








.M414 \NST.

J OCT 4 1989^

BEHAVIORAL PERSPECTIVES

ON THE IMPACTS OF TECHNOLOGY
ON l/S PROTOTYPING

Jay G. Cooprider

John C. Henderson

January 1989

CISRWPNo. 189
Sloan WP No. 3040-89-MS

Center for Information Systems Research

Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139





BEHAVIORAL PERSPECTIVES

ON THE IMPACTS OF TECHNOLOGY
ON l/S PROTOTYPING

Jay G. Cooprider

John C. Henderson

January 1989

CISRWPNo. 189
Sloan WP No. 3040-89-MS

®1989 J.G. Cooprider, J.C. Henderson

Center for Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology



MIT > on*oicc
nnT A 10QQ



Behavioral Perspectives on the Impacts of Technology
on I/S Prototyping

Jay G. Cooprider

John C. Henderson

ABSTRACT

Builders of information systems face an increasingly turbulent and dynamic

environment. This unstable environment is forcing I/S designers to be increasingly

flexible and responsive to both a rising demand for and a variety of systems.

Prototyping has received a great deal of attention as a design methodology that

addresses these issues.

Most support technologies for prototyping environments focus on increasing the

efficiency of an individual system builder. This paper proposes that a broader

perspective is required to fully assess the potential performance impacts of support

technology on the prototyping process. In building this perspective, frameworks for

prototyping processes, support technology and development performance are

presented. Prototyping is characterized from a behavioral perspective as a

combination of cognitive, social and organizational processes -- each of which must

be addressed in assessing impacts. Support technology is characterized by

production, coordination and organizational dimensions, each affecting prototyping

processes and performance in different ways. To assess the impacts of support

technology, measures are suggested for prototyping processes and products from

task, social and strategic perspectives. It is proposed that the primary determinant

of the performance impacts is the fit between the prototyping processes and the

support technology used. By combining a functional model of support technology

with behavioral perspectives of the prototyping process, a more complete

understanding of the impacts of technology on the performance of prototyping is

obtained.





Behavioral Perspectives on the Impacts ofTechnology

on I/S Prototyping

1.0 Introduction

The job of information system (I/S) builders is becoming more difficult. They

must deal with more sophisticated end users [74, 72], demands for increased

productivity [13, 16, 56], and proposals for a wide array of development methods,

techniques and technologies [2, 36, 66]. Their environment is growing

increasingly dynamic and turbulent [43] as their organizations confront more

intense competitive pressures (from both domestic and foreign sources),

changing regulatory controls, shrinking product life cycles, shifting

management and control strategies, and growing uncertainties about their

rapidly evolving technology base. These factors are making it increasingly

difficult for today's I/S builder to meet the performance expectations of

management and the user community.

Prototyping has received a great deal of attention in recent years as a design

methodology capable of addressing many of these issues. It has been suggested

that protot5rping enables developers to build systems more quickly [8, 62];

increase user involvement, utility and satisfaction [20, 3, 82]; respond to

changing environments and requirements [81]; decrease maintenance costs [8,

82]; lower technical risk levels [8, 24]; reduce the number of design defects [52];

and reduce the level of application uncertainty [3, 81]. Many view prototyping

as the methodology that represents the future of software development [2, 8, 61].



Past researchers have proposed many factors as afTecting the performance of

prototyping projects. The skills of the L'S builder [65], the strength of the project

leader [77], the experience of the system builder [8], the characteristics of the

application [8, 65], and top management support [14] have each been proposed

as determinants of prototyping success. A major thread through a great deal of

the prototyping literature, however, is that the availability of appropriate tools

and technologies is a major enabler of success for prototyping projects [8, 20, 26,

65,81].

However, it is now being realized that technology per se is not the answer to

successful rapid prototyping. As Lipp [58] states in his book on the prototyping

approach to systems development:

Many DP organizations have approached problem resolution from a

'tool-oriented' perspective, assuming that if enough sufficiently

sophisticated tools are "thrown" at the problem it will be solved. ...

[This approach is] simply providing a better weapon with which to

kill ourselves [58, p. 147].

Technology can have a major impact on the performance of I/S builders using

prototyping, but the technology must complement the processes used by builders

during a project [24, 25]. There are many reasons that Lipp [57] and others [19]

have not found supporting technology to have a significant effect on

development performance [39]. A major reason for this lack of effect, however, is

a mismatch between the capabilities of the technology used and the

fundamental processes of the system builder. It is the premise of this paper that

large impacts on prototyping performance are possible only when supporting



technologies are properly matched with the fundamental processes of the system

prototyper. This "match" between technology and process will be referred to as

"fit". In doing so, fit is regarded as a moderating relationship [83] -- technology

"moderates" (or enhances) the relationship between process and performance.

Specifically, though the prototyping processes and support technologies both

affect prototyping performance directly, the fit between process and technology

will be the significant determinant of performance. Figure 1 illustrates this

relationship.

Supporting
Technologies

Prototyping
Processes

Technology
Effect

Process
Effect

Prototyping
Performance

Figure 1 -- The Impact of Support Technology on Prototyping Performance

A closely related issue involves measuring the performance of prototyping

projects. In order to assess the impact of support technology on the prototyping

process, it is obviously important to be able to measure that impact. However,



traditional measures of L'S development performance (such as number of lines of

code produced by a given amount of efTort) distort the overall performance

picture and cause managers to overlook important productivity factors [56, 53].

To overcome this, we present a framework for measuring prototyping

performance. This framework will match performance measures to the

perspectives of the prototyping processes and support technologies that we will

establish.

This paper, then, investigates the performance impacts of support technology on

the prototyping process by: 1) describing the fit between the dimensions of

technology and the important perspectives of the prototyping processes, and 2)

discussing the various performance impacts that this fit implies. Section 2

examines the behaviors of I/S builders during prototyping and establishes

behavioral perspectives on prototyping processes that will be used as a basis for

discussing the relationships between technology and performance. Section 3

characterizes support technologies for prototyping, identifying the dimensions

that benefit the system prototyper. Section 4 then builds a framework for

evaluating the performance of prototyping projects. This section identifies key

dimensions of I/S performance, provides examples of useful measures, and

discusses potential performance impacts of various dimensions of support

technology on the different perspectives of the prototyping process. Finally,

Section 5 offers final conclusions and recommendations for further research.



