary layer mesh on slat before and after standard adaptation for EET
3-element airfoil
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(a) Mach number

(b) Normalized pressure (p/ρ∞U2
∞)

(c) Normalized SA working variable (ν̃/ν∞)

Figure 6-12: Finest solution (p = 3, 11620 elements) for the EET 3-element airfoil
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Figure 6-13: Surface pressure coefficient distribution for finest solution (p = 3, 11620 ele-
ments) for the EET 3-element airfoil
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Chapter 7

Conclusions and Outlook

7.1 Summary and Conclusions

This thesis presents research toward a high-order, adaptive solution method for the RANS

equations coupled with the SA turbulence model. The main contributions of this work are

an analysis of the dual consistency of the DG discretization of the SA model source terms,

an extension of output-based error estimation and adaptation to high-order discretizations

of the RANS equations on curved, boundary conforming meshes, and a new, unsteady

adaptation framework to eliminate the need to obtain converged steady state solutions

prior to performing error estimation and mesh adaptation.

The dual consistency analysis finds that the straightforward standard weighting dis-

cretization of gradient dependent source terms results in a dual inconsistent discretization.

However, a dual consistent discretization can be constructed by adding a dual consistency

correction to the standard weighting scheme. Furthermore, discretizations based on the

mixed formulation are shown to be asymptotically dual consistent. The impact of dual con-

sistency on accuracy is illustrated for a scalar model problem. Specifically, the results show

that the dual consistent and asymptotically dual consistent discretizations achieve optimal

accuracy for the primal solution, adjoint solution, and a simple functional output. Alter-

natively, the standard weighting scheme produces suboptimal results for some p. For the

RANS-SA system, the results for a simple flat plate test case demonstrate that the standard

weighting discretization produces oscillatory adjoint solutions where the dual consistent and

mixed formulation methods give smooth adjoints. These oscillations appear most clearly in

the derivatives of the adjoint solution. This result agrees with the result from the model

problem that the adjoint for the standard weighting discretization does not converge to the

continuous adjoint in the broken H1 norm. Furthermore, a grid refinement study for the

NACA 0012 airfoil shows that, when the error is not dominated by the boundary layer edge
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singularity, the dual consistent discretization is superior to the standard weighting method.

The method of Dual Weighted Residuals is applied to estimate the error in functional

outputs of interest. While this method has appeared throughout the literature, to the au-

thor’s knowledge, this work represents its first application to high-order DG discretizations

of the RANS equations on curved meshes. The implementation here relies on an element-

block Jacobi iterative procedure to generate the surrogates for the exact primal and adjoint

solutions appearing in the error estimate. The results demonstrate that the error estimates

are generally accurate for both the standard weighting and dual consistent discretizations.

However, especially for p = 2, the standard weighting error estimates can be significantly

smaller than the true error.

In addition to the functional output error estimate, the error estimation procedure

provides an error indicator for each element in the mesh. This elemental error is used to

drive a mesh adaptation procedure. Specifically, the error estimate is used to determine

the size of elements desired in the adapted mesh, while the anisotropy is set by attempting

to achieve equal interpolation error in all directions. This procedure has been successfully

applied to multiple high Re test cases, showing that, given reasonable starting solutions,

the algorithm is capable of improving the mesh and decreasing the output error. Moreover,

it is observed that the p = 2, 3 discretizations are superior to the p = 1 in terms of DOF

required to achieve a desired error tolerance.

Unfortunately, the requirement that a converged solution must be obtained before adapt-

ing is quite restrictive. In particular, it implies that one must converge the steady solution

on the initial mesh. Of course, to minimize grid generation effort, it is beneficial to use

very coarse initial meshes. Such coarse meshes can cause significant difficulty for high-order

discretizations, particularly for the RANS equations. Thus, an unsteady adaptation pro-

cedure, where the need to converge steady state solutions prior to adapting is eliminated,

has been developed. In this unsteady procedure, the error due to spatial discretization is

estimated at every time step and used to drive the mesh adaptation algorithm. Numeri-

cal results demonstrate that this algorithm has the potential to significantly improve the

robustness of the adaptation procedure when starting from very coarse initial meshes. In

particular, starting from meshes that are clearly inappropriate for RANS computations,

accurate steady state p = 3 solutions are obtained.

7.2 Future Work

Many areas for future work remain. A few ideas for further research are described here.
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7.2.1 Turbulence Model Improvements

The modifications to the SA model described in Chapter 2 are designed to make the model

equation stable for negative values of the working variable. However, these modifications do

not address the behavior that is often the root cause of the appearance of negative values:

the sharp transition in the eddy viscosity at the edge of the boundary layer. Neglecting

the effect of the viscosity of the fluid, the first derivative of the turbulence model working

variable is discontinuous at the boundary layer edge. This discontinuity strongly affects both

the primal and adjoint solutions at the boundary layer edge. This behavior is apparent in the

adjoint derivative profiles (Figures 3-8 and 3-9) shown in Chapter 3. These discontinuities at

the boundary layer edge, while present in many turbulence models, are non-physical [108].

