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Abstract

Our concern lies in solving the following convex optimization prob-

lem:

Gp : minimize^ c^x

s.t. Ax = b

X eP,

where P is a closed convex subset of the n-dimensional vector space

X. We bound the complexity of computing an almost-optimal solution

of Gp in terms of natural geometry-based measures of the feasible re-

gion and the level-set of almost-optimal solutions, relative to a given

reference point x^ that might be close to the feasible region and/or the

almost-optimal level set. This contrasts with other complexity bounds

for convex optimization that rely on data-based condition numbers or

algebraic measures, and that do not take into account any a priori ref-

erence point information.
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1 Introduction, Motivation, and Main Result

Consider the following convex optimization problem:

Gp : z* := minimum^ c^x

s.t. Ax — b

X e P.

where P is a closed convex set in the (finite) 7i-dimensional linear vector space

X, and b lies in the (finite) m-dimensional vector space Y. We call this prob-

lem linear optimization with a ground-set, and we call P the ground-set. In

practical applications, P could be the solution of box constraints of the form

/ < X < u, a convex cone C or perhaps the solution to network flow con-

straints of the form Ni = b.x > 0. However, for ease of presentation, we will

make the following assumption:

Assumption A: P has an interior, and {x
|
Ax = 6} fl intP / 0.

For e > 0. we call x an e-optimal solution of Gp if x is a feasible

solution of Gp that satisfies c^x < z* + e. The chief concern in this paper

is an algorithm and associated complexity bound for computing an e-optimal

solution of Gp.

Let
II

•

II
be any norm on A', and let B{x. r) denote the ball of radius r

centered at x:

B{x,r) := {u- G A'
|

||u,' — x|| < r} .

The norm
||

•
||
might be a problem-appropriate norm for the actual problem

context at hand. However, in Section 5.1. we will examine in detail two norms

on A' that arise "naturally"' in association with the ground-set P.

The computational engine that we will use to solve Gp is the barrier

method based on the theory of self-concordant barriers, and we presume that

the reader has a general familiarity with this topic as developed in [5] and/or

[7], for example. We therefore assume that we have a 7?p-self-concordant bar-

rier Fp[-) for P. We also assume that we have a i^y ||-self-concordant barrier

F|| ||(-) for the unit ball:

5(0,1) = {x
I

|lx|| < 1} .

The work here is motivated by a desire to generalize and improve sev-

eral aspects of the general complexity theory for conic convex optimization

developed by Renegar in [7], key elements of which we now attempt to sum-

marize in a brief and somewhat simplified manner. In [7] , the general convex

optimization problem Gp is assumed to be conic, that is, P is assumed to

be closed convex cone C . and the data for the problem is given by the array
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d = (A,b,c). One complexity result that can be gleaned from [7] is as fol-

lows: assuming that Gp has a feasible solution, there is an algorithm based

on interior-point methods that will compute an e-optimal solution of G p in

O
^

\ € dist(x, aC) mm{s, ||c(||} yy

iterations of Newton's method (see Theorem 3.1 and Corollary 7.3 of [7]),

where we use the notation dc to denote the complexity value of the barrier for

the cone C. Here x G C is a given interior point of the cone C that is specified

as part of the input to the algorithm, dist(x, dC) is the distance from x to the

boundary of C, \\d\\ is the (suitably defined) norm of the data ci, and s is a

positive scalar that must be specified as input to the algorithm. The quantity

C{d) is the condition number of the data d, defined as:

Cid) = ^^
(2)"-^^^^

mm{pp(d),po(d)}
' ^'>

where pp{d), poid) are the primal and dual distances to ill-posedness, see [7]

for details and motivating discussion. {C{d) naturally extends the concept

of condition number of a system of equations to the far broader problem of

conic convex optimization.) The complexity result (1) is remarkable for its

breadth and generality, as well as for its reliance on natural data-dependent

concepts imbedded in condition-number theory. In order to keep the presen-

tation brief, we have shown a simplified and slightly weaker complexity result

in (1) than the verbatim complexity bound in [7]. Furthermore, [7] has many
other complexity results related to conic convex optimization in finite as well

as infinite-dimensional settings.

While the significance of (1) and the many related results in [7] cannot

be overstated, there are certain issues with this type of complexity bound that

are not very satisfactory. One issue has to do with undue data dependence.

Given a data instance d = {A, 6, c) for Gp and a nonsingular matrix B and

a vector n of multipliers, we can create an equivalent representation of the

problem Gp using the different data d — {A,b,c) :— {B~^A,B~^b,c — A'^n).

The two data instances d and d will generally give rise to different complexity

bounds using (1) since in general C{d) ^ C{d), etc., yet both data instances

represent the same underlying optimization problem.

Another issue with the condition number approach is that the prob-

lem must be in conic form. While any convex optimization problem can be

transformed to conic form, such a transformation might not be natural (such

as converting a quadratic objective to a linear objective using a second-order

cone constraint, etc.) or unique (and so might further introduce arbitrarily

different data for the same original problem). Yet a third issue with the condi-

tion number approach has to do with the fact that the theory assumes that the
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data is arising only in the linear equation system and the objective function,

and that the cone C is fixed independent of any data. In this format, data

used to defined the cone is not accounted for in the theory.

A fourth issue has to do with the role of the starting point x. The

bound (1) is not dependent on or sensitive to the extent to which x might be

nearly feasible and/or nearly optimal. It would be nice to have a complexity

bound that accounted for the proximity of x to the feasible and/or optimal

solution set.

The algorithm and analysis presented in this paper represent an at-

tempt to overcome the above-mentioned issues. In Sections 3 and 4, we develop

and analyze interior-point algorithms FEAS and OPT for finding a feasible so-

lution x of Gp and an e-optimal solution x of Gp, respectively. This pair of

algorithms and their complexity analysis depend on certain geometry-based

measures for analyzing convex optimization problems and the concept of a

reference point x^ , which we now discuss.