2.0 Behavioral Perspectives on the Prototyping Process

In the context of this paper, a "process" is a systematic approach to the creation

of a product or the accomplishment of a task [69]. A number of characterizations

of the prototyping process have been given in the literature. Naumann and

Jenkins [65] characterize prototyping as a four-step procedure:

1. Identify the User's Basic Information Requirements

2. Develop a Working Prototype

3. Implement and Use the Prototype System

4. Revise and Enhance the Prototype System

Many other authors have presented similar descriptions. For example, Scharer

[77] describes the prototyping process as:

1. Preliminary Fact-finding

2. Pregeneration Design

3. Prototype Generation

4. Prototype Refinement Iterations

In general, these characterizations of the prototyping process describe

prototyping as a set of phases that are terminated by the existence of an artifact

- milestones, in efi'ect. As such, they share a fundamental problem with the

traditional "waterfall" method of software development [10] that they are trying

to augment [48] or replace [32, 64]. These "milestone" process descriptions do

not provide insight into the actual design behaviors or the processes that

actually determine the success of the prototyping efi'ort [24]. If a design process

model only depicts idealized processes that do not accurately map to actual

5



prototyping behavior, then the supporting technologies that are applied to these

idealized processes will not match the way that prototypers really work.

Applying technology in this way may actually impair prototyping performance

rather than enhance it.

In order to realize the most effective ways to apply technology to the prototyping

process, a deeper, behavioral model of prototyping must be used. In an attempt

to build such a model for the development of large software products, Curtis et

al. conducted a field study of large software development projects [24, 25]. They

found that behavioral processes in such projects can be analyzed from cognitive,

social, and organizational perspectives. Figure 2 updates the model to reflect

these three perspectives. In the next three sections, the prototyping process will

be examined from each of these perspectives.

2.1 The Cognitive Perspective of the Prototyping Process

The talents, skills, and experience levels of the individual participants of a

prototyping project are important influences on the prototyping process. For

example, Blum [8] states that the form that the prototyping process takes can be

greatly influenced by the experience level of the system builder, while

Naumann and Jenkins [65] state that the set of critical skills and abilities

required for the system builder using prototyping are significantly difi"erent

from those required for traditional systems development.

During prototyping, the system builder constructs successive versions of a

prototype system, resolving conflicts with the user (requirements) within





2.2 The Social Perspective of the Prototyping Process

There has been a fairly large amount of research on the impacts of social

processes on I/S development (see [37] and [38] for discussions of this research

area). This research has provided a number of insights into the performance

impacts of group behavior on software development. Generally, however, it has

been poorly grounded in theory and has not provided models for understanding

the performance effects of a wide range of possible changes in group process

behavior [50].

Collaboration between the system builder and user is at the heart of prototyping

[84]. Prototyping stresses the interactions between the user, builder, and

system [65]. Additionally, the manager role is a significant one in prototyping

[3, 77] (as it is with software development in general [37] ), though it has been

generally neglected in the prototyping literature [54]. The relationships

between builder, user and manager highlight the fact that prototyping is a

social process at its core. Almost by definition, a system builder can not

prototype alone. The essence of prototyping is in the dialogue between builder

and user [84], within the resource constraints established by management [65].

It is very important for all three roles (builder, user, and manager) to participate

fully in the prototyping process. The significance of the manager role was

mentioned above. Henderson's empirical results [38] stress the importance of

both the user and builder roles in the design process. He found that neither

user-dominated nor builder-dominated teams are as high-performing as teams

8



with more balanced levels of influence. Both the user and builder have expertise

that is useful in the prototyping process. Such research suggests that the

Manager-User-Builder relationships are critical to prototyping processes.

In addition to communication within the team (Manager-User-Builder),

communications with non-team stakeholders is an important process for the

successful prototyping team. Gladstein found such boundary management to be

a major determinant of group performance [33]. Henderson relates this to

design teams, arguing that boundary management is required for a team to

establish design validity [37], and Zmud found that the innovativeness of a

software development group is facilitated if appropriate channels are provided

to link the design with relevant external information sources [85]. Both inter-

and extra- team communications are important social processes for the

successful prototyping team.

An idealized model of the social prototyping process would begin with each

member of the team holding his own mental model of the proposed system. The

differences and conflicts in the various individuals' mental models would be

resolved and compromised until a final prototype product was reached [24, 25].

In this idealized model, the conflicts would be resolved objectively, and the

"best" design alternative would eventually be reached.

This ideal model rarely matches the reality of actual prototyping projects. There

is a danger in prototyping that the system builder and user will come to

agreement on a design solution before they have fully evaluated all of the

system design requirements. Because of this, they may converge on a solution

that is less than optimal. Mathiassen states that a fast-converging prototyping



process may lead to "tunnel vision" -- and to the ignoring of important

requirements for the system product [63]. Henderson and Ingraham [40] found

that "a comparison with the information requirements generated by a

structured group process indicated that prototyping is a convergent design

method that may overlook important user information needs." Thus, techniques

to balance the rapid convergence of prototyping approaches may have

significant performance impacts.

A final social issue involved in prototyping is overall project management.

Scharer states that the challenge of managing a prototyping project can be

greater than that of managing a project undertaken with a conventional

methodology [77]. In fact, most of the gains in productivity and quality that

prototyping offers can be realized only if the process is skillfully managed. Alavi

found that while prototyping provides clearer and better communication

between system developers and users during the design phase of a project, the

management and control of the project is more difficult [3].

The successful prototyping project, from a social perspective, effectively utilizes

communication between members of the team as well as with non-team

stakeholders. Additionally, it requires the examination of alternative designs

and concepts to slow the rapid convergence of ideas. Finally, it requires strict

project management control. Together, these factors can greatly enhance the

social processes inherent in prototyping. It must always be remembered,

however, that these processes take place within an organizational environment.

This organizational perspective provides the focus for the next section.

10



2.3 The Organizational Perspective of the Prototyping Process

The prototyping of an information system is performed within an organizational

context (as is any software development method). Curtis et al. cite

"requirements volatility" as the fundamental organizational issue for software

development, feeling that system requirements usually change because of

environmental changes facing the organization [25]. Certainly, reacting to a

changing environment can be important for the system prototyper. Quick

response to such changes has, in fact, been cited as a primary advantage of

prototyping [81]. There are, however, other organizational issues that need to

be addressed as well.

Bourke describes a prototyping project that was a technical success but was

canceled because of inadequate sponsorship by the organization and the lack of

what he refers to as a "prototyping infrastructure" [14]. His prototyping

infrastructure consists of three factors:

1. A long-range systems plan.

2. A steering committee at the executive level

3. Project funding at the corporate level.

Bourke feels a prototyping project is doomed to fail without this organizational

support.