More importantly, they produce oscillations in high-order solutions that can cause the

solution to diverge. Modifications to the model to increase the smoothness of the eddy

viscosity in this region could lead to significant robustness improvements for high-order

discretizations of the RANS-SA system.

7.2.2 Discretization Robustness Improvement

More generally, robustness for high-order RANS discretizations is a major issue. While

robustness problems are sometimes tied to under-resolution at the boundary layer edge, they

can also be caused by under-resolution in other flow regions where the turbulence model is

not at fault, e.g. near the leading edge of an airfoil where the boundary layer is still laminar.

One idea to address such under-resolved features is the addition of artificial viscosity. The

use of artificial viscosity has recently been developed for shock-capturing for high-order

DG discretizations of the Euler, Navier-Stokes, and RANS equations [84, 10]. In related

work, it has been successfully applied to improve the robustness of RANS calculations, even

for flows without shocks [76]. This technique should be further investigated for high-order

discretizations of the RANS equations, particularly in combination with adaptation.

7.2.3 Standard Adaptation Algorithm Modifications

Two aspects of the adaptive procedure could be modified to improve the performance of

the algorithm. As noted in Section 5.1.1, the desired anisotropy is determined by a high-

order analog of a Hessian-based technique. Specifically, approximations of the (p + 1)th

derivatives of the Mach number are used to attempt to equidistribute the interpolation error.

One problem with this technique is that the anisotropy determined by the Mach number

may not be appropriate for all solution and adjoint components over the entire domain.

For example, for airfoil flows with drag as the output of interest, upstream of the airfoil,
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the adjoint varies rapidly in the direction normal to the stagnation streamline. Generally,

the Mach number does not capture this anisotropy, potentially leading to poor resolution

of the adjoint, which can adversely affect both the error estimate and output accuracy.

One potential method for addressing this problem is to compute the desired metric using

multiple quantities and find an appropriate intersection of the computed metrics. This idea

was explored by Castro-Diaz et al. [21] using the primal state vector as the quantities of

interest. It should be investigated using the adjoint state as well.

A second potential deficiency of the algorithm is the reliance on an assumed order of

accuracy. Even when the asymptotic order of accuracy is known, it is unlikely that this

order will be achieved in the initial iterations of an adaptation run, when the solution is not

well resolved. In this case, the adaptation scheme will give less than the desired reduction in

the error at every iteration, leading to more iterations being required to achieve the desired

tolerance. A larger drawback is that the order of accuracy depends on the regularity of the

exact solution, which may not be known. Or, even if it is known, the elements affected by

the singularities must be determined from the discrete solution. Thus, it would be beneficial

to remove the order of accuracy from the adaptive algorithm. One appealing approach is to

entirely avoid the metric specification step, instead driving the mesh adaptation with error

directly, as described by Park and Darmofal [80].

7.2.4 Unsteady Adaptation Refinements

The unsteady adaptation algorithm presented here is but a beginning. Many issues remain

to be resolved. First, the cases shown in Chapter 6 were started from a uniform flow initial

condition. While these cases were successful, this initial condition causes a very violent

transient that the solver must march through. Physically realistic initial conditions should

be explored. Second, the tolerances used here were set at the levels desired for the final,

steady state result. Again, while this setting worked in this case, it is probably not the

most efficient selection. One obvious option is to set the error tolerance to some percentage

of the computed output. This tolerance may allow the algorithm to march through the

initial transient using fewer DOF, thus decreasing the total cost. Third, the stopping

criterion should be improved. In the cases shown, a significant fraction of the total cost

is allotted to fully solving each time step and estimating the error even after the output

is changing very little and the adaptation has stopped. This time might be better spent

simply obtaining the steady state solution. Fourth, only backward Euler time discretization

has been considered. The method should be extended to high-order time discretizations.

