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Bayesian Analysis of Reduced Form Systems

By Albert Ando and G.M. Kaufman

SUMMARY

Under the assumption that none of the parameters of a reduced form

system are known with certainty, the natural conjugate family of

prior densities for the joint distribution of these parameters is

identified. Prior-posterior and preposterior analysis is done

assuming that the prior is in the natural conjugate family, and

some useful sampling distributions are derived. A procedure is

presented for obtaining some non-degenerate joint posterior and

preposterior distributions of all parameters even when the number
of objective vector sample observations is less than the number
of parameters of the process.

1. Introduction

The data generating process known as a simultaneous equations system among

econometricians may be described in simplified form as follows: it is a set of

stochastic equations

B 2^j^ + r z^j^ = u^J^
, j=l,2,... (la)

where B and r are (m x m) and (m x r) coefficient matrices, fixed for all j,

£^-''^ is a ( r X 1) vector of predetermined variables and ^ ^'^'^ u^-^^ are (m x 1)

and (r x 1) random vectors respectively. It is often assumed that {u^-' , j=l,2,...}

is a sequence of mutually independent, identically multivariate Normally distrib-

addition it is assumed that B is non-singular, there exists a wide variety of

methods for estimating B and r.

Dreze [ 3 ] has suggested that Bayesian methods be applied to the analysis

of such systems when neither B, r, nor h is known with certainty. In [ 3 ] he

outlines some ways of treating the system when h, but not B and £, is known with

certainty. Zellner and Xiao [ 6 ] treat the reduced form system as defined in
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section 1.1 below with parameters h and g s -b' ^ from a Bayesian point of view.

They, in effect, do prior-posterior analysis of the data generating process defined

in (lb) and derive the unconditional distribution of the 2. under the assumption

that (n, h) has a particular diffuse (and degenerate) prior density.

In this paper we identify a natural conjugate family for (g, ^) , do prior-

posterior analysis under the broader assumption that the prior is in the natural

conjugate family, present sampling distributions unconditional as regards (g, K)

,

and do preposterior analysis. In addition, we show how Bayesian inference can be

done even when the number of objective sample vector observations is less than the

number of unknown parameters.





1. Definition of the Process

The reduced form data generating process is defined as one that generates

~(1) ~(i)
independent (m x 1) random vectors ^ , . . . ,^ , . . . according to the model

;(j) ,(j) ^~(J)^•-- = n z^"' + v^-^' , (lb)

where ^--a matrix of dimension (m x r)--is a parameter whose value remains fixed.

Initially we assume that z^^^ is a known (r x 1) vector which varies from obser-

vation to observation. The v^-'-'s are mutually independent (m x 1) random vectors

identically distributed according to

^'"^(ZIO. h) = (2k)-2'

'(J)

1 t, 1

2l hv
|^J2 (2)

and so the density of ^ ' is

Notice that if B in (la) is non-singular then preraultiplying both sides of

(la) by b" transforms (la) into the form (lb) with n = -b" r and v^"^ =b"''"u^'^\

1.1 Some Definitions

For future convenience, we make the following definitions;

dim(m x n)

dim(r x n)

n = [it dim(m x r)

(3a)

(3b)

(3c)
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Later, we shall have use for the matrix

P = (£<'', ...,£*'^'] = :

I
, <Hm(in X r) . (3d)

V
'^

1.2 Likelihood of a Sample

The likelihood that the process defined in (1) will generate n successive

values y^ y " • jY/^ ) " - 1"^ is the product of the individual likelihoods:

(j)_„ .(j)^t^,,.(j).n ,(J)^
(2,)4"-e-i^(r' -Sr-")l(r' -n£'-^')|h|2" . (4)

If the process by which the z^-* s were generated is non-informative then this

is the likelihood of the sample described by (Y, Z) . The kernel of the likelihood

^'^ " ^4^(Z^J>-nz(J))^h(^<J>-5z<J>) ,,,in
_

^3^

Given (Y, Z) we may compute these statistics:

V= E z(J)z(J) =
I l'^

, dim(r x r) , v = n-m (redundant),

l^ = (| z'^)"-^ I l^ , dim(r X m)

,

,a) ^ y(J).p_ ,(j) ^ dim(mxl),
^'^

I s E e^^J^e^J)
, dim(m x m)

.