Nosek suggests that decision makers can choose organization structure, reward

systems, information processes, and people (using Galbraith's [29] organization

design variables) to ensure the successful completion of prototyping projects

[68]. He provides examples of two different organizational approaches to

11



prototyping. One organization took an ad hoc approach to prototype

development with minimal changes to organization design, while the second

demonstrated a full commitment to providing a fertile environment for building

prototypes by making substantial changes in organization design. For example,

the second organization created a resource center to provide developers with

information about the use of prototyping tools.

The organization environment, then, can have a great effect on the prototyping

process. The organizational perspective on the prototyping process consists of

two general processes. The first involves the coordination of multiple teams.

The organization needs to have the ability to create and manage a variety of

design teams (perhaps some using prototyping and some not) without a

significant reduction in the performance of any single team. The key issues

relating to this coordination are the overall control of the various teams and the

management of the distributed knowledge inherent in them. The project control

and knowledge management can each be maintained on either a centralized or

distributed basis, and the choice will greatly impact the technology used to

support the project and the project performance.

The second process from an organizational perspective involves learning about

and reacting to the external environment (competitors, regulations, etc.). This

process is necessary for identifying important applications and keeping

applications flexible. The ability to create prototyping products or components

that can be leveraged to quickly meet competitive demands can be extremely

important for an organization struggling to maintain or improve its competitive

position in a turbulent environment.

12



The organizational perspective of the prototyping process provides a business-

level view of the project. It requires intra-company coordination of teams and

extra-company gathering of information. This perspective can be enhanced by

adjusting the organization design variables and by providing functionality to

carry out the intra- and extra- company communication needed.

Having examined the process of prototyping from cognitive, social, and

organizational perspectives, we will now characterize the support technology

that can be used to aid the system prototyper. This characterization can then be

used to describe the possible technology-process fit necessary for performance

impact.

3.0 Dimensions of Support Technology

As was discussed in Section 1, the availability of support technology is widely

held to be a primary determinant of high-performance for prototyping. The

supporting technologies probably mentioned most frequently in the literature

are very high-level languages (also referred to as 4th-generation languages,

end-user languages, etc.) [20, 26, 65]. However, such technology by itself is not

enough to establish a successful prototyping environment. As Taylor and

Standish state: "we must have a multi-faceted technical approach to rapid

prototyping if we are to address a broad range of prototyping applications

successfully [81]." We maintain that the technology must not only be "multi-

faceted" but must also "fit" the prototyping processes in use.

13



Henderson and Cooprider present an empirically-derived functional model of I/S

planning and design technology [39]. They list 98 specific technology functions

identified by experts in planning and design technology. These 98 functions are

categorized into three general dimensions and seven specific technology

components. These dimensions are shown to be useful for characterizing the

capabilities of commercially available planning and design technologies. They

are also useful for characterizing the types ofsupport technologies that are most

important in a prototyping environment. The dimensions and their components

are listed in Table 1.

1.



impact on the capacity of an individual to generate planning and design

decisions and subsequent artifacts or products.. Coordination technology

enables or supports the interactions of multiple agents in the execution of a

planning or design task. Organizational technologies are the functions and

associated procedures that determine the environment in which production and

coordination technology will be applied to the planning and design process.

Figure 3 updates the model to reflect these three dimensions of technology.



3.1 The Production Dimension of Technology

Within each of the general technology dimensions, more specific components

characterize the technology. Production technology consists of three

components: representation, analysis and transformation. Representation

technology enables the user to define, describe or change a definition or

description of an object, relationship, or process. Such capabilities are are at the

heart of traditional characterizations of prototyping technology. By its nature,

prototyping is a representation or modeling process [73]. Naumann and Jenkins

explicitly list "modeling" as a required technology for prototyping [65]. Any

technology supporting prototyping must provide an array of representation

functionality.

Analysis technology enables the user to explore, simulate, or evaluate alternate

representations or models of objects, relationships or processes. It is very

similar to Riddle's "technology of evaluation" [73]. As was discussed in Section

2.2, many authors have specifically criticized prototyping as a convergent design

process. Analysis technology provides functionality for encouraging the

examination of design alternatives and implications

.

Transformation technology executes a significant prototyping task, thereby

replacing or substituting for a human system builder. This dimension reflects a

straight capital/labor substitution: technology for human labor. This

functionality has received a great deal of attention in the prototyping literature.

Prototyping implies a need to do things quickly (e.g. "rapid" prototyping), and

transformation technology can play a major role in producing a prototype

quickly. For example, Feather describes a system in which a formal

16



specification is automatically "transformed" into an implementation -- a

prototype [27].

The transformation functionalities currently available in support technologies

in the marketplace are generally focused relatively late in the software

development life cycle [39]. For example, code generation is a typical

transformation technology, and it is frequently used only after much of the

design work is completed. In contrast, prototyping often provides much of its

value early in the design life-cycle, during problem formulation and definition

[12]. The determination of the precise types of transformation technology that

provide the most impact on prototyping processes is an important subject for

further research.

3.2 The Coordination Dimension ofTechnology

The need for coordination stems from the resources that are expended in tasks

that require multiple actors or agents [59]. The general dimension of

coordination technology consists of two more specific components: control and

cooperative functionality. Control technology enables the user to plan for and

enforce rules, policies or priorities that will govern or restrict the activities of

team members during the prototyping process. There are two types of control

covered in this dimension: access control and resource management. Access

control assumes that issues of security and access must be carefully managed.

Resource management enables a manager to plan for, allocate and monitor the

use of design team resources.

17



Two control issues that are especially important for prototyping deserve special

mention. As discussed in Section 2.2, project management can be extremely

difficult in a prototyping environment. The familiar check-points inherent in

the traditional development life cycle are generally lacking in prototyping [2],

and it can be difficult for managers to monitor and control team members in a

prototyping environment. Project control functionality is thus critical --

probably even more critical than for a traditionally managed development

project. In addition to project control, general software configuration

management functions [6, 67] or specific version control functions [41] can be

very important. Since prototyping is an iterative process -- with a new prototype

system being generated at each iteration -- control tools such as these are very

useful for tracking and managing the process.

