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Abstract

In a previous paper (Peterson, Bertsimas, and Odoni 1992), we studied the phe-

nomenon of transient congestion in landings at a hub airport and developed a recursive

approach for computing moments of queue lengths and waiting times. In this paper

we extend our approach to a network, developing two approximations based on the

method used for the single hub. We present computational results for a simple 2-hub

network and indicate the usefulness of the approach in analyzing the interaction be-

tween hubs. Although our motivation is drawn from air transportation, our method

is applicable to all multi-class queuing networks where service capacity at a station

may be modeled as a Markov or semi-Markov process. Our method represents a new

approach for analyzing transient congestion phenomena in such networks.

Airi^ort congestion and delay iiavc grown significantly over the last decade. By 1986

ground delays at domestic air])orts averaged 2000 iiours per day, the equivalent of grounding

the entire fleet of Delta Airlines at that time (2oO aircraft) for one day (Donoghue 1986).

In 1990, 21 airports in the U.S. exceeded 20,000 hours of delay, with 12 more projected to

exceed this total by 1997 (National Transi)orlation Fiesearch Board 1991). This amounts to
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multi-class queuing networks.

Our model provides important qualitative insight on the interaction between hubs and

improves our understanding of hub-and-spoke syste:ns. With our model we can address a

number of interesting questions, such as:

• To what degree do network effects alter the results obtained from the study of a single

hub?

• Wliat network effects are produced by delay propagation?

• What effect does the degree of connectivity between hubs have on system congestion?

• Wiat are the effects of hub isolation strategies — strategies in which a hub's connec-

tivity to others is reduced — on schedule reliability?

The paper is organized as follows, in Section 1 we review briefly the methodology of

the algorithm for a single queue and describe the queuing network context of the present

problem. In Sections 2 and 3 we outline two decomposition approaches which exploit this

algorithm. Section 2 describes a relatively simple method in which downstream arrivals

are adjusted according to expected upstream waiting times. Section 3 describes a more

involved approach which uses second moment infonnation about delays to give a stochastic

description of downstream arrival rates In Section 4 we employ these approximation meth-

ods together with a simple simulation jirocedure on a 2-hub network. We find that under

moderate traffic conditions, the interactions between hubs do not alter demand patterns

significantly, so that the j^redictions of waiting times i^roduced by the different approaches

are very close. Under heavy traffic conditions with closely spaced banks, higher waiting

times act to smooth the demand ]>attern significantly over the day. In this latter situation,

the two recursive algorithms deviate further from simulation than in the fonner case. We

also find that isolation of a ]iroi)lein hub ]irolects other hubs from schedule disruption at

the cost of further disruption at the source of the delays. We provide concluding remfirks

in Section 5.

1 The Basic Model

Incoming aircraft at an airiiort require service at three stations: a landing runway, a gate,

and a dejjarlure runway. The landing operation in particular is subject to wide variations



p„{m)= Pr{(t,m)^(i,m+1)) = Pr [T. > m+1
|
T. > m|

.

(1)

We next define the following random variables:

Qk = Queue length at end of interval k,

Wk = Waiting time at end of interval fc,

Ck = Capacity state at end of interval k,

Ak = Age of current capacity state at end of interval k,

T, = Random lifetime of capacity state i.

For mean queue length we introduce the notation

Qk(l, I, m, q) = E \Qk \Qi=q,Ci = i, Ai = m] (2)

A- =: 1 , . .
.

, A', i = I, . . . ,S, m = 1 , . .
.

, A/,

where qmax(A"i i) is the maximum attainable queue length at the end of period k, given that

at that time the capacity state is i. This obeys the recursion

9max(A".0 = |<?max(''"-l) + >^k - Mt]^ (3)

where qmax(A") = maXj (jmaxC^, «) andx^ — max(x,0). Similarly, for waiting times we employ

the notation

WkiL 2, m, q) = E\Wk
I
Q, = 9, C, = z, Ai = m\. (4)

We write the second moment analogs of (2) and (4) as Ql{l,i,in,q) and Wl{l,i,m,q),

resjieotiveiy.

