

OEVMbY

HD28
.M414

no IZTZ-

9o

ms^^

Center for Information Systems Research

Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

CYCLOMATIC COMPLEXITY METRICS
REVISITED: AN EMPIRICAL STUDY
OF SOFTWARE DEVELOPMENT

AND MAINTENANCE

Geoffrey K. Gill

Chris F. Kemerer

October 1990

CISR WP No. 218
Sloan WP No. 3222-90

•1990 G.K. Gill, C.F. Kemerer

Center for Information Systems Research

Sloan School of Management
Massachusetts Institute of Technology

'41V) I99Q

Abstract

While the need for software metrics to aid in the assessment of software complexity for both

development and maintenance has been widely argued, little agreement has been reached on the

appropriateness and value of any single metric. McCabe's cyclomatic complexity metric, a measure

of the maximum number of linearly independent circuits in a program control graph has been

widely used in research. However, despite the widespread interest and popularity of this metric,

it has not been without criticism, both analytical (the Myers and Hansen variants) and empirical

(the high correlation of cyclomatic complexity with size measures). The current research tested

both types of critiques on a newly collected dataset of real world software development and

maintenance projects. The analytical research questions were tested on a set of 834 software

modules from a number of existing real-time systems. Neither the Myers nor Hansen variants

were found to be significantly different from the original value as computed by McCabe.

Therefore, these particular theoretical criticism seem to have little or no practical impact, as

represented by the data collected in this study. In regard to the empirical research questions,

previous concerns were validated on this new dataset. However, the current research proposes

a simple transformation of the metric whereby the cyclomatic complexity is divided by the size of

system in source statements, thereby determining a "complexity density" ratio. This complexity

density ratio is demonstrated to be a useful predictor of software maintenance productivity on a

small pilot sample of actual maintenance projects.

CR Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and

Maintenance; D.2.8 [Software Engineering] : Metrics; D.2.9 [Software Engineering] : Management;

F.2-3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs among Complexity Measures;

IC6.0 [Management of Computing and Information Systems]: General - Economics; K.63

[Management of Computing and Information Systems] : Software Management

General Terms: Management, Measurement, Performance.

Additional Key Words and Phrases: Software Productivity, Software Maintenance, Software

Complexity, McCabe Metrics, Cyclomatic Complexity.

Research support for the second author from the Center for Information Systems Research and

the International Financial Services Research Center is gratefully acknowledged. Helpful

comments were received from Bill Curtis on an earlier draft.

1. INTRODUCTION

A critical distinction between software engineering and other, more well-established branches

of engineering is the shortage of well-accepted measures, or metrics of software. Without such

metrics, the tasks of planning and controlling software development and maintenance will remain

stagnant in a "craft''-type mode, wherein greater skill is acquired only through greater experience, and

such experience cannot be easily communicated to the next system for study, adoption, and further

improvement. With such metrics, software projects can be quantitatively described, and the methods

and tools used on the projects to improve productivity and quality can be evaluated. These

evaluations will help the discipline grow and mature, as progress is made at adopting those

innovations that work well, and discarding or revising those that do not.

Of particular concern is the need to improve the software maintenance process, given that

maintenance is estimated to consume 40-75% of the software effort [Vessey and Weber, 1986]. What

differentiates maintenance from other aspects of software engineering is, of course, the constraint of

the existing system. The existing system constrains the maintenance work in two ways, the first

through the imposition of a general design structure that circumscribes the possible designs of the

system modifications, and second, and more specifically, through the complexity of the existing code

which must be modified.

A measure, or metric of this latter, more specific type of system influence that has been

proposed is the McCabe's cyclomatic complexity metric, a measure of the maximum number of

linearly independent circuits in a program control graph [McCabe, 1976]. As described by McCabe,

a primary purpose of the metric is to "...identify software modules that will be difficult to test or

maintain" [McCabe, 1976, p.308], and therefore is of particular interest to researchers and

practitioners concerned with maintenance. The McCabe metric has been widely used in research

[Zuse and Bollmann, 1989], and a recent article by Shepperd cites some 63 articles that are directly

or indirectly related to the McCabe metric [Shepperd, 1988]. However, despite the widespread

interest and popularity of this metric, it has not been without criticism, with an early critique

appearing in 1982 [Evangelist], and most recently the comprehensive aforementioned critique by

Shepperd [1988].