Cooperative functionality enables the user to exchange information with other

individuals for the purpose of influencing (affecting) the concept, process or

product of the prototyping team. This dimension of support technology has been

largely ignored in the prototyping literature. However, if one accepts the social

perspective of prototyping the importance of cooperative functionality becomes

evident. The ability to exchange information between members of the team and

between the team and outsiders can be a significant determinant of

performance. The ability of the coordination technology to function both as a

communication channel and as a facilitation aid can be very important for the

prototyping system builder. Examples of such technology can be found in

research on group DSS [44, 55] and computer-supported cooperative work (see

the Proceedings of the Conference on Computer-Supported Cooperative Work,

Austin, Texas, December 3-5, 1986). Plexsys, for example, is a system which

provides support for group brainstorming and evaluation that can both increase

18



the efficiency of group meetings and counter the rapid convergence seen in many

prototyping projects [5].

3.3 The Organizational Dimension ofTechnology

Finally, the organizational dimension consists of two specific components:

learning/support and infrastructure. Learning/support technology helps an

individual user understand and effectively use the available technology. Such

functionality helps the system builder become productive more quickly in new

environments by making it easier to learn the available tools. Additionally, it

can improve the Builder-User relationship by allowing users to use available

technologies to explore their own alternatives -- potentially making users a

more influential part of the design team. It also aids the organization by

providing training to a minimum skill level for all members across all teams --

assisting communication and cooperation between them.

Infrastructure technology is defined as functionality standards that enable

portability of skills, knowledge, procedures, or methods across planning or

design processes. Infrastructure technology gives teams the ability to share

models, code, documentation, etc. By allowing teams to communicate and

coordinate through the use of standards, the performance of the entire I/S

organization (as well as that of individual teams) can be markedly improved.

Hyer and Wemmerlov describe how standards for parts codes can save

manufacturing organizations great amounts of time and money [47]. In the I/S

area, standards as performance enhancers are not as well understood. JefTery,

for example, states that programming and documentation standards have been

19



suggested as affecting I/S development performance, but their specific

productivity impacts have not been investigated [50].

3.4 Technology Summary

Most of the support technology that has been suggested in the literature for

prototyping environments is production technology. Such technology enables

the individual system builder to build and analyze prototype systems as rapidly

as possible. However, this technology will only marginally increase the

performance of I/S development teams and organizations as long as it is used to

just "do the same things faster". If the production technology enables the system

builders to "do different things", then the performance can increase by a much

larger amount. Order of magnitude improvement can only be achieved when

the technology changes the process of software development [50]. For example,

code generation is a typical transformation technology [39], and it is frequently

suggested as a valuable prototyping tool [20, 73]. However, "coding" typically

accounts for only 15 percent of the software costs of large systems [56]. Using

code generation to double coding efficiency, therefore, will provide only a 7.5

percent productivity increase. However, if code generation is used as a way to

generate successive prototype systems more quickly and this leads to better

evaluation of the system design, then design defects can be significantly reduced

[52] and more accurate systems requirements can be established early in the

development life cycle, greatly reducing total project costs [53].

Gains in overall performance can be further leveraged by the use of technologies

that support the social and organizational perspectives of the prototyping

20



process. Support technologies improve performance by providing not only the

"individual-based" representation-analysis-transformation functionality of

production technology but also by aiding intra-team coordination and boundary

management through the use of control and cooperative support functionalities.

Additionally, support technology can help in the establishment of an

organizational infrastructure for inter-team coordination by providing

learning/support functions and technology standards for the entire organization.

It is expected that direct performance impacts will result from applying

production technology to prototyping processes in the cognitive perspective,

coordination technology to the social perspective processes, and organizational

technology to the organizational perspective processes. If, however, individuals

use production technology in ways that allow them to function more effectively

as a team, there may be a much larger performance impact. Similarly,

coordination technology will directly impact the social processes of prototyping,

but it may have a larger effect on performance if it is used by the organization to

leverage its management of the entire development process. For example, such

technology may allow the parallel operation of multiple teams by providing a

common technology infrastructure. Thus, direct performance impacts generally

occur across corresponding levels (production-cognitive, coordination-social,

organizational-organization), but impacts across levels may enable much

greater impacts on prototyping performance.

21



4.0 Measuring the Performance of Prototyping Projects

Performance measurement is a central issue for evaluating the impact of

support technology on the prototyping process. Churchman has stated that all

design is goal-directed and performance-based [22]. In efTect, design is not

possible without a measure of performance to support it. Hirschheim and

Smithson describe performance measurement as the link between evaluation

and tools [42]. To establish this link, appropriate measures must be defined. As

Strassman states: "You cannot measure what is not defined. You also cannot

tell whether you have improved something if you have not measured its

performance ([80], p. 100)." In attempting to describe the impact of particular

technologies on the prototyping process, performance measurement is especially

critical.

Research attempting to evaluate I/S performance has suggested a range of

possible measures. Hirschheim and Smithson, however, state that I/S

evaluations have been misdirected toward tools and techniques for

measurement and away from understanding [42]. For example, many

researchers have based their productivity measurements on the number of lines

of code produced by a given amount of effort [56]. This approach has long been

recognized to have a number of obvious problems ~ each code line does not have

the same value and does not require the same amount of time or effort to

produce, for example. However, most software productivity researchers today

still use lines of code as a primary focus [13], though function point

measurement has recently gained a level of popularity [4]. Performance

measures such as "source lines of code per month" are relatively easy to gather

and use. However, focusing too closely on them may distort the overall

22



productivity picture and cause managers to overlook promising avenues for

performance improvements. The ultimate goal, of course, is to provide

applications that benefit the organization and not to simply create lines of code.

Measures like lines of code do not address the issues of concern to management,

particularly senior management. A more comprehensive view of I/S

performance is required. Figure 4 illustrates such a view of performance.

Task

Measures

Social

Measures

Strategic

Measures

Process Product

Efficiency



used an industrial engineering perspective to describe process and product

measures of software development [1]. Riddle [73] and Sol [78] have discussed

the value of this general approach in a prototyping environment. Since the

ultimate goal of performance measurement is to improve the processes involved,

these authors state, not only must the final product of the prototyping effort be

evaluated, but the process used to obtain that product must also be measured. It

is important to use both types of measures because there is a potential conflict

between the efficiency of the process and the quality of the product [28].

There can be difficulties in applying this process/product perspective to

prototyping, however. The "product" of the prototyping process is sometimes not

available at the end of a development project. Taking their cue from Brooks' [15]

admonition to "plan to throw one away," many prototypers [31, 63, 71, 73, 75]

feel that once a prototype has served its purpose of defining user requirements,

it can (and should) be "disposed of. The debate of "expendable" vs.