Let (x A y) denote niiii(x,y). The quantities Qk{Li,m,q), Q^(l,i,rn,q), Wk(l,i,m,q),

and W^(/, I. m, q) can be calculated recursively, ( Peterson, Bertsimas, and Odoni 1992). We

rejjeat here the basic equations:

Qk{l.t.m,q) = ^p,,(»»)Q, (/+!, J. !,((?+ A,+ , -//,)+) +

P„{m)Qk (/+l.!,m+l,(q+ A, + i
- (i,)'^)

, (5)

Ql{l,i,m,q) = ^P.jt".)Qn'+l,J. l.('7 + A;^, -/i,) + ) +



where

i^ = mth stop on itinerary of aircraft v,

t"^ = scheduled arrival time at mth stop for aircraft v,

s^ = siaclc time between stops m — 1 and »n for aircraft v.

Aircraft slack between stops m — 1 and m is the amount of time available to the aircraft

at stop rn - 1 beyond the minimal time necessary to tuni the aircraft around. In the

network schedules are no longer exogenous and deterministic, as delays at one airport affect

the schedules at others. In the terminology of queuing theory, the system is a multi-class

queuing network, with the classes being the different aircraft with their individual itineraries.

Service capacity at each airport is an autocorrelated stocliastic process described by a semi-

Markov process or Markov chain. Thus our task is to describe the transient behavior of

a multi-class queuing network with autocorrelated service rates at each node. This high

degree of complexity suggests that approximation methods are necessary.

2 A Simple Decomposition Approach

A first ap]5roximation approach is based on the following idea. Suppose that at the start

of the day, one knows the schedules for all aircraft operating in the network. Under the

assumption that delays are zero at the outset of the day, the schedule for the initial period

of the day is fixed. Hence the first ])eriod demands are fixed, and mean queue lengths and

waiting times for each airjiort during this jieriod may be determined by applying equations

(5) - (14) to each air]iort. The resulting exjiected waiting times for period 1 are estimates of

the delay encountered by all aircraft scheduled to land in this j^eriod. Taking into account

the slack wliich these aircraft have in their .sclie<kile,s and ujidating future arrival streams

accordingly, one then fixes demand for the next i>erio(l, calculates the resulting new expected

waiting times, and so forth.

More formally, let d^ rei>resent the current cumulative delay for aircraft v — i.e. as

aircraft r jjroceeds through its itinerary, ff is the current amount by which it is behind

schedule. Further define the terms

Ain.k) = set of aircraft scheduletl to land at r? ni period k,

E |W7'| = mean waitnig time for an aircraft arriving at i at end of period A:,



First Decomposition Algorithm for Air Network Congestion

Initialize:

For k = \ to K

For n = 1 to N

A(n,k) = <p

**** first itinerary sto])s are deteniiinistic since not affected by earlier delays *****

For 77 = 1 to N

For V = ] to V

A(n,K{t\)) =A{n,K(i\))Uv

Set d' =0 V V.

Main loop:

For k = \ to K

For r? = 1 to N

Set A;J = \A{n,k)\.

Using the recursive method at eacli airport, calculate E [^k] i
•• •

i
^ l^k']

For V € A(n, k):

***** find the ])art of the itinerary corresjionding to this stop *****

Find m ; (n^^J^^, s'^) € I(v) and K{t^^ + <f) = A"

Set n = rim, ' = 'm + d", S = Sm, ri' = n^+i, '' = tm+l, «' = Sm+l-

Set a = k(0 -t/{At).

***** calculate propagated delay *****

Set d;„+

,

d' + aE M'",,,
"(<)

1 +
+ (1 -a)£

***** detemiine next arrival period and ui>date data structure *****

Set A{n',K{t' + d'')) = A(n\K{l' + d"))Uv.

END.

Figure 1: Decomposition algorithm for network based on detenninistic updating scheme



where U is the complexity of the single hub recursive algorithm for waiting time moments

with deterministic input.