In terms of V, P, and e we may write (5) as

^-itr h{[P-n]V[P-n]V|} |h|i(v-Hn) _

^^^

It is well known thatl (7) is the kernel of the joint likelihood of (P, e)

when V > and y is PDS and that given V, n, and h, P and e are independent.

It follows that the marginal likelihood of e is Wishart with parameter (h, v)

'"see T.W. Anderson [1[1 ], p. 183.
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provided v > 0^ and the marginal likelihood of P multivariate Normal with

kernel
^-Atr(h[(P-2)V(P-a)'^]}

|,^|-|- ^ ^g^

We define

£= i2.i,'",Pj ,
dim(mr x 1) , (9a)

n = (Tt^,...,£^)^ , dim(mr x 1) ,
(9b)

where £. is the ith row of P and j:. the ith row of H, and

H = ^ a Y (10)

where Q denotes the Kroenecker direct product of h and V. Then the kernel

(7) of the joint likelihood of (P, e) may be written as

e-i(P-i)''h a y(£-n) n^ji ^

g4tr h
| n^||(v-Hn-l)

^ ^^^^

The kernel of the marginal likelihood of £ is

e-i(£-l) '»(£-£) |h|i . (12)

Formula (11) is simply a rearrangement--not a transformation--of elements

in the exponent of (9), as may be verified by writing out the trace in (8).

That the marginal likelihood of p is (12) follows from the fact that (12)

is just a rearrangement of (9).

When the rank q of Z is less than the column dimension r of IT the statistic

P is not fully determined. In fact^ m(r-q) of the mr elements of P may be

assigned arbitrary values, whereupon the remaining elements of P are determined

by the normal equations

(Z Z^)V^ = if . (13)

To facilitate discussion, we assume that the first q rows of Z are linearly

independent. Then we may partition Z as
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Z^ is (q X n),

Z is ((r-q) X n)

and P as

£ = [?1 ?2-^ » where Pj^ is (m x q) and £2 ^^ (m x (r-q)).

This allows us to write (13) as

h ll





and write (11) as

g-i(p-«)'^(h a V)(p-£) |j^|i6 ^-|tr h
I* n^ji(v+m-0-l)

_ ^^2)

Notice that even if q < r, the joint likelihood of (P,, |) - (p , , e) may exist.

1.2 Conjugate Distribution of (n, h) , n, and h

When neither n nor h are known with certainty but are regarded as random

variables, the natural conjugate of (12) is

^^''^(i^ ^Jl' I' I' ^>

defined as equal to

k(m,r,v) e-^'^^ b[ (n-g) V(n-E)*^] ^^^\^
^-\tr |*h

|

j^j^v-l
j

^,|i(v4^-l)
^^3^^

^N"'^'*(Sli^^ ^ V ^'"^(^ll^v) if V > and ^ and e are PDS,

(13b)

otherwise

where

k(n>,r,v) .
[2^(v+r-Hn-l) ^rn(n,+2r-l)/4

J^ r(Kv+n,-i]) J'^ (13c)

The conjugate family defined by (13) parallels that defined in (6a) of [ 2 ]

for the Multinormal process.

We obtain the marginal prior on g by integrating (13a) with respect to

hj if V > 0, and y and e are PDS , then

(mr)
D(n|P, I, %, v) = tl %\\, I, %, v) oc It+ll

2i(v+m)

where

Le [n-p]v[n-p]'' =

<iir£i)^(iir£i)*' ••• (£n,-Pm)y(irPi)''

(14a)

(14b)

_(lr£l)^(l„,-£m)' ••• (ilm-£m)^(llm-£m>'_

We vi/ill call a distribution of the form (14) a non-degenerate generalized

multivariate Student distribution.