With high-order discretization in time, it may be possible to move through any transients
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more quickly and reliably. Furthermore, this extension may be viewed as the first step

toward a space-time adaptation algorithm for truly unsteady problems, where high-order

time discretization will be desirable.
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Appendix A

Derivation of the RANS Equations

The compressible Navier-Stokes equations in conservation form are given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (A.1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui + pδji) =

∂τji
∂xj

, (A.2)

∂

∂t

[

ρ

(

e+
1

2
uiui

)]

+
∂

∂xj

[

ρuj

(

h+
1

2
uiui

)]

=
∂

∂xj
(uiτij) −

∂qj
∂xj

, (A.3)

where t denotes time, xi is position, ρ is density, ui is velocity, p denotes pressure, e is

the internal energy per unit mass, h is the enthalpy per unit mass, τij is the viscous stress

tensor, qi is the heat flux vector, and δij is the Kronecker delta. For Newtonian fluids, the

viscous stress tensor is given by

τij = 2µ

(

sij −
1

3

∂uk
∂xk

δij

)

,

where sij = 1
2

(

∂ui
∂xj

+
∂uj
∂xi

)

is the strain rate tensor, µ is the dynamic viscosity, and the

second viscosity is assumed to be −2
3µ. Furthermore, the heat flux vector is given by

Fourier’s law:

qj = −κ ∂T
∂xj

,

where T is the temperature and κ is the thermal conductivity of the fluid.

Finally, it is assumed that the fluid is an ideal gas with constant specific heats. Thus,

p = ρRT, e = cvT, h = cpT,

where R is the ideal gas constant, cv is the specific heat at constant volume, and cp is the

specific heat at constant pressure.
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While (A.1) through (A.3) govern the motion of fluids in both laminar and turbulent

regimes, the large range of spatial and temporal scales present in turbulent flows make

direct solution of the compressible Navier-Stokes equations prohibitively expensive for the

majority of flows of engineering interest [37, 74]. Thus, it is common to instead solve the

RANS equations, which govern the turbulent mean flow.

Following Reynolds [91], the flow variables are written in terms of mean and fluctuating

parts. Then, equations governing the mean flow are derived by averaging the Navier-Stokes

equations. A summary of the relevant definitions and resulting equations is given here. For

more details, see [108].

Given a flow variable, v(x, t), define the time average, v̄(x), by

v̄(x) ≡ lim
T→∞

∫ t0+T

t0

v(x, t) dt.

Then, the flow variables can be decomposed into mean and fluctuating parts. For example,

the density can be written

ρ = ρ̄+ ρ′,

where the fluctuating part, ρ′, is defined by this relationship.

In addition, for compressible flows, it is convenient to define a density-weighted time

average. The density-weighted average of a quantity v(x, t) is denoted by ṽ(x), where

ṽ(x) ≡ 1

ρ̄
lim
T→∞

∫ t0+T

t0

ρ(x, t)v(x, t) dt.

This averaging procedure is known as Favre averaging. As with the conventional average,

the density-weighted average allows the flow variables to be written in terms of mean and

fluctuating parts. For example,

ui = ũi + u′′i .

Applying the time averaging procedure to the compressible Navier-Stokes equations, one

obtains the following equations governing the mean flow:

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0, (A.4)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũjũi + p̄δji) =

∂

∂xj
(τ̄ji − ρu′′ju

′′
i ), (A.5)

∂

∂t

[

ρ̄

(

ẽ+
1

2
ũiũi

)

+
1

2
ρu′′i u

′′
i

]

+
∂

∂xj

[

ρ̄ũj

(

h̃+
1

2
ũiũi

)

+ ũj
1

2
ρu′′i u

′′
i

]

=
∂

∂xj

[

−q̄j − ρu′′jh
′′ + τjiu

′′
i − ρu′′j

1

2
u′′i u

′′
i

]

+
∂

∂xj

[

ũi

(

τ̄ij − ρu′′i u
′′
j

)]

. (A.6)
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Equations (A.4) through (A.6) contain multiple correlation terms—e.g. ρu′′ju
′′
i in the mo-

mentum equation—that do not appear in (A.1) through (A.3) and are not known in terms

of the mean flow variables. Thus, there are more unknowns than equations, which implies

that the system is not closed. To close the system, it is necessary to relate these correlation

terms to the mean flow via closure approximations.

In general, one must provide closure approximations for five terms: the Reynolds stress

tensor, ρu′′ju
′′
i ; the turbulent kinetic energy per unit volume, ρ̄k ≡ 1

2ρu
′′
i u

′′
i ; the turbulent

heat flux vector, ρu′′jh
′′; the molecular diffusion term, τjiu′′i ; and the turbulent transport

term, ρu′′j
1
2u

′′
i u

′′
j . In this work, the turbulent kinetic energy, molecular diffusion, and turbu-

lent transport terms are ignored. This approximation is reasonable whenever k ≪ h̃, which

holds for most engineering flows into the supersonic regime [108]. Thus, only two closure

approximations are required. For the Reynolds stress tensor, the Boussinesq approximation

is applied. The Boussinesq approximation relates the Reynolds stress to the mean flow

viscous stress tensor:

−ρu′′ju′′i = 2µt

(

s̃ji −
1

3

∂ũk
∂xk

δji

)

− 2

3
ρ̄kδji, (A.7)

where µt is the eddy viscosity. The addition of −2ρ̄kδji/3 is made to guarantee that the

trace of the Reynolds stress is −2ρ̄k. However, in keeping with the assumption that the

turbulent kinetic energy is small compared to the mean flow enthalpy, this term is neglected

here.