Proof:

Tlie choice of data structure means that tlie inner updating loop (the disaggregation proce-

dure) requires only 0{V) time. Hence the bottleneck of the algorithm consists of repeated

calls to a subroutine for computing expected waiting times. Because for each time period

k the algorithm must recalculate all of the preceding expected waiting times, overall com-

plexity is 0{KNII). D In Peterson, Bertsimas,

and Odoni (1992) it was shown that for a Markov model of capacity, the complexity of the

recursive algoritlim for a single hub is OiS"^ K'^Q^ax) Thus if the Markov capacity model

is specified with 5 capacity states, overall complexity for Algorithm 1 is 0(NS^K^Qmi^^).

The presence of the additional factor K arises from the fact that the recursion at each hub

is restarted from time at each new ]>eriod. Thus in the first global iteration the algorithm

finds EI^Vl . . . E\W^^], in the second it finds E|IV/| . . . E\Wl^] and E\Wj] . . . E\nfl and

so forth. This duplication of effort could be avoided if it were possible to store within the

single hub algorithm the end conditions of iteration k as initial conditions for iteration k+l.

However, even for the simpler Markov cajmcity model, this would mean storing the joint

l^robabilities for queue length and cai^acity. Since comi^uting these probabilities requires

0((5max) times as much effort as for the exjiectatioii alone (see Peterson, Bertsimas, and

Odoni 1992), there is no benefit to doing so unless the probabilities themselves are desired

for some other reason.

A more jjractical imiirovement is to have the recursion restart only every m periods,

where m is the minimum number of jieriods any aircraft has between scheduled stops.

Under this scheme, the aigorithni is run for the first m periods, arrivals are updated, then the

algorithm is run for the first 2in jienods. and so on. Whereas in the original implementation,

the number of iterations iierformed witlnn the recursive algorithm is

1 -^2 4- ...+ /\' - K{K+\)/2,

under this new scheme it is

m + 2m + :\m -\- Cm + A" = C.(C, + 1 )7n/2 + A"

11



n.k<2

Fig^ure 3; The traffic splitting phenomenon: alternative future aircraft paths depend upon

delay encountered. The numbers {p,;} indicate probabilities.

In order to comjjlete the updating scheme, the algorithm must translate the probabilis-

tic infoniiation on individual aircraft into information on future arrival rates. Define the

stochastic arrival quantities

A(n,k) - number of arrivals at airjjort n in period k.

The goal of this stejj of the procedure is to specify an api)roximate probability law for these

random variables. For some user-sjiecified number R (representing the number of possible

values taken by the random variables) the algorithm estimates numbers 7"(1), . . . ,7^(fl)

and A"(l), . .
.

, A"(ft) which obey the relationships

\>r{Mn.k) = Xl(\)} = -rrO).

F'r{A(7,,A-) = A'/(2)} = ^."(S).

\>r{Mv.k) = y^{R)) = -yr(ff). (18)

where

^7r(o = i (19)

This simplified description of variaijiiiiy in the arrival rales is easily incorporated into the



2. Translatio!) of these density functions into probabilistic descriptions of future arrival

periods for each aircraft, as given in the parameters p„(0), . . . ,Pv{C) and/c„(0), . . ., /c„(C).

3. Translation of the individual aircraft parameters p„(0), . . . ,PviC) and A:„(0), . . ., kv(C)

into simple discrete distributions for the random variables A(n,/c).

4. Updating of aircraft itineraries and airport arrival lists.

The fourth of these procedures was described in Section 2. The first three are described in

further detail in what follows, and a sununary of the algorithm is given in Figure 8.

3.1 Obtaining waiting time densities

Estimation of the densities f{w) cannot be done on the basis of the recursive algorithm

alone, since this procedure gives only the first two moments of the distribution. Knowledge

of the third moment would give enough information to determine a unique 2-point discrete

distribution by solving the nonlinear system

P\W]+P2W2 = E\W]

p,u-^+p2u>2 = E[W^]

p,u,^,+P2wl - E[W^]

Pi + P2 = 1

Pi,p2, u'l, tti2 > 0. (22)

for the values pi, p2, u'l. and w-j- However, this system is not guaranteed to have any

solution because of the ])ositivity requirement.