Proof ; We integrate h over the region R. s {h|h is PDS}. If v > 0, and V and
|

are PDS,

D(n|E, I, I, V) =j4""'\n|g, I, h) fi^'^hli, v)d^

\
P^-^tv h[(n-P)y(2-P)*^]

i^^ji .
3-itr h I |i^|iv-l

^^

r h{[n-p]y[ii-p]^+€) u |i(v+i)-ir^-itr h{[n-p]v[n-p]'+€)
|j^|
, = r dh

^h

The integrand in the last expression is the kernel of a Wishart density with

parameter ([g-P] V[n-P]'^ + |, v+1), and so

D(n|E, y, |, V) oc |[n-p]v[n-p]'' + e|-i(v-Hn)
^

proving (14)

.

From (13b) it is obvious that the marginal distribution of h is Wishart with

parameter (|, v)

.

Tiao and Zellner [ 6 ], have shown the important result that the conditional

distribution of n. given n., 1 < j < m, j^i, is multivariate Student, and that the

marginal distribution of £. is also multivariate Student.

1.3 Prior-Posterior Analysis

If a Normal -Wishart distribution with parameter (P', V' , €*, v') is assigned

to (n, h) and if a sample then yields a statistic (P, V, 6, v) the posterior

distribution of (J, ^) will be Normal-Wishart with parameter (g", V", |*", n", v")

where

(l y" is

< if

-s PDS

V" = V'+y ,
5" = < if

,
(16a)

(_
otherwise

V" = v'+v+m-+S'+6-6"-<D-l , (16b)

p" = [p' y' + p y]y""-^ (i6c)





and

'e'+e + g'^'g'" + P V P"" - I'ly"!"" s i" if e" is PDS
- - = " = " " " (16d)

otherwise

When e' and § are both PDS, the prior density and the sample likelihood combine

to give the posterior density in the usual manner. As was the case with the

Multinormal process treated in [1], when either e' or e or both are singular, the

prior density (13) or the sample likelihood (7) or both may not exist. Even in

such cases, we wish to allow for the possibility that the posterior density may

be well defined. To this end we define the parameter of the posterior density

in terms of e' and e rather than e*" and e*.

Proof ; Multiplying the kernel of the likelihood (7) by the kernel (13) of the

prior we obtain

g-^tr h[n-p']y'[n-E]'' |h|is' ^-^tr I'h |h|iv'-i

. e'^'"''
h(P-2)v(P-n)^

I^I^S
g4tr h | ^ i(v-Kn-O-l)

= e'2^ |h|2^" e'^'^'^ ^(£'+l> |hji(v'+v-hn4S'-f«-S--$-l)-l

where

s = tr h((p-n)v(p-n)'^ + (2-p')v'(n-p')'^)

= tr h{gyE'^- g Y| - g^s'^ + S YG^ + 2 ^'l^- E'V'i'^ - n¥'g'^+ E'^'g'*^

}

or since tr h(g V ^^ } = tr h{(2 V g*^)"^} = tr h{^ y g*^},

s = tr h(n v'n*^ +n vn*^ - 22(v'p'*^+y g*^) + g'y'g'*^ +1^1^) •

Defining y"=y'+Y as in (16a), g"t=Y"'l(V'P' ^^+7 P^) as in (16c), and completing

the square, gives

S = tr h{(n-P")y"(n-P")'^ + P'V'P'*^ + P y P*^ - P"V"P"'^J .
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Defining v" as in (16b) and

otherwise

we have (16d), completing the proof.

2. Sampling Distributions with Fixed n

We assume here that a sample of size n is to be drawn from an (m x r)

dimensional reduced form process as defined in section 1 whose parameter (n, h)

is a random variable having a Normal-Wishart distribution with parameter

(t , V', e' , v').

2.1 Conditional Joint Distribution of (P, e|ll, h^ V)

The conditional joint distribution of the statistic (P, e) given that the

process parameter has value (IT, h) and given V is, provided v > 0,

(17)

2.1 Unconditional Joint Distribution of (P, e)

D(P, lis, h; V, V) = f^^^'^pli, hap f^'^^ljh, V)

= fj'""\ils, ha V) f^"\||h, V)

The unconditional joint distribution of (g, |) as regards (n, h) , provided

V > and Y^ is PDS is

D(P, ||g', y', l', v'j n, V, y)

OC = ^ (18a)

ui-i'JYutp-r^S+i'F^"
^

where
..-1 ..-1 .-1 ... -...-1 -1

(18b)
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Proof ; From (13) and (17),

D(|, ||P'^ V', e', v'j n, V, V)

= f[f4'"''\m, h a pfJ"'^^n|P',h ft v')ds]

• fi"^(||h, V) f^"^h||', v')dh .

