

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

^l&n-=teaSl

Hewoy
mss. i;!si TECii

JAN 2 4 74

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

CONTROL STRUCTURE FOR A QUESTION-ANSERING SYSTEM

Ashok Malhotra

January 1974 #693-74

CONTROL STRUCTURE FOR A QUESTION-ANSERING SYSTEM

Ashok Malhotra

January 1974 #693-74

This work was supported by Honeywell Information Systems, Inc.

200 Smith Street, Waltham, Massachusetts 02154.

RECEIVED

JAN 28 1974

M. I. T. LIURARIES

PAGE 2

INTRODUCTION

Despite my best efforts at explanation, my grandmother still

thinks of the computer as a machine that answers questions. To

her, this is a manifestation of intelligence far more powerful

than doing "sums"; for while everybody answers questions, few

can do "sums"! It is not surprising to me, therefore, that

question-answering systems have as long a history in artificial

intelligence as problem solving.

This paper describes the design of a proposed question-

answering system that will answer questions from a corporate data

base. Ue will discuss the rationale behind the proposed system

and the design decisions that follow from the initial

assumptions. Further, we will discuss the question-answering

strategies developed for this system and the basic principles

underlying them.

EARLY QUESTION-ANSUERING SYSTEMS

flcCarthy (1) seems to have been the first to realize the

importance of verbal learning and reasoning. In 1958 he

described the design for an "Advice Taker"; a machine that would

accept natural language input and be able to solve problems

PAGE 3

involving deduction on given premises. This paper called

attention to a number of basic issues and it is surprising how

much of contemporary A.I. work can trace its roots to this

seminal contribution. One of the problems it discussed was

natural language understanding and Phillips (2), inspired by

Chomsky's work, built a system that answered questions by

matching the parse of the input with those of the declarative

sentences it had received earlier as data. BASEBALL (3), built

with Chomsky's collaboration, was an ingenious system that

provided baseball statistics in response to questions in a

limited subset of English. It operated on a data base in a

prestructured tree format and was thus able to separate the

problems of creating a data base from those of answering

questions about it.

SYNTHEX (4) was an ambitious system that contained the text

of a childrens encyclopedia as a data base. An index was

prepared listing the location of each "content word". Sentences

that could be relevant to the question were then retrieved using

this index and subjected to an analysis procedure to screen out

the irrelevant sentences.

The analysis procedure was based on simple syntactic

considerations, however, and was not very effective. Further,

the system was incapable of deduction and could not, therefore,

consolidate the information contained in a number of sentences.

Since the grammar was independent of the program it could easily

PAGE 4

be extended but the program suffered from a lack of semantic

knowledge and the underpinning of a model of the uorld.

SAD-SAM (5) and SIR (B) accepted information in the form of

a restricted set of sentence types and created a semantic network

of objects and relations. This network was then used to answer

questions. SAD-SAPl was resticted to familial relations while SIR

Mas capable of accepting and analysing set, part, position and

ownership information. It was relatively simple to increase the

input formats in SIR but the semantic analysis routines were

considerably more difficult to extend.

Each of these early systems attacked more than one of the

fol lowing problems.

a. Creation and modification of a world model from

(restricted) natural language input.

b. Answering questions from a data base.

c. Solution of simple problems using deduction on data base

e 1 ements.

In addition, most of these systems took on the task of

understanding some subset of English! Ue now realize how

difficult each of these problems is and can admire the ingenuity

of these early systems that achieved encouraging results by more

or less frontal attacks.

PAGE 5

LATER SYSTEnS

It is not surprising tinerefore, that later systems were more

limited in their objectives and tended to focus on only one of

the above problems. Ue shall describe only the natural language

question-answering systems here although there has been a great

deal of development in the other areas as well.

U. A. Hoods developed a "transition network" grammar for

natural languages and implemented a parser to analyze sentences

in accordance with it. He used this parser in a system to answer

questions from the data base of an airline schedule book (7) and

later, from the chemical analysis of the moon-rocks (8). Woods'

mainly syntactic parser is very powerful, although its efficacy

is limited by its rudimentary semantic knowledge. His data bases

are real, if simple, and he has been able to demonstrate the

practicability of computer-based question-answering systems in

real world situations. "The prototype (of the moon-rocks system)

was run twice a day for three days ... and during this time the

lunar geologists .. . were invited to ask questions of the

system. .. . During this demonstration 80% of the questions

which were asked and that fell within the scope of the data base

were parsed and interpreted correctly in exactly the form in

which they were asked ..."

A question and command system implemented by Uinograd (9)

for the world of a set of children's blocks on a table-top

demonstrates powerful capabilities of sentence analysis and

PAGE S

comprehension. The simplicity of the world contributes in no

small part to the impressi veness of the system, however.

Further, most of the knowledge in the system is encoded as

procedure and this makes it difficult to extend.