Shepperd's review highlights two types of criticisms. The first, which he labels "theoretical

criticisms," have to do with analytical criticisms of the algorithm by which the cyclomatic complexity

metric is computed for software. Most prominent among these are the refinements proposed by

Myers [Myers, 1977] and Hansen [Hansen, 1978]. Shepperd also notes that, among the numerous

empirical validations or uses of the metric, that the most consistent single result is the high degree

of correlation between McCabe's metric and a count of source lines of code (SLOC). As evidence

of this, four studies cited by Shepperd had Pearson correlation coefficients of .9 or greater for these

two metrics.^ This "empirical criticism" suggests that the additional effort required for computing

and understanding the McCabe cyclomatic complexity metric may not be worthwhile in practice.

Therefore, given the need for a complexity metric such as McCabe's in general, but also the

well-formed criticism of the McCabe metric in particular, the need for additional research in this area

is clear. The purpose of the current research is to empirically test the two main criticisms

summarized or raised by Shepperd, and to suggest needed improvements. In regard to the theoretical

criticisms of Myers and Hansen, Shepperd does note that it is "arguable whether [they] represent

much of an improvement over that of McCabe" (p. 32), since "The majority of modifications to

McCabe's original metric remain untested." (p.35) [Shepperd, 1988] The current research directly

addresses this call for an empirical test of these variations.

The second research question revolves around the practical usefulness of the metric, given

the high correlations noted by some previous research. As noted by Shepperd, concerns about the

'Sce [Basili and Perricone, 1984], [Feuer and Fowlkes, 1980], [Paige, 1980], and [Wcxxlward, HcnneU, and Hedley, 1979].

4

external validity of the data and analyses in some of the previous studies can be used raised to

mitigate some of the results, particularly those using data on small programs, often using student

subjects. Therefore, these results bear validation on data from actual systems, and, in particular,

from data on maintenance projects, since use of the metric for testing and maintenance was one of

its author's main stated purposes. In particular, this research seeks not to determine whether

Cyclomatic complexity captures all aspects of complexity in one figure of merit, but rather to answer

the question raised by Shepperd, as to whether cyclomatic complexity can serve as a "useful

engineering approximation" [Shepperd, 1988].

Briefly summarized, the results of this research were as follows. In a test on 834 software

modules from a number of existing real-time systems, neither the Myers nor Hansen variants were

found to be significantly different from the original value as computed by McCabe. However, in

regard to the second set of research questions, the empirical criticism of Shepperd and others was

validated, in that the correlation between Cyclomatic complexity and SLOC was found to be .95 for

these real world systems. However, a simple transformation involving the cyclomatic complexity

metric is proposed, whereby the cyclomatic complexity is divided by the size of system in source

statements, thereby determining a "complexity density" ratio. This complexity density ratio is

demonstrated to be a useful predictor of software maintenance productivity, on a small sample of

actual maintenance projects.

The rest of this paper is organized as follows: Section 2 details the main research questions,

and provides references to previous research literature where appropriate. Section 3 outlines the

data collection procedures and summarizes the data set used in the research. Results are presented

in Section 4, and a concluding remarks are presented in Section 5.

2. CYCLOMATIC COMPLEXITY METRICS

2.1 Analytic Critiques

McCabe [1976] proposed that a measure of the complexity is the number of possible paths

through which the software could execute. Since the number of paths in a program with a backward

branch is infinite, he proposed that a reasonable measure would be the number of independent paths.

After defining the program graph for a given program, the complexity calculation would be:

V(G) = e - n +2.

where V(G) = the cyclomatic complexity,

e = the number of edges,

n = the number of nodes.