An alternative metiiod is suggested liy Monte C'arlo methods (see e.g. Hammersley and

Handscomb, 1964).. Consider a simjile simulation for a single airport in which capacity,

period by jieriod, is determined in Monte Carlo fashion from the Markov chain or semi-

Markov process. Prom the simulation we obtain the matrix of observations

where W"' is the waiting time at the end of jieriod k for the mth simulation. Ordering

the observations, we obtain histograms for the waiting times for each period, like the one

illustrated in Figure 4 for a constant arrival rate (p % 0.85, A = 60 per hour). Note the

15
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Figure 5: Test for exponential distribution of positive waiting time realizations

// must be determined by solving the pair of equations (omitting subscripts)

/•CXI

^tL'n„n + ( 1 - (!)) / wiyc-'^"'-'^'-"Uw = E\W\

6 {w^,r,f + {] - 6) f t/-2,/f-"(''-"'-") du, = £[iy2] (24)
*^U mm

111 terms of the mean w and variance a-^ we obtain the solution (omitting subscripts)

(25)

(26)

g^ - (»^- Wmin)^

2{w - Wm,n)

Note that 6 is always less than 1 and will be jionnegative provided that

> 1.

111 the tj^iicai case where Wm,n ^^ zero, this is equivalent to the condition that the coefficient

of variation for waiting times exceeds 1 Only in rare instances of the tests presented shortly

was this condition found not to hold. In tiiose c.uses, the jmrameter 6 was set to and the

entire distribution was assumed to be exi)onential.

17



For practical reasons, it is necessary to choose some upper bound C on the number of

periods of delay to allow. Hence

Xn'l.nkiv) =

v(C-i)

Together with the numbers {/.-^(c)}, the probabilities {pv(c)} then constitute a probabilistic

description of the next period in which aircraft v will demand to land.

3.3 Characterizing arrivals

In order to translate the numbers {p^.ic)] into a probabilistic description of the future

demand rules A{n.k), define the random variable

1 if r e A{n', 1} is delayed such that its

next sto]) will be n at period k

otherwise

This random variable denotes the "contribution" of an arrival at one place and time to the

arrival rate at a future place and time. Note that if the next stop of v € A{n' , I) is n, then

Pr{A-„.,.„,(r)= \}=p,(k-l).

In words, for aircraft i' £ A(n'J), the jirobability that it will contribute to the landing

demand at airjiort n during jieriod k (as,suming that n is its next scheduled stop) is pv{k — l).

The random variables X„'i.nk('^') l>rovide the necessary connection between aircraft and

arrival rates. Then

A(rK/.-)= ^^^A-„.,,„,(r). (30)

n'= I /<;, 1 = 1

In words, this says that the arrival rate at (ri, k) is the sum of all contributions from previous

points in the itineraries (see Figure fi). Thus the random variables {A} are sums of Bernoulli

random variables. Defining

NL{v.k) = next destination Of aircraft i' after period A-

the expectation is easily obtained ius

E\Mn.k)] = ^^^E|A',..,,„,(")1-
11'=

I (<*. t.= 1

= EE E ^^'(^--'^ (31)

n'=l l<k v:NL(v.l) = n

19
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Fiffure 7: Histo^aiii of A( 1,22) obtained from simulation. Unusual skewness patterns such

a^ tills one may occur in the early part of the day when tiie contributing prior arrivals are

still largely deterministic.

considerable degree of insensitivity to the demand rate distribution. We retain the normality

assumption while acknowledging its im])erfections.

Although Algorithm 2 involves considerably more modeling work than Algorithm 1, its

comjiutational complexity is not significantly higher, as our next result indicates.

Theorem 2 The coviplexity of Algontlmt 2 is 0(RK NU), where R is the user- specified

number of values used ni the approximate distributtoit for the arrival rates and U is the

complexity of the single hub recursive algorithm for waiting time moments with deterministic

input. If tlie Markov capacity model is specified until S capacity states, overall complexity is

Proof:

Within the principal ioo]), the bottleneck ojieration remains that of calculating the waiting

time moments in the recursion. Because the arrival stream is specified probabilistically

21



rather than deterministically, there is an additional factor R equal to the number of values

specified for each arrival rate distribution. The result follows. D

Both Algorithms 1 and 2 are suitable for any kind of network. Without the streamlining

suggested at the end of Section 2, running times are somewhat high. For example, on a

simple 2-airport network with A' = 80 periods at each airport, Algorithm 1 takes about one

hour on a DEC-3100 workstation while Algorithm 2 takes about three hours (with /? = 3).