"evolutionary" prototyping [45] has received a great deal of attention [8, 35, 61].

For our purposes, this issue is somewhat moot. The critical issue is to include

the effort to produce a final product as only one of several measures for

evaluating performance.

The other dimension of performance shown in Figure 4 illustrates that different

behavioral perspectives lead to differing measurements. This reflects the view

that the measurement of prototyping performance should be oriented toward

management decision and action. Mason and Swanson have recommended an

approach toward measurement for management that is very different from

traditional "scientific" measurement -- adding concern for behavioral

dimensions, for example [60]. Boehm clearly shows that the perceptions of

24



upper management, middle management, and programmers are very different

concerning the factors that have the most leverage for affecting development

productivity [11]. These perceptions can be important motivational factors for

affecting the prototyping process, and they should be reflected in any

performance measurement system. Buss found that top executives, I/S

managers and users often have conflicting views of which project proposals

should get approval [18]. These conflicting views can be mitigated to some

degree if the language (or measures, in this context) used by each perspective

are the same, or are at least translatable.

The performance measurement system presented in Figure 4 uses the

perspectives of task, social, and strategic to reflect this dimension of

measurement. These three perspectives generally match the process

perspectives that were developed in Section 2, and they match well with the

technology impacts on those processes. The following three sections describe

each of the perspectives of performance measurement.

4.1 Task Measures of Performance

The task measures of Figure 4 are indicators of the accomplishment of the

builder's defined tasks. They are "individual oriented" and are concerned with

"doing things right". Task process measures are primarily used to evaluate the

efficiency of individual programmers. Basically, they represent typical

measures of the economic efficiency of production. Source lines of code or

function points per month are typical measures of this perspective. Task

product measures evaluate the quality of the program product. These measures

25



typically take one of two forms. First, quality is measured in terms of defects per

unit output. For software development, this is expressed in terms of bugs per

thousand lines of code, for example. The second form of quality measurement

evaluates the product's overall technical performance rather than simply

counting defects. Examples of this form of task product measurement include

run-time execution speed and object code size. . . •

These task-oriented measures dominate the I/S performance literature [42].

There are a number of problems, however, with focusing exclusively on these

types of measures. Some of the specific complaints about these types of

measures were described earlier. In general, they are measures of output (in an

economic sense) rather than outcome (the total impact of the process) [70]. They

are much more closely aligned with efficiency (how well input is converted to

output) than with effectiveness (how the input is used to accomplish the goals of

the organization). The addition of social and strategic perspectives provides a

more complete performance evaluation.

4.2 Social Measures of Performance

Hirschheim and Smithson argue that both technical (task-oriented) and non-

technical (social) criteria must be included for I/S evaluation to be meaningful

[42]. The social measures of this dimension evaluate how well the prototyping

team performs as a whole. They are "group oriented" and are concerned with

"doing the right things". The social process measures test how well the

development team functions together. We refer to these types of measures as

"synergy" measures. They evaluate the process gains or losses that occur

26



because prototyping project members work as a group rather than as

individuals. In terms of group theory, this is mainly an issue of team

maintenance [33], and involve such things as commitment, quality of work life,

and satisfaction with the team. Steiner describes the impact of group process on

performance in more traditional economic terms [79]. He characterizes the

performance of groups as the sum of the performances of the individual members

of the team with the group process gains or losses. An interesting measure of

group process in this light is the prototyping team "efficiency" (defined as it was

above for individuals: function points per month, for example) divided by the

sum of the efficiencies of the individual team members. An alternative measure

of this dimension is each individual's efficiency on the current prototyping

project divided by his "historical" efficiency -- his efficiency on past projects and

teams.

The social product measures evaluate design validity -- is the team meeting the

project requirements and do the requirements satisfy a real business need?

These measures can be critical in providing what Bjom-Andersen [7] refers to as

a "challenge to certainty." He states that I/S developers tend to spend more and

more time and use ever more refined technological tools for solving the wrong

problem more precisely. Support technology must provide the ability to test

design validity, and the best source of these tests comes from communication

with non-team stakeholders [22, 37]. The performance measures for this

dimension include user satisfaction and the rate of function change over time

(increasingly smaller amounts of change in the system -- given the same system

usage - imply a more accurate design solution). Similarly, system usage and

the link between that usage and the behavior of the organization are sources of

27



validity measurements. In essence, a valid design is one that affects an intended

change in organizational behavior.

The problem of performance measurement occurs within an organizational

context, and it is important that such measurement be used with an

organizational perspective. This is an example of what Churchman refers to as

the "systemic" level of measurement: placing a manager's problem situation in

a larger context [21]. The next section looks at the manager's problem of

performance measurement from a larger organizational perspective.

4.3 Strategic Measures of Performance

Very little progress has been made in discovering organizational measures of

performance [23, 70]. The measures of performance in this dimension involve

business success. At the core of these measures is a concern with using

technology to innovate — with "doing things differently". Strategic process

measures are primarily concerned with organizational flexibility. The

motivation for this view is the need to manage organizational resources in the

face of significant environmental changes. There are two general perspectives

for these measures. The first perspective is one of traditional project

management. Measures in this perspective evaluate the project's ability to stay

on schedule and within budget. The second perspective becomes more important

as the organizational environment becomes increasingly turbulent. It focuses

on the organizational resource of time. The main concern in this perspective is

the speed with which the organization reacts to changes in the environment. A

fundamental measure in this area is time-to-break-even: the length of time it

28



takes an organization to convert an I/S concept into a viable product that has

earned back its development costs for the organization. This measure highlights

the criticality of rapid response to environmental changes while directly

incorporating aspects of quality and maintainability. It is rapidly becoming a

key measure of I/S performance [9].

The strategic product issue is fundamentally one of business leverage — the use

of prototyping to leverage a position of competitive advantage for the

organization. It also reflects the importance of continually trying to do new

things in a changing environment. As Sir Francis Bacon said in his essay "Of

Innovations": "He that will not apply new remedies must expect new evils; for

time is the greatest innovator" (as quoted in [49]). Time will leave behind those

organizations whose I/S leaders are not willing to innovate — transforming the

business. For example, if systems were built in ways to facilitate future reuse of

code, prototypers could leverage their development efforts by using existing

(debugged) code modules. In addition, the final product of their efforts would

result in more code modules that could be leveraged for future products. The

ultimate measures in this area primarily come from competitive analysis and

environmental scanning: market share over time, for example, or rate of new

product introductions compared to the rates of competitors. However, the

percentage of reused code in a project is a possible intermediate indicator.