Then, following the Reynolds analogy, the turbulent heat flux vector is given by

ρu′′jh
′′ = −µtcp

Prt

∂T̃

∂xj
, (A.8)

where Prt denotes the turbulent Prandtl number, which is taken to be Prt = 0.9.
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Appendix B

Laminar NACA 0012 Results

The test case is M∞ = 0.25, Rec = 1 × 104, α = 0 flow over a NACA 0012 airfoil. The

computational domain and meshes used for this case are described in detail in Section 3.4.2.

Figure B-1 shows the drag error results. The error is computed relative to an “exact”

drag value, which is computed by extrapolating the p = 5 drag results, assuming that

the error convergence rate is the same for both refinements. The resulting drag value is

375.2615065 counts.

The figure shows that p = 1, 2, 3 achieve nearly optimal order of accuracy—i.e. h2p—for

the second mesh refinement. While p = 4, 5 are not achieving their optimal rates, there is no

evidence that the accuracy will asymptote to O(h3) as in the RANS-SA case. Furthermore,

by examining the elemental error estimates, it is possible to confirm that the boundary

layer edge region is not the source of the suboptimal p = 4, 5 results. Figure B-2 shows

the near-airfoil p = 4 elemental error estimates on the coarse and fine meshes. The figure

shows that on the coarse mesh, the error is dominated by a few elements near the edge of

the boundary layer and wake. However, as expected for smooth solutions, these errors are

effectively decreased by h refinement with the high-order discretization, and these regions

to not appear to contribute significantly to the error on the fine mesh.

The p = 4 elemental error estimates for entire domain are shown in Figure B-3. As

expected, the coarse mesh errors in the outer regions of the domain are small compared to

those near the airfoil. However, for the fine mesh, the error is largest on the outer boundary

at the top and bottom points of the circle. These points are where the boundary condi-

tion switches from inflow to outflow conditions. Thus, it appears that it is the boundary

conditions which cause the loss of accuracy for p = 4, 5 in this case.

To summarize, given that this case is run using the same meshes as the turbulent NACA

0012 case, it reinforces the argument that the RANS-SA solution behavior at the boundary

layer edge is responsible for the suboptimal accuracy observed in Section 3.4.2.
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Figure B-1: Drag error for laminar flow over a NACA 0012
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(a) Coarse mesh

(b) Fine mesh

Figure B-2: Elemental error estimate for the p = 4 discretization on the coarse and fine
meshes for the laminar NACA 0012 test case in the near field

(a) Coarse mesh (b) Fine mesh

Figure B-3: Elemental error estimate for the p = 4 discretization on the coarse and fine
meshes for the laminar NACA 0012 test case for the entire domain
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Appendix C

A Priori Output Error Estimation

This appendix provides a priori error bounds for functional outputs computed from fi-

nite element solutions. The analysis demonstrates the importance of dual consistency for

accurately computing functional outputs. Furthermore, the bounds obtained are used to

motivate the convergence rates used by the mesh optimization algorithm discussed in Sec-

tion 5.1.2. For simplicity, a linear problem and linear functional output are considered first.

Then, the analysis is extended to the nonlinear case.

C.1 Linear Analysis

Consider the following continuous primal problem: compute J (u) where u ∈ V satisfies

B(u, v) = ℓ(v), ∀v ∈ V.

Here, B(·, ·) is a bilinear functional and ℓ, and J are linear functionals. The corresponding

dual problem is given by the following: find ψ ∈ V such that

B(v, ψ) = J (v), ∀v ∈ V.

Assume that both the continuous primal and dual problems are well-posed.

Furthermore, consider the following discretization of the primal problem: compute

J (uh) where uh ∈ Vh satisfies

Bh(uh, vh) = ℓ(vh), ∀vh ∈ Vh,

where Vh is an appropriate finite dimensional space. Then, the discrete dual problem is as
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follows: find ψh ∈ Vh such that

Bh(vh, ψh) = J (vh), ∀vh ∈ Vh.

As with the continuous problems, assume that both the discrete primal and dual problems

are well-posed.

Then, using the definitions of the continuous and discrete dual problems, the error in

the computed functional output can be written as

J (u) − J (uh) = B(u, ψ) −Bh(uh, ψh).