Analytically, V(G) is the number of predicates plus 1 for each connected single-entry single-exit graph

or subgraph.

From the beginning, a number of researchers have proposed variations on the original metric.

The two most prominent variations are those of Hansen (1978) and Myers (1977) [Shepperd, 1988].

Hansen [1978] gave four simple rules for calculating McCabe 's Complexity:

1. Increment one for every IF, CASE or other alternate execution construct.

2. Increment one for every Iterative DO, DO-WHILE or other repetitive construct.

3. Add two less than the number of logical alternatives in a CASE.

4. Add one for each logical operator (AND, OR) in an IF.

Myers [1977] demonstrated what he believed to be a flaw in McCabe *s metric. Myers pointed

out that an IF statement with logical operators was in some sense less complicated than two IF

statements with one imbedded in the other because there is the possibility of an extra ELSE clause

in the second case. For example:

IF (A and B) THEN

ELSE

is less complex than:

EF (A) THEN
IF (B) THEN

ELSE

ELSE

Myers [1977] noted that calculating V(G) by individual conditions (as suggested by McCabe)

made V(G) identical for these two cases. To remedy this problem, Myers suggested using a tuple of

(CYCMID,CYCMAX) where CYCMAX is McCabe's measure, V(G), (aU four rules are used) and

CYCMID uses only the first three. Using this complexity interval, Myers was able to resolve the

anomalies in the complexity measure.

Hansen [1978] raised a conceptual objection to Myers's improvement. Hansen felt that

because CYCMID and CYCMAX were so closely related, using a tuple to represent them was

redundant and did not provide enough information to warrant the intrinsic difficulties of using a

tuple. Instead he proposed that what was really being measured by the second half of the tuple

(CYCMAX) was really the complexity of the expression, not the number of paths through the code.

Furthermore, he felt that rule #3 above also was just a measure of the complexity of the expressions.

To provide a better metric, he suggested that a tuple consisting of (CYCMIN, operation count) be

used where CYCMIN is calculated using just the first two rules for counting McCabe's complexity.

All of the above tuple measures have a problem in that, while providing ordering of the

7

complexity of programs, they do not provide a single number that can be used for quantitative

comparisons. It is also an open research question whether choosing one or the other of these metrics

makes any practical difference. While a number of authors have attempted validation of the

CYCMAX metric (e.g. Li and Cheung, 1987; Lind and Vairavan, 1989) there does not appear to be

any empirical validation of the practical significance of the Myers or Hansen variations [Shepperd

1988]. Therefore, one question investigated in this research is a validation of the CYCMIN,

CYCMID, and CYCMAX complexity metrics.

2.2 Empirical Tests

In Shepperd's comprehensive review of previous research on the metric, he notes that, among

the numerous empirical validations or uses of the metric, that the most consistent single result is the

high degree of correlation between McCabe's metric and a count of source lines of code (SLOC).

As evidence of this, four studies cited by Shepperd had Pearson correlation coefficients of .9 or

greater for these two metrics. This "empirical criticism" suggest that the additional effort required

for computing and understanding the McCabe cyclomatic complexity metric may not be practically

worthwhile. However, as noted by Shepperd, concerns about external vahdity of the data and

analyses in some of the previous studies can be raised to mitigate some of the results, particularly

those using data on small programs from student subjects. Therefore, these results bear validation.on

data from actual systems. In particular, applied research in this area does not seek to determine

whether cyclomatic complexity captures all aspects of complexity in one figure of merit, but rather

looks to answer the overriding question raised by Shepperd, as to whether cyclomatic complexity can

serve as a "useful engineering approximation" [Shepperd, 1988].