4.4 Performance Impacts

Figure 5 shows the completed framework. As suggested in previous sections, the

major impact of production technology is on the cognitive processes of

29



prototyping, and its direct performance impact will primarily be on the task

measures of performance. For example, transformation technology such as code

generation are expected to increase programmer efficiency, and analysis

technology such as consistency tests between alternate representations will

improve the quality of the program product. Coordination technology's direct

impact will be on social processes as well as the social measures of performance.

For example, control technology can be used to implement flexible project

management strategies, giving team members more autonomy and increasing

their job satisfaction [34]. Additionally, cooperative functionality such as

dialogue management can be used to involve non-team stakeholders in the

prototyping process, thus increasing design validity [37]. Organizational

technology will have its most direct impact on organizational processes and on

strategic measures of performance. For example, the use of standards provides

common communication protocols and knowledge representations, allowing the

time-sharing of knowledgeable members among teams. This gives more teams

better access to project knowledge, leading to a more effective use of the

organization's knowledge resources and more flexible prototyping processes.

Additionally, learning/support technology such as libraries of reusable code

modules can help prototypers leverage their efforts to produce new products

more quickly — enabling their organizations to better attain competitive

advantage.

As was discussed in Section 3.4, however, some of the largest effects on

productivity — the order-of-magnitude changes — come from the ability to

change the existing prototyping processes. For example, the potential for

technology to empower a given role can radically change the group dynamics in

a design process. Representation and analysis technology can reduce the design

30





coordination and organizational technology. A performance measurement

framework was developed using the dimensions of process/product and

task/social/strategic perspectives. This framework was used to base discussions

of examples of performance impacts.

Much research remains to be done in this area in the future. Development of

performance measures for each of the dimensions through the use of applicable

reference disciplines is an obvious first step. Just as Agresti used industrial

engineering as a reference field for measuring I/S productivity [1], one could

envision using research in manufacturing, group processes, economics,

organizational studies, etc., to derive new measurements for prototyping

performance. For example, a prime field to examine might be the impact of

group technology on manufacturing productivity — an area in which a number of

studies have already been made [46, 30].

Perhaps the major research issue emerging from this paper is the criticality of

the technology-process "fit" to prototyping performance. Will a technology

platform enable major performance impacts by itself or must the technology also

match the specific design methods used? In other words, should design processes

be altered to match the technology in use (through training, etc.) or should

technology be modified to match design processes? Would the cost of either

alternative be justified by the performance impacts they would provide? In the

final analysis, the question of the magnitude of the impact of the technology-

process "fit" as compared to the impacts of either the process or technology

effects alone is an empirical issue, and it must be tested as such in the future.

32



It should be noted that many of the concepts presented in this paper are not

limited to the prototyping environment. Though the process-technology-

performance issues discussed were directly framed for prototyping, the

implications of the process-technology "fit" and the performance measurement

framework should be generally applicable to a wide range of design

methodologies. Applications to other methods should be made in the future.

We have presented perspectives on the measurement of prototyping project

performance, and a way to assess technologies that are available for supporting

the prototyping environment. This paper highlights the importance of

examining the performance impacts of support technology in a broad manner,

and suggests that such an examination can be done in a systematic manner. Of

course, the ability to attribute performance impacts to support technology

becomes increasingly difficult as one moves from an individual unit of analysis

to an organizational one. However, the ability to characterize prototyping

behaviors and support technologies along the presented dimensions suggests

that these frameworks can lead to an increased level of understanding of

performance determinants at all levels..

33



References

1. Agresti,W. "Applying Industrial Engineering to the Software
Development Process," in Proceedings: IEEE Fall COMPCON, Washington
D.C.: IEEE Computer Society Press, 1981, 264-270.

2. Agresti, W. (ed.) New Paradigms for Software Development. Washington,
D.C.: IEEE Computer Society Press, 1986.

3. Alavi,M. "An Assessment of the Prototyping Approach to Information
Systems Development." Communications of the ACM. Vol. 27, No. 4. 1984,
556-563.

4. Albrecht, A. "Measuring Application Development Productivity,"
Proceedings of the Joint SHARE/GUIDE Symposium, October 1979, 83-92.

5. Applegate, L., B. Konsynski and J. Nunamaker. "A Group Decision
Support System for Idea Generation and Issue Analysis in Organization
Planning," in Proceedings of the Conference on Computer-Supported
Cooperative Work, Austin, Texas, December 3-5, 1986, 16-34.

6. Babich, W. Software Configuration Management: Coordination for Team
Productivity. Reading: Addison-Wesley, 1986.

7. Bjorn-Andersen, N. "Challenge to Certainty," in T. Bemelmans-(ed.)
Beyond Productivity: Information Systems Development for Organizational
Effectiveness. Amsterdam: North-Holland, 1984.

8. Blum, B. "Application Systems Prototyping" in Prototyping: State of the
Art Report. Lipp, M. (ed.) England: Pergamon Infotech Limited, 1986, 3-14.

9. Boddie, J. Crunch Mode: Building Effective Systems on a Tight Schedule,
Englewood Cliffs, NJ: Prentice-Hall, 1987.

10. Boehm, B. "Software Engineering," IEEE Transactions on Computers, Vol
C-25, No. 12, December 1976, 1226-1241.

11. Boehm, B. "Improving Software Productivity," in Proceedings: IEEE Fall
COMPCON, Washington D.C.: EEEE Computer Society Press, 1981, 264-

270.

12. Boehm, B. "Verifying and Validating Software Requirements and Design
Specifications", IEEE Software, January 1984, 75-88.

13. Boehm, B. "Improving Software Productivity," Computer, Vol. 20, No. 9,

September 1987, 43-57.

34



14. Bourke, M. "Actual Experiences in Prototyping," in Prototyping: State of
the Art Report. Lipp, M. (ed.) England: Pergamon Infotech Limited, 1986,
15-26.

15. Brooks, F. The Mythical Man-Month: Essays on Software Engineering,
Reading, MA: Addison-Wesley, 1975.

16. Brooks, F. "No Silver Bullet: Essence and Accidents of Software
Engineering," IEEE Computer, April 1987, 10-19.

17. Budde, R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven (eds.).

Approaches to Prototyping. Berlin: Springer-Verlag, 1984.

18. Buss, M. "How to Rank Computer Projects," in R. Galliers (ed.) Information
Analysis: Selected Readings. Sydney: Addison-Wesley, 1987, 395-407.