To continue, assume that, for the exact solutions u and ψ, B(u, ψ) = Bh(u, ψ). Then,

J (u) − J (uh) = Bh(u, ψ) −Bh(uh, ψh)

= Bh(u, ψ) −Bh(uh, ψ) +Bh(uh, ψ) −Bh(uh, ψh)

= Bh(u− uh, ψ) +B(uh, ψ − ψh)

= Bh(u− uh, ψ) −Bh(u− uh, ψh) +Bh(u− uh, ψh) +B(uh, ψ − ψh)

= Bh(u− uh, ψ − ψh) +Bh(u− uh, ψh) +Bh(uh, ψ − ψh).

Thus, if the discretization is consistent and dual consistent,

J (u) − J (uh) = Bh(u− uh, ψ − ψh).

Finally, if the bilinear form Bh is continuous,

|J (u) −J (uh)| ≤ C|||u− uh||| |||ψ − ψh|||,

where ||| · ||| is an appropriate energy norm. Assuming that the discretization achieves

|||u− uh||| ≤ Chs and |||ψ − ψh||| ≤ Cht,

|J (u) −J (uh)| ≤ Chs+t.

For DG discretizations of hyperbolic problems, assuming the exact solutions u and ψ are

sufficiently regular, r = s = p+ 1/2 (see Johnson and Pitkaranta [63]). Thus,

|J (u) −J (uh)| ≤ Ch2p+1.

For elliptic problems, assuming the exact solution is sufficiently regular, the BR2 scheme,
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as well as many other DG methods, achieve r = s = p (see Arnold et al. [7]). Thus,

|J (u) − J (uh)| ≤ Ch2p.

C.2 Nonlinear Analysis

Consider the following continuous primal problem: compute J (u) where u ∈ V satisfies

R(u, v) = ℓ(v), ∀v ∈ V,

where R(·, ·) is a semi-linear (linear in the second argument) functional, ℓ is a linear func-

tional, and J is a nonlinear functional. The corresponding dual problem is given by the

following: find ψ ∈ V such that

R′[u](v, ψ) = J ′[u](v), ∀v ∈ V.

Assume that both the continuous primal and dual problems are well-posed.

Furthermore, consider the following discretization of the primal problem: compute

J (uh) where uh ∈ Vh satisfies

Rh(uh, vh) = ℓ(vh), ∀vh ∈ Vh.

Then, define the discrete dual problem is as follows: find ψh ∈ Vh such that

R′
h[u](vh, ψh) = J ′[u](vh), ∀vh ∈ Vh.

As with the continuous problems, assume that both the discrete primal and dual problems

are well-posed.

The central idea of the nonlinear analysis shown here is the examination of Taylor series

expansions of the output and residual forms about the exact solution, u. In particular,

consider the Taylor series expansion of the function output:

J (uh) = J (u) + J ′[u](uh − u) + rout(u, uh),

where

rout(u, uh) =

∫ 1

0
J ′′[u+ θ(uh − u)](uh − u, uh − u)(1 − θ) dθ.

For the conditions required for this statement to be valid, see [47].
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Assuming that the bilinear functional J ′′[u+θ(uh−u)](·, ·) is continuous for all θ ∈ (0, 1),

|rout(u, uh)| ≤
∫ 1

0
|J ′′[u+ θ(uh − u)](uh − u, uh − u)(1 − θ)| dθ ≤ C|||uh − u|||2.

Thus,

|J (uh) − J (u)| ≤ |J ′[u](uh − u)| + C|||uh − u|||2.

To complete the analysis, it is necessary to analyze the linear term, J ′[u](uh − u). By

the definitions of the dual problems,

J ′[u](uh − u) = R′
h[u](uh, ψh) −R′[u](u, ψ).

Assuming that, for the exact solutions u and ψ, R′[u](u, ψ) = R′
h[u](u, ψ), gives

J ′[u](u− uh) = R′
h[u](u, ψ) −R′

h[u](uh, ψh)

= R′
h[u](u, ψ) −R′

h[u](uh, ψ) +R′
h[u](uh, ψ) −R′

h[u](uh, ψh)

= R′
h[u](u− uh, ψ) +R′

h[u](uh, ψ − ψh)

= R′
h[u](u− uh, ψ) −R′

h[u](u− uh, ψh) +R′
h[u](u− uh, ψh) +R′

h[u](uh, ψ − ψh)

= R′
h[u](u− uh, ψ − ψh) +R′

h[u](u− uh, ψh) +R′
h[u](uh, ψ − ψh).