In developing a novel approach to computer-aided instruction

Carbonnel developed the prototype of a knowledge-based system

that was capable of answering questions in addition to asking and

evaluating them. A limited system based around knowledge of the

geography of South America is operational (10) with a limited

subset of English. The system is undergoing further development.

PAGE 7

A QUESTION-ANSWERING SYSTEH FOR nANAGEMENT

The negligible impact of computer-based systems on other

than routine decision-making is too uell knoun to need

documentation. The reasons behind this are also fairly well

agreed upon: computers are difficult to communicate with and

must be instructed in excrutiating detail. Although powerful,

they operate at a level of specificity and with a series of

elaborate conventions that the manager cannot tolerate.

To be useful, a computer system must "understand" a great

deal about the environment within which the manager operates.

Furthermore, it should not require procedural programming and

must be capable of performing functions that are useful to the

manager in his day-to-day work. Starting with these premises we

proposed a question-answering system as a management aid. Ue

decided to allow questions that required retrieval from a data

base as well as the evaluation of functions of retrieved data. A

restricted class of pre-programmed models could be executed in

the form of subroutines but apart from these, no deduction was

permi tted.

Starting from these guidelines and the general premise that

the system should be easy to learn and use for managers with no

computer experience we developed a more detailed set of system

specifications, many of which proved to be quite different from

earlier question-answering systems.

1. Si nee it is important that neophyte users should be able to

PAGE 8

learn to use the system easily and painlessly the system

should answer questions about itself. (He believe this to be

unique in question-answering systems.)

2. The user should be protected from system errors and should not

be expected to take any remedial action.

3. Attempts should be made to continue the dialog with the user

as far as possible. If a question cannot be answered the

system should attempt to say something relevant and

intelligent to convince the user that it has understood his

request. If a question is ambiguous or unclear the system

should ask a question or make suitable assumptions (which

should be intimated to the user) and generate an answer.

4. In a real situation it is not possible to answer

questions from a data base containing only objects and events.

Aggregate data must be included. For example, sales

figures cannot be computed by checking and aggregating values

from the set of individual sales events. The inclusion of

aggregates, however, gives rise to name ambiguities. This

problem and its solution are described in a later section.

(To our knowledge, no existing question answering system

incorporates aggregate data and the knowledge necessary to

answer questions about it.)

5. The subset of natural language that can be used to address the

system should possess adequate power and flexibility.

Similarly, response times to typical questions should be

PAGE 3

reasonable. These criteria have not been formalized because It

is impossible to postulate satisfactory conditions a priori.

Ue propose to establish satisfaction along these dimensions

exper i mental ly.

Ue are convinced that a question-answering system uould need

to have a great deal of knowledge about the business world, the

particular setting it was to be used in and about the data base.

Minsky (11) makes an excellent case for the need for such

knowledge. This too can be considered to be an initial design

decision for the system.

Figure 1. is a schematic diagram of the proposed system.

Functionally, the system can be divided into two parts, the

parser and the processor. These two operating sub-systems rely

upon three knowledge bases: a model of the world, a model of the

scenario situation and a data base

This paper describes the design of the processor. The

parser has been designed and is being implemented by Prof. U. A.

nartin (12,13) and the Automatic Programming group at Project

MAC. It has a strongly semantic, "case oriented" approach to

the analysis of English sentences. (See Fillmore (14) for the

theory of case grammar and Celce-murcia (15) for an early

implementation.) Similarly, the processor is also knowledge-based

and this is its point of departure from earlier question-

answering systems, such as Uood8'(7,8), and its main strength.

PAGE 18

In addition, the system uii I I operate on a data base considerably

more powerful than anything attempted with a question-answering

system to date.

The parser examines the input to the system and creates a

parse for it. A parse is, in some sense, the meaning of the

sentence, but more accurately, it is a set of relations between

semantical ly identified parts of the sentence encoded in a

standard format. The processor uses the parse as input and

attempts to fulfil the input request and generate an appropriate

response. Understanding the sentence therefore, takes place in a

general sense within the parser and in a much more specific sense

in the processor.

Ue shall say only a few words about the parser since it is

the processor that is central to this paper. The morphology

routine examines each word in the input request and checks if it

is known to the world model. Unknown words are analyzed to

determine whether they are variants of known words or idioms.

If a word cannot be recognized by the morphology routine a

message is printed out indicating the offending word and the user

is asked to retype his request.

Once the complete sentence is accepted, the parser attempts

to find the main verb and to arrange the noun phrases in the

sentence as cases of the main verb. Initial prepositions that

mark some of the noun phrases assist in this process, but use is

also made of the case-frame of the verb which determines the

PAGE 11

cases it can take and the meanings of the nouns which determine

the cases they can participate in. Most of this knowledge is

contained in the world model. Specialized words and word

meanings and some idioms are contained in the scenario world.