19. Card, D., F. McGarry, and G. Page. "Evaluating Software Engineering
Technologies," IEEE Transactions on Software Engineering, Vol SE-13, No.
7, July 1987,845-851.

20. Carey. T. and R.E.A. Mason. "Information System Prototyping:

Techniques, Tools, and Methodologies," in New Paradigms for Software
Development. W. Agresti (ed.), Washington, D.C.: IEEE Computer Society

Press, 1986,48-58.

21. Churchman, C. "Suggestive, Predictive, Decisive, and Systemic
Measurement." Paper presented at the 2nd Symposium on Industrial

Safety Performance Measurement, National Safety Council, Chicago, Dec.

1968.

22. Churchman, C. The Design ofInquiring Systems. Basic Books, 1971.

23. Crowston, K. and M. Treacy. "Assessing the Impact of Information
Technology on Enterprise Level Performance," in Proceedings of the Seventh
International Conference on Information Systems, 1986.

24. Curtis, B.,H.Krasner,V.Shen, and N.Iscoe. "On Building Software
Process Models Under the Lamppost," in Proceedings of the 9th

International Conference on Software Engineering. IEEE Computer Society

Press, 1987,96-103.

25. Curtis, B., H. Krasner, and N. Iscoe. "A Field Study of the Software Design
Process for Large Systems," Communications of the ACM. Vol. 31, No. 11,

1988, 1268-1286.

26. Evans, F. "Selling Prototyping Techniques to Management," in

Prototyping: Stateof the Art Report. Lipp, M. (ed.) England: Pergamon
Infotech Limited, 1986, 27-40.

27. Feather, M. "Mappings for Rapid Prototyping," ACM SIGSOFT Software
Engineering Notes: Special Issue on Rapid Prototyping, Vol. 7, No. 5,

December 1982.

35



28. Floyd, C. "A Systematic Look at Prototyping," in Approac/ies fo

Prototyping. Budde, R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven
(eds.). Berlin: Springer-Verlag, 1984, 1-18.

29. Galbraith,J. Organization Design. Reading, MA: Addison-Wesley 1977.

30. Gallagher, C. and W. Knight. Group Technology Production Methods in

Manufacture. West Sussex: Ellis Horwood. 1986.

31. Gehani.N. "A Study in Prototyping," ACM S/GSOFTSo/'fa;are
Engineering Notes: Special Issue on Rapid Prototyping, Vol. 7, No. 5,

December 1982.

32. Gladden, G. "Stop the Life Cycle I Want to Get Off," ACM SIGSOFT
Software Engineering Notes. Vol. 7, 1982.

33. Gladstein, D. "Groups in Context: A Model ofTask Group EfTectiveness,"

Administrative Science Quarterly, Vol. 29, 1984.

34. Goldstein, D. and J. Rockart. "An Examination ofWork-Related Correlates
of Job Satisfaction in Programmer/Analysts," MIS Quarterly, Vol. 8, No. 2,

June 1982, 103-116.

35. Gomaa, H. "Prototypes - Keep Them or Throw Them Away?" in

Prototyping: State of the Art Report. Lipp, M. (ed.) England: Pergamon
Infotech Limited, 1986, 41-54.

36. Hackathorn, R. and J. Karimi. "Comparative Evaluation of Information
Engineering Methods", Informations Systems Research Group, College of

Business and Administration, University of Colorado at Denver, February
1986.

37. Henderson, J. "Managing the IS Design Environment." Center for

Information Systems Research Working Paper No. 158, Sloan School of

Management, MJ.T., Cambridge, MA, May 1987.

38. Henderson, J. "Involvement as a Predictor of Performance in I/S Planning
and Design." Center for Information Systems Research Working Paper No.
175, Sloan School of Management, M.I.T., Cambridge, MA, July 1988.

39. Henderson, J. and J. Cooprider. "Dimensions ofl/S Planning and Design
Technology". Center for Information Systems Research Working Paper No.
181, Sloan School of Management, M.I.T., Cambridge, MA, September 1988.

40. Henderson, J. and R. Ingraham. "Prototyping for DSS: A Critical

Appraisal," in Ginzberg, M., W. Reitmann, and E. Stohr (eds.) Decision
Support Systems. Amsterdam: North Holland 1982, 79-96.

41. Henderson, J. and D. Schilling. "Design and Implementation of Decision

Support Systems in the Public Sector,' MIS Quarterly, Vol. 9, No. 2, June
1985,157-170.

36



42. Hirschheim, R. and S. Smithson. "Information Systems Evaluation: Myth
and Reality," in R. Galliers (ed.) Information Analysis: Selected Readings.
Sydney: Addison-Wesley, 1987, 367-380.

43. Huber, G.. "The Nature of Organizational Decision Making and the Design
of Decision Support Systems." MIS Quarterly, Vol. 5, No. 2, June 1981, 1-

10.

44. Huber, G. "Issues in the Design of Group Decision Support Systems," MIS
Quarterly, Vol. 8, No. 3, September 1984, 195-204.

45. Huffaker, D. "Prototyping Business Applications Within the Traditional
Life Cycle," Journal ofInformation Systems Management, Vol. 3, No. 4,

Fall 1986, 71-74.

46. Hyer, N. (ed.) Capabilities ofGroup Technology. Dearborn: The Computer
and Automated Systems Association ofSME, 1987.

47. Hyer, N. and U. Wemmerlov. "Group Technology and Productivity,"

Harvard Business Review, July/August 1984.

48. Iggulden,D. "Prototyping Developments," in Profofypmg; State of the Art
Report. Lipp, M. (ed.) England: Pergamon Infotech Limited, 1986, 55-64.

49. Izzo, J. The Embattled Fortress. San Francisco: Jossey-Bass, 1987.

50. Jeffery, D. "Software Engineering Productivity Models for Management
Information System Development," in R. Boland and R. Hirschheim (eds.)

Critical Issues in Information Systems Research. Chichester: John Wiley &
Sons, 1987, 113-134.

51. Jenkins, A. etal. "An Annotated Bibliography on Prototyping."

Discussion paper no. 228, 259 (updated annually) Division of Research,
Graduate School of Business, Inaiana University. April 1984.

52. Jones, T. C. "A Survey ofProgramming Design and Specification

Techniques," in Proceedings ofConference on Reliable Software, 1979, 91-

103.