23 Productivity Applications

As suggested by McCabe. a likely use of a complexity metric is to "...identify software modules

that will be difficult to test or maintain" [1976, p. 308]. The emphasis on maintenance is appropriate,

given that software maintenance is an area of increasing practical signiScance. It is estimated that

from 40-75% of information systems resources are spent on software maintenance [Vessey and

Weber, 1986]. However, according to Lientz and Swanson [1980] relatively little research has been

done in this area. One area that is of considerable practical importance for research is the effect of

existing system complexity on maintenance productivity. It is often assumed that a) more complex

systems are harder to maintain, and b) that systems suffer from "entropy", and therefore become more

chaotic and complex as time goes on [Belady and Lehman, 1976]. These assumptions raise a number

of research questions, in particular, when does software become sufficiently costly to maintain that

it is more economic to replace (rewrite) it than to repair (maintain) it? This is a question of some

practical importance, as one type of tool in the Computer Aided Software Engineering (CASE)

marketplace is the so-called "restructurer", designed to reduce existing system complexity by

automatically modifying the existing source code [Parikh, 1986; US GSA, 1987]. Knowledge that a

metric such as CYCMAX accurately reflects the difficulty in maintaining a set of source code would

allow management to make rational choices in the repair/replace decision, as well as aid in evaluating

these CASE tools. The empirical evidence linking software complexity to software maintenance costs

has been criticized as being relatively weak [Kearney, 1986]. However, studies have shown that a

significant fraction of the staff resources used in maintenance are spent in understanding the existing

code [Fjeldstad and Hamlen. 1979]. Therefore, a metric that measures complexity should prove to

be a useful predictor of maintenance costs.

2.4 Summary of Research Questions

Based upon the above review of the previous literature, most especially that of Shepperd,

three research questions are the subject of this empirical study. They are:

1. What is the empirical relationship between the original McCabe formulation of the

cyclomatic complexity metric and that of the later variants proposed by Myers and Hansen? The

practical implications of these questions are that, if the variants are shown to be significantly different

than the original formulation in practice, then they merit collection and analysis by both researchers

and practitioners.

2. What is the empirical relationship between the cyclomatic complexity metric and simpler

size metrics such as source lines of code? The practical implication of this question is whether

cyclomatic complexity should be used as the numerator in ratios to determine the productivity of

software development and maintenance efforts, or whether simpler to compute measures, such as

SLOC would suffice.

3. How can cyclomatic complexity metrics be used to assess the impact of existing code

complexity on maintenance project productivity? If a relationship can be shown between some form

of the metric and productivity, then the metric can be used as a component in management planning

and control of software maintenance, an activity of considerable economic significance.

3. DATA COLLECTION

3.1 Data Overview and Background of the Datasite

The approach taken to addressing the research questions in this study was to collect detailed

data about a number of completed software projects at one firm, hereafter referred to as Alpha

Company. All the projects used in this study were small, customized, and primarily real-time defense

applications undertaken in the period from 1984-1989, with most of the projects in the last three

10

years of that period. The company considers the data contained in this study proprietary and

therefore requested that its name not be used and any identifying data that could directly connect

it with this study be withheld. The numeric data, however, have not been altered in any way. The

company employed an average of about 30 professionals in the software department.

One beneflt of this approach was that because all the projects were undertaken by one

organization, neither inter-organizational differences nor industry differences should confound the

results. A possible limitation is that this concentration on one industry and one company may

somewhat limit the applicability of the results. At a minimum, however, the defense industry is a very

important industry for software- and the results will clearly be of interest to researchers in that Geld.

More generally, these results may provide suggestions for research at other sites.

3.2 Data Sources

The data for this study were derived from three sources [Gill, 1989]:

1. Source Code -- A copy of the source code developed or modified by each project was

obtained.

2. Accounting Database -- This database contained the number of hours every software

engineer worked on each project for every week of the study period.

3. Activity Reports ~ A description of the work done by each engineer for each week
for every project.

Of the source code developed for the projects, 74.4% was written in Pascal, and the other

25.6% in a variety of other third generation languages, primarily FORTRAN. Following Boehm

[1981], only deliverable code was included in this study, with deliverable defined as any code which

was placed under a configuration management system. This definition eliminated any purely

fortune magazine reported m its September 25, 1989 issue that the Pentagon spends $30 biUion annually

on software.