With the reduction in calls to the recursion achieved by the streamlining procedure, there

is roughly tenfold improvement in these figures. Even with this improvement, modeling a

full-size network of a large airline {400+ nodes) is a daunting problem. On the other hand,

the problem is well suited to parallel computation, with different processors handling the

individual nodes and a central processor controlling the bookkeeping of aggregation and

disaggregation

In the ])resent context, further siin])lification is possible. Consider a single carrier trying

to understand congestion in its own hul>and-spoke network. Prom this carrier's perspective,

delays at its hubs have far greater implications for disru])tion of its schedule than delays at

its spokes. This observation suggests a simplification: reduce the hub-and-spoke network

to a network of hubs. That is, keep track only of aircraft belonging to the hub carrier,

treat other arrivals as fixed, and treat all congestion delays other than those emanating

from tiie hubs as negligible. In the resulting network, we incorjiorate spoke information in

setting aircraft itineraries As before, these consist of ordered triples {(irm ^mi «„)}, but

now each im refers to a hub airjiort and each .s„, reflects the total slack available to an

aircraft between successive visits to hubs, including the slack available at an intervening

sjjoke. External aircraft add to demand and congestion in the system, but their arrival

schedules are considered fixed All mternal flights in the collaj>sed network appear to take

place between hubs, but fiiglil time,s vary widely to reflect the fact that in reality, the aircraft

have intermediate si^oke stoi)s.

By ignoring congestion at the sjioke.s of the system and concentrating only on the hubs,

we can reduce the size of a large airline's network from 400+ nodes to perhaps 5 or 6. These

changes reduce the model's realism. Init tiie reduced model should capture essential behavior.

Since one of the main goals is to imjirove our understanding of interactions between hubs

(e.g. the issue of isolating C'hicago), this sim|iliHcalion seenus to be furtiier justified. The

testing and analysis jjresented in tiie next section is conducted on a simple 2-hub network

23
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isolation, by considering an instance in whicli the two hubs have no aircraft in common

(p = 0, the disconnected case) and an instance in whicli they have all aircraft in common

(p= 1, tiie fully connected case). In case 5 we examine four instances in which aircraft slack

is varied.

4.2 Results and Discussion

Considering cases 1-5 together, we note that model parameters should have a noticeable

effect on the mechanics of the network. For example, in the DFW case (#1), waiting times

are of the same order as aircraft slack, and there is substantial separation between major

traffic ])eaks. For these reasons, we expect delay propagation to be relatively low and have

a less disru]itive effect on the schedule. In case 2, on the other hand, major peaks are much

closer together, traffic intensity is shar]>ly higher, and delay propagation should be more

important.

Using a DEC-3100 workstation we ])erfonned computations for test cases 1-5, using both

of our recursion-based approximations as well the the simple simulation procedure discussed

above. Our investigation is primarily motivated by the desire to develop qualitative insight

into the transient ])heiiomena of the network. Accordingly, the following set of questions

will guide our discussion of the results:

• To what degree do network effects alter the results obtained from the study of a single

hub-?

• What are the network effects produced by delay i^ropagation and under what circum-

stances do they become important?

• How closely do the network a]>]iroximation results match tiiose of simulation? Where

do they differ?

• What is the effect of congestion at one hub on demand and congestion at the other?

• How is this effect altered by the amount of slack in aircraft schedules?

• What is the effect of isolating a congested hub by not allowing its flights to connect

with the other hub?

27



preservation of tlie peaked delay pattern, botli of which indicate that the effects induced

by delay propagation (the "network effects" ) are relatively minor. Because there is ample

space between major banks and slack values are close to the mean waiting times, the general

])eaked pattern is preserved. The result suggests that when space between banks is adequate

to ensure a moderate traffic intensity and when mean waiting times are not substantially

greater than aircraft slack, network effects are outweighed by the "deterministic" congestion

effects resulting from tlie banked structure of arrivals at hubs.