1.1 Reference Point and Interior Point

The phase-I algorithm FEAS requires that the user specify two points as part

of the input of the algorithm, the reference point x^, and an interior point

x° G intF. The reference point x"" might be chosen to be an initial guess of

a feasible and/or optimal solution, the solution to a previous version of the

problem (such as in warm-start methodologies), or the origin of the space

X, etc. If P is the box defined by the constraints I < x < u, then x'' might

be chosen as a given corner of the box such as x'" = / ; if P is convex cone

C, x^ might be chosen to be the origin x"" = 0, or a known point on the

boundary or the interior of C, etc. Certain properties of x'" will enter into the

complexity bounds derived herein, particularly related to the distance from

x"" to the feasible region, to the set of e-optimal solutions, and to the set of

nicely-interior feasible solutions. There is no assumption concerning whether

or not x"" is in the ground-set P or satisfies the linear equations Ax = b.

Algorithm FEAS also requires an initial point x° € intP. This interior

point will be used in many ways to measure how interior other points in P
are. (By analogy, in linear optimization e := (1, . .

.
, 1)-^ is used to measure

the positivity of other vectors v by computing the largest a for which v > ae.)

It will be desirable for x° to be nicely interior to P. We define:

r :=r(x°) :=min{dist(x°,aP),l} . (3)

Although the quantity dist(x°,c>P) will enter into our complexity bounds for
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solving Gp through the quantity t{x°), we do not require that we Icnow the

value of dist(x°, dP). However, for the two important classes of norms that we

will consider in Section 5.1, we will show that d'ist{x°,dP) > 1 which implies

that t{x^) — 1; this will be very desirable from a complexity point of view.

1.2 Phase I Geometry Measure g

The complexity of the phase-I algorithm FEAS will be bounded by the follow-

ing geometric measure which we denote by g :

max{||x — x^W, 1}

(4)

min{r, 1}

s.t. Ax = b

B{x,r) C P .

If we ignore for the moment the "T's in the numerator and denominator of

the ratio defining g, (4) could be re-written as:

X — X
g :— mimmunij.

dist(x,(9P)

s.t. Ax = b
^^^

xeP .

and so g (or g) measures the extent to which x'" is close to an interior feasible

solution X that is itself not too close to the boundary of P, and g (or g) is

smaller to the extent that x'" is close to feasible solutions x G intP that are

themselves far from the boundary of P.

The ratios defining g and g arise naturally in the complexity of the

elUpsoid algorithm applied to the problem of finding a feasible solution of

Gp. If one were to initiate the ellipsoid algorithm at the ball centered at the

reference point x^ with a radius given by ||x'' — x\\ + f (where {x,f) are an

optimal solution of (5)), then it is easy to see that a suitably designed version

of the ellipsoid method would compute a feasible solution of Gp in O (n^ ln(5))

iterations, under the presumption that the norm
||

•

||
is ellipsoidal. (We refer

readers to [4] for an excellent treatment of the ellipsoid algorithm.) In the more

typical context in continuous optimization where we do not have an a priori

bound on the distance from the feasible region to the reference point, there
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is a natural projective transformation of tlie problem for which the ellipsoid

algorithm will compute a feasible solution of Gp in O (71^ ln(5)) iterations, see

Lemma 4.1 of [2]. Therefore 5 is a very relevant geometric measure for the

Phase-I problem in the context of the ellipsoid algorithm. Herein, we will see

that g is also relevant for the complexity of the Phase-I problem for a suitably

constructed interior-point algorithm.

Incidentally, the constants "1" appearing in the numerator and denomi-

nator of the ratio defining g in (4) appear for the convenience of the complexity

analysis, and could be replaced by any other positive absolute constants 71, 72.

1.3 Phase II Geometry Measure D^

Our complexity analysis of the phase-II algorithm OPT will rely on the max-

imum distance from the reference point x'" to the set of e-optimal solutions:

D^ := max |||x - x""!!
|
Ax = b,x e P, c^x < z' + el . (6)

At first glance it may seem odd to maximize rather than minimize in defin-

ing D^. However, consider the ill-posed case when z' is finite but the set of

optimal solutions is unbounded, which can arise, for example, in semidefinite

optimization. Then the dual feasible region has no interior, and so we would

not expect to have an efficient complexity bound for solving Gp. In this con-

text, the more relevant complexity measure is the maximum distance to the

e-optimal solution set (which would be infinite in this case) rather than the

minimum distance (which would be finite in this case). Also, in [1] in the case

of conic optimization with .r'' = 0, it is shown that D^ defined using (6) is

inversely proportional to the size of the largest ball contained in the level sets

of the dual problem, and so D^ is very relevant in studying the behavior of

primal-dual and/or dual interior-point algorithms for conic problems.

1.4 Main Result

Theorems 3.1 and 4.1 contain complexity bounds on the phase-I and phase-

II algorithms FEAS and OPT, respectively. Taken as a pair, the combined

complexity bound for the algorithms to compute an e-optimal solution of Gp
using the reference point x'' and the interior-point x'' is:
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O \/^P + '^\\
II

In

v

/''^/- + ^llll + m,n{dist/x°.aP).l} + ll^°--^'ll \\

^ +P + A + max{f,l}
(7)

iterations of Newton's method, where the

s := m&xlc^w I ||u;|| < I, Aw = 0> < ||c||, .

U) I J
M II

Note that (7) depends logarithmically on the phase-I and phase-II geometry

measures g and D^, the inverse of the distance from x° to the boundary of P,

as well as the distance from x^ to the reference point x".

In Section 5.1, we present two choices of norms
|| ||

on A' that arise

naturally and for which the complexity bound (7) simplifies to:

[/J^ln (g + D, + dp + max |-, l| + ||x° - x'

iterations of Newton's method. In Section 5.2, we show how the condition-

number based complexity bound (1) can be derived as a special case of Theo-

rems 3.1 and 4.1.

2 Summary of Interior-Point Methodology

We employ the basic theoretical machinery of interior-point methods in our

analysis using the theory of self-concordant barrier functions as articulated

in Renegar [7] and [8], based on the theory of self-concordant functions of

Nesterov and Xemirovskii [5]. The barrier method is essentially designed to

approximately solve a problem of the form

OP : z = min{c^u;
|

it) G 5},

where 5 is a compact convex subset of the 7i-dimensional space A', and c € A^*.

The method requires the existence of a self-concordant barrier function F{w)
for the relative interior of the set 5, see [7] and [5] for details, and proceeds

by approximately solving a sequence of problems of the form

OP^ : minjc-^ii; -f- ^iF{w)
\
w 6 relint5},

for a decreasing sequence of values of the barrier parameter
fj,.