11

temporary code, but retained code which might not have been part of the delivered system, but was

considered valuable enough to be saved and controlled. (Such code included programs for generating

test data, procedures to recompile the entire system, utility routines, etc.) The source code was the

main data source for addressing the first two sets of research questions.

In order to address the maintenance productivity question, two additional types of data were

required. The first of these was the total number of hours worked on the project and the person

charging the project. These were obtained from the firm's accounting database. Because the hourly

charges were used to bill the project customer and were subject to United States Government

Department of Defense (DOD) audit, the engineers and managers used extreme care to insure

proper allocation of charges. For this reason, these data are believed to be accurate representations

of the actual effort expended on each project. A third data source was a weekly summary called an

activity report of the work done by each software engineer every week as part of their standard

record-keeping for DOD reporting. An example of an activity report appears in AppendixA These

activity reports were used to isolate coding and debugging activities when examining the effect of

complexity density on maintenance productivity.

3J Data Deflnitions

For the purposes of this research, a software module was defined as the source code that was

placed in a single physical file (which was often compiled separately). The size of the software

modules was measured in non-comment source lines of code (NCSLOC). The definition of a line

of code adopted for this study is that proposed by Conte, Dunsmore and Shen [1986, p. 35]:

A line of code is any line of program text that is not a comment or blank line, regardless of

the number of statements or fragments of statements on the line. This specifically includes

all lines containing program headers, declarations, and executable and non-executable

statements.

This set of rules has several major benefits. It is very simple to calculate and it is very easy

12

to translate for any cxjmputer language. Because of its simplicity, it has become the most popular

SLOC metric [Conte, et al. 1986, p. 35]. Through consistent use of this metric, results become

comparable across different studies.

In addressing the first two research questions, this study included a total of 834 modules of

which 771 were written in Pascal and 63 in FORTRAN. They averaged 176.2 NCSLOC (Non-

Comment Lines of Code) with a standard deviation of 257.9. In total, approximately 150,000 lines

of code (NCSLOC) from 21 software systems were analyzed.

The definition of software maintenance adopted by this research is that of Parikh and

Zvegintzov [1983], namely "work done on a software system after it becomes operational." Lientz

and Swanson [1980, pp. 4-5] include three tasks in their definition of maintenance: "...(1) corrective -

- dealing with failures in processing, performance, or implementation, (2) adaptive -- responding to

anticipated change in the data or processing environments; (3) perfective -- enhancing processing

efficiency, performance, or system maintainability." The projects described below as maintenance

work pertain to all of the three Lientz and Swanson types.

To address the third research question, project data were gathered for seven maintenance

projects in order to test the hypothesis concerning the effect of complexity on maintenance

productivity. The average size of a maintenance project was 1006 added (standard deviation, 1158),

and required an average of 1059 work hours (standard deviation, 982).

^ As Boehm [1987] has described, SLOC have method has many deficiencies as a metric. In particular, they

are difficult to define consistently, as Jones [1986] has identified no fewer than eleven different algorithms for

counting code. Also, SLOC do not necessarily measure the "value " of the code (in terms of functionality and

quality). However, Boehm [1987] also points out that no other metric has a clear advantage over SLOC.
Furthermore, SLOC are easy to measure, conceptually familiar to software developers, and are used in most

productivity databases and cost estimation models. For these reasons, it was the metric adopted by this research.

13

4 RESULTS

4.1 Empirical Tests of Analytic Critique

For the 834 modules, three complexity metrics were computed:

CYCMAX — the original McCabe cyclomatic complexity.

CYCMID — the Myers variation.

CYCMIN — the Hansen variation.

Table 4.1.1 gives the average value for each metric. Table 4.1.2 gives the Pearson correlation

coefficients for the three complexity metrics used in this study.

CYCMIN

the empirical data suggest that there are unlikely to be any practically significant different results

using CYCMIN or CYCMID instead of CYCMAX.