If the sentence is ungrammat icai or cannot be parsed, the

parser prints out a message to the user and asks him to rephrase

his request. In some cases the parser isolates more than one

valid parse. All these parses are transmitted to the processor

which uses specialized scenario knowledge to eliminate some of

them. If the set of parses cannot be reduced to one, the

processor prints out a message stating that the sentence is

ambi guous.

THE DATA BASE

This sub-section describes a language for encoding

knowledge. Later sub-sections discuss the impact of this

organization on question-answering strategies and consider some

alternative organizations.

The knowledge representation language (which may be the same

as the programming language) must allow the representation of

objects and their properties. It must also be able to keep

property information of similar objects distinct. In addition,

it is convenient if the language has facilities to query the data

base and extract information from it. Ue use a language called

HAPL (IB) in which a manufacturing corporation called The-

PAGE 12

Battery-Company can be represented sotneuhat as fol lous:

((THE-BATTERY-COnPANY)

(IS (THE-BATTERY-COnPANY) (KIND CORPORATION))

(MANUFACTURE (THE-BATTERY-COHPANY) (KIND PRODUCT))

(SELL (THE-BATTERY-COnPANY) (KIND PRODUCT))

(EMPLOY (THE-BATTERY-COMPANY) EMPLOYEE))

(BUY (THE-BATTERY-COMPANY) MATERIAL))

This states that THE-BATTERY-COMPANY is a kind of

corporation. It buys material, employs employees and

manufactures and sells a kind of product. The properties of the

product can be inserted into this definition or described

separately as:

((KIND PRODUCT)

(IS (KIND PRODUCT) LEAD-BATTERY)

(COUNT (KIND PRODUCT) 5))

This states that the product is five types of lead-batteries

(lead-battery being used as a name). Similarly, the corporation

could be described further as a sub-chapter 15 corporation in

Massachusetts law but this may not be neccessary and (KIND

CORPORATION) may be sufficient.

If the product definition is imbedded in the main

definition, MAPL ui II keep it distinct from other product

definitions that may exist in the system.

In the same way, we can use MAPL to represent events. The

statement "John met Mary at the corner." can be represented as;

PAGE 13

((MET)

(AGENT (NET) JOHN)

(AGENT (HET) MARY)

(LOCATION (MET) (KIND CORNER))

(DETERHINER (KIND CORNER) DEFINITE))

flary can be represented as either another agent (as above)

or as a kind of object depending on our interpretation of the

verb "met".

PAGE 14

QUESTION-ANSUERING STRATEGIES

A semantic analysis of English questions is presented in the

Appendix. This differs from traditional linguistic analysis of

questions in that it concentrates on what is questioned and about

what rather than upon the syntactic form and the transformations

needed to arrive at them. The meaning of the question is,

however, determined in part by the syntactic form and therefore

syntax is important to the analysis.

The analysis is somewhat selfish in that it analyzes mainly

the questions that the proposed question-answering system can

expect to encounter. Questions beginning with "why", for example

, are not treated, as the system does not expect to be able to

answer them.

UH-QUESTIONS

In general, wh-questions (questions starting with "what",

"which " etc.) ask for the properties of objects or events.

Object properties are questioned by "be" or "have" verbs

(possibly modified by tense words) while event properties are

generally questioned by the main verb of the event.

After the sentence is analyzed to determine the property

questioned the property can be retrieved directly if the object

or event exists in the knowledge base and if the property value

is explicitly available. At this point we should recognize that

the knowledge base may be organized by object or by event. If it

PAGE 15

is organized by object then each event ui I I be represented as a

property of one of its participants such as its agent. If

however, the knowledge base is organized by event objects will be

represented as properties of the existence, or "be", verb. A

dual organization is also possible in which information is stored

both ways. This allows a choice of retrieval paths and world or

scenario knowledge can be used to select the path that leads to

the least searching. Thus, finding the entity whose properties

are questioned can be somewhat complex. After the entity is

located the value of the questioned property must be retrieved or

deduced. This can be even more complex.

Different question types require variants of the above

general strategy but the basic tasks of finding the entity and

finding or deducing the value of the questioned property remain

more or less central in all cases.

Note that wh-questions requiring objective answers are

restricted to the past and present tenses. It may be possible to

answer "Uhat was our profit last year?" from the data base but

"Uhat will be our profit next year?" requires a predictive model

that embodies some level of subjective judgement. Thus,

answering wh-questions in the future tense is completely

different from answering them in the past or present tense and

requires a search for suitable subjective models that may or may

not exist.