We base our

complexity analysis on the general convergence results for the barrier method
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presented in Renegar [7], which are similar to (but are more accessible for

our purposes than) related results found in [5]. The barrier method starts

at a given point w^ € relint5. The method performs two stages. In stage I,

the method starts from w° and computes iterates based on Newton's method,

ending when it has computed a point w that is an approximate solution of

OP^ for some barrier parameter fi that is generated internally in stage I. In

stage II, the barrier method computes a sequence of approximate solutions w''

of OP^i^, again using Newton's method, for a decreasing sequence of barrier

parameters fi^ converging to zero. The goal of the barrier method is to find

an e-optimal solution of OP, which is a feasible solution w of OP for which

c^w < z + e. One description of the complexity of the barrier method is as

follows:

• Assume that S is a bounded set, and that w^ G relintS is given. Tlie

barrier method requires

o(>/d\n(i) + 1^ + ^)) (8)

V V sym(u;^5) eJJ

iterations of Newton's method to compute an e-optimal solution of OP.

In the above expression, R is the range of the objective function c^w
over the set S, that is, R = z"' — 2' where

2' = m\n{(Fw
I

u; G 5} and 2" = maxjc'^u'
|
w G 5},

and sym(u;, S) is a measure of the symmetry of the point w with respect to

the set S, and is defined as

sym(u', S) := max{^
\
y ^ S ^ w - t{y — w) £ S].

This term in the complexity of the barrier method arises since the closer the

starting point is to the boundary, the larger is the value of the barrier function

at this point, and so more effort is generally required to proceed from such a

point.

The barrier method can also be used in equation-solving mode, to solve

the system:

weS
c^w = 6

(9)

for some given value of 6. A description of the complexity of the barrier method
for equation-solving mode is as follows:
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• Assume tfiat S is a bounded set and that w° G relintS. If 6 G f.:',2"j,

the barrier method requires

0{^\n\i) +
, „ ^^ +^—r ^^ tt]] (10)

iterations to compute a point w that satisfies w E S, c^w = S. Further-

more, w will also satisfy:

.ymKr)>
3.^|^_^^ (11)

where T is the level set:

T := Iw
\
w E S,c w — 5\ .

Because it will play a prominent role in our analysis, we present a derivation

(11) based on [5] and [7], under the assumption that 5 has an interior and

contains no line. Let w'^ denote the analytic center of T, namely

w'^ :— argmiUj^ {F{w)
\
w E T} .

For w G S, let
|| ||^, denote the norm induced by the Hessian H{w) of the

barrier function F(-) at w, namely \\v\\^ :— Jv^H{w)v, and let i]{w) denote

the Newton direction for F{-) at w, namely ri{w) := —H{w)~^VF{w). Recall

from Proposition 2.3.2 of [5] that all u; € T satisfy \\w — w'^W^c < 3i3 + 1.

There is a fixed constant 7 < 1, the value of 7 being dependent on the specific

implementation of the barrier method, such that the final iterate u' G T of

the barrier method will satisfy ||7?(u') — Ac||^ < 7 for some multiplier A. By
taking a fixed extra number of Newton steps if necessary, we can assume that

7 := ^. Then from Theorem 2.2.5 of [8] we have \\w - w'^\\u, < 7 + n^hr <
f

,

and so for all w G T we have

\w — wWw < \\w — w'^Wyij + Ww"^ — w\\

< (itt) \\u' - w'\\^,c + i

< 1(3^1) +
!

< 3.5t? + 1.25.

(12)

(The second inequality above follows from Theorem 2.1.1 of [5].) Furthermore,

if u; satisfies c^w = 5 and \\w - u'||u, < 1, then w € T (also from Theorem 2.1.1

of [5]), and together with (12) this then implies that sym(u',r) > 3-5^5^:1-25
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Remark 2.1 Note tliat (11) implies that for any objective function vector

seX':

maxs^w - s^w < (3.5t? + 1.25) ( s^w - mins-^ui

)

(13)
weT ~ ^

' \ weT J ^ '

and

max s^w — s^w > I
) ( s^w — mills'^u; ) . (14)

w€T ~ Vs. 5(9 + 1.25/ V weT J

3 Complexity of Computing a Feasible Solu-

tion of Gp

In this section we present and analyze algorithm FEAS for computing a feasible

solution of Gp using the barrier method in equation-solving mode. The output

of algorithm FEAS will be a point x that will satisfy .4x = 6, x G P, as well as

several other important properties that will be described in this section. The

computed point x will also be used to initiate algorithm OPT, to be presented

in Section 4, that will start from x and will then compute an e-optimal solution

of Gp.

Algorithm FEAS will employ the barrier method in equation-solving

mode to solve the following optimization problem denoted by Pi:

Pi : t' := maximum^
(

t

[lb)

s.t. Az = {b- Ax^)e

z + dx' - tx° e{e- t)P

< 1

e > t

t > -2

\\4 < 1

where x"" and x" are the pre-specified reference point and interior-point, re-

spectively, and where we use the notation aP as follows:

{x G X
I

X = aw for some iv E P} if q >
aP := { recP if q = (16)

/) if Q <
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and where recP denotes the recession cone of P.

Note that Pi is an instance of the optimization problem OP of Section

2, with w — {z,t,9), c = (0, 1,0), etc. We will employ the barrier method in

equation-solving mode to solve Pi for a feasible solution (I, t, 9) with objective

value c^w = J := 0, i.e.. for a feasible solution (i, i, 6) of Pi for which i — 0. We
will then convert this solution to a feasible solution of Gp via the elementary

transformation:

+ x^ (17)

(where the algorithm will ensure that 9 > Q and so (17) will be legal). Note

that if (i, 0, 9) is feasible for Pi and > 0, then it is straightforward to verify

that X from (17) satisfies Ax — b,x € P.

In order to solve Pi for a solution (zJ,9) = {z,0,9), we first must

construct a suitable barrier function for Pi. Let Si denote the feasible region

of Pi. namely:

Si := {{:J,9)
I

.4.' = [b - Ax'')B, z + 9x' - tx^ G {9-t)P,9 < l,9>t,t> -2. ||;|| < l}

(18)

and consider the barrier function:

F{zJ.B) := -ln(?+2)-ln(l-0)+f|| \\{z)+400 Fp
z + 9x' - tx°

2dp\n{e-t)

(19)

Define:

d:=2 + i?||
II

+ SOOdp .