4.2 Test of Empirical Criticism

As suggested by previous research, the length metric, NCSLOC, and the complexity measure,

CYCMAX also turned out to be highly correlated. Table 4.2.1 gives the Pearson correlation

coefficients for the complexity metrics with the SLOC metrics. Similar to the results found in some

previous research, the cyclomatic complexity metric is highly correlated with length in NCSLOC.

do not have a great deal of control over the size of a program as it is intimately connected to the size

of the application. However, by measuring and adopting complexity standards, and/or by using CASE

restructuring tools, they can manage unnecessary cyclomatic complexity. The second reason is that

there are valid intuitive reasons why the length of the code may not have a large effect on

maintenance productivity. When a software engineer maintains a program, each change will tend to

be localized to a fairly small number of modules. He will, therefore, only need detailed knowledge

of a small fraction of the code. The size of this fraction is probably unrelated to the total size of the

program. Thus the length of the entire code is less relevant.'* Therefore, a transformed metric,

complexity density, is defined as the ratio of cyclomatic complexity to thousand lines of executable

code (KNCSLOC). These complexity density measures are similar to Gilb's logical decisions per

statement [Gilb, 1977], but they have not often been published. One exception is a by-product of

Selby's research on reused code [Selby, 1988]. In his study of 25 NASA projects, his mean was 81.4,

with a standard deviation of 57.2. CMAXDENS, the average McCabe complexity per thousand lines

of code was 121.3 for our sample (standard deviation of 62.7).

Since both Pascal and FORTRAN code was analyzed in this research, it is important to

determine whether there exists any effect of programming language used. The average complexity

density of FORTRAN modules was compared with Pascal modules (see Table 4.3.1).

*In fact, the correlation of productivity with initial code length was not significant (Pearson coefficient, -0.21;

p = 0.61).

16

Variable

This figure suggests that productivity declines with increasing complexity density. While it

would be speculative to ascribe too much importance to the results, which are based on only seven

data points, the results do seem sufficiently strong and the implications sufficiently important that

further study is indicated. If these results continue to hold on a larger independent sample, then such

results would provide strong support for the use of the complexity density measure as a quantitative

method for analyzing software to determine its maintainability. It might also be used as an objective

measure of this aspect of software quality.

5 SUMMARY AND CONCLUDING REMARKS

This paper began by directly addressed the two research questions raised by Shepperd

regarding the McCabe cyclomatic complexity metrics. The first question was whether the analytical

criticisms of the original metric had any practical significance. Based upon the data used in this study,

neither the Myers nor Hansen variations seem to result in values that are equivalent to the original

specification for all practical purposes to which they might be put. Thus, these data support

Shepperd's hypothesis that the variations do not represent a significant difference over the original

formulation. The second research question revolves around the empirically-derived value added by

the metric, given the high correlations found by previous research between the metric and standard

size measures, most particularly LOG . The data from this study provide additional evidence of this

high correlation. This is particularly noteworthy since these data are from actual systems, and, in

particular, include data on maintenance projects, which is a main intended domain of the metric.

When the outlying project is removed, the results improve dramatically:

PRODUCTIVITY = 31.3 - 0.142 * CMAXDENS
(6.67) (-4.98)

R* = 0.86 Adjusted R* = 0.82

F-Value = 24.84 n = 6

19

Going beyond this aDirelation, this paper has proposed the use of a transformed version of the

metric, referred to as "complexity density", whereby the ratio of the cyclomatic complexity of the

module to its length in LOC is calculated. This ratio is meant to represent the weighted complexity

of a module, and hence its likely level of maintenance task difficulty. This proposed complexity

density ratio is tested on a small pilot sample of projects and shown to be a good single value

predictor of maintenance costs. Thus, it is proposed that this transformed version of the cyclomatic

complexity metric can serve, in Shepperd's words, as a "useful engineering approximation" [Shepperd,