PAGE 16

AGGREGATE DATA

Some properties, such as costs and production figures are

best kept as aggregates. The aggregation can be made in several

ways and this gives rise to a naming problem. "Sales", by

itself, means little; it has to be qualified by the parameters

over which it is to be aggregated. These may be manufacturing

facility, product, customer, salesman and time-period. Some of

these parameters, or keys, as they are sometimes called, have to

be picked up from the various cases of the parse, others can be

filled in by default and still others may be assigned typical or

commonsense values. In fact, there is a powerful, general

default that operates in English: IF A PROPERTY IS ATTRIBUTABLE

TO SUB-ENTITIES THEN THE ABSENCE OF SUB-ENTITY SPECIFICATION

IMPLIES SUnriATION OVER THE SET OF SUB-ENTITIES, I.E. IT IMPLIES A

VALUE FOR THE ENTITY AS A UHOLE. In a sales specification, for

example, if there is no mention of a product then the sum of

sales for all products is required.

Typical values depend on the data in question. Time-

periods, for example, can usually be assumed to be the last

complete period if unspecified. Knowledge about each data item

must contain, therefore, a list of key variables which must be

specified before the data can be retrieved. In addition, it must

contain information as to where the key variable specifications

will be contained in the sentence. This is not too difficult in

a case grammer because each kind of information has a special

PAGE 17

case assigned to it. For SKample, time periods occur in the

"during" case and customers usually in the "recipient" case.

Typical value information must also be contained in the knowledge

about each data item but this is better organized by classes of

data items rather than for each item.

In the case of "cost" one of the dimensions of aggregation

is the reason for or type of expenditure. This gives rise to

variously named costs such as "interest expense" and "product

transportation cost". As each cost category is stored under a

single name in the system it becomes necessary to determine the

unique name by operating upon the noun modifiers of the word cost

(or expense) and what can be called its context (in "the

transportation cost for lead" the context is "lead"). This is

done in our system by finding a type of data item and then

checking if a subset of it is named by one of the modifiers or

the context. This is continued recursively till no further

subset ting is possible.

Some sentences can be constructed so that the context serves

to determine the unique name as well as provide a key for its

retrieval. For example, "Show me the cost for all products" can

be assumed to ask for the direct-manufacturing-cost as this is

the only cost available that has "product" as a key.

Since different aggregations may be required for different

purposes an obvious strategy dictates that data be kept in a

fairly disaggregated state and aggregated in response to the

PAGE 18

needs of the question. This requires knowledge of how the data

is stored and the keys to look for in the sentence to be

maintained for each data item. But maintaining data at one level

of aggregation may not be sufficient. The aggregation of annual

sales for five products from five plants to five customers stored

by month requires 1508 probes of the data base! This can mean a

long wait at console for the user. Thus, higher levels of

aggregation must be maintained as well.

The system should be able to recognize the level of

aggregation required to answer the question and use the highest

level of aggregation for which data is available. In our system,

an "association list" is created every time data has to be

retrieved. This list contains the range over which aggregation

has to be performed for each key variable on the assumption that

the lowest level of aggregation will be used. Before the

aggregation is performed, however, the list is processed to check

whether data with a higher level of aggregation is available and

can be used. If so, the list is modified and the data-name

changed to a higher aggregate.

Uoods' found that when lunar geologists asked for the

analysis of a rock, they wanted, in fact, its analysis for only

the ten most common elements. Similarly, a manager may want the

distribution of sales by product whenever he asks for "sales".

Thus, particular questions may come to have iconic meanings above

and beyond thier literal meaning. The present design of the

PAGE 19

system does not recognize iconic meanings.

It can be argued that retrieval and aggregation of data are

not the direct concerns of the question-answering system and it

should restrict itself to extracting the key information from the

sentence and passing it on to a data retrieval system that uses

knowledge about the structure of the data files to perform the

retrieval efficiently. He agree with this decoupling of the

problem and hope that it will be used in future

implementat ions.

MODELS

The use of the word model, in management, stems from its

meaning as a replica. Typically, models are a set of

relationships that establish the dependencies of target, or

result, variables on independent, or decision, variables. The

dependent variables are often figures of merit that measure the

health of the enterprise or the success of some portion of it and

the model is used to assist in the decision-making process by

predicting the effects of changes in the Independent variables on

the dependent variables.

Management models can take a variety of shapes and

structures depending on the nature of the process they model and

the nature of the decision-making they support. I4e shall

consider only one class of models, those that can be represented

by a set of mathematical operations (such as the functions

described in the next sub-section) on specified items of data and

can, therefore, be encapsulated in a subroutine. (Other types of

PAGE 28

models, in particular, those that can be calibrated, specialized

and modified by the manager are very important and very useful.

They have been excluded here in order to limit the problem to a

reasonable size. See, however, Krumland (17).)

Models are usually referred to by name in the question.

Input data is not specified unless it is exceptional and neither

are the operations to be performed on it. This information must,

therefore, be available to the system as a property of the model.

Key information relevant to the retrieval of input data must,

however, be specified in the question.

A request for model execution will, therefore, cause a

search for input names. After these have been located the data

is retrieved using the key information and fed into the

subroutine that calculates the output value. Although it is

always possible to specify models as mathematical functions of

data only, this is not always convenient. It is customary,

therefore, to specify models that use the output of other models

as input. Thus, when the input retrieval routine for models

encounters an input that is a model output it calls the model

evaluation routine to evaluate it. The structure of correctly

specified models ensures that this recursion always terminates.