Then from the barrier calculus, and in particular from Proposition 5.1.4 of [5],

we have:

Proposition 3.1 F{z,t,9) is a -d -self- concordant barrier for S^.
|

Note that 1^ = Ci)p + d^ A.

We will initiate the barrier method at the point {z,t,9)° := (0, -1.0).

Thus our algorithm for finding a feasible point of Gp is as follows:

Algorithm FEAS: Construct problem Pi and the barrier function (19). Us-

ing the starting point {z.t,9)^ := (0.-1,0). apply the barrier method, in
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equation-solving mode, to compute a feasible solution (i, t, 0) of P\ that sat-

isfies f = 5 = 0. If such a solution is computed, then compute x using (17).

We now examine the complexity of algorithm FEAS. To do so, we first

bound the symmetry of 5i at the point {z, t, ^)^:

Proposition 3.2 {z,t,6)^ := (0, -1,0) is a feasible solution of Pi, and

(, ,,0 ^x mm{dist(xO,aP),l}

The proof of Proposition 3.2 is deferred to the end of the section.

We will also need the following relationship between the optimal value

of Pi and g :

Proposition 3.3 Let t' denote the optimal value of Pi. Then

(min{dist(x°,6>P),l}) • 5 < -^ < g [g + I + \\x^ - x'

The proof of Proposition 3.3 is also deferred to the end of the section.

We next examine the range of the objective function value of Pi. Be-

cause

2" = max{t
I

{z,t,e) e 5i} = r < 1

(from the constraints i < ^ < 1 of Fi) and

z' = mm{t
I

{z,t,9) e Si} > -2
,

we have

P:=max{^
|

{zj,0) G Si} - mm{t
\

{zj.,9) E Si} < 3 . (20)

Finally, observe that z' < -I (from Proposition 3.2), and so with (5 := we

have:

min{." - (5, S-z'}> mm{t\ 1} = T > , ^
, ^ |, p ^ > (21)

g{g + l + \\x° - x'^W)

where the last inequality is from Proposition 3.3. Combining Propositions 3.2

and 3.1 as well as (20) and (21), and using (10) and Proposition A.l of the

Appendix, we obtain the following:
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Theorem 3.1 Under Assumption A. algorithm FEAS will compute a feasible

solution {z.t,9) of Pi and by transformation a feasible solution x ofGp, in at

most:

1

O Udp + J||
II

In Lp +
^ii II

+ \x'-x^\\+g
min{dist(xO,c)F),l}

iterations of Newton's method.
|

Given the output {zj.,9) and the transformed point x given in (17)

from algorithm FEAS, define the following set:

52 := Ix e X
I

Ax ^b,x eP, \\x - x'W < i} • (22)

The following characterizes important properties of (i, t, 9) and x that will be

used in the analvsis in Section 4:

Lemma 3.1 Suppose that Assumption A is satisfied, and let (i, t, 9) and x be

tfie output of algorithm FEAS. Then

(i) X e S2, and sym(I-, 52) > g^^^^^a

(ii) i < (3.57? + 2.25) 5

(iti) ||x-x''|| < (3.51^ + 2.25)5

M 1 - ^ > 3.5^+2.25

fv) 1 - ll^ll > ^-

I ^/ J- 11-11 ^ 3.5t3+2.25

(vi) Let [x, f) be an optimal solution of (4). Then

PnB{x\iB U '^^^'^'\
\ c

V (3.5t? + 3.25) -5/

Proof of Lemma 3.1: It follows from Proposition 3.3 that f > 0, and so from

the barrier method the point {z,t,9) = {z,0,9) will satisfy Az = {b — Ax'')9,

z + 9x' e mt{9P), 9 <l,9 >0, and ||i|| < 1. Then ^ > validates (17), and

also Ax = b, X E P, and ||x - x^\\ = i||z|| < i whereby we see that x € 52-

This proves the first assertion of (i).
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Let Ti := Sx n {{z,t,e)\ t - 0} where recall that Si is the feasible

region of Pi, see (18), and let T2 := Si n {{z,t,9)\ t = 0,9 = 6}. Then from

(11). (2.iJ) = {z,Oj) will satisfy

sym{{z,iJ),Ti)>
3.5?^ + 1.25

Furthermore, since T2 is the intersection of Ti with an afRne space passing

through {z,i,9), then it also follows that

sym{{zJJ),T2)>
3.b{) + 1.25

Also, the affine transformation (2, t, 0) h-> (| + x'') maps T2 onto 52 (see (22))

and maps {z,i,9) to x, and since symmetry is preserved under afRne transfor-

mations, it follows that

sym(x,52) > ——--j—- , (23)
6.0V + 1.25

completing the proof of (i).

Let S := min{||x - x''|| |.4x = 6, x € P}, and note that

1 1 1

max 9 = T-.—r >
(2,f,0)eri max{d', 1} max{5,l} g

since g > 6 and 5 > 1. Noting as well that m.m(^^t,6)eTi ^ = 0, it follows from

(13) that

(3.5t9 + 1.25)^ = (3.5'i} + 1.25)(^-min(,,,,o)gri^)

> max(,_t,0)eTi 9-9

> '--9
,— 9
'

and rearranging yields i < (3.5i^ + 2.'2b)g. This proves (ii). (iii) then follows

since ||j - x'H = ^ < i < (3.5i9 + 2.25)5. Noting that maX(,,t,(,)6Ti ^ < 1 and

min(^ (gjgT-j ^ = 0, it follows from (14) that

l-9>m&X(^^tfl)eTi9-9 >
( 3,5^+1.25 )(^

" ^^t^{z ,t ,0)€T, 0)

3.5i9+1.25 '

and rearranging yields 1 - ^ > „

'

, which proves (iv).
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We now prove (v). Given z, there exists z E A'* satisfying \\z\\, = 1

and z^ z = ||i||, see Proposition A. 3 of the Appendix. Then

1 - pll > max(^,t,o)6T, z^z - z^z

^ ( 3.5^+1.25 )(^^^ ~ min(,,,.tf)gri z'^z)

where the second inequality above is from (14), and rearranging yields 1 -

IMI < ( 3.5^+2.25 )' proving (v).