Behavior Under Heavier Traffic and Closer Spacing

The relative weakness of the network effect in the preceding example obscures differences

between the network approximations and the simulation. A more revealing picture is pro-

vided by case 2a (Figure 12). Here expected waiting times (30-40 minutes) are quite high

relative to aircraft slack (5 minutes), and there is only a 15-minute gap between successive

banks. While the early part of the day shows a close fit between the simulation and the

algorithms, there is a noticeable disparity in the middle part of the day, when alterations

in the arrival stream become significant. Relative to simulation, both algorithms tend to

overestimate delay during the middle ]iart of the day, with the difference as high as 30% for

certain periods. This same effect is jireseiit in case 1 to a much lesser degree.

For a given hub and algorithm we define a standard error in the predictions relative to

simulation. Let A'/^ denote the waiting time value predicted by algorithm for period k and

Yh denote the corresponding value for the simulation. Then the standard error s is given by

This ]jrovides a measure of how far ajiart the simulation and algorithm results are. For

Algorithm 1. these values are 4.5 and 2 fi minutes at the two hubs, while the corresponding

numbers for Algorithm 2 are 4.o and 2.3 The numbers rei^resent an average error of 10-20%,

with worse fits in the middle ])art of the day.

Case 3, in which demand is allowed to he continuous over the day (no banks), also shows

a discrepancy between the a])i)roximations and the simulation during the middle part of the

day, as Figure 13 indicates. The traffic intensity for this case is higher than case 1 but lower

than case 2. The difference between the algorithms and simulation exceeds 20% for a large

part of the day at hub 2, and the standard errors are approximately 15% of the delays: 2.2

29



minutes at hub 1 (for both algoritiinis) and 2.4 and 2.6 minutes (Algorithm 1 and Algorithm

2) at hub 2. Thus in all cases, the simulation produces lower waiting time estimates during

the middle part of the day than both of the approximation algorithms. We next consider

the likely explanation for the discrepancy.

The Network Effect: Demand Smoothing

Consider the waiting time profiles for cases 1 and 2a (Figures 11 and 12). Evidently, waiting

time jjrofiles are much smoother in the latter than in the former. With only a 15-minute

sejiaration between banks, tiie relatively high waiting times combine with low aircraft slack

to overwhelm the bank structure. Thus we see that when traffic intensity is very high and

aircraft slack is low, the order of the network's schedule breaks down. Further evidence of

this effect is given in the to]) half of Figure 14, where we have plotted the original demand

profiles at Hub #1 together with those which are produced as a result of delayed arrivals

under scenario 2a. The original schedule is labeled "slack = 500", corresponding to the

artificial situation where aircraft slack is large enough to eliminate propagation completely.

We see by comparison with the situation "slack = 5" that propagated delays smooth the

demand pattern substantially, with large numbers of aircraft shifted to late periods. The

sharj) peak structure of the original demand is considerably altered.

This smoothing phenomenon exi>lanis why Algorithms 1 and 2 overestimate delays con-

sistently in the middle part of the day In the actual jirocess, an aircraft scheduled at a

given jieriod may exjierience a delay ranging from zero ui> to 3 hours or more. In cases

of high waiting times, the aircraft's next arrival time will be considerably later than was

scheduled, and its contribution to later demand is ])ushed back by a significant number of

]>eriods. Thus over a large number of simulations with heavy traffic, a noticeable fraction

of arrivals are ])ushed back to the later ))arl of the day. when there is no scheduled traffic.

Because cajiacity is more than a(le(|uatc liieii, the result of this traffic shift is to reduce

overall waiting times. Ideally, the <()iii|)uiatioiia! algorithms should reflect this shifting and

smoothing of demand However. ;us w;ls reiiKirke<l earlier, to do a thorough job they would

have to kee]i track of the thousands of potential ))alhs which aircraft may follow as a result

of delay, a seemingly im]>ossii)le coiMimtaiional burden To limit the state space to man-

ageable size, both algorithms u])tlatc ainraft srlirduli-s according to one number, expected

waiting time. The result is that i)otli algorithms tend not to shift aircraft to the very late
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part of the day sufficiently but ratlier to concentrate demand more in tlie middle, resulting

in hiffher predicted waits.