In addition to an argument list and a subroutine, the

knowledge about a model, like knowledge about data items, must

also contain information as to where key variable values can be

found in the sentence. Each model must also have a definition

PAGE 21

that can be used to answer questions such as "How is profit

calculated?". In fact, more than one definition is required if

questions about various aspects of the model have to be answered

properly.

FUNCTIONS

In some cases the property required may be a function of

data such as percentage, distribution or average. Unlike models,

functions can operate on a variety of data and, therefore, the

names of the inputs to the function have to be specified in the

sentence along with key specifications for their retrieval.

A number of conventional devices are used to specify the

data items on which the function is to operate. For example, if

the percentage of a subset of an item is required, the question

will name the data item and the subsetting characterict ic: "Uhat

percentage of plant capacity is utilized?". Similarly, if a

distribution is required, the data item will be named along with

the key variable or subsetting name. The data will have to be

aggregated over all the unspecified variables and retrieved as a

function of the specified characteristic.

In general, data names, key specifications and subsetting

names occur in different parts of the sentence and the

determination of key specifications for each argument must take

into account the function to be executed. Consider, "How much

did sales increase over 1972?" and "How much did sales increase

PAGE 22

In 1972?". To Interpret and answer these two questions correctly

the system must understand that the arguments to the function

"increase" are both of the same type with different key variable

values. Typically, only one set of Key variables is specified,

the others being picked up by default. The defaults, however,

depend on knowledge about the function.

Thus, the analysis of questions that ask for functions of

data has to depend heavily on knowledge about the function to

determine data name and key variable information. Once this has

been done, however, the data items can be retrieved and fed into

a subroutine that evaluates the function.

Functions are usually specified by name in the question. An

exception is "How many" which asks for the count of a set of

objects or events. This is, however, an unusual function since it

does not operate on data.

DEFINITIONS

Consider the questions "Uhat information do you have about

product cost ?" and "Uhat do you know about product cost ?" After

product cost is located directly and checked to be a subset of a

possession of "you" (information) or located by a search from

among the possessions of "you" what does the system reply?

The problem with "know" is similar, although the object

known may be called knowledge and the search avoided. In fact,

what is required is, in some sense, the definition of product

PAGE 23

cost. This is implicit in the question but must be made explicit

for the system.

In fact, these examples demonstrate a more general

convention in English: IF THE QUESTION IS ABOUT AN OBJECT THEN

ITS MOST IMPORTANT CHARACTERISTIC IS REQUIRED. For example,

"Uhat were sales in 1972?" asks for the value of sales: value

being the principal characteristic of data. "What is a dog?"

requires the dominant characteristic of dogs in general, perhaps

that they are animals. "Uhat is this dog?", however, asks for

the dominant characteristic of this particular dog: perhaps its

breed. Carbonnel and Collins (10) represent these "super

concepts" for each noun explicitly in the data base.

YES-NO-QUESTIONS

As discussed in the appendix, yes-no-questions, if

restricted to the present and the past tense inquire about the

truth of stated propositions. Propositions may concern the

properties of stated objects and the identity of actors and other

particulars about events. Yes-no-questions in the future tense

involve predictions and judgements about the future and are,

therefore, excluded from the scope of this system.

In a data base organized by nouns, a yes-no-question

inquiring about the truth of stated properties of nouns can be

answered by selecting the appropriate nouns and matching their

properties against the stated properties. Ue find a recursive

PAGE 24

property matching routine very useful for this. It must be

remembered that the properties mentioned in the questioned must

be checked against those in the data base and not vice versa as

the data base may contain properties other than those questioned.

Event matching is somewhat more complex in such a data base.

Since events are stored as properties of the agent or the

possessor these nouns have to be located in the question and in

the data base and their properties searched for the event. Once

this is accomplished, or a set of possible events selected, their

properties have to be matched against those in the question.

The alternate organization by event, or verb, requires a

decision as to whether objects that participate in an event

should be stored under the event and/or under the existence

("be") verb. Direct retrieval for identity-questions and yes-no-

questions requires both facilities:

"Who robbed the bank?" property of "rob"

"Did Jack rob the bank?" property of Jack

If properties are only stored by event then an indirect

retrieval is required for the second question much like the

indirect retrieval required for events in a noun-oriented data

base.

There seems to be an essential duality between objects and

events in the world but depending on the question and the

contents of the data base there may be more objects than events

or vice versa. Thus, retrieval through one or the other will

PAGE 25

lead to less searching. If the length of data files is lees

important than the amount of searching required in the retrieval

process, then a dual organization in which properties are stored

under both events and objects and the retrieval path selected,

uith the help of the Knowledge base, to minimize search will

yield the best results. In fact, MAPL is designed for the dual

organization and automatically stores properties under both the

object and the event.