In order to prove (vi), we will use the following claim:

there exist (f , f) satisfying Ax = b, B{x, r) C P, \\x — x^\\ + f < -
, (24)

9

and
min{r, 1}

'-5(3.01^ + 3.25) '

^^''

where (i,r) is an optimal solution of (4). We assume for the rest of the proof

without loss of generality that r < 1 and so minjr", 1} = f-

Before proving (24) and (25), we use them to prove part (vi) of the

Lemma. From (24) and (25) we have x E S2 and so from (23) x^ := x —

^ 3 5tf+2 25 K-^
- x) € 52. Rearranging this, we obtain

_^ 3.57^ + 2.25 1 1 , .

^
3.5?^ + 3. 25^ ^ 3.5i5 + 3.25^ ^" '

and so .f is a convex combination of x' e S2 and x G 52. It then follows from

(26) that B (x, 3-5^^:325) C \P n B fx'", i)], which combined with (25) proves

(vi).

It remains to prove (24) and (25). We consider two cases:

Case 1: {g + 7")^ < 1. Let x = x and f = r. Then Ax = 5, 5(x, f) C P, and

X' x|| + r = ||x - x'"|| + r < g + r < i. Furthermore, f = r >

and so (24) and (25) are proved.

Case 2: {g + f)9>l. Let x = (1 - /?)x + /3x, where

-. i ciiuiiv^xiiiwiv., , _ g(3.5i3+3.25)

P = —^
, (27)

l + (3.bi) + 2.2o){e{g + r)-l)
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and let f = (if. Then j3 G [0, 1], and so Ax = 5, and B{x,f) C P. Also,

||f_x'"|| +f = \\(l - P){x - x"-) + p{x - x')\\ + pf

< {I- p)\\x-x'\\+P\\x-x'\\+ I3f

< [l - 13)^ + Pg + Pf

< (l-^)(J)(|f^)+^5 + /3r

_ 1

where the last inequality follows from part (v) of the lemma, and the last

equality follows directly from (27). Also,

f ^ I3f = -. 3 >
1 + (3.5(^ + 2.25){9{g + f) - 1)

" 5(3.5i3 + 3.25)

since ^ < 1, r < 1, and g > I- This then proves (24) and (25) in this case.|

Proof of Proposition 3.2: Note first that {z,t,ef = (0,-1,0) is feasible

for Pj. It suffices to show that if (0 + d, -1 + a, + (5) is feasible for Pi,

then {0 - l3d, -1 - a/3, - (36) is feasible for Pi, where /? =
3+2||J"p-x'-|| '

^^^

where r is given by (3). Note that ^ < ^ < 5. Since (0 + d, -1 + a, + (5) is

by presumption feasible for Pi, then Ad = {b - Ax^)6, d + 6x^ + (1 - Q')x° G

((5 + 1 - a)P, 6 <l,S>-l + Q, \\d\\ < 1, -1 + a > -2, and it follows that

-2 < 5 < 1 and - 1 < a < 2 . (28)

Let {z,t,e) := (-f3d,-l -aP,~P6). Then Az = {b - Ax')9, and ||z|| < 1

since /3 < 1. Also 9 = -pS < 2,5 < 1 from (28) and /? < |. Next, notice that

e - t = -P5 + 1 + ap ^ 1 - P{S - a) > I - ^{1 + 1) > from (28) and /? < i.

Also, t = —I — aP > -2 since a < 2 and /3 < |. It remains to prove that

z + Ox'' - tx° e {9 - t)P. To see this, note first that

\\- pd-8p{x' -x'')\\-aP + 5p < p{\\d\\ + 2\\x' -x^) + 2p (from(28))

< pI?, + 2\\x' -x°\\)

= r .

Then
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which is the same as 2 + 9x^ - tx^ £ {6 — t)P. This shows that {z,t,0) is

feasible for Pi, and so sym((c, f,0)°, Si) > /3 as desired.|

Proof of Proposition 3.3: Let (i, f) be an optimal solution of (4), and note

fruiu (4) that we can assume that r < 1. From Assumption A, r > 0. Define

the following:

3^-^'
^ ^

3f g_ 1

,29)
max{||i - x'"||, 1}' max{||f - x''||, 1}

"

max{||x - .r''||, 1}

where

^ = 3+l + ||:,r_^0||- (30)

Then /? < 1, since in particular g >\, and from (29) we have Az — {b- Ax'')6,

e <l, -2 <t <9, and \\z\\ < 1. If (zJj) also satisfies

z + 9x' -tx° e{0-t)P, (31)

then {z,t,9) is feasible for Pi, whereby

f>t= ^' > ^ = ^ (39)
max{||x-x'-||,l} - 5 g{g + I ^ \\x' - x^\\)

'

proving the second inequality of the proposition. Therefore, to prove the

second inequality of the proposition, we must show (31). Xote first that

^ = 5 + 1 + ||x^ - x°|| > ||.r -x'\\+r + \\x' - x°|| > r + \\x - x°||, (33)

and

^l|x -A\- Y^Wi - A\ = y-Wi -A\< r, (34)

where the last inequality above follows from (33), and 9 > t (since /? < 1 and

f < 1), and so

z + 9x'-tx° ^ t r- 0, r^

9-t
=^ + rrt(--AeP,

since from (34) we have ^||f-x°|| < r and B{x,f) C P. Therefore z + 9x^ —

tx" G (^ - t)P, and we have proven the second inequality of the proposition.

To prove the first inequality of the proposition, let {z*,t',9'') be any

optimal solution of Pi, and note from (32) that t* > 0. Therefore 9* > 0, and

define

x = - + x , r = —
,

(3d)

where r is defined in (3). Then .4x = b, and for any d satisfying ||d|| < 1 we

have x° + Td e P from (3). Also, z' + 9*x'' - rx° € (r - r)P. If ^ > t%

then

^ [9* -t'\ Z* +9'X' -t'x° fr\,o n r,





GEOMETRY-BASED COMPLEXITY 17

If 6** = r, then z' + O^x' - t'x° £ recP, and so

X + rd = h (x" + Tci) e P.

In either case, x + rci G P, and so 5(x, r) C P. Therefore

maxjll.c'" - xll, 1} f lla:'" — xll 1

9 < ^"
J

,''
-^ = max ^ ^, -

mui{r, 1) y r r

since ?- < 1. Now
I _ e* 1

r t*r "~ t*T

and 11^—^ = 1^ < p7, so 5 < p;:, proving the left inequality of the

proposition-!