1988]. Of course, further empirical research will be required to test these pilot results on a larger

sample drawn from a different environment in order to validate the usefulness of the complexity

density ratio. The complexity density ratio proposed by this research could prove to be a simple, but

practically useful measure of complexity. It incorporates the McCabe cyclomatic complexity metric,

a well-known and well-understood measure of complexity. In addition, in the intervening years since

its introduction, the collection of the data necessary to compute the metric has been automated by

a number of tools. Therefore, the early difficulties in collecting these data have been resolved, and

therefore data collection should not prove to be a practical barrier to the ratio's use. The continued

search for useful metrics of software product complexity is a necessary first step in the ongoing

process of moving software development firmly into the realm of engineering. With well-founded

complexity metrics, developers will have objective and useful yardsticks with which to evaluate their

initial products. These metrics will also be used by each maintenance team as it seeks to enhance

the initial product without increasing the level of unnecessary complexity. Both of these aspects

should make a contribution towards the improved management of the software development and

maintenance process.

e.g., see Language Technology Incorporated's INSPECTOR product, and SET Laboratories' product.

20

6 BroUOGRAPHY

[Basili and Perricone, 19S4]

Basil!, V. R. and B. Perricone, "Software Errors and Complexity: An Empirical Investigation,"

Communications of the ACM, 27 (1): 42-52, (January 1984).

[Belady and Lehman, 1976]

Belady, L. A. and Lehman, M. M.; "A Model of Large Program Development"; IBM Systems Journal,

V. 15, n. 1, pp. 225-252, (1976).

[Boehm, 1981]

Boehm, Barry W.; Software Engineering Economics; Prentice-Hall, Englewood ClifEs, NJ, 1981.

[Boehm, et al. 1984]

Boehm, B. W.; Gray, T. E.; and Seewaldt, T.; IEEE Transactions on Software Engineering; May 1984.

[Boehm, 1987]

Boehm, Barry W.; "Improving Software Productivity"; Computer, September 1987; pp. 43-57.

[Conte, et al. 1986]

Conte, S. D.; Dunsmore, H. E.; and Shen, V. Y.; Software Engineering Metrics and Models;

Benjamin/Cummings Publishing Qarapany, Inc., 1986.

[Evangelist, 1982]

Evangelist, W. M., "Software complexity metric sensitivity to program structuring rules," Journal of

Systems <k Software, 3 231-243, (1982).

[Feuer and Fowlkes, 1980]

Feuer, A. R. and E. B. Fowlkes, "Some results from an empirical study of computer software",

Proceedings of the Fourth EEEE International Conference on Software Engineering, Munich,

Germany, 1980, pp. 351-355.

[Fjeldstad and Hamlen, 1979]

Fjeldstad, R. K. and Hamlen, W. T.; "Application program maintenance study: Report to our

Respondents"; Proc of GUIDE 48; The Guide Corporation, Philadelphia, 1979. Also in pParikh and

Zvegintzov, 1983].

[GUb, 1977]

Gilb, Thomas; Software Metrics; Winthrop Press, Cambridge, MA 1977.

[Gill, 1989]

Gill. Geoffrey KL; "A Study of the Factors that Affect Software Development Productivity";

unpublished MIT Sloan Masters Thesis; 1989; Cambridge, MA.

21

[Hansen, 1978]

Hansen, W. J.; "Measurement of Program Complexity By the Pair (Cyclomatic Number, Operator

Count)"; ACM SIGPLAN Notices; 13 (3):29-33, March 1978.

[Jones, 1986]

Jones, Capers; Programming Productivity; McGraw-Hill, New York, 1986.

[Kearney, et al, 1986]

Kearney, J. K, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray and M. A. Adler, "Software

Complexity Measurement", Communications of the ACM, 29 (11): 1044-1050, (November 1986).

[Li and Cheung, 1987]

Li, H. F. and Cheung, W. K; "An Empirical Study of Software Metrics"; IEEE Transactions on

Software Engineering SE-13 (6):697-708, June, 1987.