IDENTITY QUESTIONS

Questions that start with "who" or "which" are quite

different from other wh-questions and are, in fact, more like

yes-no-questions. Uhat is required as an answer to these

questions is the identity of the object that satisfies the

properties stated in the question and the process of answering

can be likened to answering a set of yes-no-questions on a set of

candidate objects that are capable of satisfying the conditions

in general. "Who" questions ask for the identity of animate

objects while "which" questions can ask for either animate or

i nam i mate identities.

Answering routines for identity questions, therefore, start

with the selection of a set of candidate objects. The generic

name for this set is invariably specified as the main object noun

in identity questions with "be" verbs that specify the properties

of the required object rather than the event it participated in.

PAGE 2G

The candidate set is the set of all objects that are "a kind of"

the generic name. "Uho questions that ask the identity of the

agent of an event do not give any direct clues to the candidate

set of objects. There is, however, the rule that the objects in

the candidate set must be able to perform the given event and

this can often be used to narrow down the set from the set of all

animate objects. In many data bases the set of animate objects

is fairly small and so a search through all of them is not very

t i me-consuming.

Once the candidate set is established, the selection process

is much like performing a yes-no-question matching on each event

except that the result of each matching is the identity of the

candidate or "no". The final reply to the question can be

created from the set of identities that have been returned by the

individual yes-no-questions. If this set is the null set then

the appropriate answer is "None of them" for "which" questions

and "No one" for "who" questions.

THE WORLD MODEL PROBLEn

Every data base and every question-answering system embodies

a particular model of the world. Further, it expects questions

about concepts and properties that are sensible in terms of this

model. A severe problem can arise, therefore, if the user has a

model of the world which is at variance with that of the system

in significant ways. For example, our data base contains direct

PAGE 27

manufacturing costs and overhead costs for activities that cannot

be directly attributed to manufacturing. The overhead costs are

not allocated to products, since we feel this is artificial, and

therefore break-even points have no meaning in the system. A

user who likes to think in terms of break-even quantities will

ask for them and may not be able to proceed if the system merely

says it can't provide break-even data.

Ideally, the system should be able to realize that there is

a discrepancy between world models and since it cannot change its

model of the world it should explain it to the user to try to

influence his.

The proposed system adopts an extremely simple-minded

approach to this problem. It maintains a list of concepts, such

as break-even, that it knows belong to variant models of the

world. Every time a question asks for one of these concepts it

responds by printing out an explanation of its world model and

why the question is inappropriate.

IMPERATIVES

Besides asking questions, the user of the system should be

able to request services from the system by using commands. This

allows the dialog to be much more natural. Commands ask for

action and as the actions possible by the system are limited so

are the types of commands that may serve as meaningful input to

it. The services provided by the system are limited to data

PAGE 28

retrieval, model execution and the provision of information about

itself. Typical commands to the system, therefore, are as

fol lou:

"Show me the sales to Sears for 1973."

"Display the names of customers with outstandings

of over 85808."

These questions seem to ask for data retrieval.

"Compute the profit for '73."

"Calculate the return on investment last year."

These questions seem to ask for the value of functions of

data or the execution of models.

The distinction is specious, however. The structure of the data

base will determine what can be retrieved and what has to be

computed. The user will, in general, be unaware of the structure

of the database and, therefore, his choice of verbs should not be

considered significant.

Other verbs have semantic significance and will require

special routines to process data and generate answers.

"Compare the distribution of sales to Gulf and Sears by unit."

"Contrast the sales for each quarter of this year and

last year.

"

"Sort the customers by outstandings."

CONCLUSION

Host of the question-answering systems built to date have

PAGE 29

started by devising data base structures and defining question-

answering strategies from scratch. To some extent, this was

necessary because each system addressed a particular kind of data

base and answered limited sets of question types using parsers of

very different styles and capability. We have however, learnt a

great deal about knowledge representation and question analysis

from these systems and it is desirable that future developers of

question-answering systems build upon this experience rather than

replicate it. Ue hope that our analysis, limited as it is to our

situation and our goals, will be useful to future researchers.

PAGE 38

APPENDIX

ANALYSIS OF INTERROGATIVE FORHS IN ENGLISH

This appendix attempts to classify the types of questions and

commands possible in English. The classification is not primarily by

syntactic structure, since that is the concern of the parser, but

rather by semantic structure; uhat is asked and about uhat. The

structure of the sentence is still rather important, houever, as it

provides many clues to its semantic function. To the best of my

knowledge, such an analysis has not been attempted before. For reasons

of brevity presentation is restricted to the sentence types that are

expected to be encountered by the question-answering system.