Certain ideas and constructs used in the results of this section arose

from or were inspired directly from Section 3 of Renegar [7], including the idea

of solving phase-I by using the barrier method in equation-solving mode, trans-

forming to the original problem via an elementary projective transformation,

and establishing key properties of the output of the algorithm (upper bounds

on norms and lower bounds on distances from constraints) using symmetry

properties of the output of the barrier method.

4 Complexity of Computing an e-optimal So-

lution of Gp

In this section we present algorithm OPT for computing an e-optimal solution

of Gp initiated at the point i, using the barrier method in optimization-mode,

where x is the output of algorithm FEAS.

Using X as a starting point, we will modify Gp slightly by adding a level-

set constraint of the form "c^x < c^x + s" to Gp for some suitably chosen

positive scalar offset s which will then render the point x in the interior of the

half-space generated by the constraint c^x < c^x-\-s. The question then arises

as to how to choose the offset s. One would think that s should be chosen

proportional to the norm of c :

||c|L ;= m.s.x\c^w I ||u'|| < l[ . (36)

However, because the objective function c^x of Gp differs only by a constant

from the modified objective function (c — A^tx)'-^x over the feasible region of
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Gp for any given value of tt, we must be mindful of the equations Ax = b.

From this perspective, it is natural to choose s proportional to:

s := max |c^ a'
I ||u'|| < l,-4u' = o|

, (371

and note s is the maximum objective value over the unit ball, "reduced" by the

subspace constraints Aw — 0, and so s is the norm of the linear functional c^x

over the vector subspace of solutions to Aw = 0. However, even for otherwise

computationally tractable norms such as the L^ norm in JR", the computation

of s is not trivial; in fact its computation is a linear program for the Zoo norm.

We therefore will instead use the information inherent in the barrier function

F\\
ii(-)

for the unit ball as a proxy for the
||

•
||
in constructing the offset s. Let

H{Q) denote the Hessian matrix of F\\ ||(-) at x = 0, and define:

52 := max [c^w
\
Aw = 0, w'^H{{))w < l}

, (38)

and note that $2 admits a closed form solution when rank(.4) = m :

S2 = s]c'^H{{))-'c - c^//(0)-^4^ iAH{0)-'A'^)-' AH{0)-

It will be convenient for our purposes to determine s proportional to S2 as

follows:

and we consider the following amended version of Gp:

Ps : z* := minimum-c c^x

s.t. Ax = b

xeP (40)

(Fx < c^x + s

Note that since x is feasible for Gp, then x is also feasible for Pj,

and Pg and Gp have the same optimal objective function value and the same

set of optimal solutions. (The idea of solving phase-H by adding a level set

constraint of the objective function was used by Renegar [7], but without an

explicit construction for computing the offset s.)

In order to apply the barrier method (in optimization mode) to compute

an e-optimal solution of Fj, we need to specify the barrier function to be used.

The obvious choice is:
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F{x) := Fp{x) - In (Jx + s- c^x)
, (41)

whose complexity value is at most i3p + I.

It is easily seen that s > 0, and that s > except when the objective

function c^x is constant over the entire feasible region of Gp, in which case x

is then an optimal solution of Gp. In light of this observation, the algorithm

for computing an e-optimal solution of Gp is as follows:

Algorithm OPT: Compute s and construct problem Pj and the barrier func-

tion (41), using (38) and (39). If s > 0, then using the starting point x (where

X is the output of algorithm FEAS), apply the barrier method, in optimization

mode, to compute an e-optimal solution x of Pg. Otherwise, s = 0. and x is

an optimal solution of Gp and no further computation is required.

The rest of this section is devoted to proving the following complexity

bound for algorithm OPT:

Theorem 4.1 Under Assumption A, and starting from the point x computed

by algorithm FEAS, algorithm OPT will compute an e-optimal solution oj Gp

in at most:

oi^fh'\n {g^- D, + dp + d\\ y -h max | -,
1
1 J J

iterations of Newton's method. \

Remark 4.1 Note that we could replace s by \\c\\, in the iteration bound of

Theorem 4-1- since s < ||c||,.

We begin the analysis underlying the proof of Theorem 4.1 by relating

the two quantities s and s:

Proposition 4.1 I

^
s < s < s

Proof: Since Fy ||(x) is a -i^n y-self-concordant barrier for B{0, 1) = {x
|

||x|| <

1}, then F{x) := f|| ||(x) - F\\ \\{-x) is a 2d\\ ||-self-concordant barrier for

B(0, 1), whose analytic center is x'^ = 0, and note that the Hessian of F{x)
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at X = is 2//(0) where H{x) is the Hessian of Fy ||(-) at x. Then from

Proposition 2.3.2 of [5] it follows that

{x
I

^x^{2H{0))x < l} C 5(0, 1) C [x
\

yx^(2/f(0))x < 3(2,9|| y) + l} .

m
From this it then follows that 4=52 < s < —^|— S2, and therefore the result

follows from (39).

|

We will make use of the following lemma which bounds the growth of

the level sets of Gp.

Lemma 4.1 Suppose that x is a feasible solution of Gp satisfying (Fx < a

for some given level a, and further suppose that B{x,f) C P for some r > 0.

Suppose that Q satisfies:

Q> max [\\x -x\\\ Ax = b,x e P,c'^x < a] . (43)

Then for all t > and for all x satisfying Ax = b,x £ P,c^x < a + t, the

following inequality fiolds:

2t
\x - x\\<Q\l +

V s r

Proof: Given the hypotheses of the lemma, suppose that x satisfies Ax = 6,

X e P, and c^x < a + t. Define s' := c'^x — a. If s^ < 0, then c^x < a, and

therefore ||x — x\\ < Q < Q{1 + |4), proving the result. Suppose instead that

s^ > 0, and define

s^ \ ,. ,,, / a — c^x + rs
w := ^ TT r i^ -fc)+\ — r^ X, (44)

\a — c^ X + rs + s^ J \a — c^ x + rs + s'- J

where c G argmax„{c^u
|

Av = 0, ||u|| < 1}. Then ||c|| < 1, and c^c = s.