53. Jones, T.C. Programming Productivity. New York: McGraw-Hill, 1986.

54. Kensing, F. 'Troperty Determination by Prototj^Ding," in Approaches to

Prototyping. Budde, R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven
(eds.). Berlin: Springer-Verlag, 1984, 322-340.

55. Kraemer, K. and J. King. "Computer-based Systems for Group Decision

Support: Status of Use and Problems in Development," in Proceedings of the

Conference on Computer-Supported Cooperative Work, Austin, Texas,
December 3-5, 1986.

56. Kull, D. "To Raise Productivity Work Smarter, Not Harder," Computer
Decisions, March 1984, 164-189. '

37



57. Lipp, M. (ed.) Prototyping: Stateof the Art Report. England: Pergamon
Infotech Limited, 1986.

58. Lipp, M. "Integration of Prototyping Into a Business Environment," in

Prototyping: State of the Art Report. Lipp, M. (ed.) England: Pergamon
Infotech Limited, 1986, 145-152.

59. Malone,T. "What is Coordination Theory?" Working Paper #2051-88,
Sloan School of Management, M.I.T., Cambridge, MA, 1988.

60. Mason, R. and E. Swanson. "Measurement for Management Decision: A
Perspective," California Management Review, Vol. 21, No. 3, Spring 1979,
70-81.

61. Mason, R.E.A. "Prototyping in Software Engineering - Prototyping the
Future," in Prototyping: State of the Art Report. Lipp, M. (ed.) England:
Pergamon Infotech Limited, 1986, 75-88.

62. Mason, R.E.A. and T. Carey. "Prototyping Interactive Information
Systems," Communications of the ACM, Vol. 26, No. 5, May 1983, 347-354.

63. Mathiassen, L. "Summary of the Systems Development and Prototyping
Working Group," in Approaches to Prototyping. Budde, R., K. Kuhlenkamp,
L. Mathiassen, H. Zullighoven (eds.). Berlin: Springer-Verlag, 1984, 255-

260.

64. McCracken, D. and M. Jackson. "Life-Cycle Concept Considered Harmful,"
ACM SIGSOFT Software Engineering Notes, Vol. 7, 1982.

65. Naumann, J. and A. Jenkins. "Prototyping: The New Paradigm for

Systems Development." MIS Quarterly, Vol. 6, No. 3, September 1982, 29-

44.

66. Necco, C, C. Gordon, and N. Tsai. "Systems Analysis and Design: Current
Practices," MIS Quarterly, Vol. 11, No. 4, December 1987, 461-478.

67. Nelson, D. "A Software Development Environment Emphasizing Rapid
Prototyping," in Approaches to Prototyping. Budde, R., K. Kuhlenkamp, L.

Mathiassen, H. Zullighoven (eds.). Berlin: Springer-Verlag, 1984, 136-151.

68. Nosek, J. "Organization Design Choices to Facilitate Evolutionary
Development ofPrototype Information Systems," in Approaches to

Prototyping. Budde, R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven
(eds.). Berlin: Springer-Verlag, 1984, 341-355.

69. Osterweil, L. "Software Processes are Software Too," in Proceedings of the
9th International Conference on Software Engineering. IEEE Computer
Society Press, 1987, 96-103.

70. Packer, M. "Measuring the Intangible in Productivity," Technology Review,
February/March 1983,48-57.

38



71. Patton, B. "Prototyping- A Nomenclature Problem", ACM S/GSOFT
Software Engineering Notes, Vol. 8, No. 2, April 1983.

72. Pliskin, N. and P. Shoval. "End-User Prototyping: Sophisticated Users
Supporting System Development." DATABASE, Summer, 1987, 7-12.

73. Riddle, W. "Advancing the State of the Art in Software System
Prototyping," in Approaches to Prototyping. Budde, R., K. Kuhlenkamp, L.

Mathiassen, H. Zullighoven (eds.). Berlin: Springer-Verlag, 1984, 19-28.

74. Rockart, J. and L. Flannery. "The Management ofEnd User Computing,"
Communications of the ACM, Vol. 26, No. 10, October 1983, 776-784.

75. Rzevski, G. "Prototypes versus Pilot Systems: Strategies for Evolutionary
Information System Development," in Approaches to Prototyping. Budde,
R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven (eds.). Berlin: Springer-
Verlag, 1984, 356-367.

76. Sarvari, I. "Implementing a Prototype," in Profo^vpm^; State of the Art
Report. Lipp,M.(ed.) England: Pergamon Infotech Limited, 1986, 89-103.

77. Scharer, L. "The Prototyping Alternative," in New Paradigms for Software
Development. W. Agresti (ed.), Washington, D.C.: IEEE Computer Society
Press, 1986, 59-68.

78. Sol, H. "Prototyping: A Methodological Assessment," in Approaches to

Prototyping. Budde, R., K. Kuhlenkamp, L. Mathiassen, H. Zullighoven
(eds.). Berlin: Springer-Verlag, 1984,368-382.

79. Steiner, I. Group Process and Productivity. New York: Academic Press,
1972.

80. Strassman, P. Information Payoff, the Transformation ofWork in the
Electronic Age. New York: The Free Press, 1985.

81. Taylor, T. and T. Standish. "Initial Thoughts on Rapid Prototyping
Techniques," in New Paradigms for Software Development. W. Agresti (ed.),

Washington, D.C.: EEEE Computer Society Press, 1986, 38-47.

82. Tavolato, P. and K. Vincena. "A Prototyping Methodology and its Tool," in
Approaches to Prototyping. Budde, R., K. Kuhlenkamp, L. Mathiassen, H.
Zullighoven (eds.). Berlin: Springer-Verlag, 1984.

83. Venkatraman, N. 'TheConceptof Fit in Strategy Research: Towards
Verbal and Statistical Correspondence," Sloan School ofManagement
Working Paper #1830-86, M.I.T., Cambridge, MA, 1986.

84. West, M. "A Taxonomy of Prototyping - Tools and Methods for Database,
Decision Support and Transaction Systems," in Prototyping: State of the Art
Report. Lipp, M. (ed.) England: Pergamon Infotech Limited, 1986, 105-122.

39



85. Zmud,R. "The Effectiveness of External Information Channels m
Facilitating Innovation Within Software Development Groups," MIS
Quarterly, Vol. 7, No. 2, 1983, 43-58.

7 (| I U b 8

40









Date Due

M^ J-'v

OCT.

Lib-26-67



Mil lIBRARIf; DIIPI 1

3 TOfiO DOSbTfififl fl