The inner integral is f^'"'^^ (P
|
P' , h ft V^^) . For since both H and | = p-n are

independent Multinormal random variables, it follows that P is Multinormal with

mean matrix

E(P) = E(|) + E(|) = + E(2) = I'

and variance-covariance matrix

V(|) = V(|) + V(n) = (b ft V)"^ + (h ft V')"-^

= (h"^ a v'^) + (h"^ ft y''b = h"^ a (v"-^ + v'"^) .

Consequently the matrix precision of P is

[h"-^ ft (v'-^+v'"-^)]'-^ = h ft (v'^+v'"-^)'-^ = h a V^j

as

v''-^+v"-^ = v'-^(v'+v)v'"-^ = v'-^ V" v'"-*- =
li^

.

Hence we may write the integral above as

/ ^^^(pir^ V,, h) f^"^iih, V) f^'^hii', v')dh

Using the definition (16b) the last integral is

III*-' /
itr h([g-E']^^[|-E']''+l+l'} i^„_^

h|2^ ' dh

Since here v > 0, V'''=V, and 5"=1, the integrand in the above integral is

the kernel of a Wishart density with parameter ([P-P'jv [P-P'J +e+§', v") ; hence
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the kernel of the distribution of (P, e) unconditional as regards n and h is (18a).

2.2 Unconditional Distribution of P

The distribution of P unconditional as regards n, h, and e is, provided V

is PDS, the generalized multivariate Student distribution defined in (14). That is,

whether or not v < 0.

Proof: From (9), the kernel of the marginal likelihood of P given (n, h) is

^-itr b([i-n]v[p-n]'3 |h|i .

'
" "

(9)

If P is defined as in (18) when V < 0, then (9) is the marginal likelihood of

P whether or not v < 0. Conditional on h=h, the prior distribution of ff is,

from (13), Multinormal with parameter (P', h Q V').

Consequently, as shown in the course of the proof of (18a), the distribution

of I
given h=h but unconditional as regards n is Multinormal with parameter

(I' > h ^ V^) where Y^ ^^ defined in (18b). This implies that, the distribution

of P unconditional as regards n, e, and h is

// ;5"'^P|P', V^, h) f^"^S|h, V) . f^'^hli', v')dh de

:j^f^™"^p|p, h Q v^) f^^^hli', v')dh

QC
I

itr h{[P-p']V^[P-P']Ve'} i(v'+l)-l

^h

The integrand in the integral immediately above is the kernel of a Wishart density

with parameter ([g-g' ]yut2-E' ]^+|' , v'+l). Hence (19) follows.
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2,3 Unconditional Distribution of
|

The distribution of e unconditional as regards P, n, and K provided that

V > and e' is PDS is

a non-standarized generalized inverted Beta distribution with parameter

(^V-1, ^(v'+r+m)-l,
I

as defined in ( 9g ) of [1].

Proof ; The marginal likelihood of e is f^'^^Cilh, v) and so does not depend on n.

The marginal prior distribution of ^ is
^w vh||'^ v'). So, when v > 0, 5"=1 and

\
l^liv-lJ^-itrhU+i'} 1^

i(v-+l)-l
^^

h

OC

^h

Since the integrand in the integral immediately above is the kernel of a Wishart

density with parameter (§+§', v"-l), (20) follows directly.