Also X - fc e P, A(x - fc) = b, Ax = b, X e P, and so it follows from (44)

that Aw — b, w E. P, and c^w = a, since (Fc = s. Therefore

Q > ||u. - f
11
=

11 f 7"-^i'-^ i
)c+( "-/"f t/^^

1 ) (j - f
)||^ — II II II \a-c' x+TS+ s^ J \a-c' x+ rs + s' J ^ ' ''

\
II T _ ^11/ a-c^i+fs \ _ fs^

^"^ X .Al 7"- -- i; 7'---,!— II II \ a — c' x + r5 + s' ' a — c' x-trs+s^
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Therefore

\\x-x\\ < Q{i + ^z^) + ^z^,
(45)

However, as noted above, x - re G P and A{x - re) = 6, and c^{x - re) <
e^x < a, and so

Q ^ \\x — {x — fc)\\ = f.

Therefore from (45) we have

||x-x|| < Q(l + fl) + 4(f)

< Q(l + ll)^

since x^ — c^x — a < f.|

Lemma 4.2 Suppose that D^ is finite. Then there exists (x, f) satisfying

Ax = b , B(x, r) C P , c^f < 2:*+e, and f > min {r, 1} min < 1,
c^x — z

(46)

where (x,r) is an optimal solution of (4)-

Proof: Without loss of generality we can assume that r < 1. Suppose first

that c^x < z' +e. Then setting x = x and f = r, we have c^x < 2' + e, Ax — b,

B{x, r) C P, and f — f = f min{l, ^,,^^_.. }, proving the result. Suppose instead

that c^x > z* -\- e, and let

X = Ax + (1 - A)x' , f = Ar ,

where

c'^x

and x' is an optimal solution of Gp (x* is guaranteed to exist since D^ is

finite by hypothesis). Then A G [0, 1], and so x satisfies ,4x = b, x & P, and

by construction of A we have c^x = z* + e. Furthermore B{x, r) C P, and

r = Ar = ^T~L.- = ^ ™iri 1 1 , ^Ti_,. ] 1
proving the result

.|

Define 53 to be the feasible region of P^, namely

53 := |x
I

.4x = 6, X 6 P, c^x < c^x + s\ .
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Lemma 4.3 Suppose that x E S3. Then

\\x - x|| < ^

where

h := 3A + (3.5(? + 2.25) g+4gD, {g + D,) [(3.5^ + 2.25) 5 + A + 679|| y + l] max
|
-, 1

Remeirk 4.2 h is bounded from above by a polynomial m 5,i?p,t'|| \\,De,, arid

max{f,l}.

Proof of Lemma 4.3: Suppose that x € S3, and let (x, f) be as described in

Lemma 4.2. Then

||x - x|| < ||x - ill + llx - x'"|| + llx""
- x||

(47)

< ||x-x|| + A + (3.5i? + 2.25)5

where the last inequality uses (6) and Lemma 3.1. It thus remains to bound

Ijx
- x||. To this end, we will invoke Lemma 4.1 with a = z* + e. Then

Q := 2De satisfies

maxi{||x - x||
I

.4x = 6, x 6 P, c^x < a}

< maxj{||x - x'll + IJx'"
- x||

|
Ar = b. x e P. c^x < z' + e}

< 2D, = Q ,

and so x, f, a, and Q satisfy the hypotheses of Lemma 4.1. Now let t :=

[c^x -i- s — a]'^, and so a + i > c^x + s. Then if x 6 53, x also satisfies Ax = b,

X € P, c^x < a + t, and so from Lemma 4.1 we have:

||x-x|| < Q(l + |)

2A + ifi

(48)

5 min{f,l}
< 2D, + ^^/^, maxfl. ^^^^^^^j (from Lemma 4.2

< 2D, + '^'J'^''^,-':^^"' maxll, '^^^^}— ' smin{r,l) I ' ( J
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But now observe that

c^x — z* + s = (Fx — c^x* + s (where x*solves Gp)

< s(||x - j;'"|| + ||i-* - x""!!) + s (from Proposition A. 2)

< s(||.f - x'll + ||x' - x""!!) + s(6i?||
II

+ 1) (from Proposition 4.1)

< s [{3M + 2.25)5 + A + 6i?|| y + l]

.
(49)

where the last inequality uses (6) and Lemma 3.1. We also bound c^x — z*

using Proposition A. 2:

c^x - 2* = c^x - Jx* < s{\\x - x'W + ||x* - x'll) < ~s[g + D,) . (50)

Substituting (49) and (50) into (48) we obtain

II _ -II <r on u.
-*g4(3.5i?+2.25)9+D,+6iJ||

||
+ 1] max{l

/"'°+^''
}

IK" •'^ll - ^-^t + min{f,l}

< 2D, + 4D,g[{3.5d + 2.25)g + D, + 6d^\ y + l]{g + D,) max {l,
f } .

(51)

Finally, substituting (51) into (47) we obtain the desired bound.|

Lemma 4.4

< (3.5t9 + 2.25)^ /t

sym (x, 53)

where h is the quantity defined in Lemma 4-3.

Proof: Let /? :—
(3 5^ > 2 251-/1

' ^^'- ^"^ ^ satisfy x + v G S3, we must show that

X - Pv e 53. To do so, we must show that .4(x — I3v) = b, x — /3v & P, and

c^{x - j3v) < c^x + s. Note that x G 53 and x + v G 53 imply that Av = 0,

and so A{x - pv) = b. Also, from Lemma 4.3, we have ||i;|| < /;,. And with

Q := min |l, ^~}r ] where z,6 are part of the output of algorithm FEAS, we

have x + Qv E P (since x + v E P and a G (0, 1]). Observe that

rn M .„ T Pll l-||i|l 1

X + av - x'\ < X - xn +ah< K^-\-
e e e
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and so x+av € 52 {see(22)). Then from Lemma 3.1 we have •^~
3 5,^°i25 ^ ^ -^2,

and note that

Q = mm (l.^P) > minll.--—^—tjI (from Lemma 3.1)
{ Oh ) —

\ (3.5<»+2.25)e/i
J

^
'

^ "^^"{ 1^ ^3.5^-2.25) }
(since ^<1) (52)

A(3.5i9+2.25)

Therefore 3^^^^ >
^(3.5^12.25)^

= '^' ^nd so x-^t; G 52, whereby i - /3^; G P.