If the scheme is dual consistent, R′
h[u](uh, ψ − ψh) = 0. The term R′

h[u](u− uh, ψh) corre-

sponds to the consistency error term from the linear analysis. However, unlike the linear

case, this term is not zero, even for a consistent discretization. To bound this term, begin

by writing a Taylor series for the functional Rh(·, ψh) about u. That is,

Rh(uh, ψh) = Rh(u, ψh) +R′
h[u](uh − u, ψh) + rres(u, uh),

where

rres(u, uh) =

∫ 1

0
R′′
h[u+ θ(uh − u)](uh − u, uh − u, ψh)(1 − θ) dθ.

Thus, assuming that tri-linear functional R′′
h[u + θ(uh − u)](·, ·, ·) is continuous for all θ ∈

(0, 1),

rres(u, uh) ≤
∫ 1

0
|R′′

h[u+ θ(uh − u)](uh − u, uh − u, ψh)| dθ ≤ C|||uh − u|||2 |||ψh|||.

If the discretization is consistent, Rh(uh, ψh) −Rh(u, ψh) = 0. Thus,

|R′
h[u](uh − u, ψh)| ≤ C|||uh − u|||2 |||ψh|||.
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Further assuming that the bilinear form R′
h[u](·, ·) is continuous,

|J ′[u](u− uh)| ≤ C|||uh − u||| (|||ψh − ψ||| + |||uh − u|||) .

Thus,

|J (uh) − J (u)| ≤ C|||uh − u||| (|||ψh − ψ||| + |||uh − u|||) .

Finally, if the scheme achieves |||uh − u||| ≤ Chs and ,|||ψh − ψ||| ≤ Cht

J ′[u](u − uh) ≤ Chmin(s+t,2s).
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Appendix D

Error Convergence Rates for

Adaptation

The results shown in Chapter 5 demonstrate that the p = 2, 3 adaptive discretizations are

superior to the p = 1 in terms of DOF required to achieve a given accuracy. However,

the results should also be compared to the optimal adaptive performance. The optimal

performance of the adaptive scheme is not immediately obvious. Thus, to get an idea of

what to expect, two different regimes are considered.

In the first regime, all flow features are relatively well resolved. Specifically, assume

that the error is approximately equidistributed throughout the domain and that the mesh

anisotropy is appropriate—i.e. there are no regions of the mesh where decreasing the mesh

spacing in one direction is significantly more effective at driving down the error than decreas-

ing the spacing in an orthogonal direction. Then, adaptation and global uniform refinement

should provide the same error reduction with DOF. Thus, assuming that the optimal order

of accuracy for the output of interest is O(hr), and noting that, for isotropic refinement,

Ndof ∝ h−n, where n is the dimension of the domain, the expected convergence rate is given

by

E ∝ N
−r/n
dof .

In the second regime, assume that the output error is dominated by error in a particular

region of the mesh. In this case, one would expect the error reduction with DOF to be

dictated by the details of the region where the error is large. For example, if the total error

and DOF in the mesh are dominated by some anisotropic flow feature—e.g. a shock or a

turbulent boundary layer—it is likely that the grid spacing normal to this feature is too

large. Thus, one might expect that the error would achieve the optimal rate with respect

to the grid spacing normal to the feature. That is, if h1 is the grid spacing normal to the
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feature, E ∝ hr1. Then, if the mesh spacing is decreased only in this direction, Ndof ∝ h−1
1 .

Thus,

E ∝ N−r
dof .

For shock-free, attached flow, RANS calculations on coarse meshes—in particular meshes

where the near wall spacing is too large—one expects the drag error to be dominated by

errors in the boundary layer and, more specifically, errors in the laminar sublayer. Fur-

thermore, the solution in the laminar sublayer is smooth and anisotropic. Thus, one might

expect E ∝ N−r
dof . However, given that E ∝ hr is an asymptotic convergence rate, it is not

clear that this rate will be achieved until the boundary layer is at least somewhat well re-

solved. This fact may lead to suboptimal convergence. On the other hand, if other regions of

the flow are over-resolved, the adaptation algorithm will coarsen the mesh in these regions.

This subtraction of DOF in other regions may lead to better than expected performance in

terms of error versus total DOF.

Once the near wall solution is well resolved, the error may be dominated by errors in

the boundary layer edge region. Given that, for the grid resolution typical in engineering

calculations, the solution in this region is singular, optimal convergence in this regime should

not be expected.

To examine the error reduction versus DOF obtained by the adaptation algorithm,

results for the ellipse and NACA 0012 test cases are shown in Tables D.1 through D.3.

In the tables, the column Rate refers to the convergence rate of the error with DOF—i.e.

E ∝ NRate
dof . The notation Rate = NA indicates that either the total DOF decreased or the

error increased at that iteration. A star (*) in the column labeled “BL Edge” indicates that

the error estimate in the boundary layer edge region contributes significantly to the total

error estimate. Specifically, if there is an element in the boundary layer edge region where

the elemental error estimate is equal to or greater than one half of the maximum elemental

error estimate in the mesh, then (*) appears in the BL Edge column. This data is included

to give a rough feel for whether the boundary layer edge is playing an important role in the

total error.