The Effect of Demand Smoothing on Waiting Times

The phenomenon of demand shifting and smoothing explains certain observations which

seem counter-intuitive at first. An example of such a result is the fact that higher aircraft

slack can inc.remte expected queuing tivies at the hubs. Cases 2a and 2b illustrate this. Both

have heavy traffic organized into narrowly separated banks. The difference is that in case

2b. artificially high slack prevents the network effect of demand smoothing, whereas case 2a

allows the demand to become smoother over time as aircraft are pushed back to the end of

the day. in the high slack case, the higher concentration of demand produces higher qnemng

delays, as we see in the bottom half of Figure 14. Because slack preserves the schedule, it

also preserves the peaked pattern in that schedule, which produces queues. Note that in

case 2b there is a closer fit between the algorithms and the simulation, because the high

slack means that the schedule becomes essentially deterministic.

Assessing the Network Approximations

The results of cases 1-3 suggest the circumstances under which network effects become im-

portant, and they also indicate that under these circumstances, the network approximations

developed in this paper tend to overestimate waiting times during the busy period of the

day. Case 1 suggests that for networks of air])orts like DFW, waiting times on average are

jjrobably not high enough on. average to create significant network effects: the deterministic

]>art of the schedule (i.e. the bank structure) j^redominates. However, as cases 2 and 3 illus-

trate, the situation changas when traffic becomes heavier and s])acing between major banks

is decreased. This situation may only describe a few airi>orts at present in this country (e.g.

O'Hare), but it rejjresents a future scenario which is quite possible, hi the cases of heavier

traffic, lower slack, and less sejmration, the ])erformance of the algorithms worsens as they

tend not to capture the true sj^reading of demand which is the major network effect.

Slack, Connectivity, and Hub Isolation

We consider next the effect of network coiinectimty and aircraft slack on cumulative aircraft

delay. We distinguish between tliis latter meiisure and that of tiie waiting times at the hubs.
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Tlie latter correspond to the waiting times of aircraft at the various stations in the network,

while the former is really the sum of such waiting times with aircraft slack subtracted.

We measure network connectivity in tenns of the percentage of flights having operations

at both hubs in the network. Case 4 illustrates two opposing extremes of connectivity: a

fully disconnected network (case 4a), where each hub has its own set of aircraft; and a fully

connected network (case 4b), where all flights alternate between the two hubs in between

visits to spokes.

Case 4a models the idea of hub isolation referred to earlier. Because the network is

com]>letely disconnected (p = 0), scheduled bank times at one hub cannot be disrupted by

late arrivals from the other. In contrast, case 4b ensures that aircraft encountering delays at

one hub have the maximum chance to disrupt the schedule at the second, since that is their

next destination after the intervening s))oke. Case 4's scenario thus allows us to explore the

network effects of low cajjacity at a single location. To do tliis, in both case 4a and case 4b

we take the initial state of the first hub to be 1 (lowest capacity) and that of the second hub

to be 3 (highest capacity). The phenomenon of interest is the propagation of delays created

at the first to the banks of the second.

Our results are sunnnarized in Figure 1.5, which plots average cumulative delay per

arnmng aircraft. The early banks show zero delay, while later banks reflect delay carried

over from ])revious points in the itnierary. The figure indicates a degradation in performance

at hui) # 1 whe7i it is isolated, as well as tiie rorres)ionding benefits of isolation at hub #2.

Conversely, the fully connected case benefits hub # 1 at the exjjense of #2.

Upon further examination, these results make intuitive sense. Clearly we expect hub #2's

schedule to become more reliable when it is disconnected from the disrui^tions produced by

#1. But we also see that hub # Is schedule i^erfonnance im])roves when it moves in the

opijosite direction — from disoomiected to fully connected. Examining the situation at hub

#1 more closely, we notice that the delays in the connected case seem to lag behind the

delays ni the disconnected c;ise by about 2 banks (2 hours) This is no coincidence: in the

connected case, the inininium time between any aircraft's successive visits to the same hub

is 4 iiours (4 banks), while in the disconnected case it is only 2. Thus the schedule delays

produced by the congestion at hub ^ ! are felt 2 hours later at that hub in the connected

case, jiroducing the 2-liour lag. However, this lag does not fully ex]>lain the difference in tlie

heights of the two curves in tlie toj) half of Figure \^>. In the comiected case, late aircraft
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leaving hub #1 have the opportunity of recovering some of the delay tlirough slack at their

next stop (uncongested hub #2). This oi)portunity is not available in the disconnected case,

since the next stop is (congested) hub # 1 , a fact which explains why the corresponding delay

is higher even after we take account of the lag.