Finally, note that

(F{x-Pv) < c^x + Ps\\v\\

< c^x + s3h

< (Fx + s^h (from Proposition 4.1)

< c^x + s . (since fih < 1)

Therefore x — 3v E S3, and the result is proved.|

Proof of Theorem 4.1: To prove the theorem, we invoke the complexity

bound for the barrier method in optimization mode stated in (8). The barrier

F{x) for Ps defined in (41) has complexity value d < dp + I = Oidp). The

starting point x has symmetry bounded by Lemma 4.4:

<{?,.od + 2.2ofh ,

sym(x, 53)

this bound being a polynomial in 5, dp, d\\ ||,
D^. and max{^, 1}. see Remark

4.2. The range R of the objective function of Pj is bounded as follows:

R<c^x + s- z' < s{{3.b0 + 2.25)5 + D, + 6!?|| y + 1)

from (49). Therefore - is bounded above by a polynomial in max{j, 1}, dp,

i?ll ||, g, and D^. Combining all of these terms and using Proposition A.l of

the Appendix, we obtain the complexity bound of

O [\/^ln (g + D, + dp + d^ y + max
|
-•

1

1

iterations of Newton's method.|
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5 On Natural Norms, and Condition-Number

Complexity

5.1 Two Natural Norms on X

In this subsection we briefly discuss two norms on X that arise naturally based

on x*^ and P.

The First Norm. For the given point x" G intP, define the set Bj-o:

B,o := [P - x°] n [j° - P\ = {v
I

x° + u G P, x° - 1' G P} .

Then Bj.o is the smallest symmetric set B for which x" + 5 C P. Under the

assumption that P contains no line, B will be compact, convex, and contain

the origin in its interior, and so can be used as the unit ball of a norm. Indeed

this norm is constructed as follows:

\v\\xO := mmQ a

s.t. x'^ + ^v e Pa

X ^ve P

(The norm
||

• ||jO, in either expUcit or implicit form, appears throughout

much of the analysis in [5].) Under
||

• H^-o, it is easily shown that r(x°) =
dist(x°,9P) = 1, and so the explicit dependence of the complexity bounds in

Theorems 3.1 and 4.1 on dist(x°,5P) disappears. Also, we can construct a

barrier function for the unit ball B^o using the barrier Fp(-) for P:

F||||(t.):=Fp(x° + i') + ^p(^°-^)>

whose complexity parameter 'd\\ y is bounded above as follows:

d\\
II

< 2dp .

Therefore the explicit dependence of the complexity bounds in Theorems 3.1

and 4.1 on 'd\\ y disappears as well. With this choice of norm, then, the com-

bined complexity bound of the algorithms FEAS and OPT becomes:

O (^p\n (g + D, + i)p + max |-, l| + \\x° - x'\\\]

iterations of Newton's method.
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(The norm
||

• ||j.o is referred to as a generalization of the Loo-norm

because in the case when P = 3?" and x° = e, we recover the Loo-norm as

||u||^o for V e K".)

The Second Norm. The second norm we consider is constructed using the

barrier function Fp(-) for P. For the given point x^ G intP, define the norm

||u||f,xO := ^v'^Hp{x°)v
,

where Hp{x^) is the Hessian of Fp(-) evaluated at x = x^. It then follows from

Theorem 2.1.1 of [5] that 5(.r°, 1) C P and so dist(x^aP) > 1. Also,

P||ll(^):=-ln(l-.^Lfp(x>)

is a d\\
II

= 1-self-concordant barrier function for the unit ball of this norm.

Therefore the explicit dependence of the complexity bounds in Theorems 3.1

and 4.1 on dist(x°,9P) and d\\ y disappear, and like the previous norm, the

combined complexity bound of the algorithms FEAS and OPT becomes:

O (\fo~p\n (g + D, + dp + maxl- ,l\ + ||x° -^ll))

iterations of Newton's method.

5.2 Relation to Condition-Number based Complexity

Bounds

In this subsection we indicate how the condition-number based complexity

bound for conic convex optimization presented in (1) can be obtained as a

special case of Theorems 3.1 and 4.1. To do so, assume that P is a closed

convex cone C , and for convenience we will assume that C is pointed and has

an interior. We assume that we have a ^c-self-concordant barrier Fc{-) for C,

and we assume as in [7] that the norm
||

•

||
on X is an inner-product norm

||'t;|| := \/v'^v, and so the barrier function

F||
II

(u) := -ln(l -v^v)

is a d\\
II

= l-self-concordant barrier for the unit ball.

Let us set x'' := and let x° G intC be given, and assume that we have

rescaled j" so that ||x°|| = 1. Then from Theorem 17 of [3], it follows that g

will satisfv:
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g<3C{d)-
|.T°1

dist(xO,5C)

and from Theorem 1.1 and Lemma 3.2 of [6] it follows that

D,<C{df+C{d)-^
\\c\U

where C{d) is defined liere using (2). Then under the hypothesis that e < ||c||,,

the combined complexity of algorithms FEAS and OPT from Theorems 3.1

and 4.1 is:

iterations of Newton's method, which compares favorably to (1).
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APPENDIX

Proposition A.l: If a,b > theri | ln2 + ^ (Ina + In 6) < lii(a + b). If in

addition a,b > 1, then ln(a + 6) < In 2 + (Ina + In 6) .

Proof: We have \/'2ab < \/a^ + 6^ + lab — a + b. If also a,b > 1, then

a + b < 2 max{a, 6} < 2 max{a, b} min{a, b} = 2ab. The results then follow by

taking logarithms.!

Proposition A. 2: If x^,x'^ satisfy Ax^ = Ax'^ = b, then

T„i J' -^'i

\c x c^x^l < s\\x^ - :r^|| < s ( llx^ - xHI + llx^ - x

Proof: From the definition of s in (37), we have

Ic^x-i - c^x^l = \J[x' - x^)\ < s\\x' - x^W < s (\\x' - x'W + \\x^ - x'W) .|

The following proposition is a special case of the Hahn-Banach Theo-

rem; for a short proof of this proposition based on the subdifferential operator,

see Proposition 2 of [3].

Proposition A. 3: For every z G A', there exists z G A'* with the property

that \\z\\t = 1 and \\z\\ — z^ z. |
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