English allows a wide variety of question types that can be

analyzed along a number of dimensions. Dost basically, questions can

be analyzed according to the answers they require: objective, i.e.,

mathematical and logical functions of known data, and subjective,

i.e., requiring the formation of inferences and judgements beyond

those possible from the models and data contained in the system. The

proposed system will not attempt to answer questions that require

subjective answers. This does not mean that it will be unable to

answer questions that ask for reasons or opinions, but merely, that it

will be restricted to providing such answers that can be constructed

by sets of rules and data contained within the system.

Questions requiring objective answers can be further subdivided

according to the analysis required to generate the answer and the type

PAGE 31

of sentence construction used.

Uh-questions are so called because a word starting in "uh"

("how" is an exception) is used to ask the question. Such questions

ask for data or property values. Yes-no-questions, on the other hand,

are distinguished by an auxilliary verb, such as "do" or "can",

preceding the noun group. These questions enquire about the truth of

stated propositions and expect either "yes" or "no" as an answer.

Sometimes, of course, the appropriate response is "I don't know".

UH-QUESTIONS

l.Also called adverb questions, these usually start with a

question adverb. Each adverb refers to a

particular type of attribute. "Uhy" asks for reason or causality and

generally requires subjective answers.

"Uho broke the window ?" Asking for the Identity of the

causal agent.

"Where did the accident happen ?" Asking for the location.

"Uhen did the accident happen ?" Asking for the time.

"What" is special in that the attribute and the object must both be

specified for existence ("be" type) verbs.

"What is the hieght of the Empire State Building ?"

For other verbs, "what" asks the value of the object. Another case,

typically the agent, must also be specified.

"What did you see ?" "What did Alex write ?"

PAGE 32

Sometimes the object can be assumed as "our" or filled in from

context.

"What Here sales in 1972 ?"

"Uhat" can also be used to ask for definitions.

"Uhat is a dog ?"

"Uhat is contribution margin 7"

"How" is somewhat special and comes in four forms:

"How many people attended the ball ?" Asking for a count.

"How much beer will fill this glass ?" Asking for quantity.

"How tall is Maria ?" Allowing the attribute

to be named after "How".

"How is profit defined 7" Asking for method.

In the final form, the exact property questioned depends on the

main verb and, in some cases, even on its object.

Question adverbs can occur by themselves as a sentence provided the

context is known: "Uhy ?", "Uhere ?", "How ?".

2. Attribute values can also be questioned by an initial preposition

phrase with a question adverb in place of the noun.

"To whom did you entrust the keys 7" Asking for recepient.

"From whom did you get the keys 7" Asking for source.

PAGE 33

"Uith what did John hit him ?" Asking for instrument.

In some cases the preposition may be shifted to the end.

"Uhat did John hit him with ?"

IDENTITY-QUESTIONS

Questions starting with "who" or "which" are somewhat different from

other Uh-questions in that they asl^ for the identity of objects whose

properties satisfy certain criteria.

"Uho broke the window ?"

"Who is our largest customer ?"

"Uhich plants had costs over 10% of budget last year ?" The first of

these three questions requires a selection from among all animate

objects. This is the case with "who" questions with semantic verbs.

The second question requires a selection from the set of customers.

Specification of a common noun that determines the set of objects to

be selected from is typical of "who" questions with "be" verbs,

(questions of the type "Uho is Guru Haharaj Ji ?" are an exception.)

"Uhich" questions always specify a common noun which determines the

set of objects to be searched.

YES-NO-QUESTIONS

Yes-no-questions come in a variety of forms. If restricted to

the past and present tense they enquire whether objects have

stated properties and capabilities and whether stated events

PAGE 34

occurred. Another form is a variation on Identity questions.

They ask only if the set of objects that satisfy the criteria

is non-empty.

If the future tense is also alloued, Yes-no-questions take

on a considerably more complex character and use modal

constructions to question stated events and courses of action

are plausible, likely, recommended, neccessary, etc. Future

tense yes-no-questions will not be discussed further in

this appendix.

The auxiliary verbs that signal yes-no-questions may be

semantical ly empty. If not, they specify the following types

of questions:

Modals (could, uould, shall) The potential or expectation

to act.

"Have" type verbs (has, had) Possession or control over.

"Be" type verbs (is, are, were) Existence.

The following are typical examples of yes-no-questions:

1. Questions asking about the existence of a property.

"Can monkeys sing ?"

"Is the car colored ?"

2. Questions asking the truth of statements.

"Is contribution margin the difference between list price and

standard cost ?"

"Are monkeys green ?"

PAGE 35

3. Questions asking whether attribute values satisfy certain relation.

"Is the car red ?"

"is profit this year greater than a million dollars ?"

"Is profit this year greater than last year ?"

4. Questions asking whether a command can be carried out.

"Can you stand on your head ?"

"Can you show me the profit for 19B9 ?"

5. Asking whether there is a non-empty set of objects with

given properties.

"Is there a house with three windows ?"

"Are there two cars are identical ?"

"Did any plants have costs greater than budget last year ?"

"Are there two cars that are identical ?"