For p = 1, the adaptation generally gives better than the rate expected for isotropic

refinement, and the boundary layer edge region is never a significant contributor to the

total error. For p = 2, 3 it is difficult to draw any firm conclusions. In general, it appears

that the initial adaptation iterations perform well in that they are able to decrease the error

or hold it fixed while decreasing the total DOF. In this regime, the elemental error estimates

are largest at the wall, and DOF are added near the wall. The decrease in total DOF is

due to coarsening of other regions of the domain that initially contain more resolution
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than necessary. As the adaptation progresses, the boundary layer edge begins to play a

significant role. However, it is not clear that this fact is responsible for the degradation of

the convergence rate observed in both the ellipse and NACA 0012, Rec = 1 × 106 cases.

Finally, it should be pointed out that the most consistent result in terms of the observed

convergence rate is that for the p = 3, NACA 0012 at Rec = 1×107, where the BAMG grid

spacing ratio was decreased to provide a smoother grid.

Table D.1: Error convergence versus DOF for the ellipse test case

p Adapt Iter Ndof Error (counts) Rate BL Edge

1 0 4800 3.16e1 —
1 1 13605 8.69e0 -1.238
1 2 21999 3.03e-2 -3.501

2 0 9600 2.478e1 —
2 1 6078 9.870e0 NA
2 2 5928 2.871e-2 NA
2 3 7926 1.828e-1 NA *
2 4 14904 6.140e-3 -5.374
2 5 31074 1.135e-3 -2.297 *

3 0 16000 1.315e1 —
3 1 8400 5.164e0 NA
3 2 4450 7.686e0 NA
3 3 4740 1.755e-1 NA
3 4 5220 5.583e-1 NA
3 5 6280 2.133e-2 -17.659
3 6 9470 3.160e-3 -4.649
3 7 14310 2.766e-3 -0.323
3 8 21880 1.122e-3 -2.126 *

Given that the results do not agree with the expected optimal rates and do not support

any obvious conclusion, further work is required to more fully understand the performance

of the algorithm in this respect.

169



Table D.2: Error convergence versus DOF for the NACA 0012 (Rec = 1 × 106) test case

p Adapt Iter Ndof Error (counts) r BL Edge

1 0 4428 8.734e1 —
1 1 8115 7.467e0 -4.060
1 2 28533 4.113e-2 -4.137

2 0 8856 1.964e1 —
2 1 5670 1.171e0 NA
2 2 10536 3.064e-1 -2.164
2 3 27168 9.569e-3 -3.660 *
2 4 75846 8.980e-4 -2.305 *

3 0 14760 6.375e0 —
3 1 6740 1.689e0 NA
3 2 8710 1.176e0 -1.411
3 3 12110 7.501e-2 -8.351
3 4 21460 8.155e-4 -7.903 *
3 5 40820 7.803e-4 -0.069 *

Table D.3: Error convergence versus DOF for the NACA 0012 (Rec = 1 × 107) test case

p Adapt Iter Ndof Error (counts) r BL Edge

1 0 6438 5.872e1 —
1 1 19659 8.288e0 -1.754
1 2 56664 2.430e-1 -3.334

2 0 12876 3.054e1 —
2 1 12774 1.512e0 NA
2 2 20562 1.948e-1 -4.304
2 3 55884 2.874e-2 -1.914 *
2 4 152082 1.059e-3 -3.298 *

3 0 21460 5.437e0 —
3 1 30530 1.471e0 -3.708
3 2 46490 1.661e-1 -5.187
3 3 76380 1.748e-2 -4.535
3 4 126170 1.676e-3 -4.672 *
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Appendix E

Boundary Conditions

This appendix details the boundary conditions used in this work. All boundary conditions

are enforced weakly through the fluxes, Fb and Fb
v , across the domain boundary. In general,

these fluxes are computed by evaluating the flux using boundary state and state gradient

vectors that depend on both the interior state and gradient and the boundary condition

information. The calculation of the boundary state and state gradient as well as departures

from this framework are described for various boundary condition options below.

E.1 Farfield, Full State Boundary

At a farfield “full state” boundary, the boundary state vector, ub, is specified by the user.

Then, the inviscid flux, Fb, is computed using the Roe flux:

Fb = H(u+
h ,u

b, ~n+).

The viscous flux is calculated using the user specified boundary state and the state gradient

evaluated from the interior:

Fb
v = A(ub)∇u+

h .

As shown by Lu [72], the specification of the inviscid flux in this manner renders the

discretization dual inconsistent. Thus, this boundary condition is only used for farfield

boundaries where this dual inconsistency should have little impact on the flow solution.