These results have interesting implications for a strategy of hub isolation. In the case of

a hub which is believed to be the source of a large amount of congestion, such a strategy will

indeed protect other hubs in the system from the uncertainties and disruptions produced by

the problem hub. On the other hand, disruption at that hub itself may worsen since many

of its later arrivals will have had an earlier scheduled stop there already.

Cases 5a, Hb, be, and bd illustrate the effect of slack on aircraft lateness. We noted earlier

that higher slack preserves demand jieaking and may actually increase queuing delays at

the hubs. On tlie other hand, slack reduces each aircraft's cumulative delay. Figure 16

illustrates that this second effect predominates in this relatively hght traffic. For varying

slack values, the figure plots the average cumulative delay per aircraft arriving at each bank

of the day, not including any waiting at the current stop. Certainly the figure does not

contain any surprises. We include it in order to illustrate the kind of planning for which the

models are well suited.

Finally, we note tliat in a situation of major capacity shortfalls, airlines do not passively

acce])t long delays which disrujjt the schedule. Instead, schedulers respond in "real time"

by canceling and rerouting flights. The jireceding discussion is intended to provide insight

into the ])henomena of interest and to the strategic issues that airlines must plan for in

connection witli schedule disrujJtions due to congestion at their hubs. At the tactical and

oi>erational level, airline behavior is in actuality more dynamic.

5 Conclusion

In tins i)a])er we iiave develojied two related ai)]iroximation a])])roaches to the difficult

l^robleni of modeling transient queiiiim behavior in a liul)-and-s))oke network. We would

summarize our major findings as follows:

1. Iviporiance of traffic fpltttivq plininmnimi. High uncertainty in levels of delay en-

countered by aircraft is a iiroiniiieiil feature of the network i^roblem. Unfortunately,
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accuracy in keeping track of aircraft amid this uncertainty is limited by high compu-

tational complexity.

2. Importance of deterministic effect. The peaked pattern of demand at hub aiirports

remains a strongly determining factor in predicting waiting times, particularly when

major banks are separated by ample lengths of time.

3. Delay and smoothing. On the other hand, in cases where banks are narrowly spaced,

delay propagation exerts a strong smoothing effect on the demand and waiting time

profiles.

4. Effects of hub isolation. A policy of isolating a congestion-prone hub clearly does have

the effect of improving perfonnance at others. On the other hand, under this policy

the isolated hub produces congestion delays which disrupt its own future schedule.

We conclude with some remarks about running times. As we reported earlier, the running

times for Algorithms 1 and 2 are higii even for the small 2-hub test network: approximately

one hour for Algorithm 1 and three hours for Algorithm 2 on a DEC-3100 workstation. These

times are particularly poor considering that the running time for the simulation program

(5000 sami)les) is significantly shorteT — about 10 minutes. In the absence of improve-

ments in the algorithms, this observation favors simulation. However, the implementation

of Algorithms I and 2 used in our tests is a rather inefficient one. Incorporating the earlier

suggestion that the recursion be restarted every m jieriods rather than at every period would

reduce running times by at least a factor of

A- + 1

~ in
(h/m)+ I

A value m = 10 (2 1/2 hours), which is api>roxinialely the minimum time a typical aircraft

would have between successive vi.sjts to hub.s, would reduce running times by a factor of 9 (for

A' = 80 periods). This improvement alone would iiring the running times of the algorithms

into the same range as simulation. The reduction is nni^ortant for the general problem

because the number of simulations necessary cannot be known in advance. However, at

least in this test case, the smiulation jirocedures themselves, based on the same ideas of the

original Markov and semi-Markov cajwcity models, offer a third approach to understanding

network effects.
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