Each of the above types of yes-no-questions can be formulated

In a different manner that specifies alternatives to be selected

from:

"Do they have children or don't they ?"

"Can you show me the profit for 1969 or don't you have that data ?"

"Is his car green, black or red ?

Clearly, these questions do not require "yes" or "no" as an answer

but rather the selected al ternativeCs) or a negative.

COnPOUND AND COMPLEX QUESTIONS

The above examples are all simple questions, but questions

PAGE 38

that occur as complex and compound sentences can be analyzed

similarly. In complex questions, dependent clauses can be

used to specify time, place or other features of the entity

being questioned.

"Uhat uas Soars' profit in the year Ajax lumber wont bankrupt ?"

"Uhat car, did your brother say, he wanted us to tell Jane to buy ?'

An important class of complex questions are those for which an

"if clause" specifies hypothetical conditions. Usually these are

parameters to a model; unmentioned parameters being picked up by

defaul t.

"If sales went up by 10%, what would happen to profit ?"

"If we closed down warehouses 2 and 5 and fed their customers

from 3, how would this affect distribution cost ?"

Compound questions can usually be broken up into two or more

questions with the unrepeated conditions being common to them all.

"Uhat was the temperature in Phoenix on Saturday at 12 noon and

at 4 p.m. ?"

PAGE 37

BIBLIOGRAPHY

(1) McCarthy J., "Programs with Common Sense,"

Proc. Symposium on Mechanisation of Thought Processes,

H.M.S.O., London. 1959

(2) Phillips, A. v., "A Question-Answering Routine,

"

Unpublished Masters Thesis,

Mathematics Department, M.I.T., Cambridge, Mass., 19B0

(3) Green, Jr., B. F. , et a!., "Baseball j An Automatic

Question Answerer," Proc. UJCC, Vol. 19, 1961

(4) Simmons, R. P., et al., "Indexing and Dependency Logic

for Answering English Questions," American Documentation,

Vol. 15 1964

(5) Lindsay, R. K. , "Inferential Memory as the Basis of

Machines that understand Natural Language,"

in "Computers and Thought," Feigenbaum, E. A., and

Feldman, J, eds. , McGraw Hill, New York, 19G3

(B) Raphael, B. , "A Computer Program for Semantic Information

Retrieval," in reference (11) pp 33-145

(7) Uoods, U. A., "Procedural Semantics for a

Question-Answering Machine.", Proceedings of the

FJCC 19G8

PAGE 38

(8) Uoods. U. A., "An Experimental Parsing System For

Transition Netuiork Grammars." in "Natural Language

Processing", Randall Rust in Ed., Algorithmics Press

New York, N.Y. 1973

(9) Uinograd T. , "Understanding Natural Language,"

Academic Press, New York, 1972

(10) Carbonell J. R. , and Collins A. H. , "Natural Semantics in

Artificial Intel I igence, " Proc. IJCAI., 1973

(11) flinsky f1. , ed. , "Semantic Information Processing,"

I1,I.T. Press, Cambridge Mass., 19G8, pp 1-38

(12) Martin, U.A., "Translation of English Into HAPL using

Uinograd' 3 Syntax and a Semantic Case Grammer",

Automatic Programming flemo 11

Project nac, M.I.T., April 17 1973

(13) Martin, U.A., "Things That Really Matter —
a Theory of Prepositions, Semantic Cases and Semantic

Type Checking,

"

Automatic Programming Memo 13

Project Mac, M.I.T, August 15 1973

(14) Fillmore, C. T. , "The Case for Case,"

in Uni versa Is in Linguistic Theory, Bach and Harms ed.

Holt, Rinehart and Uinston, 19G8

(15) Celce-Murcia, M. , "Paradigms for Sentence Recognition,"

in System Development Corporation final report

No. HRT-15892/7907

PAGE 39

(IG) Mart in, U. A., "riAPL 2,"

Automatic Programming demo 12

Project Mac, M. I.T., August 1 1973

(17) Krumland R. B. , "Concepts and Structures for a

Manager's Modelling System," Thesis Proposal,

Sloan School of Management, M.I.T., Oct 15 1973

H\ I

Lib-26-67

-J lUOU UUJ OCf 13

,,/-73 ||i||||||ii||i|ip|,.j,||T||fr|||"|

I

3 ^DflD 0D3 TQb DM

3 '^O&O DD3 7°ih 31

6^1-7^
3 TQfiD DD3 7Tb

6=?^-7'^

3 TDflD DD3 fl?7 ?

^'??'- 7^i

3 TDflD DD3 627 t

6^fo'-7<^

fc^??-

6?<?-7'-/

3 lOaO DD3 fl57

llill'!l'i'illi!i'i'"i'!''ir''i'lt'rr'i

3 TDflQ DD3 fl2?

3 TOflO DOS 7Tb {

3 ^Oflo'do'Vfl'^';"'^''