E.2 Subsonic Inflow: Tt, pt, α, ρν̃

The subsonic inflow conditions are set using Riemann invariants. For 2-D flows, at subsonic

inflow boundaries, analysis of the convective terms of the RANS-SA system shows that there
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are four incoming and one outgoing Riemann invariants. Thus, for convection dominated

flow, to appropriately specify a subsonic inflow condition, four quantities must be specified.

In this work, the total temperature, Tt, total pressure, pt, inflow angle, α, and turbulence

working variable ρν̃ are specified. This information is combined with the outgoing Riemann

invariant to compute the boundary state. Then, the inviscid flux, Fb, is given by

Fb = F(ub).

The viscous flux is calculated using boundary state and the state gradient evaluated from

the interior,

Fb
v = A(ub)∇u+

h .

E.3 Subsonic Outflow: p

The subsonic outflow boundary condition is also specified using Riemann invariants. In this

case, there is one incoming invariant and four outgoing. Thus, to appropriately specify a

subsonic outflow condition, one quantity must be specified. In this work, the static pressure,

p, is specified. This quantity is combined with the outgoing Riemann invariants to compute

the boundary state. Then, the inviscid flux, Fb, is given by

Fb = F(ub).

The viscous flux is calculated using boundary state and the state gradient evaluated from

the interior,

Fb
v = A(ub)∇u+

h .

E.4 No Slip, Adiabatic Wall

At a no slip, adiabatic wall, the desired conditions are zero velocity, heat flux, and eddy

viscosity at the wall. Using the this information, the boundary state is given by

ub = [ρ+, 0, 0, ρE+, 0]T ,

and the inviscid flux, Fb, is given by

Fb = F(ub).

When combined with the no slip condition, the adiabatic condition requires that the
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viscous flux in the energy equation is zero. Thus, the viscous flux is computed using

the interior gradient, except for the energy equation component, which is set to zero. In

particular,

(

Fb
v − ηf~r

b
f (uh)

)

· ~n+ =























(

A(ub)∇u+
h − ηf~r

b
f (uh)

)

1
· ~n+

(

A(ub)∇u+
h − ηf~r

b
f (uh)

)

2
· ~n+

(

A(ub)∇u+
h − ηf~r

b
f (uh)

)

3
· ~n+

0
(

A(ub)∇u+
h − ηf~r

b
f (uh)

)

5
· ~n+























.

E.5 Symmetry Plane

The symmetry plane boundary condition requires that the state be symmetric about the

plane and that its derivatives normal to the plane are continuous. These conditions require

that the flow is tangent to the plane. Thus, the boundary state is set to the interior state

with the normal velocity subtracted:

ρb = ρ+,

ρub1 = ρu+
1 − (ρu+

1 n1 + ρu+
2 n2)n1,

ρub2 = ρu+
2 − (ρu+

1 n1 + ρu+
2 n2)n2,

ρEb = ρE+,

ρν̃b = ρν̃+.

Then, Fb = F(ub).

For the state derivatives, the symmetry plane implies that the normal derivatives of

scalar quantities—i.e. ρ, ρE, and ρν̃—are zero. The normal derivative of the tangential

velocity is zero as well. The condition gives no information about the normal derivative

of the normal velocity or the tangential derivative of any quantity. The boundary state

gradient is set using the given information about the normal derivatives combined with
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interior derivatives. Thus, for the density,

[

∂ρ
∂x1

∂ρ
∂x2

]b

=

[

n1 n2

−n2 n1

]−1 [
∂ρ
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∂ρ
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n1 n2

−n2 n1

]−1
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(
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.

The energy and turbulence model working variable gradients are set analogously. The

velocity gradients are specified using ∂ρut
∂n = 0 and interior gradient information. Thus,
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Then,

Fb
v = A(ub)∇ubh.
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[44] M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality. In Acta Numerica, volume 11, pages 145–236, 2002.

[45] M.B. Giles, N.A. Pierce, and E. Suli. Progress in adjoint error correction for integral
functionals. Computing and Visualisation in Science, 6(2-3):113–121, 2004.

[46] P. Godin, D. W. Zingg, and T. E. Nelson. High-lift aerodynamic computations with
one- and two-equation turbulence models. AIAA Journal, 35(2), 1997.

[47] L. M. Graves. Riemann integration and Taylor’s theorem in general analysis. Trans-
actions of the American Mathematical Society, 29(1):163–177, 1927.

[48] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M. G.
Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-independent
and solver-independent CFD. part I: general principles. International Journal for
Numerical Methods Fluids, 32:725–744, 2000.

[49] D. W. Halt. A compact higher-order Euler solver for unstructured grids. PhD thesis,
Washington University, 1992.
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