2.4 Unconditional Distribution of A Sample Observation ^^' given z}-^^

~( i)
Suppose we wish to make a probability forecast of a sample observation ^''-"

before the value it assumed is observed, but knowing z^-' . The conditional

distribution of ^ given n, h, and z^^^ is simply (3). However, if we regard

n and h as jointly distributed random variables to which we have assigned a

Normal-Wishart prior distribution with parameter (g', V', e', v'), then the

distribution of most interest to us is the distribution of ^ given £ but

unconditional as regards (n, h) . This distribution is, provided v' > 0, and

H is PDS,
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D(Z^^^|E', V', e', v'} 1, z^J^) = f<'">(/J^|P'z^J\ Hy, v') (21a)

where

k^ = 1 - z^J^ V""^ z^j^ = |V"'^||V|
,

(21b)

Sy = v'k^(e'+g'[v'+y'V"'^Y'-k^Y]|''^)"'^

Proof : We prove (21) by twice completing a square and then integrating. For

notational simplicity, we drop the superscript on ^^^^ and z^^^ throughout the

proof. From (3) and (13),

D(z|P'^ V', I', v'} 1, z}^h

If
\\

Dropping constants and completing the square in n in the exponent of the integrand

above allows us to write this expression as proportional to

r
[ re-i^"^ ^Ha-(z£'+rr)r'^3r[r<i^'+i'r)r''^]')|h|idn]

^h \ (21c)

The integrand of the integral in square brackets is, aside from a multiplicative

constant not involving "^ , a Normal density, so that

D(Z|P', y', I', v'j 1, z}^hccfe-^''^ ^ 1 |h|^^'"^ dh

where B is the (m x m) matrix in curly brackets in the exponent outside the

integral in square brackets in (21c), Since the integrand of the integral

immediately above is a Wishart density with parameter (B, v'),

D(z|i', Y', I', v'j 1, z^J^) OC lll"^^^''*"''^

which is the kernel of a multivariate Student distribution.
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By completing the s quare in ^ in B we may write this kernel as

where

k^l zVVp''
$ =

I' + I'l'l'^ + p'v'v""-^v'p'*^ - k

It remains to be shown that ^j, =P'£. and that H^ may be expressed as in (21b).

z%%
y

To this end observe that

\r-'\
V"

|v"-i||-z zVl = Ir'^lly'i

Thus

^.y z -

= k

k'^ z" V""^[y"-z z*^]p''

:\z'-iz' r' z)z']?j' = z'?j'

It follows immediately that

I .
l'

+ P'(V'+V' V""^ y'-k^ V)!**^

and that H is as defined in (21b).

3. Preposterior Analysis with Fixed n >

We assume that a sample of fixed size n > is to be drawn from an (m x 1)

reduced form data generating process as defined in section 1. The parameters

(n, h) of the process are not known with certainty but are assumed to be random

variables having a Normal-Wishart prior with parameter (P', v', |', v') where

v' > 0.
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3.1 Joint Distribution of (P", e") given y

Provided v > 0, and y* is PDS^ the joint distribution of (|", |") is

|e"-e'-[P"-p']V*[P"-P']'^|2^''^

- - - - -
-

|^„|^(v"-kn-l)

where

f = V' y'^ V" = V" y'^ y' (22b)

and the range of |" is R^„ = (|"
1

1"-|
' [F'-P* ]V°[P"-?' J*^ is PDSJ.

Proof : In a fashion similar to that used in establishing (12-20b) in [2], we

can show that

fM'^Hutl-i'^" = [?"-?'] [r-i']" >
<23a)

and that when e" is PDS

,

I" = i'''l+i'^'i'*^"*'i I i^.-g«Y"l"^ = i'+|+[|"-|']y°[?"-g']'^ . (23b)

From (16b) and (16d) we have

(p, |) = ([E"y"-e'y']y''^ , e"-|'-[p"-p']v°[p"-p']'^) . (24)

Letting J(P", e"; P^ e) denote the Jacobian of the integrand transformation from

(P, |) and making this transformation in (18a) we obtain

0(1", |"l|', y', iS v'; n, V, y)

CO
\e"-e'-[P".pj]f[i".p'f\h-'^

li(V-Hn^l) '^(rMM, i) •

Since J(P", e" ; p, e)=J(P", P) J(e", e) and since both J(P", £) and J(|", e) are

constants involving neither P nor e^ we may write the above kernel as (22a).

That the range of e" is as shown in (19b) follows from the definitions of

P", e"^ I, and e.
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3.2 Some Distributions of P" and e"

The distribution of P", unconditional as regards ff, K, and |" is, provided

that Y°*V'V'-^V" is PDS

,

D(g"lgS t> i'> "^ ^' P at |[r'-?']v°[r'-i']^+i'r^^'''"^^ <25)

Proof: From (19), the unconditional distribution of P is generalized multivariate

Student with parameter (P', V , e', v'), and from (16c),

p.. = [p' V' + P i]T'^ .