[Llentz and Swanson, 1980]

Lientz, B. P. and Swanson, E. B.; Software Maintenance Management; Addison-Wesley Publishing

Company, 1980.

[Lind and Vairavan, 1989]

Lind, Randy K. and Vairavan, K.; "An Experimental Investigation of Software Metrics and Their

Relationship to Software Development Effort"; IEEE Transactions on Software Engineering; 15

(5):649-653, 1989.

[McCabe, 1976]

McCabe, Thomas J.; "A Complexity Measure"; IEEE Transactions on Software Engineering; SE-2

(4):308-320, 1976.

[Myers, 1977]

Myers, G. J.; "An extension to the Cyclomatic Measure of Program Complexity". SIGPLAN Notices;

12 (10):61-64, 1977.

[Paige, 1980]

Paige, M., "A metric for software test planning", Proceedings of COMPSAC 80, Buffalo, New York,

1980, pp. 499-504.

[Farildi, 1986]

Parikh, Girish; "Restructuring your COBOL Programs"; Computerworld Focus; 20 (7a):39-42; February

19, 1986.

[Parikli and Zvegintzov, 1983]

Parikh, G. and Zvegintzov, N.; eds. Tutorial on Software Maintenance, EEEE Computer Science Press,

SUver Spring, MD (1983).

[Selby, 1988]

Selby, Richard W.; "Empirically Analyzing Software Reuse in a Production Environment"; Software

Reuse - Emerging Technologies; Traz, W. eds. IEEE Computer Society Press, NY NY 1988.

22

[Shepperd, 1988]

Shepperd, M., "A critique of cyciomatic complesdty as a software metric," Software Engineering

Journal, 3 (2): 30-36, (March 1988).

[US GSA, 1987]

Parallel Test and Evaluation of a Cobol Restructuring Tool; Federal Software Management Support

Center; United States General Services Administration, Office of Software Development and

Information Technology, FaUs Church, Virginia Sept 1987.

[Vessey and Weber, 1983]

Vessey, I. and Weber, R.; "Some Factors Affecting Program Repair Maintenance: An Empirical

Study"; Communications of the ACM; 26 (2):128-134, February, 1983.

[Woodward, et al, 1979]

Woodward, M. R., M. A Hennell and D. A Hedley, "A measure of control flow complexity in

program text," IEEE Transactions on Software Engineering, 5 (1): 45-50, (1979).

[Zuse and Bollmann, 1989]

Zuse, H. and P. Bollmann, "Software metrics: using Measurement Theory to Describe the Properties

and Scales of Static Software Complexity Metrics," ACM SIGPLAN Notices, 24 (8): 23-33, (1989).

23

Appendix A: Example of an Activity Report

Junior Software Engineer's Name Weekly Report 4-1-1987

Project #1 35 hrs. Spent ttie whole time working with [Staff Scientist] and [Principal Scientist]

trying to find the cause of the difference between [Baseline Runs] and [New
Instnmient Runs]. After a lot of head scratching it turns out that both were

correct. We just had to play with the format of the data and units to get the

two data sets to match to within [xxx] RMS. This is still above the [yyy] RMS
limit, but the [baseline runs] and [new instrument runs] started off being [zzz]

RMS apart. So, until the [new instrument] can be improved, my software can

do no better than it is doing now.

Project #2 1 hrs. I had very little time to work on this, but I did manage to start to finish the

modify adhoc target routine.

Project #3 9 hrs The automatic height input for the calibration routine is up and running. I

also made some more modifications so that they can return to the old method

if the IEEE board fails.

Project #4 2 hrs [Staff Scientist] and I spent the two hours trying to get the microVAX up

after we installed the [Special Boards]. We ended up having to pull the boards

back out to reboot the machine. The boards were eventually installed, but

there still seems to be something wrong.

Total = 45.0 hours

24

38 1.3 ii75

Date Due

1 'm]

MIT LIBRARIES DUPL

3 TOflD 0Q7DlSb7 7