Rewriting the above as

£" = £'(i Q V' i"'^ + p(i a y T'^)

it is easy to see that the Jacobian of the transformation from £ to £" is

1 — -1 -m
|l a V y"' |2 = |y

y"' [^ , a constant as regards £". Thus substituting according

to the dictates of (23a) into (19) yield the distribution of P" as shown in (25).

The distribution of §" unconditional as regards n, h, but given V and P",

is found in a similar fashion to be

D(i"|P', y', i'; n, V, V, P")g. \% I III E y g +g V VJ ^26)

leM.p.y.g.t.p y
pt^g„y„g„t|i(v"+m)

with range set R ,,.

4. Analysis When Rank (Z ?}) < r

4.1 Inference When Rank (Z Z^) < r

Even when the rank q of Z Z is

inference on (n, h) by appropriately structuring the prior so that the posterior

o" (n, h) is non-degenerate. The procedure here is analagous to that suggested

in section 3.3 of [ 5 ].
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For example, suppose the data generating process is that of section 1.1, we

assign a prior on (g, h) with parameter (0, 0, 0, 0), and then we observe a sample

(^(^\z^^b, (2^^^, z(^) ),..., (^^'^^^z^"^) where n < m. The posterior distribution

of (H; ?) is degenerate in this case, as the posterior parameters ( 16 ) assume

values

v"=v+m-<l>-l=0 , P"=p ^ y"*=0 , e"*=:0 .

If, however, we require the prior on (n, K) to be very diffuse, but are willing to

introduce just enough prior information to make v" > 0, V" PDS, and e" PDS, then a

non-degenerate posterior will exist; e.g. assign v'=l, V'=M I, M» 0, and €'=K I,

K » 0, so that v"=l, V"=M I + V, and |"=K I + |. The posterior on (n, h) is then

non-degenerate Normal-Wishart with parameter (|", V", e", v") = (P, M I+V, K I+€, 1).

Notice that if m < q < r, | is PDS, so that the posterior will be non-degenerate

even if |'=0, so long as v" > and ^" is PDS.

To see that in fact a prior on (2, K) with parameter (0, MI, K I, 1) is

extremely diffuse, we state the following result proved by Martin [ 4 ], who gives

explicit formulas for calculating the means, variances, and covariances of .elements

of the variance-covariance matrix h :

Theorem : If K is (m x m) and Wishart distributed with parameter (e, v) then

~-l - 1 ^.1
E(b ) = (l/v-2)e if V > 2; and letting h denote the (a P)th element of h , for

1 < a, P, 7, 5 < m

^°"^^<^^ \l^ = 3(v-2)(v-4) ^^TT^ ^ap %5 •"
'av ^p6

*
^a6 W

if V > 4.

Since in this example v"=l, it is easy to show that none of the above moments

exist. If we had specified v'=5, say, then first and second moments of h would

— 1 M
exist and, be equal to E(h ) = T I and
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^°^%P' Sb = ^K? ^6 "
'ci5 H?'^ > 1 < a, P, 7, 5 < m

/=k and if t^k for 1 < /, k <

It is also important to observe that as the projection of each ^. , i=l,2,...,m

on the q-dimensional row space of Z is unique, arbitrary specification of (r-q)m

elements of g as equal to does not influence the values assumed by the posterior

parameters. That is, none of the posterior parameters P", V", e" and v" depend

on which (r-q)m particular p^^s are set equal to zero.

4.2 Probabilistic Prediction

If when q < m we assign a prior to (n, h) with parameter (0, MI, K I, 1), then

by (21) the unconditional distribution of the next sample observation given z^"^^

is non-degenerate multivariate Student with parameter (0, k K I, 1) where
t ^ ~

k^. = 1"£ (M I + y)' z^" K Notice that setting < v' < 2 as we have done

here implies that the second moment of ^ given z^" ^ does not exist, so

that the unconditional distribution of ^ is extremely diffuse in this

particular example.
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